KR20000002733A - Photo magnetic record tape - Google Patents

Photo magnetic record tape Download PDF

Info

Publication number
KR20000002733A
KR20000002733A KR1019980023632A KR19980023632A KR20000002733A KR 20000002733 A KR20000002733 A KR 20000002733A KR 1019980023632 A KR1019980023632 A KR 1019980023632A KR 19980023632 A KR19980023632 A KR 19980023632A KR 20000002733 A KR20000002733 A KR 20000002733A
Authority
KR
South Korea
Prior art keywords
layer
magnetic
magneto
recording
thin film
Prior art date
Application number
KR1019980023632A
Other languages
Korean (ko)
Inventor
김진홍
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019980023632A priority Critical patent/KR20000002733A/en
Priority to US09/263,882 priority patent/US6141297A/en
Publication of KR20000002733A publication Critical patent/KR20000002733A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE: A photo-magnetic record media is provided to improve oxidation resistance and adapt in short wave region by using magnetic layer in playing layer. CONSTITUTION: A photo-magnetic record media includes a recording layer which records the data and a playing layer which plays the data recorded in record layer, wherein the playing layer composed of super-latticed multi-layer formed by magnetic layer and non-magnetic layer. The playing layer having horizontal magnetic anisotropy consists of layer included more than 1 magnetic layer and less than 3 non-magnetic layer, or a layer included more than 2 non-magnetic layer and more than 2 magnetic layer. Thereby, it is possible to use in a short wave region as well as in a long wave region and to improve the oxidation resistance.

Description

광자기 기록 매체Magneto-optical recording media

본 발명은 광자기 기록 매체에 관한 것이다.The present invention relates to a magneto-optical recording medium.

일반적으로 광자기 디스크는 편광된 빛이 자성박막면에서 반사할 때, 막면에 대해 수직한 방향의 자기 이방성을 갖는 자성박막인 경우는 편광면의 각도가 회전하는 현상을 이용한다.In general, the magneto-optical disk uses a phenomenon in which the angle of the polarization plane is rotated when the polarized light is a magnetic thin film having magnetic anisotropy in a direction perpendicular to the film plane when the polarized light is reflected from the magnetic film plane.

이와 같은 자기광학 효과를 커(Kerr) 효과라 하고, 이때 회전하는 편광면의 각을 커 회전각이라 한다.This magneto-optical effect is called a Kerr effect, and the angle of the rotating polarization plane is called a rotation angle.

광자기 디스크의 신호대 잡음비(signal-to-noise ratio ; SNR)는 다음과 같다.The signal-to-noise ratio (SNR) of a magneto-optical disk is

여기서, η는 포토다이오드의 양자 효율(quantum efficiency), P는 리드 파워(read power), R은 매체 반사도(reflectivity), θK는 커 회전각, e는 일렉트론 차지(electron charge), 그리고 B는 밴드 폭(band width)이다.Where η is the quantum efficiency of the photodiode, P is the read power, R is the medium reflectivity, θ K is the rotation angle, e is the electron charge, and B is Band width.

위의 식에서 매체의 특성을 나타내는 파라미터(parameter)인 R과 θK만을 고려하였을 때의 피겨 오브 메리트(figure of merit)는 RθK 2에 비례한다.In the above equation, the figure of merit is only proportional to Rθ K 2 considering only R and θ K, which are parameters of the medium.

따라서, R보다는 θK를 증가시키는 것이 효율적이다.Therefore, it is more efficient to increase θ K than R.

통상 광자기 기록에 이용되는 자성박막의 커 회전각은 0.3°정도의 작은 값을 갖는다.Usually, the rotation angle of the magnetic thin film used for magneto-optical recording has a small value of about 0.3 degrees.

따라서, 이 값을 증가시키기 위해서 종래에는 유전체 및 반사층을 이용하여 다층화 하였다.Therefore, in order to increase this value, a multilayer has been conventionally used using a dielectric and a reflective layer.

