KR20000000845A - Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby - Google Patents

Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby Download PDF

Info

Publication number
KR20000000845A
KR20000000845A KR1019980020710A KR19980020710A KR20000000845A KR 20000000845 A KR20000000845 A KR 20000000845A KR 1019980020710 A KR1019980020710 A KR 1019980020710A KR 19980020710 A KR19980020710 A KR 19980020710A KR 20000000845 A KR20000000845 A KR 20000000845A
Authority
KR
South Korea
Prior art keywords
leu
ala
gly
val
asp
Prior art date
Application number
KR1019980020710A
Other languages
Korean (ko)
Inventor
최양도
김정호
권태근
김주곤
김용환
이종섭
서학수
임재윤
박성순
Original Assignee
최양도
김정호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최양도, 김정호 filed Critical 최양도
Priority to KR1019980020710A priority Critical patent/KR20000000845A/en
Publication of KR20000000845A publication Critical patent/KR20000000845A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/13Brevibacterium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE: Genes encoding Brevibacterium maltooligosyltrehalose synthease (BvMTase) and Brevibacterium maltooligosyl trehalose trehalohydrolase (BvMTHase) are isolated to obtain trehalose in large quantities which is used as food additives or food preservatives. CONSTITUTION: Trehalose is produced by following steps of: isolating gene encoding BvMTase and BvMTHase from Brevibacterium helvolum (ATCC 11822); cloning the gene into an expression vector which consists of 4,515 bp and encodes two enzyme proteins; massively expressing the recombinant proteins (enzymes) in E. coli; purifying the enzymes; and producing trehalose from maltooligosaccharide or starch by the enzymes. The structural gene of BvMTase gene consists of 2,328 bp; BvMTase consists of 776 amino acids. and has a molecular weight of about 85.8 kDa; the structural gene of BvMVHase consists of 1,767 bp; BvMTHase consists of 589 amino acids. and has a molecular weight of about 64.2 kDa.

Description

신규한 트레할로스 생합성효소유전자 및 이를 이용한 트레할로스의 생산방법Novel trehalose biosynthetic enzyme gene and production method of trehalose using same

본 발명은 브레비박테리움(Brevibacterium helvolum)에서 분리한 신규한 트레할로스 생합성효소 유전자 및 이를 이용한 트레할로스의 생산방법에 관한 것이다. 더욱 상세하게는, 본 발명은 브레비박테리움(Brevibacterium helvolum ATCC 11822)에서 발현되는 트레할로스 생합성효소를 암호화하는 유전자 및 그로부터 번역되는 트레할로스 생합성효소와, 이를 이용하여 다양한 기질, 특히 전분에서 효과적으로 트레할로스를 제조하는 방법에 관한 것이다.The present invention relates to a novel trehalose biosynthesis gene isolated from Brevibacterium helvolum and a method for producing trehalose using the same. More specifically, the present invention provides a gene encoding trehalose biosynthesis expressed in Brevibacterium helvolum ATCC 11822 and a trehalose biosynthetic enzyme translated therefrom, and using the same to effectively prepare trehalose in various substrates, especially starch. It is about how to.

