JP2778526B2 - Magneto-optical recording medium and its recording / reproducing method - Google Patents

Magneto-optical recording medium and its recording / reproducing method

Info

Publication number
JP2778526B2
JP2778526B2 JP13491995A JP13491995A JP2778526B2 JP 2778526 B2 JP2778526 B2 JP 2778526B2 JP 13491995 A JP13491995 A JP 13491995A JP 13491995 A JP13491995 A JP 13491995A JP 2778526 B2 JP2778526 B2 JP 2778526B2
Authority
JP
Japan
Prior art keywords
magnetic film
magnetic
film
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13491995A
Other languages
Japanese (ja)
Other versions
JPH08329539A (en
Inventor
雅嗣 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13491995A priority Critical patent/JP2778526B2/en
Publication of JPH08329539A publication Critical patent/JPH08329539A/en
Application granted granted Critical
Publication of JP2778526B2 publication Critical patent/JP2778526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体および
その記録再生方法、特に高密度記録に適する光磁気記録
媒体およびその記録再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium and a method for recording and reproducing the same, and more particularly to a magneto-optical recording medium suitable for high-density recording and a method for recording and reproducing the same.

【0002】[0002]

【従来技術】光磁気記録媒体は、ガラスやポリカーボネ
イト等の合成樹脂からなる基板上に光磁気記録用の磁性
膜をスパッタリング法等の方法で成膜したもので、レー
ザ光の照射による部分的な温度上昇に伴う熱磁気効果を
用いて情報を記録する。具体的に説明すると、磁性膜は
垂直磁気異方性を有するものを用いており、外部から一
定の磁界を印加しながら直径を例えば1μm以下にした
レーザ光を照射すると、レーザ光が照射された部分が加
熱されて一定温度以上に達すると照射部分の磁化が反転
する。そこで、磁化が上向きか下向きかで情報を0、1
のデジタル信号としての2値で記録する。
2. Description of the Related Art A magneto-optical recording medium is a magnetic film for magneto-optical recording formed on a substrate made of a synthetic resin such as glass or polycarbonate by a method such as a sputtering method. Information is recorded using the thermomagnetic effect accompanying the temperature rise. More specifically, a magnetic film having perpendicular magnetic anisotropy is used. When a laser beam having a diameter of, for example, 1 μm or less is applied while applying a constant magnetic field from the outside, the laser beam is applied. When the part is heated and reaches a certain temperature or higher, the magnetization of the irradiated part is reversed. Therefore, information is set to 0, 1 depending on whether the magnetization is upward or downward.
Is recorded as a binary signal.

【0003】一方、記録された情報の再生は、直線偏波
したレーザ光を光磁気記録媒体に入射させて、光記録媒
体からの反射光を磁気カー効果による偏光面の回転で、
または光磁気記録媒体の透過光を磁気ファラデー効果に
よる偏光面の回転でとらえる。例えば、磁気カー効果を
利用する場合には、反射光の偏光面の回転角(これを以
下「カー回転角」という)が記録磁化の方向によって異
なることを利用して、反射光が光検出器に入る前に検光
子を通し、磁化の向きに対応した情報を光量変化として
読み出す。
On the other hand, recorded information is reproduced by injecting a linearly polarized laser beam into a magneto-optical recording medium and reflecting light from the optical recording medium by rotating the plane of polarization by the magnetic Kerr effect.
Alternatively, light transmitted through the magneto-optical recording medium is captured by rotation of the plane of polarization due to the magnetic Faraday effect. For example, when utilizing the magnetic Kerr effect, the reflected light is used as a photodetector by utilizing the fact that the rotation angle of the plane of polarization of reflected light (hereinafter referred to as “Kerr rotation angle”) differs depending on the direction of recording magnetization. Before entering, the information corresponding to the direction of magnetization is read out as a change in the amount of light through an analyzer.

【0004】ところで、近年記録情報の大容量化を目的
として、高密度記録光磁気媒体を作成するための、狭ト
ラック化(光磁気記録はトラックに沿って行われるので
トラックの幅をできるだけ狭める)、読み出しレーザの
短波長化、PRML(PartialResponse Maximum Likelih
ood) などの高度な信号処理技術の開発が盛んに行われ
ている。
By the way, in recent years, for the purpose of increasing the capacity of recorded information, a narrower track is required for producing a high-density recording magneto-optical medium (magneto-optical recording is performed along a track, so that the track width is reduced as much as possible). , Shortening of reading laser wavelength, PRML (Partial Response Maximum Likelih)
ood) and other advanced signal processing technologies are being actively developed.

【0005】しかしながら、狭トラック化はマスタリン
グ(基板の作成技術)の限界に近づいており、良好なト
ラックを形成するのが難しくなりつつある。また、狭ト
ラック化とともに、プリピット(光磁気記録媒体上のア
ドレス情報を読み出すためにあらかじめ基板上に形成し
ておく穴)の形成も難しくなっている。一方、読み出し
レーザの短波長化によりレーザビームの集光径を小さく
し、空間分解能を高める試みも有力であるが、緑色より
も短い波長の半導体レーザはまだ研究段階であり、実用
化にはまだ時間がかかる。また、読み出しレーザ波長が
短波長になるにつれて、光磁気記録媒体のカー回転角は
減少し、良好なC/Nが得られなくなるという問題も生
じている。PRMLも有力な手段であるが、ドライブの
コストを上昇させるというデメリットがある。
[0005] However, narrowing the track is approaching the limit of mastering (technique for forming a substrate), and it is becoming difficult to form a good track. In addition, as the track becomes narrower, formation of prepits (holes formed in advance on a substrate for reading address information on a magneto-optical recording medium) becomes more difficult. On the other hand, attempts to increase the spatial resolution by reducing the focusing diameter of the laser beam by shortening the wavelength of the readout laser are promising, but semiconductor lasers with wavelengths shorter than green are still in the research stage and are not yet ready for practical use. take time. Further, as the read laser wavelength becomes shorter, the Kerr rotation angle of the magneto-optical recording medium decreases, and a problem arises in that good C / N cannot be obtained. PRML is also a powerful means, but has the disadvantage of increasing drive costs.

【0006】[0006]

【発明が解決しようとする課題】これらの技術が行き詰
まりをみせているのは、光磁気記録媒体に対するデータ
の記録・再生を2次元的にしか行っていないことに大き
な原因がある。
The major drawbacks of these technologies are that data recording / reproducing on a magneto-optical recording medium is performed only two-dimensionally.