즉, 종래에는 기판/무반사층/기록층/페이즈(phase)층/반사층으로 이루어진 4층 구조가 일반적이었는데, 이러한 구조의 광자기 디스크는 기록 밀도를 높이는데는 한계가 있었으므로, 기록 밀도를 높이기 위하여 디스크의 구조는 점차 다층화가 되었고 기록 레이저 빔과 외부 자계의 형태도 점차 복잡해지게 되었다.That is, a conventional four-layer structure consisting of a substrate, an antireflection layer, a recording layer, a phase layer, and a reflection layer has been common. Since the magneto-optical disk of such a structure has a limitation in increasing the recording density, the recording density is increased. For this reason, the structure of the disks was gradually multilayered, and the shape of the recording laser beam and the external magnetic field became more complicated.

이러한 종래의 광자기 디스크에서는 재생층으로서 GdFeCo 합금과 같은 희토류-천이류(rare-earth transition metal) 합금을 사용하는데, 이 희토류-천이류 합금은 장파장(적외선∼레드(red) ; 800∼650nm)에서 큰 자기 광학적(kerr) 효과를 갖는 특징이 있다.In such conventional magneto-optical disks, a rare earth-transition metal alloy such as a GdFeCo alloy is used as a regeneration layer, and the rare earth-transition alloy has a long wavelength (infrared to red; 800 to 650 nm). Is characterized by having a large magneto optical (kerr) effect.

특히, 재생층에 이용된 GdFeCo 합금 박막은 재생신호와 직접 관련이 있는 층으로 적외선∼레드(red)영역에서 커 회전각이 0.25∼0.3°정도 이다.In particular, the GdFeCo alloy thin film used in the regeneration layer is a layer directly related to the regeneration signal, and has a large rotation angle of 0.25 to 0.3 ° in the infrared to red region.

이 정도 크기의 커 회전각은 적외선∼레드영역에서 실제 이용하는데에 충분하다.Kerr rotation angles of this magnitude are sufficient for practical use in the infrared to red region.

이 희토류-천이류 합금 재생층의 메커니즘(machanism)은 상온에서 수평 자기 이방성을 갖다가 고온이 되면서 수직 자기 이방성으로 변화하게 되는 특성을 이용한 것이다.The mechanism of the rare earth-transition alloy regenerated layer utilizes the property of having horizontal magnetic anisotropy at room temperature and vertical magnetic anisotropy at high temperature.

즉, 희토류와 천이류의 서브래티스(sublattice)는 각각 반대 방향으로 커플링(coupling)하여 두 자화값의 차가 총 자화값이 되는 페리마그네티즘(ferrimagnetism)의 특성을 갖게 된다.That is, the sublattices of rare earths and transitions are coupled in opposite directions, respectively, and have a characteristic of ferrimagnetism in which the difference between the two magnetization values becomes the total magnetization value.

이 희토류-천이류 합금 박막은 수직 자기 이방성 에너지(Ku)가 형상 자기 이방성 에너지(2πMs 2)보다 클 때This rare earth-transition alloy thin film has a perpendicular magnetic anisotropy energy (K u ) greater than the shape magnetic anisotropy energy (2πM s 2 ).

즉, Ku> 2πMs 2----------------(1)That is, K u > 2πM s 2 ---------------- (1)

일 때 수직 방향의 자기 이방성을 갖게 된다.When it has a magnetic anisotropy in the vertical direction.

희토류와 천이류에서는 각 서브래티스 자화값의 크기가 같아지는 온도가 존재하는데, 이 점을 보상온도(compensation temperature ; Tcomp)라 한다.In rare earths and transitions, there is a temperature at which the magnitude of each sublattice magnetization is the same, which is called the compensation temperature (T comp ).