트레할로스(α-D-glucopyranosyl-[1-1]-α-D-glucopyranose)는 곤충, 세균, 곰팡이, 효모 그리고 일부 식물체 등에서 발견되는 비환원성 이당류이다(Elbein, Adv. Carbohydr. Chem. Biochem., 30:227-256, (1974)). 트레할로스는 환원성 탄수화물의 저장 형태이기도 하지만 주로 영양분의 고갈, 고온, 건조, 산소 결핍, 삼투압 등 다양한 종류의 바람직하지 못한 물리적 화학적 외부 충격에서 비롯되는 나쁜 영향으로부터 세포를 보호하는 역할을 하는 것으로 알려졌다(Eleutherio et al., Cryobiology, 30:591-596, (1993)). 트레할로스는 건조과정에서 단백질과 세포막의 인지질과 수소결합을 하여 세포구조를 그대로 유지하게 해 주며 식품의 경우 고유의 풍미, 색상, 질감 등을 유지할 수 있게 한다(Crowe et al., Science, 223:701-703, (1984)). 그러므로 건조식품의 경우 색과 풍미를 보존하는 식품 첨가제로서 이용할 수 있을 뿐만 아니라 가용수분을 감소시키므로서 식품의 저장성을 향상시킬 수 있다. 트레할로스 생합성 반응경로는 효모와 대장균에서 가장 잘 알려져 있는데, 이들의 유전자는 이미 분리되었고 그 구조도 공지되어 있다(De Virgilio et al., Eur. J. Biochem., 212: 315-323, (1993); Kaasen et al., Gene, 145: 9-15, (1994)). 이외에도 Rhizobium sp. 등 근류균에서 트레할로스 합성활성이 측정되었다(Mueller et al., Physiol. Plant, 90: 86-92, (1994)). 현재 트레할로스는 효모 배양액에서 추출하여 식품 첨가제로 일부 사용하고 있는데 그 가격이 고가여서 실용화 되지 못하고 있는 문제점이 있다.Trehalose (α-D-glucopyranosyl- [1-1] -α-D-glucopyranose) is a non-reducing disaccharide found in insects, bacteria, fungi, yeast and some plants (Elbein, Adv. Carbohydr. Chem. Biochem., 30: 227-256, (1974). Trehalose is also a storage form of reducible carbohydrates, but it is known to protect cells from the adverse effects of various types of undesirable physical and chemical external impacts, such as depletion of nutrients, high temperatures, drying, oxygen deficiency, and osmotic pressure (Eleutherio et al., Cryobiology, 30: 591-596, (1993). Trehalose keeps the cell structure intact by phospholipids and hydrogen bonds of proteins and cell membranes during drying process. It also allows food to maintain its unique flavor, color and texture (Crowe et al., Science, 223: 701). -703, (1984)). Therefore, in the case of dried food can be used as a food additive to preserve the color and flavor as well as to improve the shelf life of the food by reducing the available water. Trehalose biosynthetic pathways are best known in yeast and Escherichia coli, whose genes have already been isolated and their structures are known (De Virgilio et al., Eur. J. Biochem., 212: 315-323, (1993). Kaasen et al., Gene, 145: 9-15, (1994)). In addition, Rhizobium sp. Trehalose synthetic activity was measured in the back mycorrhizal fungus (Mueller et al., Physiol. Plant, 90: 86-92, (1994)). At present, trehalose is extracted from the yeast culture and used as a food additive, but the price is expensive and there is a problem that has not been put to practical use.

따라서, 본 발명은 상기의 문제점을 해결하기 위하여 안출한 것으로, 브레비박테리움(Brevibacterium helvolum ATCC 11822)이 트레할로스를 생산하는 것에 착안하여 브레비박테리움(Brevibacterium helvolum ATCC 11822)으로부터 트레할로스 생합성효소 유전자를 분리하고, 이 유전자를 대량발현시켜서 얻은 효소를 이용하여 트레할로스 합성효율을 증가시켰다.Accordingly, the present invention has been made to solve the above problems, focusing on the production of trehalose by Brevibacterium helvolum ATCC 11822, trehalose biosynthesis gene from Brevibacterium helvolum ATCC 11822 The trehalose synthesis efficiency was increased by using the enzyme obtained by the isolation and mass expression of this gene.

본 발명의 목적은 브레비박테리움(Brevibacterium helvolum ATCC 11822)으로부터 분리한 신규한 트레할로스 생합성효소의 유전자들과 이들 유전자로부터 얻어지는 트레할로스 생합성 효소단백질을 제공함에 있다. 본 발명의 다른 목적은 본 발명의 트레할로스 생합성효소의 유전자로부터 얻어지는 효소단백질을 이용하여 트레할로스의 효과적인 생산방법을 제공함에 있다.It is an object of the present invention to provide novel trehalose biosynthesis genes isolated from Brevibacterium helvolum ATCC 11822 and trehalose biosynthetic enzyme proteins obtained from these genes. Another object of the present invention is to provide an efficient production method of trehalose using an enzyme protein obtained from the gene of the trehalose biosynthetic enzyme of the present invention.

본 발명의 상기의 목적은 브레비박테리움(Brevibacterium helvolum ATCC 11822)에서 발현되는 트레할로스 생합성효소를 암호화 하는 브레비박테리움 말토올리고실트레할로스 합성효소(이하, BvMTSase라 한다) 및 브레비박테리움 말토올리고실트레할로스 가수분해효소(이하, BvMTVHase라 한다) 유전자를 분리하고, 이들 BvMTSase 및 BvMTVHase 유전자를 발현벡터에 재조합한 후 대장균에서 대량발현하고, 발현된 재조합 단백질을 순수 분리한 후 각종 전분으로부터 트레할로스를 합성하므로써 달성하였다.The above object of the present invention is Brevibacterium maltooligosiltrehalose synthetase (hereinafter referred to as BvMTSase) and Brevibacterium maltooligo encoding trehalose biosynthesis expressed in Brevibacterium helvolum ATCC 11822 The siltrehalose hydrolase (hereinafter referred to as BvMTVHase) gene is isolated, these BvMTSase and BvMTVHase genes are recombined into expression vectors, expressed in Escherichia coli, and the expressed recombinant protein is purely separated, and then trehalose is synthesized from various starches. Achieved by doing so.