【0007】本発明は上記の問題点にかんがみてなされ
たものであり、その目的は、3次元的な情報の記録再生
が可能で、かつ従来の基板製造技術を用いて容易に製造
可能な高密度光磁気記録媒体とその記録再生方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its object to provide a high-performance recording / reproducing apparatus capable of three-dimensionally recording and reproducing information and capable of being easily manufactured using conventional substrate manufacturing techniques. An object of the present invention is to provide a density magneto-optical recording medium and a recording / reproducing method thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明による光磁気記録媒体は、光の照射側から順に
少なくとも第1、第2および第3の磁気垂直異方性を有
する磁性膜を有し、該第1、第2および第3の磁性膜の
それぞれのキュリー温度Tc1、Tc2およびTc3がTc2<
Tc1<Tc3なる関係を満たし、かつ、該第1の磁性膜は
カー回転角が記録再生に寄与しない程度に小さく、該第
1の磁性膜の磁化状態がTc2より低い温度では常に該第
2の磁性膜へ転写され、該第2の磁性膜と該第3の磁性
膜とは互いに磁化状態が転写されない関係を満たすこと
を特徴とする。
In order to achieve the above object, a magneto-optical recording medium according to the present invention comprises a magnetic film having at least first, second and third magnetic perpendicular anisotropies in order from the light irradiation side. And the respective Curie temperatures Tc1, Tc2 and Tc3 of the first, second and third magnetic films are Tc2 <
The first magnetic film satisfies the relationship of Tc1 <Tc3, and the first magnetic film is so small that the Kerr rotation angle does not contribute to recording and reproduction. When the magnetization state of the first magnetic film is lower than Tc2, the second magnetic film always becomes the second magnetic film. The second magnetic film and the third magnetic film are transferred to a magnetic film, and satisfy a relationship in which the magnetization state is not transferred to each other.

【0009】また、上記光磁気記録媒体は、前記第3の
磁性膜のキュリー温度以上に前記光磁気記録媒体の温度
を上昇させて前記第3の磁性膜に記録を行い、その後に
前記第1の磁性膜のキュリー温度から前記第3の磁性膜
のキュリー温度までの温度範囲に前記光磁気記録媒体の
温度を上昇させて第1および第2の磁性膜に記録を行う
ことを特徴とする。
In the magneto-optical recording medium, the temperature of the magneto-optical recording medium is raised to a temperature higher than the Curie temperature of the third magnetic film, and recording is performed on the third magnetic film. Recording on the first and second magnetic films by increasing the temperature of the magneto-optical recording medium to a temperature range from the Curie temperature of the magnetic film to the Curie temperature of the third magnetic film.

【0010】さらに、上記光磁気記録媒体は、前記第2
の磁性膜のキュリー温度から前記第1の磁性膜のキュリ
ー温度までの温度範囲に前記光磁気記録媒体の温度を上
昇させて前記第3の磁性膜に記録された信号の再生を行
い、前記第2の磁性膜のキュリー温度より低い温度に前
記光磁気記録媒体の温度を上昇させて前記第2の磁性膜
に記録された信号を再生することを特徴とする。
Further, the magneto-optical recording medium may include
Raising the temperature of the magneto-optical recording medium to a temperature range from the Curie temperature of the magnetic film to the Curie temperature of the first magnetic film to reproduce the signal recorded on the third magnetic film, The signal recorded on the second magnetic film is reproduced by raising the temperature of the magneto-optical recording medium to a temperature lower than the Curie temperature of the second magnetic film.

【0011】[0011]

【作用】第1および第2の磁性膜と、第3の磁性膜とに
それぞれ異なる情報を記録することが可能となり、3次
元記録つまり多層記録が実現できる。
According to the present invention, different information can be recorded on the first and second magnetic films and the third magnetic film, respectively, and three-dimensional recording, that is, multi-layer recording can be realized.

【0012】[0012]

【実施例】以下、本発明による実施例について図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本実施例による光磁気記録媒体の構
成を表す断面図である。光磁気記録媒体10は基板6の
上に誘電体膜として干渉膜4、記録膜として磁性膜1、
磁性膜2および磁性膜3、さらに誘電体膜として保護膜
5が順次成膜されており、光磁気記録媒体10にデータ
を記録したり記録されたデータを再生したりするために
照射されるレーザ光の光スポット7は基板6側から照射
される。したがって、図1では光磁気記録媒体10を光
の照射側である基板6を上にした状態で断面図で表して
いる。
FIG. 1 is a sectional view showing the structure of the magneto-optical recording medium according to the present embodiment. The magneto-optical recording medium 10 has an interference film 4 as a dielectric film and a magnetic film 1 as a recording film on a substrate 6.
A magnetic film 2 and a magnetic film 3, and a protective film 5 as a dielectric film are sequentially formed, and a laser is irradiated to record data on the magneto-optical recording medium 10 and reproduce the recorded data. The light spot 7 of light is emitted from the substrate 6 side. Therefore, in FIG. 1, the magneto-optical recording medium 10 is shown in a sectional view with the substrate 6 on the light irradiation side facing upward.

【0014】次に、磁性膜1、2、3の記録膜特性につ
いて説明する。なお、以下に述べるキュリー温度、保持
力、カー回転角などの記録膜特性は、磁性膜の組成を調
整することによってコントロール可能である。
Next, the recording film characteristics of the magnetic films 1, 2, and 3 will be described. The recording film characteristics such as Curie temperature, coercive force, and Kerr rotation angle described below can be controlled by adjusting the composition of the magnetic film.

【0015】本実施例における磁性膜1、磁性膜2、磁
性膜3のキュリー温度をそれぞれTc1、Tc2、Tc3とす
ると、これらのキュリー温度がTc2<Tc1<Tc3なる関
係を有するよう、磁性膜1〜3の組成を調整してある。
また、磁性膜1は、カー回転角が再生に寄与しない程度
の小さな値となるようにその組成を調整してある。
Assuming that the Curie temperatures of the magnetic films 1, 2, and 3 in this embodiment are Tc1, Tc2, and Tc3, respectively, the magnetic films 1 and 2 have a relationship of Tc2 <Tc1 <Tc3. -3 are adjusted.
The composition of the magnetic film 1 is adjusted so that the Kerr rotation angle has a small value that does not contribute to reproduction.

【0016】さらに、磁性膜1、2、3では、磁性膜1
の磁化状態は磁性膜2に転写されるが、磁性膜2の磁化
状態は磁性膜3に転写されないという特性を有してい
る。
Further, in the magnetic films 1, 2, and 3, the magnetic film 1
Is transferred to the magnetic film 2, but the magnetization state of the magnetic film 2 is not transferred to the magnetic film 3.

【0017】ここで、上記した磁性膜1〜3の磁化状態
の転写の関係についてさらに詳述するが、磁性膜1と磁
性膜2、または磁性膜2と磁性膜3との関係について
は、交換結合2層膜の基本原理で説明できる。交換結合
2層膜というのは、2つの磁性膜が積層されていると
き、その2つの膜の磁気モーメントが界面を通して互い
に磁気的交換相互作用を及ぼし合っている膜のことをい
う。
Here, the relationship between the transfer of the magnetization states of the magnetic films 1 to 3 will be described in more detail. The relationship between the magnetic film 1 and the magnetic film 2 or the relationship between the magnetic film 2 and the magnetic film 3 is exchangeable. This can be explained based on the basic principle of a two-layer bonding film. The exchange coupling two-layer film refers to a film in which when two magnetic films are stacked, the magnetic moments of the two films exert a magnetic exchange interaction with each other through an interface.