도 1을 보면, 이 점을 중심으로 자화값(Ms)이 작은 영역에서는 수직 방향의 자기 이방성을 갖게되고, 자화값이 큰 영역에서는 수평 방향의 자기 이방성을 갖게 되는 것을 알 수 있다.Referring to FIG. 1, around this point in the magnetization (M s) is a small area and has the magnetic anisotropy in the vertical direction, in a large area can be seen that the magnetization has the magnetic anisotropy in the horizontal direction.

종래 기술에 따른 광자기 기록 매체에 있어서는 다음과 같은 문제점이 있었다.In the magneto-optical recording medium according to the prior art, there are the following problems.

GdFeCo 합금으로 이루어진 재생층을 갖는 종래 광자기 디스크는 파장이 긴 적외선∼레드(red)영역에서 커 회전각이 0.25∼0.3°이었지만, 파장이 짧은 블루(blue)영역에서는 커 회전각이 0.2°이하로 작아지게 되어 실제적으로 블루 영역에서는 사용할 수 없는 문제가 있었다.Conventional magneto-optical disks having a regeneration layer made of a GdFeCo alloy have a large rotation angle of 0.25 to 0.3 ° in the long infrared-red region, but a rotation angle of 0.2 ° or less in the blue region of short wavelength. As it becomes smaller, there is a problem that cannot be actually used in the blue region.

즉, 기록 밀도를 향상시키기 위해서는 단파장 광원에서 큰 재생 신호를 가져야 하지만, 종래의 광자기 디스크에서는 단파장에서 커 회전각이 작아 큰 재생 신호를 얻을 수 없었다.In other words, in order to improve the recording density, it is necessary to have a large reproduction signal in a short wavelength light source, but in the conventional magneto-optical disk, a large rotation signal is small and a large reproduction signal cannot be obtained in the short wavelength.

또한, 광자기 디스크의 재생층과 기록층에 사용되는 희토류 원소들은 산화에 극히 약한 단점이 있다.In addition, the rare earth elements used in the reproducing layer and the recording layer of the magneto-optical disk have a disadvantage of being extremely weak in oxidation.

본 발명은 이와 같은 문제를 해결하기 위한 것으로, 장파장 광원 뿐만 아니라 단파장 광원에서도 큰 재생 신호를 얻을 수 있는 광자기 기록 매체을 제공하는데 그 목적이 있다.The present invention has been made to solve such a problem, and an object thereof is to provide an optical magnetic recording medium capable of obtaining a large reproduction signal not only from a long wavelength light source but also from a short wavelength light source.

도 1은 GdFeCo 재생층의 Ku및 2πMs 2의 온도 의존성을 보여주는 그래프1 is a graph showing the temperature dependence of K u and 2πM s 2 of a GdFeCo regenerated layer

도 2는 수직 자기 이방성을 보이는 코발트-베이스(Co-based) 다층박막 재생층을 보여주는 도면FIG. 2 shows a cobalt-based multilayer thin film regeneration layer exhibiting perpendicular magnetic anisotropy

도 3은 X층이 얇아서 수평 자기 이방성을 보이는 코발트-베이스 다층박막 재생층을 보여주는 도면3 is a view showing a cobalt-based multilayer thin film regeneration layer having a thin X layer showing horizontal magnetic anisotropy

도 4는 코발트-베이스 다층박막 재생층의 Ms의 온도 의존성을 보여주는 그래프4 is a graph showing the temperature dependence of M s of the cobalt-based multilayer thin film regeneration layer

도 5는 Co층이 두꺼워 수평 자기 이방성을 보이는 코발트-베이스 다층박막 재생층을 보여주는 도면FIG. 5 shows a cobalt-based multilayer thin film reclaimed layer having a thick Co layer showing horizontal magnetic anisotropy. FIG.