이하, 본 발명의 구성 및 작용을 상세히 설명하고자 한다.Hereinafter, the configuration and operation of the present invention will be described in detail.

도1은 브레비박테리움의 게놈 DNA를 BamHI, EcoRI, HindIII, KpnI 및 PstI 각각의 제한효소로 절단하고, 서던블럿 분석한 결과를 나타내는 사진이다.1 is a photograph showing the results of genomic DNA of Brevibacterium digested with restriction enzymes of BamHI, EcoRI, HindIII, KpnI, and PstI, respectively, and Southern blot analysis.

도2는 BvMTSase 및 BvMTHase 유전자에 해당하는 DNA 단편의 상대적 위치 및 제한효소 지도를 나타낸다.Figure 2 shows the relative position and restriction map of the DNA fragment corresponding to the BvMTSase and BvMTHase gene.

도3은 BvMTSase 및 BvMTHase 유전자의 염기서열 및 그로부터 번역되는 아미노산 서열을 나타낸다.Figure 3 shows the nucleotide sequence of the BvMTSase and BvMTHase gene and amino acid sequence translated therefrom.

도4는 발현벡터 pBvMTSase 및 pBvMTHase 플라스미드 제작과정 모식도이다.Figure 4 is a schematic diagram of the production of the expression vector pBvMTSase and pBvMTHase plasmid.

도5는 BvMTSase 및 BvMTHase 유전자를 대장균에서 대량 발현시킨 후 각각의 효소 단백질을 분리하고 SDS-PAGE 방법으로 확인한 결과이다.5 is a result of mass-expressing BvMTSase and BvMTHase genes in Escherichia coli, and then separating the respective enzyme proteins and confirming them by SDS-PAGE method.

도6은 도5에서 분리한 각각의 효소단백질을 이용하여 트레할로스 합성반응을 실시하고 얇은막 크로마토그래피 방법에 의해 트레할로스의 합성을 확인한 결과 이다.FIG. 6 shows the results of trehalose synthesis using the enzyme proteins isolated from FIG. 5 and the synthesis of trehalose by thin layer chromatography.

도7은 도6에서 실시한 반응중 말토펜타오스(G5)를 기질로 이용하여 트레할로스 합성반응을 실시하고 HPLC 방법에 의해 트레할로스의 합성을 확인하고 정량한 결과이다.FIG. 7 shows trehalose synthesis reaction using maltopentaose (G5) as a substrate, and confirms and quantifies trehalose synthesis by HPLC.

도8은 도5에서 순수분리한 각각의 효소단백질을 사용하여 전분을 기질로 트레할로스 합성반응을 실시하고 얇은막 크로마토그래피 방법에 의해 트레할로스의 합성을 확인한 결과이다.FIG. 8 shows the results of trehalose synthesis using starch as a substrate using each enzyme protein purified in FIG. 5, and the synthesis of trehalose by thin layer chromatography.

도9은 도8의 반응물 중 72시간 반응물을 HPLC 방법에 의해 트레할로스의 합성을 확인하고 정량한 결과이다.FIG. 9 is a result of quantifying the synthesis of trehalose for 72 hours in the reactants of FIG. 8 by HPLC method.

도10는 도5에서 순수분리한 각각의 효소단백질과 알파-아밀라제 효소를 혼합 사용하여 전분을 기질로 트레할로스 합성반응을 실시하고 얇은막 크로마토그래 피 방법에 의해 트레할로스의 합성을 확인한 결과이다.FIG. 10 shows the results of trehalose synthesis using starch as a substrate using a mixture of enzyme proteins and alpha-amylase enzymes purely separated in FIG. 5, and confirming trehalose synthesis by thin layer chromatography.

도11은 도10의 반응물 중 72시간 반응물을 HPLC 방법에 의해 트레할로스의 합성을 확인하고 정량한 결과이다.FIG. 11 is a result of confirming and quantifying the synthesis of trehalose by HPLC method for 72 hours from the reactants of FIG. 10.