【0018】いま、磁性膜1と磁性膜2との間に働く界
面磁壁エネルギー密度をσ1、磁性膜2と磁性膜3との
間に働く界面磁壁エネルギー密度をσ2、磁性膜1、
2、3の磁化をそれぞれMs1、Ms2、Ms3、磁性膜1、
2、3の保磁力をそれぞれHc1、Hc2、Hc3、磁性膜
1、2、3の膜厚をそれぞれh1 、h2 、h3 とする
と、磁性膜2が磁性膜1から受ける交換力は、σ1/
(2×Ms2×h2 )であり、磁性膜2が磁性膜3から受
ける交換力は、σ2/(2×Ms2×h2 )であり、磁性
膜3が磁性膜2から受ける交換力は、σ2/(2×Ms3
×h3 )である。
Now, the interface domain wall energy density acting between the magnetic film 1 and the magnetic film 2 is σ1, the interface domain wall energy density acting between the magnetic film 2 and the magnetic film 3 is σ2,
Two or three magnetizations are respectively Ms1, Ms2, Ms3, magnetic film 1,
Assuming that the coercive forces 2 and 3 are Hc1, Hc2 and Hc3, and the thicknesses of the magnetic films 1, 2 and 3 are h1, h2 and h3, respectively, the exchange force that the magnetic film 2 receives from the magnetic film 1 is σ1 /
(2 × Ms2 × h2), the exchange force that the magnetic film 2 receives from the magnetic film 3 is σ2 / (2 × Ms2 × h2), and the exchange force that the magnetic film 3 receives from the magnetic film 2 is σ2 / (2 × Ms3
× h3).

【0019】従って、磁性膜2の保磁力Hc2が磁性膜1
の保磁力Hc1より常に小であり、磁性膜2が磁性膜1か
ら受ける交換力σ1/(2×Ms2×h2 )が磁性膜2の
保磁力Hc2より大であれば、磁性膜1の磁化状態が変化
したとき、その変化した磁化状態が常温状態で常に磁性
膜2へ転写される。
Therefore, the coercive force Hc2 of the magnetic film 2 is
If the exchange force σ1 / (2 × Ms2 × h2) that the magnetic film 2 receives from the magnetic film 1 is larger than the coercive force Hc2 of the magnetic film 2, the magnetization state of the magnetic film 1 Is changed, the changed magnetization state is always transferred to the magnetic film 2 at room temperature.

【0020】この磁性膜1と磁性膜2との関係は、図3
(a)のグラフおよび図3(b)のカーループで表すこ
とができる。
The relationship between the magnetic films 1 and 2 is shown in FIG.
It can be represented by the graph of FIG. 3A and the Kerr loop of FIG.

【0021】図3(a)は磁性膜1と磁性膜2の保持力
と温度との関係を表したグラフであり、縦軸に保磁力
を、横軸に温度を表している。図3(a)に示されるよ
うに、磁性膜2の保磁力は磁性膜の保磁力より常に小さ
く、磁性膜1のキュリー温度は磁性膜2のキュリー温度
より高い。
FIG. 3A is a graph showing the relationship between the coercive force of the magnetic film 1 and the magnetic film 2 and the temperature, wherein the ordinate represents the coercive force and the abscissa represents the temperature. As shown in FIG. 3A, the coercive force of the magnetic film 2 is always smaller than the coercive force of the magnetic film, and the Curie temperature of the magnetic film 1 is higher than the Curie temperature of the magnetic film 2.

【0022】また、図3(b)は磁性膜1と磁性膜2と
で形成された交換結合2層膜に磁場を印加したときの磁
性膜1と磁性膜2の印加磁場とカー効果との関係を示し
たカーループである。カーループの縦軸には磁性膜1、
2に照射されたレーザ光の反射光のカー効果に比例した
量を任意目盛りで示し、横軸は印加磁場を任意目盛りで
示している。このカーループにより交換力と保磁力との
関係がわかる。すなわち、図3(b)において、磁性膜
2のカーループはマイナーループ(磁性膜1の反転磁場
まで印加磁場を加えないで測定したカーループ)であ
り、磁性膜2のカーループが印加磁場ゼロ(中央の縦線
のとき)以上の領域でループを描いていることから、磁
性膜2において交換力が保磁力よりも大きいことがわか
る(尚、反転磁場とは、ループが下から上または上から
下へ動く印加磁場の値である)。
FIG. 3B shows the relationship between the applied magnetic field of the magnetic film 1 and the magnetic film 2 and the Kerr effect when a magnetic field is applied to the exchange-coupling two-layer film formed by the magnetic film 1 and the magnetic film 2. It is a car loop showing the relationship. The vertical axis of the car loop has a magnetic film 1,
The amount proportional to the Kerr effect of the reflected laser light applied to 2 is shown on an arbitrary scale, and the horizontal axis shows the applied magnetic field on the arbitrary scale. The relationship between the exchange force and the coercive force can be understood from this Kerr loop. That is, in FIG. 3B, the Kerr loop of the magnetic film 2 is a minor loop (a Kerr loop measured without applying an applied magnetic field up to the reversal magnetic field of the magnetic film 1), and the Kerr loop of the magnetic film 2 has an applied magnetic field of zero (the center of the applied magnetic field). Since the loop is drawn in the region above the vertical line, it can be understood that the exchange force is larger than the coercive force in the magnetic film 2 (the reversal magnetic field means that the loop is from bottom to top or from top to bottom). The value of the moving applied magnetic field).

【0023】一方、磁性膜3が磁性膜2から受ける交換
力は、σ2/(2×Ms3×h3 )であるので、磁性膜3
の保磁力Hc3が磁性膜2の保磁力Hc2より小さいとき
は、磁性膜3が磁性膜2から受ける交換力σ2/(2×
Ms3×h3 )が磁性膜3の保持力Hc3より小さければ、
磁性膜2の磁化状態は磁性膜3へ転写されることはな
い。また、磁性膜3の保持力Hc3が磁性膜2の保磁力H
c2より大きいときは、磁性膜2が磁性膜3から受ける交
換力σ2/(2×Ms2×h2 )が磁性膜2の保磁力Hc2
より小さければ、磁性膜3の磁化状態は磁性膜2へ転写
されることはない。
On the other hand, since the exchange force which the magnetic film 3 receives from the magnetic film 2 is σ2 / (2 × Ms3 × h3), the magnetic film 3
Is smaller than the coercive force Hc2 of the magnetic film 2, the exchange force σ2 / (2 ×
If Ms3 × h3) is smaller than the coercive force Hc3 of the magnetic film 3,
The magnetization state of the magnetic film 2 is not transferred to the magnetic film 3. Further, the coercive force Hc3 of the magnetic film 3 is equal to the coercive force Hc of the magnetic film 2.
When c2 is larger than c2, the exchange force σ2 / (2 × Ms2 × h2) received by the magnetic film 2 from the magnetic film 3 is equal to the coercive force Hc2 of the magnetic film 2.
If it is smaller, the magnetization state of the magnetic film 3 will not be transferred to the magnetic film 2.

【0024】この磁性膜2と磁性膜3との関係は、図3
(c)のグラフおよび図3(d)と図3(e)のカール
ープで表すことができる。
The relationship between the magnetic films 2 and 3 is shown in FIG.
It can be represented by the graph of (c) and the Kerr loop of FIGS. 3 (d) and 3 (e).