도 6은 코발트-베이스 다층박막 재생층의 Ku및 2πMs 2의 온도 의존성을 보여주는 그래프6 is a graph showing the temperature dependence of K u and 2πM s 2 of a cobalt-based multilayer thin film regenerated layer

본 발명에 따른 광자기 기록 매체의 주요 특징은 정보를 기록하는 기록층과 상기 기록층에 기록된 정보를 재생하는 재생층을 갖는 광자기 기록 매체에서, 재생층은 자성층과 비자성층이 적층된 초격자 다층박막으로 이루어지며, 자성층 1층 이상이면서 비자성층 3층 이하이거나 비자성층 2층 이상이면서 자성층 2층 이상의 수평자기 이방성을 갖는 특성을 갖게 하는데 있다.A main feature of the magneto-optical recording medium according to the present invention is that in a magneto-optical recording medium having a recording layer for recording information and a reproducing layer for reproducing the information recorded in the recording layer, the reproducing layer is a super magnetic layer in which a magnetic layer and a nonmagnetic layer are laminated. It is made of a lattice multilayer thin film and has a characteristic of having horizontal magnetic anisotropy of at least one magnetic layer and at most three nonmagnetic layers or at least two nonmagnetic layers and at least two magnetic layers.

상기와 같은 특징을 갖는 본 발명에 따른 광자기 기록 매체를 첨부된 도면을 참조하여 설명하면 다음과 같다.The magneto-optical recording medium according to the present invention having the above characteristics will be described with reference to the accompanying drawings.

먼저, 본 발명의 개념은 자성층과 비자성층이 적층된 다층박막이 청색 파장(약 400nm 이하)영역에서 큰 신호를 얻을 수 있는 특성이 있으므로 이를 재생층에 이용하고, 자성층이나 비자성층의 두께를 조절함으로써 청색 파장 영역에서 레이저 빔 크기 이하로 작게 기록된 정보를 읽을 수 있게 하는데 있다.First, the concept of the present invention is that the multilayer thin film in which the magnetic layer and the nonmagnetic layer are stacked has a characteristic of obtaining a large signal in a blue wavelength (about 400 nm or less) region, and thus, it is used for a regeneration layer, and the thickness of the magnetic layer or the nonmagnetic layer is controlled. This makes it possible to read information recorded smaller than the laser beam size in the blue wavelength region.

코발트-베이스(Co-based) 초격자 다층박막을 일 예로 하여 본 발명의 원리를 설명하면 다음과 같다.Cobalt-based (Co-based) superlattice multilayer is described as an example the principle of the present invention as follows.

도 2에 도시된 바와 같이, 코발트-베이스 다층박막은 약 2층의 원자층을 갖는 Co 서브층(sublayer)과 약 3층의 원자층을 갖는 X 서브층(비자성층)으로 이루어진다.As shown in Fig. 2, the cobalt-based multilayer thin film is composed of a Co sublayer having about two atomic layers and an X sublayer (nonmagnetic layer) having about three atomic layers.

이와 같은 두께 구조를 갖는 코발트-베이스 다층박막은 두 층간의 계면이 샤프(sharp) 할 경우, 상온에서 수직 자기 이방성을 갖는 특성이 있다.The cobalt-based multilayer thin film having such a thickness structure has a characteristic of having perpendicular magnetic anisotropy at room temperature when the interface between the two layers is sharp.

이들 다층 박막들의 수직 자기 이방성은 계면 혹은 표면 자기 이방성이라 하여 자성 서브층과 비자성 서브층 간의 계면에서 수직 자기 이방성의 원인이 되는 현상이 일어난다.Since the vertical magnetic anisotropy of these multilayer thin films is called an interface or surface magnetic anisotropy, a phenomenon that causes vertical magnetic anisotropy occurs at an interface between the magnetic sublayer and the nonmagnetic sublayer.

그러나, 도 3과 같이 X층(예를 들면, Pt 또는 Pd)의 두께를 줄여 자성층 간의 거리를 좁힐 경우, 자성층 간의 상호 작용이 커지게 되어 수평 방향의 자화 용이축을 갖게 되어 버린다.However, as shown in FIG. 3, when the thickness of the X layer (for example, Pt or Pd) is reduced to narrow the distance between the magnetic layers, the interaction between the magnetic layers becomes large, resulting in an easy axis of magnetization in the horizontal direction.