본 발명은 브레비박테리움으로부터 게놈 DNA를 분리하는 단계; 이들 게놈 DNA로부터 트레할로스 생합성 유전자의 분리단계; 대장균에서의 BvMTSase 및 BvMTVHase 유전자의 발현 및 순수분리 단계; BvMTSase 및 BvMTVHase 효소단백질을 이용하여 트레할로스를 합성하는 단계; 및 각종 전분으로부터 트레할로스를 합성하는 단계로 이루어진다.The present invention comprises the steps of separating genomic DNA from Brevibacterium; Isolation of trehalose biosynthetic genes from these genomic DNAs; Expression and pure separation of BvMTSase and BvMTVHase genes in E. coli; Synthesizing trehalose using the BvMTSase and BvMTVHase enzyme proteins; And synthesizing trehalose from various starches.

브레비박테리움(Brevibacterium helvolum ATCC 11822)으로부터 게놈 DNA를 분리하기 위하여 샘부룩등의 방법을 변형하여 브레비박테리움으로부터 게놈 DNA를 분리하였다(Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, 1989). 브레비박테리움 배양액을 원심분리하여 브레비박테리움을 모으고, 라이소자임(lysozyme), 10% SDS, 5M NaCl 및 CTAB 용액(10% CTAB, 0.7M NaCl)을 첨가한 후 반응하였다. 반응이 끝난 후 페놀, 클로로포름 및 이소아밀알코올을 각각 25:24:1중량부로 혼합한 혼합용액을 첨가하고, 원심분리하여 상등액을 취한 후, 상등액과 같은 부피의 이소프로필알코올(isopropyl alcohol)을 첨가하고 침전된 DNA를 분리하였다. 분리된 DNA에 RNase A 및 단백질 가수분해효소 K(proteinase K) 함유용액을 가한 후 37℃에서 30분간 처리하였다. 반응이 끝난 후 페놀과 클로로포름 및 이소아밀알코올을 각각 25:24:1의 중량부로 혼합한 혼합용액을 첨가하고, 원심분리하여 상등액을 취하였다. 상등액을 취한 후 NaCl을 첨가하여 200mM의 농도로 조성한 후 2배 부피의 에틸알코올(ethyl alcohol)을 첨가하여 DNA를 침전시켰다.In order to separate genomic DNA from Brevibacterium helvolum ATCC 11822, the method of Samburk et al. Was modified to isolate genomic DNA from Brevibacterium (Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual). , 2nd Ed., Cold Spring Harbor Laboratory, 1989). Brevibacterium cultures were centrifuged to collect Brevibacterium, and reacted after adding lysozyme, 10% SDS, 5M NaCl and CTAB solution (10% CTAB, 0.7M NaCl). After the reaction was completed, a mixed solution of phenol, chloroform and isoamyl alcohol was mixed at 25: 24: 1 parts by weight, and the supernatant was taken by centrifugation, and then the same volume of isopropyl alcohol as the supernatant was added. And precipitated DNA was isolated. RNase A and a proteinase K-containing solution were added to the isolated DNA, and then treated at 37 ° C. for 30 minutes. After the reaction was completed, a mixed solution containing phenol, chloroform and isoamyl alcohol in a weight part of 25: 24: 1 was added thereto, followed by centrifugation to obtain a supernatant. After taking the supernatant, NaCl was added to form a concentration of 200 mM, and then doubled volume of ethyl alcohol was added to precipitate DNA.