【0025】図3(c)は磁性膜2と磁性膜3の保持力
と温度との関係を表したグラフであり、縦軸に保磁力
を、横軸に温度を表している。図3(c)に示されるよ
うに、磁性膜2の保磁力は、Aで示す温度領域では磁性
膜3の保磁力より大きく、Bで示す温度領域では磁性膜
3の保持力より小さい。また、磁性膜2のキュリー温度
は磁性膜3のキュリー温度より低い。
FIG. 3C is a graph showing the relationship between the coercive force of the magnetic film 2 and the magnetic film 3 and the temperature, wherein the ordinate represents the coercive force and the abscissa represents the temperature. As shown in FIG. 3C, the coercive force of the magnetic film 2 is larger than the coercive force of the magnetic film 3 in the temperature region indicated by A, and smaller than the coercive force of the magnetic film 3 in the temperature region indicated by B. The Curie temperature of the magnetic film 2 is lower than the Curie temperature of the magnetic film 3.

【0026】また、図3(d)、(e)は磁性膜2と磁
性膜3とで形成された交換結合2層膜に磁場を印加した
ときの磁性膜2と磁性膜3の印加磁場とカー効果との関
係を示したカーループである。カーループの縦軸には磁
性膜1、2に照射されたレーザ光の反射光のカー効果に
比例した量を任意目盛りで示し、横軸は印加磁場を任意
目盛りで示している。図3(d)は図3(c)のAで示
す温度領域のカーループ、図3(e)は図3(c)のB
で示す温度領域のカーループを示している。これらのカ
ーループにより交換力と保磁力の関係がわかる。すなわ
ち、図3(d)において磁性膜3のカーループはマイナ
ーループ(磁性膜2の反転磁場までの印加磁場を加えな
いで測定したカーループ)であり、磁性膜3のカールー
プが印加磁場ゼロ(中央の縦線のとき)をまたいでルー
プを描いていることから、磁性膜3において磁性膜2よ
り受ける交換力が自己の保磁力より小さいことがわか
る。また、図3(e)において磁性膜2のカーループは
マイナーループ(磁性膜3の反転磁場までの印加磁場を
加えないで測定したカーループ)であり、磁性膜2のカ
ーループが印加磁場ゼロのとき(中央の縦線のとき)を
またいでループを描いていることから、磁性膜2におい
て磁性膜3から受ける交換力が自己の保磁力よりも小さ
いことがわかる。
FIGS. 3D and 3E show the magnetic field applied to the magnetic film 2 and the magnetic film 3 when a magnetic field is applied to the exchange-coupled two-layer film formed by the magnetic film 2 and the magnetic film 3. It is a car loop showing the relationship with the Kerr effect. The vertical axis of the Kerr loop indicates the amount of reflected light of the laser light applied to the magnetic films 1 and 2 in proportion to the Kerr effect on an arbitrary scale, and the abscissa indicates the applied magnetic field on an arbitrary scale. 3D is a Kerr loop in the temperature region indicated by A in FIG. 3C, and FIG. 3E is B in FIG. 3C.
Shows a Kerr loop in the temperature range indicated by. The relationship between the exchange force and the coercive force can be understood from these Kerr loops. That is, in FIG. 3D, the Kerr loop of the magnetic film 3 is a minor loop (a Kerr loop measured without applying an applied magnetic field up to the reversal magnetic field of the magnetic film 2), and the Kerr loop of the magnetic film 3 has an applied magnetic field of zero (the center of the applied magnetic field). Since the loop is drawn across the vertical line), it can be understood that the exchange force received from the magnetic film 2 in the magnetic film 3 is smaller than its own coercive force. In FIG. 3E, the Kerr loop of the magnetic film 2 is a minor loop (a Kerr loop measured without applying an applied magnetic field up to the reversal magnetic field of the magnetic film 3), and when the Kerr loop of the magnetic film 2 has no applied magnetic field ( Since the loop is drawn across the central vertical line, it can be seen that the exchange force received from the magnetic film 3 in the magnetic film 2 is smaller than its own coercive force.

【0027】なお、図3に示したカーループの模式図
は、磁性膜1と磁性膜2のみを成膜した場合と、磁性膜
2と磁性膜3のみを成膜した場合に現れるのもので、実
際に3膜を成膜した場合はもっと複雑になる。また、図
3(c)中、磁性膜3の保磁力が磁性膜2の保持力より
小さくなる温度領域も存在するが、磁性膜3の保磁力は
室温から磁性膜3のキュリー温度の間で他の磁性膜の保
磁力より常に大きくしても当然構わない。
The schematic diagram of the Kerr loop shown in FIG. 3 shows a case where only the magnetic film 1 and the magnetic film 2 are formed and a case where only the magnetic film 2 and the magnetic film 3 are formed. When three films are actually formed, it becomes more complicated. In FIG. 3C, there is also a temperature region where the coercive force of the magnetic film 3 is smaller than the coercive force of the magnetic film 2, but the coercive force of the magnetic film 3 is between room temperature and the Curie temperature of the magnetic film 3. Naturally, the coercive force of other magnetic films may be larger than that of other magnetic films.

【0028】次に図2を用いて、本発明による光磁気記
録媒体の記録再生方法について説明する。図2(a)〜
(d)は本実施例による光磁気記録媒体の情報の記録方
法を説明する図であり、図2(e)〜(g)は本実施例
による光磁気記録媒体に記録された情報の再生方法を説
明する図である。図を簡潔に表すために図2において
は、図1に示した本実施例による光磁気記録媒体10の
磁性膜1〜3のみを示しており、図中の矢印は磁化の向
きを示している。
Next, a recording / reproducing method for a magneto-optical recording medium according to the present invention will be described with reference to FIG. FIG.
2D is a diagram illustrating a method for recording information on the magneto-optical recording medium according to the present embodiment, and FIGS. 2E to 2G are methods for reproducing information recorded on the magneto-optical recording medium according to the present embodiment. FIG. In order to simplify the drawing, FIG. 2 shows only the magnetic films 1 to 3 of the magneto-optical recording medium 10 according to the embodiment shown in FIG. 1, and the arrows in the drawing show the directions of magnetization. .

【0029】まず、図2(a)〜(d)を用いて本実施
例による光磁気記録媒体10の情報の記録方法を説明す
る。光磁気記録媒体10に情報を記録する前に、あらか
じめ外部から一定方向に大きな磁界を印加する等して、
図2(a)に示したように磁性膜1〜3の磁化の向きを
一定方向(本実施例においては上向き)にそろえておく
(なお、ここでは説明を容易にするために磁化をあらか
じめ一方向にそろえているが、オーバーライト方式の光
磁気記録システムでは必ずしも磁化をあらかじめ一方向
にそろえる必要はない)。
First, a method of recording information on the magneto-optical recording medium 10 according to the present embodiment will be described with reference to FIGS. Before recording information on the magneto-optical recording medium 10, a large magnetic field is applied from the outside in a certain direction, etc.
As shown in FIG. 2A, the magnetization directions of the magnetic films 1 to 3 are aligned in a fixed direction (upward in this embodiment). However, in the overwrite type magneto-optical recording system, it is not always necessary to align the magnetization in one direction in advance).