이때, 이 다층 박막으로 이루어진 재생층의 온도를 높이면 자성층의 자화값이 감소하게 됨과 더불어 자성층 간의 상호 작용이 줄어들게 되면서 수평 방향을 향했던 자화는 수직 방향으로 향하게 되는 변화가 일어난게 된다.At this time, when the temperature of the regeneration layer made of the multilayer thin film is increased, the magnetization value of the magnetic layer is decreased, and the interaction between the magnetic layers is reduced, so that the magnetization that is directed in the horizontal direction is directed in the vertical direction.

즉, 도 4에서 이와 같은 자화값의 온도 의존성을 통해 교환력(exchange strength)의 감소를 예측할 수 있다.That is, in FIG. 4, it is possible to predict a decrease in exchange strength through the temperature dependency of the magnetization value.

또 다른 예로는 도 5에 도시된 바와 같이, 자성층의 두께가 두꺼워진 경우이다.As another example, as shown in FIG. 5, the thickness of the magnetic layer is increased.

이때는 X층과 계면을 형성하지 못하는 Co 원자들이 수직 자기 이방성의 특성을 갖지 못하게 되고 따라서 수평 자기 이방성을 갖게 되는 경향이 생겨나게 되는 것이다.In this case, Co atoms that do not form an interface with the X layer do not have the characteristics of perpendicular magnetic anisotropy, and thus tend to have horizontal magnetic anisotropy.

그러나, 이 경우에도 재생막의 온도를 높일 경우 도 6에 도시된 바와 같이, 자화값의 감소와 더불어 형상 자기 이방성 에너지가 줄어들어 앞서 설명한 수식 (1)의 조건을 만족하는 영역이 생겨나는 것을 알 수 있다.However, even in this case, when the temperature of the regenerated film is increased, as shown in FIG. 6, it can be seen that the shape magnetic anisotropy energy decreases together with the decrease of the magnetization value, thereby creating a region that satisfies the condition of Equation (1). .

이와 같은 원리를 이용하여 본 발명에서는 청색 파장에서 큰 신호를 얻을 수 있는 특성을 갖는 다층박막을 재생층에 이용하되, 이 다층박막의 특정한 서브층 두께를 조절하여 상온에서는 수평 방향, 재생을 위해 레이저로 가열된 경우에는 수직 방향의 자화 용이축을 갖는 재생층을 제작할 수 있다.By using this principle, in the present invention, a multilayer thin film having a characteristic of obtaining a large signal at a blue wavelength is used in a regeneration layer, and a specific sublayer thickness of the multilayer thin film is controlled to control the horizontal direction at room temperature, and to reproduce the laser. In the case of heating in the furnace, a regenerated layer having an easy axis of magnetization in the vertical direction can be produced.

즉, 본 발명에서는 도 3 및 도 4에 도시된 바와 같이, 재생층을 자성층과 비자성층이 적층된 초격자 다층박막으로 형성하고, 이 다층박막의 자성층 두께를 약 2층 이상의 원자층으로 두껍게 조절하거나 또는 비자성층의 두께를 3층 이하의 원자층으로 얇게 조절한다.That is, in the present invention, as shown in Figs. 3 and 4, the reproduction layer is formed of a superlattice multilayer thin film in which the magnetic layer and the nonmagnetic layer are stacked, and the thickness of the magnetic layer of the multilayer thin film is thickened to about two or more atomic layers. Alternatively, the thickness of the nonmagnetic layer is adjusted thinly to three atomic layers or less.