【0030】次に、磁性膜3の記録を行う位置に光スポ
ット7を照射する。この光スポットの照射による磁性膜
1〜3の加熱部分の上昇した時点での温度をTとする
と、磁性膜1、2、3のキュリー温度の関係はTc2<T
c1<Tc3であるので、T>Tc3の温度条件で光スポット
7を照射し外部から記録用磁界を下向きに印加すれば、
Tは磁性膜1〜3のキュリー温度のいずれをも上回って
いるので、照射部分の磁性膜1〜3の磁化の向きは図2
(b)に示すようにすべて反転し下向きになる。
Next, a light spot 7 is applied to the position where the recording of the magnetic film 3 is performed. Assuming that the temperature at the time when the heated portions of the magnetic films 1 to 3 are increased by the irradiation of the light spot is T, the relationship between the Curie temperatures of the magnetic films 1, 2, and 3 is Tc2 <Tc.
Since c1 <Tc3, when the light spot 7 is irradiated under the temperature condition of T> Tc3 and a recording magnetic field is applied downward from the outside,
Since T exceeds any of the Curie temperatures of the magnetic films 1 to 3, the magnetization directions of the irradiated magnetic films 1 to 3 are as shown in FIG.
As shown in (b), they are all inverted and face downward.

【0031】次いで、例えばTc3>T>Tc2の温度条件
で光スポット7を照射し外部から上向き磁界を印加する
等して図2(c)に示すように、磁性膜1および磁性膜
2の磁化の向きを上向きにそろえておく(なお、ここで
も説明を容易にするために磁性膜1、2の磁化をあらか
じめ一方向にそろえているが、オーバーライト方式の光
磁気記録システムでは必ずしも磁化をあらかじめ一方向
にそろえる必要はない)。
Next, as shown in FIG. 2C, for example, the light spot 7 is irradiated under the temperature condition of Tc3>T> Tc2 and an upward magnetic field is applied from outside to magnetize the magnetic film 1 and the magnetic film 2. (In this case, the magnetization of the magnetic films 1 and 2 is aligned in one direction in advance for the sake of simplicity, but in the overwrite type magneto-optical recording system, the magnetization is not necessarily adjusted in advance. It is not necessary to align in one direction).

【0032】最後に磁性膜1の記録したい位置に光スポ
ット7をTc1<T<Tc3の温度条件で照射し外部からは
記録用磁界を下向きに印加する。すると、図2(d)に
示すように照射部分の磁性膜1および磁性膜2の磁化の
向きは反転し下向きになる。この場合、磁性膜3に記録
された情報はTが磁性膜のキュリー温度Tc3に達しない
のでそのまま保存されている。
Finally, a light spot 7 is irradiated to a position of the magnetic film 1 where recording is desired under the temperature condition of Tc1 <T <Tc3, and a recording magnetic field is applied downward from the outside. Then, as shown in FIG. 2D, the directions of the magnetizations of the magnetic film 1 and the magnetic film 2 in the irradiated portion are reversed and become downward. In this case, the information recorded on the magnetic film 3 is kept as it is because T does not reach the Curie temperature Tc3 of the magnetic film.

【0033】このように、磁性膜1および磁性膜2と、
磁性膜3とでは異なる情報を記録することが可能とな
る。これは深さ方向に対する多層記録であり、3次元記
録と等価である。
Thus, the magnetic film 1 and the magnetic film 2,
Different information can be recorded on the magnetic film 3. This is multilayer recording in the depth direction, and is equivalent to three-dimensional recording.

【0034】次に、図2(e)〜(g)を用いて本実施
例による光磁気記録媒体に記録された情報の再生方法を
説明する。
Next, a method for reproducing information recorded on the magneto-optical recording medium according to the present embodiment will be described with reference to FIGS.

【0035】先ず、図2(e)に示すように、T<Tc2
の温度条件で光磁気記録媒体10にに光スポット7を照
射すると、磁性膜1のカー回転角は再生に寄与しない程
小さいので、磁性膜1からの反射光は記録再生に寄与し
ないが、磁性膜1と同じ磁化状態で情報が記録されてい
る磁性膜2からの反射光による磁気カー効果により磁性
膜1の記録情報を再生することができる。
First, as shown in FIG. 2E, T <Tc2
When the light spot 7 is radiated to the magneto-optical recording medium 10 under the above temperature condition, the Kerr rotation angle of the magnetic film 1 is so small that it does not contribute to the reproduction, and the reflected light from the magnetic film 1 does not contribute to the recording / reproduction. The information recorded on the magnetic film 1 can be reproduced by the magnetic Kerr effect due to the reflected light from the magnetic film 2 on which information is recorded in the same magnetization state as the film 1.

【0036】一方、Tc2<T<Tc1の温度条件で光磁気
記録媒体10に光スポット7を照射すると、Tは磁性膜
2のキュリー温度を上回るので磁性膜2は常磁性状態と
なり、また上記磁性膜1からの反射光はカー回転角が小
さく再生に寄与しないので、磁性膜3からの反射光によ
る磁気カー効果により磁性膜3の記録情報を再生するこ
とができる。図2(f)の斜線部分で示すように、上記
磁性膜3からの記録情報を再生した場合、一旦磁性膜2
の記録が失われるが、磁性膜1に記録されている情報は
保存されているので、光磁気記録媒体10の温度がTc2
以下に下がると、図2(g)に示すように磁性膜1の磁
化状態が磁性膜2に転写され、磁性膜1の記録情報が元
通り磁性膜2から再生可能になる。したがって、多層記
録再生が可能となり、記録容量を現行の2倍にすること
が可能となる。
On the other hand, when the light spot 7 is irradiated on the magneto-optical recording medium 10 under the temperature condition of Tc2 <T <Tc1, T exceeds the Curie temperature of the magnetic film 2, so that the magnetic film 2 becomes paramagnetic. Since the reflected light from the film 1 has a small Kerr rotation angle and does not contribute to reproduction, the recorded information on the magnetic film 3 can be reproduced by the magnetic Kerr effect due to the reflected light from the magnetic film 3. As shown by the hatched portion in FIG. 2F, when the recorded information from the magnetic film 3 is reproduced,
However, since the information recorded on the magnetic film 1 is preserved, the temperature of the magneto-optical recording medium 10 is reduced to Tc2.
As shown in FIG. 2G, the magnetization state of the magnetic film 1 is transferred to the magnetic film 2 as shown in FIG. 2G, and the recorded information on the magnetic film 1 can be reproduced from the magnetic film 2 as before. Therefore, multi-layer recording / reproduction is possible, and the recording capacity can be doubled as compared with the current capacity.

【0037】次に図1を用いて本発明による光磁気記録
媒体10の構成および材料についてさらに詳しく説明す
る。
Next, the structure and material of the magneto-optical recording medium 10 according to the present invention will be described in more detail with reference to FIG.

【0038】図1に示した構成では、基板6の上に2つ
の誘電体膜(干渉膜4と保護膜5)と3層の磁性膜1〜
3を成膜しているが、磁性膜1〜3の上の誘電体膜(保
護膜5)の上にさらに反射膜等を形成してもよい。磁性
膜も3層である必要はなく、磁化の転写特性の向上を目
的としてさらに多層のものを使用してもよい。磁性膜2
と磁性膜3との間での磁化の転写をしにくくするために
は、両層間に制御用の磁性膜、非磁性膜等をはさんでも
よい。また、磁性膜2を成膜後に酸素含有プラズマ等で
表面処理した後に磁性膜3を成膜するのもよい。図1で
は磁性膜1〜3と基板6との間に干渉膜4が存在する
が、磁性膜1〜3を基板6上に直接成膜してもよい。
In the structure shown in FIG. 1, two dielectric films (interference film 4 and protection film 5) and three magnetic films 1 to
Although the film 3 is formed, a reflective film or the like may be further formed on the dielectric film (protective film 5) on the magnetic films 1 to 3. The magnetic film does not need to have three layers, and a multilayer film may be used for the purpose of improving the transfer characteristics of magnetization. Magnetic film 2
In order to make it difficult to transfer the magnetization between the magnetic film 3 and the magnetic film 3, a control magnetic film, a non-magnetic film, or the like may be interposed between the two layers. It is also possible to form the magnetic film 3 after forming the magnetic film 2 and then performing a surface treatment with oxygen-containing plasma or the like. Although the interference film 4 exists between the magnetic films 1 to 3 and the substrate 6 in FIG. 1, the magnetic films 1 to 3 may be formed directly on the substrate 6.

【0039】磁性膜1〜3としては、希土類金属と鉄族
遷移金属との非晶質合金や、鉄族遷移金属と貴金属との
周期多層膜や、MnBi合金や酸化物磁性体等を用いる
ことができる。TbFeCoを主成分とする膜が特に望
ましい。また、磁性膜1〜3中には、Ti、Cr、N
i、Ta、Pt等の耐食性向上元素を1つ以上添加する
のが望ましい。磁性膜1としては、カー回転角が小さい
ものを用いるが、磁性膜1そのもののカー回転角が小さ
くなくても反射膜等他の膜との調整を行って実質的にカ
ー回転角を減少させたものや、膜圧を薄くしたものを用
いてもよい。
As the magnetic films 1 to 3, an amorphous alloy of a rare earth metal and an iron group transition metal, a periodic multilayer film of an iron group transition metal and a noble metal, a MnBi alloy, an oxide magnetic material, or the like may be used. Can be. A film containing TbFeCo as a main component is particularly desirable. Also, Ti, Cr, N
It is desirable to add one or more corrosion resistance improving elements such as i, Ta, and Pt. As the magnetic film 1, a film having a small Kerr rotation angle is used, but even if the Kerr rotation angle of the magnetic film 1 itself is not small, adjustment with other films such as a reflection film is performed to substantially reduce the Kerr rotation angle. Or a thinner film may be used.

【0040】基板6の材質としては、ポリカーボネイ
ト、アクリル等の合成樹脂、ガラス等が使用でき、これ
らには樹脂等が被覆されているものを用いてもよい。基
板6の形状としてはディスク状のやカード状のものを用
いる。
As a material of the substrate 6, a synthetic resin such as polycarbonate or acrylic, glass, or the like can be used, and those coated with a resin or the like may be used. As the shape of the substrate 6, a disk shape or a card shape is used.

【0041】最後に本発明者は上記実施例に基づき下記
の試験例1〜3に記載した光磁気記録媒体を作成し、信
号の記録再生試験を行った。
Finally, the inventor made magneto-optical recording media described in the following Test Examples 1 to 3 based on the above embodiment, and performed a signal recording / reproducing test.

【0042】[試験例1]基板6として、直径130m
m、トラックピッチ1.6μmのポリカーボネイト基板
を用い、その基板6に干渉膜4として窒化シリコン膜を
80nm、磁性膜1としてTbFeCo膜を30nm、
磁性膜2としてTbFe膜を50nm、磁性膜3として
磁性膜1と多少組成の違うTbFeCo膜を50nm、
保護膜5として窒化シリコン膜を80nm、順次成膜し
た。磁性膜1のTbFeCo膜のキュリー温度は200
℃、磁性膜2のTbFe膜のキュリー温度は150℃、
磁性膜3のTbFeCo膜のキュリー温度は250℃で
あり、これらの膜特性は図3に示したようになってい
る。ただし、この場合、室温から磁性膜3のキュリー温
度までの温度領域で、磁性膜3の保磁力は他の磁性膜
1、2の保磁力より大きくしてある。磁性膜1のTbF
eCo膜にはそのカー回転角が他の膜に比べ無視できる
ほど小さいものを用いている。
Test Example 1 The substrate 6 was 130 m in diameter.
m, a polycarbonate substrate having a track pitch of 1.6 μm, a silicon nitride film of 80 nm as the interference film 4, a TbFeCo film of 30 nm as the magnetic film 1 on the substrate 6,
The magnetic film 2 is a 50 nm thick TbFe film, the magnetic film 3 is a 50 nm thick TbFeCo film slightly different in composition from the magnetic film 1,
A silicon nitride film having a thickness of 80 nm was sequentially formed as the protective film 5. The Curie temperature of the TbFeCo film of the magnetic film 1 is 200
° C, the Curie temperature of the TbFe film of the magnetic film 2 is 150 ° C,
The Curie temperature of the TbFeCo film of the magnetic film 3 is 250 ° C., and these film characteristics are as shown in FIG. However, in this case, the coercive force of the magnetic film 3 is larger than that of the other magnetic films 1 and 2 in a temperature range from room temperature to the Curie temperature of the magnetic film 3. TbF of magnetic film 1
An eCo film having a Kerr rotation angle that is negligible compared to other films is used.

【0043】[試験例2]試験例1に用いたものと同じ
基板6を用い、その上に干渉膜4として窒化シリコン膜
を80nm、磁性膜1としてDyFe膜を40nm、磁
性膜2としてTbFeCo膜を50nm、磁性膜3とし
て磁性膜2と多少組成の違うTbFeCo膜を50n
m、保護膜5として窒化シリコン膜を80nm、順次成
膜したものを作成した。磁性膜1のDyFe膜のキュリ
ー温度は220℃、磁性膜2のTbFeCo膜のキュリ
ー温度は150℃、磁性膜3のTbFeCo膜のキュリ
ー温度は250℃であり、これらの膜特性は図3に示し
たようになっている。ただし、この場合、室温から磁性
膜3のキュリー温度までの温度領域で、磁性膜3の保持
力は他の磁性膜1、2の保持力より大きくしてある。磁
性膜1のDyFe膜にはそのカー回転角が他の膜に比べ
無視できるほど小さいものを用いている。
Test Example 2 Using the same substrate 6 as used in Test Example 1, a silicon nitride film of 80 nm as the interference film 4, a DyFe film of 40 nm as the magnetic film 1, and a TbFeCo film as the magnetic film 2 were formed thereon. Is 50 nm, and a 50 nm thick TbFeCo film having a composition slightly different from that of the magnetic film 2 is used as the magnetic film 3.
m, a silicon nitride film having a thickness of 80 nm was sequentially formed as the protective film 5. The Curie temperature of the DyFe film of the magnetic film 1 is 220 ° C., the Curie temperature of the TbFeCo film of the magnetic film 2 is 150 ° C., and the Curie temperature of the TbFeCo film of the magnetic film 3 is 250 ° C. These film characteristics are shown in FIG. It is like. However, in this case, in the temperature range from room temperature to the Curie temperature of the magnetic film 3, the coercive force of the magnetic film 3 is larger than the coercive force of the other magnetic films 1 and 2. As the DyFe film of the magnetic film 1, a film having a Kerr rotation angle that is negligibly small compared to other films is used.