여기서, 자성층에 사용되는 원자들로는 Co, Fe 그리고 Ni 등과 같은 천이 금속이거나 그들의 합금이고, 비자성층에 이용되는 원자들로는 Pt, Pd, Ag 그리고 Au 등의 귀금속들이거나 그들의 합금이다.Here, atoms used in the magnetic layer are transition metals such as Co, Fe, and Ni, or alloys thereof, and atoms used in the nonmagnetic layer are precious metals such as Pt, Pd, Ag, and Au, or alloys thereof.

이 중 대표적인 다층박막으로는 Co/Pt와 Co/Pd 이다.Representative multilayer thin films are Co / Pt and Co / Pd.

이와 같은 구조를 갖는 재생층은 상온 및 고온을 포함한 전 온도 영역에서 수직 방향의 자화 용이축을 가지므로 이 재생층을 디지털 정보가 저장된 디스크에 적용하면 레이저 빔 크기 이하로 기록된 비트(bit)를 주변 비트의 영향을 배제하고 재생할 수 있다.The regenerated layer having such a structure has an easy axis of magnetization in the vertical direction in the entire temperature range including room temperature and high temperature. Therefore, when the regenerated layer is applied to a disc in which digital information is stored, bits recorded below the laser beam size are surrounded. Can reproduce without the influence of the beat.

이러한 재생층을 갖는 본 발명의 광자기 기록 매체의 재생 방법으로는 재생 빔의 가우시안 세기 프로파일(Gaussian intensity profile)을 이용하여 고온 부분에서 수직 방향 자화가 기록층의 비트를 전사하는 효과를 이용할 수 있고, 더 작게 기록된 비트는 외부에서 DC, AC, 혹은 펄스(pulse) 형태로 가하는 자기장에 의해 전사된 자구를 확대시켜 재생할 수도 있으며, 가해진 레이저 빔에 의한 온도 기울기(temperature gradient)에 의해 재생층에 전사된 자구의 자벽 이동을 이용할 수도 있다.As a method of reproducing the magneto-optical recording medium of the present invention having such a reproducing layer, the effect of vertical magnetization transferring the bits of the recording layer in the high temperature portion by using the Gaussian intensity profile of the reproducing beam can be used. The smaller recorded bits may be reproduced by enlarging the magnetic domain transferred by a magnetic field applied in the form of DC, AC, or pulse from the outside, and may be reproduced by a temperature gradient by the applied laser beam. It is also possible to use the wall movement of the transferred domain.

또 다른 예로 재생층의 자기 이방성이 수직과 수평의 중간 정도의 값을 가질 때를 고려할 수도 있는데, 이때는 기록층에 기록된 비트의 자화의 도움에 의해 재생층의 자화 방향은 수직을 향하면서 기록층의 비트를 전사하게 된다.As another example, it may be considered that the magnetic anisotropy of the reproduction layer has a value approximately halfway between vertical and horizontal, in which case the magnetization direction of the reproduction layer is perpendicular to the recording layer with the aid of magnetization of bits recorded in the recording layer. Will transfer a bit of.

이 경우에도 마찬가지로 외부 자기장을 인가하여 재생층의 비트를 확대할 수 있다.In this case as well, an external magnetic field can be applied to enlarge the bits of the reproduction layer.

본 발명에 따른 광자기 기록 매체에 있어서는 다음과 같은 효과가 있다.The magneto-optical recording medium according to the present invention has the following effects.

본 발명은 장파장인 레드 영역에서 뿐만 아니라 단파장인 블루 영역에서도 적용 가능하므로 산업상 이용 분야가 넓고, 산화에 대한 저항이 큰 장점이 있다.The present invention can be applied not only in the red region of the long wavelength but also in the blue region of the short wavelength, so that the industrial field of application is wide and the resistance to oxidation is great.