【0044】[試験例3]試験例1に用いたものと同じ
基板6を用い、その上に干渉膜4として窒化シリコン膜
を80nm、磁性膜1としてDyFe膜を40nm、磁
性膜2としてTbFeCo膜を50nm、磁性膜3とし
てGdFeCo膜を50nm、保護膜5として窒化シリ
コン膜を80nm、順次成膜したものを作成した。磁性
膜1のDyFe膜のキュリー温度は220℃、磁性膜2
のTbFeCo膜のキュリー温度は150℃、磁性膜3
のGdFeCo膜のキュリー温度は300℃であり、こ
れらの膜特性は図3に示したようになっている。磁性膜
1のDyFe膜には、そのカー回転角が他の膜に比べ無
視できるほど小さいものを用いている。
Test Example 3 The same substrate 6 as used in Test Example 1 was used, on which a silicon nitride film as the interference film 4 was 80 nm, a DyFe film as the magnetic film 1 was 40 nm, and a TbFeCo film as the magnetic film 2 was formed. Of 50 nm, a GdFeCo film as the magnetic film 3 of 50 nm, and a silicon nitride film of 80 nm as the protective film 5 were sequentially formed. The Curie temperature of the DyFe film of the magnetic film 1 is 220 ° C.
Curie temperature of the TbFeCo film was 150 ° C., and the magnetic film 3
The Curie temperature of the GdFeCo film is 300 ° C., and the film characteristics are as shown in FIG. As the DyFe film of the magnetic film 1, a film having a Kerr rotation angle that is negligibly small compared to other films is used.

【0045】上記した試験例1〜3の光磁気記録媒体
に、例えば400Oe程度の記録磁界を印加しながら、
線速9.42m/s、高記録パワー8mW、記録周波数
9MHzの半導体レーザ光を照射して磁性膜3に信号を
記録し、しかる後、線速9.42m/s、低記録パワー
5mW、記録周波数7MHzの半導体レーザ光を照射し
て磁性膜1に信号の記録を行った。その後低再生パワー
1mWの半導体レーザ光で記録の再生を行ったところ、
磁性膜1、2に記録された7MHzの信号が再生でき
た。次に、高再生パワー3.5mWの半導体レーザ光で
記録を再生したところ、磁性膜3に記録された9MHz
の信号が再生できた。また、高再生パワーで再生後、低
再生パワーの半導体レーザ光で再生したところ、磁性膜
1、2に記録された7MHzの信号が再生でき、磁性膜
1の磁化状態が磁性膜2に良好に転写できていることが
わかった。
While applying a recording magnetic field of, for example, about 400 Oe to the magneto-optical recording media of Test Examples 1 to 3,
A signal is recorded on the magnetic film 3 by irradiating a semiconductor laser beam having a linear velocity of 9.42 m / s, a high recording power of 8 mW, and a recording frequency of 9 MHz, and thereafter, a linear velocity of 9.42 m / s, a low recording power of 5 mW, and recording. A signal was recorded on the magnetic film 1 by irradiating a semiconductor laser beam having a frequency of 7 MHz. After that, when recording was reproduced with a semiconductor laser beam having a low reproducing power of 1 mW,
7 MHz signals recorded on the magnetic films 1 and 2 were reproduced. Next, when the recording was reproduced with a semiconductor laser beam having a high reproducing power of 3.5 mW, the 9 MHz recorded on the magnetic film 3 was reproduced.
Could be reproduced. When reproduction was performed with a semiconductor laser beam having a low reproduction power after reproduction with a high reproduction power, a 7 MHz signal recorded in the magnetic films 1 and 2 could be reproduced, and the magnetization state of the magnetic film 1 was favorably recorded on the magnetic film 2. It turned out that transcription was possible.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
光磁気記録媒体において、3次元記録つまり多層記録が
実現できる。このため、光磁気記録の高密度化が可能と
なり、大容量光記録媒体を実現できる。
As described above, according to the present invention,
In a magneto-optical recording medium, three-dimensional recording, that is, multilayer recording can be realized. Therefore, the density of magneto-optical recording can be increased, and a large-capacity optical recording medium can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例による光磁気記録媒体の構成を表す断
面図である。
FIG. 1 is a cross-sectional view illustrating a configuration of a magneto-optical recording medium according to an embodiment.

【図2】(a)〜(d)は本実施例による光磁気記録媒
体の情報の記録方法を説明する図であり、(e)〜
(g)は本実施例による光磁気記録媒体に記録された情
報の再生方法を説明する図である。
FIGS. 2A to 2D are diagrams for explaining a method of recording information on a magneto-optical recording medium according to the present embodiment, and FIGS.
(G) is a diagram for explaining a method of reproducing information recorded on the magneto-optical recording medium according to the present embodiment.

【図3】(a)は磁性膜1と磁性膜2の保磁力と温度と
の関係を表したグラフであり、(b)は磁性膜1と磁性
膜2の印加磁場とカー効果との関係を示したカーループ
であり、(c)は磁性膜2と磁性膜3の保磁力と温度と
の関係を表したグラフであり、(d)および(e)は磁
性膜2と磁性膜3の印加磁場とカー効果との関係を示し
たカーループである
3A is a graph showing the relationship between the coercive force of the magnetic film 1 and the magnetic film 2 and the temperature, and FIG. 3B is a graph showing the relationship between the applied magnetic field of the magnetic film 1 and the magnetic film 2 and the Kerr effect; (C) is a graph showing the relationship between the coercive force of the magnetic film 2 and the magnetic film 3 and the temperature, and (d) and (e) are the applications of the magnetic film 2 and the magnetic film 3. Kerr loop showing the relationship between the magnetic field and the Kerr effect

【符号の説明】[Explanation of symbols]

1、2、3 磁性膜 4 干渉膜 5 保護膜 6 基板 7 光スポット 10 光磁気記録媒体 1, 2, 3 magnetic film 4 interference film 5 protective film 6 substrate 7 light spot 10 magneto-optical recording medium

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G11B 11/10 506 G11B 11/10 586──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G11B 11/10 506 G11B 11/10 586

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光の照射側から順に少なくとも第1、第
2および第3の磁気垂直異方性を有する磁性膜を有し、
該第1、第2および第3の磁性膜のそれぞれのキュリー
温度Tc1、Tc2およびTc3がTc2<Tc1<Tc3なる関係
を満たし、かつ、該第1の磁性膜はカー回転角が記録再
生に寄与しない程度に小さく、該第1の磁性膜の磁化状
態がTc2より低い温度では常に該第2の磁性膜へ転写さ
れ、該第2の磁性膜と該第3の磁性膜とは互いに磁化状
態が転写されない関係を満たすことを特徴とする光磁気
記録媒体。
A magnetic film having at least a first, a second and a third magnetic perpendicular anisotropy in order from a light irradiation side;
The Curie temperatures Tc1, Tc2, and Tc3 of the first, second, and third magnetic films respectively satisfy a relationship of Tc2 <Tc1 <Tc3, and the Kerr rotation angle of the first magnetic film contributes to recording and reproduction. When the magnetization state of the first magnetic film is lower than Tc2, the magnetization state is always transferred to the second magnetic film, and the magnetization state of the second magnetic film and the third magnetic film is mutually reduced. A magneto-optical recording medium characterized by satisfying a non-transferred relationship.
【請求項2】 光の照射側から順に少なくとも第1、第
2および第3の磁気垂直異方性を有する磁性膜を有し、
該第1、第2および第3の磁性膜のそれぞれのキュリー
温度Tc1、Tc2およびTc3がTc2<Tc1<Tc3なる関係
を満たし、かつ、該第1の磁性膜はカー回転角が記録再
生に寄与しない程度に小さく、さらに、 第1の磁性膜と第2の磁性膜との間に働く界面磁壁エネ
ルギー密度σ1と、 第2の磁性膜と第3の磁性膜との間に働く界面磁壁エネ
ルギー密度σ2と、 第1、第2および第3の磁性膜の磁化Ms1、Ms2および
Ms3と、 第1、第2および第3の磁性膜の保磁力Hc1、Hc2およ
びHc3と、 第1、第2および第3の磁性膜の膜厚h1 、h2 および
h3 との間に、 Hc2<Hc1かつσ1/(2×Ms2×h2 )>Hc2、 Hc3<Hc2のときは、σ2/(2×Ms3×h3 )<Hc
3、 Hc3>Hc2のときは、σ2/(2×Ms2×h2 )<Hc2
の関係を満たすことを特徴とする光磁気記録媒体。
2. A magnetic film having at least a first, a second and a third magnetic perpendicular anisotropy in order from a light irradiation side,
The Curie temperatures Tc1, Tc2, and Tc3 of the first, second, and third magnetic films respectively satisfy a relationship of Tc2 <Tc1 <Tc3, and the Kerr rotation angle of the first magnetic film contributes to recording and reproduction. The interface domain wall energy density σ1 acting between the first magnetic film and the second magnetic film, and the interface domain wall energy density acting between the second magnetic film and the third magnetic film. σ2, magnetizations Ms1, Ms2, and Ms3 of the first, second, and third magnetic films; coercive forces Hc1, Hc2, and Hc3 of the first, second, and third magnetic films; Between the thicknesses h1, h2 and h3 of the third magnetic film, Hc2 <Hc1 and σ1 / (2 × Ms2 × h2)> Hc2, and when Hc3 <Hc2, σ2 / (2 × Ms3 × h3) <Hc
3. When Hc3> Hc2, σ2 / (2 × Ms2 × h2) <Hc2
A magneto-optical recording medium characterized by satisfying the following relationship:
【請求項3】 請求項1または請求項2に記載の光磁気
記録媒体を用いて、前記第3の磁性膜のキュリー温度以
上に前記光磁気記録媒体の温度を上昇させて前記第3の
磁性膜に記録を行い、その後に前記第1の磁性膜のキュ
リー温度から前記第3の磁性膜のキュリー温度までの温
度範囲に前記光磁気記録媒体の温度を上昇させて第1お
よび第2の磁性膜に記録を行うことを特徴とする光磁気
記録媒体の記録方法。
3. The method according to claim 1, wherein the temperature of the magneto-optical recording medium is increased to a temperature higher than the Curie temperature of the third magnetic film by using the magneto-optical recording medium according to claim 1. Recording on the film, and thereafter increasing the temperature of the magneto-optical recording medium to a temperature range from the Curie temperature of the first magnetic film to the Curie temperature of the third magnetic film, A recording method for a magneto-optical recording medium, wherein recording is performed on a film.
【請求項4】 請求項1または請求項2に記載の光磁気
記録媒体を用いて、前記第2の磁性膜のキュリー温度か
ら前記第1の磁性膜のキュリー温度までの温度範囲に前
記光磁気記録媒体の温度を上昇させて前記第3の磁性膜
に記録された信号の再生を行い、前記第2の磁性膜のキ
ュリー温度より低い温度に前記光磁気記録媒体の温度を
上昇させて前記第2の磁性膜に記録された信号を再生す
ることを特徴とする光磁気記録媒体の記録再生方法。
4. The magneto-optical recording medium according to claim 1, wherein the magneto-optical recording medium has a temperature range from the Curie temperature of the second magnetic film to the Curie temperature of the first magnetic film. The signal recorded on the third magnetic film is reproduced by increasing the temperature of the recording medium, and the temperature of the magneto-optical recording medium is increased to a temperature lower than the Curie temperature of the second magnetic film. 2. A recording / reproducing method for a magneto-optical recording medium, comprising: reproducing a signal recorded on the magnetic film.
JP13491995A 1995-06-01 1995-06-01 Magneto-optical recording medium and its recording / reproducing method Expired - Lifetime JP2778526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13491995A JP2778526B2 (en) 1995-06-01 1995-06-01 Magneto-optical recording medium and its recording / reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13491995A JP2778526B2 (en) 1995-06-01 1995-06-01 Magneto-optical recording medium and its recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH08329539A JPH08329539A (en) 1996-12-13
JP2778526B2 true JP2778526B2 (en) 1998-07-23

Family

ID=15139613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13491995A Expired - Lifetime JP2778526B2 (en) 1995-06-01 1995-06-01 Magneto-optical recording medium and its recording / reproducing method

Country Status (1)

Country Link
JP (1) JP2778526B2 (en)

Also Published As

Publication number Publication date
JPH08329539A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US5018119A (en) Method for reproducing signal using an external magnetic field from magneto-optical recording medium having three magnetic layers
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP2805746B2 (en) Signal reproducing method for magneto-optical recording medium
JPH0684212A (en) Magneto-optical memory element
US5237548A (en) Magneto-optic recording structure and method
KR100274179B1 (en) Magneto-optical recording media
JP3585671B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2762445B2 (en) Signal reproducing method for magneto-optical recording medium
JP2703587B2 (en) Magneto-optical recording medium and recording method
JP2778526B2 (en) Magneto-optical recording medium and its recording / reproducing method
JPH0348582B2 (en)
JP3108397B2 (en) Magneto-optical recording medium
JPH056588A (en) Magneto-optical recording medium and magneto-optical recording method
TW567467B (en) Magneto-optical recording medium and method of reproducing the same
JPH0782672B2 (en) Magnetic thin film recording medium
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
US5661716A (en) Magneto-optical recording medium and reproducing method therefor
JPH04255941A (en) Magneto-optical recording medium
JPH0589536A (en) Magneto-optical recording medium
JP2674275B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPH08227540A (en) Magneto-optical recording medium
JP3381960B2 (en) Magneto-optical recording medium
WO1991015013A1 (en) Magnetooptic recording medium, and method of magnetooptic recording and reproduction
JPH05266523A (en) Magneto-optical recording medium and method for reproducing information from this magneto-optical recording medium
JP3542155B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407