Claims (2)

정보를 기록하는 기록층과 상기 기록층에 기록된 정보를 재생하는 재생층을 갖는 광자기 기록 매체에서,In a magneto-optical recording medium having a recording layer for recording information and a reproduction layer for reproducing information recorded in the recording layer, 상기 재생층은 자성층과 비자성층이 적층된 초격자 다층박막으로 이루어지며, 자성층 1층 이상이면서 비자성층 3층 이하이거나 비자성층 2층 이상이면서 자성층 2층 이상의 수평자기 이방성을 갖는 것을 특징으로 하는 광자기 기록 매체.The regeneration layer is made of a superlattice multilayer thin film in which a magnetic layer and a nonmagnetic layer are stacked, and the optical layer is characterized in that it has one or more magnetic layers and three or less magnetic layers or two or more magnetic layers and two or more magnetic layers having horizontal magnetic anisotropy. Magnetic recording media. 제 1 항에 있어서, 상기 자성층은 Co, Fe, Ni 중 어느 하나 또는 그들의 합금이고, 비자성층은 Pt, Pd, Ag, Au 중 어느 하나 또는 그들의 합금인 것을 특징으로 하는 광자기 기록 매체.The magneto-optical recording medium according to claim 1, wherein the magnetic layer is any one of Co, Fe, Ni, or an alloy thereof, and the nonmagnetic layer is any one of Pt, Pd, Ag, Au, or an alloy thereof.
KR1019980023632A 1998-03-11 1998-06-23 Photo magnetic record tape KR20000002733A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980023632A KR20000002733A (en) 1998-06-23 1998-06-23 Photo magnetic record tape
US09/263,882 US6141297A (en) 1998-03-11 1999-03-08 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980023632A KR20000002733A (en) 1998-06-23 1998-06-23 Photo magnetic record tape

Publications (1)

Publication Number Publication Date
KR20000002733A true KR20000002733A (en) 2000-01-15

Family

ID=19540432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980023632A KR20000002733A (en) 1998-03-11 1998-06-23 Photo magnetic record tape

Country Status (1)

Country Link
KR (1) KR20000002733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688141B1 (en) * 2004-06-07 2007-03-02 후지쯔 가부시끼가이샤 Magnetic film for magnetic device
US11973172B2 (en) 2020-05-18 2024-04-30 Glo Technologies Llc Subpixel light emitting diodes for direct view display and methods of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688141B1 (en) * 2004-06-07 2007-03-02 후지쯔 가부시끼가이샤 Magnetic film for magnetic device
US11973172B2 (en) 2020-05-18 2024-04-30 Glo Technologies Llc Subpixel light emitting diodes for direct view display and methods of making the same

Similar Documents

Publication Publication Date Title
JP3474401B2 (en) Magneto-optical recording medium
US6759137B1 (en) Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device
KR20000002733A (en) Photo magnetic record tape
JP3108397B2 (en) Magneto-optical recording medium
US5529854A (en) Magneto-optic recording systems
KR100282335B1 (en) Magneto-optical recording media
JP3792177B2 (en) Magneto-optical recording medium
US6721238B2 (en) Magneto-optical recording medium having multiple magnetic layers capable of reducing reproducing laser power
JP3381960B2 (en) Magneto-optical recording medium
US7153540B2 (en) Recording layer of magneto-optical storage medium having sublayer and method of fabricating the same
JPH0528555A (en) Magneto-optical recording medium
KR100447159B1 (en) magneto-optical recording medium
KR100531275B1 (en) Optical magnetic disk
KR100209285B1 (en) Short-wavelength magneto-optical disk
JPH08106662A (en) Magneto-optical recording medium
JP2778526B2 (en) Magneto-optical recording medium and its recording / reproducing method
KR970001976B1 (en) Magneto-optical recording medium
JPH04179104A (en) Structure of magneto-optical recording film
KR19990085278A (en) Magneto-optical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium
JPH04186545A (en) Structure of optomagnetic recording film
KR19990074506A (en) Magneto-optical recording medium
KR20000014586A (en) Magneto-optical recording media and recording/reproducing method thereof
US20070054152A1 (en) Recording layer of magneto-optical storage medium having sublayer and method of fabricating the same
KR20030067030A (en) Magneto-optical disk

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application