브레비박테리움의 게놈 DNA로부터 트레할로스 합성 유전자의 분리에 이용되는 프로브(probe)는 본 발명자들이 기존에 분리한 마이코박테리움(Mycobacterium tuberculosis H37Rv)의 트레할로스 합성효소 유전자를 이용하였다. 브레비박테리움의 게놈 DNA로부터 트레할로스 합성 유전자를 분리하기 위하여, 브레비박테리움의 게놈 DNA를 BamHI, EcoRI, HindIII, KpnI 및 PstI 각각의 제한효소로 절단하고, 아가로스 겔 전기영동한 다음,32P가 표지된 마이코박테리움의 트레할로스 합성 효소 유전자 DNA 단편을 프로브로 이용하여 서던블럿 분석을 실시하였다(Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, 1989). 그 결과 EcoRI으로 절단한 경우 약 4.3kbp 크기의 DNA 단편이 프로브 DNA와 혼성화되었다. 4.3kbp 크기의 EcoRI DNA 단편을 분리하고 이를 클로닝한 후 제한효소지도를 작성하고 염기서열을 결정하였다. 그 결과 염기서열을 결정한 DNA 단편의 크기는 4,715bp이며, 두 개의 트레할로스 생합성 관련효소를 암호화하고 있다. 첫번째 유전자는 구조유전자 부분이 2,328bp인 브레비박테리움 말토올리고실트레할로스 합성효소(Brevibacterium maltooligosyltrehalose synthase: BvMTSase) 유전자이고, 이로부터 번역되는 브레비박테리움 말토올리고실트레할로스 합성효소(BvMTSase)는 아미노산 776개로 구성된 약 85.8kDa의 분자량을 갖는 단백질이다. 이 효소는 말토올리고당(maltooligosaccharide)의 환원말단에 존재하는 α(1→4)글리코시딕 결합을 α(1→1) 글리코시딕 결합으로 전환시켜 말토올리고실 트레할로스(maltooligosyl trehalose)를 생성한다. 두번째 유전자는 구조유전자 부분이 1,767bp인 브레비박테리움 말토올리고실트레할로스 가수분해효소(Brevibacterium maltooligosyl trehalose trehalohydrolase: BvMTHase) 유전자이고, 이로부터 번역되는 브레비박테리움 말토올리고실트레할로스 가수분해효소 (BvMTHase)는 아미노산 589개로 구성된 약 64.2kDa의 분자량을 갖는 단백질이다. 이 효소는 BvMTSase에 의해 생성된 말토올리고실 트레할로스의 말토올리고실 부위와 트레할로스 부위간의 α(1→4) 글리코시딕 결합을 가수분해시켜 포도당의 단위가 2개 적어진 말토올리고당과 트레할로스를 생성한다.The probe used for isolation of trehalose synthetic gene from genomic DNA of Brevibacterium used the trehalose synthase gene of Mycobacterium tuberculosis H37Rv, which the present inventors have previously isolated. To isolate trehalose synthetic genes from Brevibacterium genomic DNA, genomic DNA of Brevibacterium was digested with restriction enzymes of BamHI, EcoRI, HindIII, KpnI and PstI, and then agarose gel electrophoresis, 32 Southern blot analysis was performed using P-labeled Mycobacterium trehalose synthase gene DNA fragment as a probe (Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory). , 1989). As a result, a DNA fragment of about 4.3kbp hybridized with the probe DNA when digested with EcoRI. 4.3 kbp sized EcoRI DNA fragments were isolated and cloned. As a result, the size of the DNA fragment that determined the base sequence is 4,715bp, encoding two trehalose biosynthesis-related enzymes. The first gene is the Brevibacterium maltooligosyltrehalose synthase (BvMTSase) gene with a structural gene portion of 2,328 bp, and the Brevibacterium maltooligosiltrehalose synthase (BvMTSase) translated therefrom is amino acid 776 It is a protein with a molecular weight of about 85.8kDa consisting of dogs. This enzyme converts α (1 → 4) glycosidic bonds at the reduced end of maltooligosaccharide to α (1 → 1) glycosidic bonds to produce maltooligosyl trehalose. The second gene is the Brevibacterium maltooligosyl trehalose trehalohydrolase (BvMTHase) gene, whose structural gene is 1,767 bp, and is translated from the Brevibacterium maltooligosyltrehalose hydrolase (BvMTHase). Is a protein having a molecular weight of about 64.2 kDa consisting of 589 amino acids. This enzyme hydrolyzes α (1 → 4) glycosidic bonds between the maltooligolic and trehalose sites of maltooligolic trehalose produced by BvMTSase, resulting in maltooligosaccharides and trehalose with two fewer glucose units. .

분리한 유전자로부터 번역되어 얻어지는 BvMTSase 및 BvMTHase 두가지 효소단백질을 이용하여 트레할로스를 합성할 수 있는지 확인하기 위하여 각각의 유전자를 대장균에서 발현시키고, 발현된 두가지 효소단백질을 순수 분리한 후 트레할로스 합성능을 검정하였다. 각각의 구조유전자부분을 분리하고 대장균에서의 발현벡터인 pRSET 플라스미드에 삽입하여 각각의 효소단백질의 발현을 유도하였다. 발현된 각각의 효소단백질은 Ni2+-NTA-agarose 흡착 겔 크로마토그래피를 이용하여 순수분리하였고 SDS-PAGE 전기영동을 이용하여 각각의 효소단백질이 발현됨을 확인하였다. 분리한 두가지 효소단백질의 트레할로스 합성능을 검정하기 위하여 여러 가지 말토올리고당을 기질로하여 트레할로스 합성반응을 실시하였다. 그 결과, 홀수개의 포도당 단위로 되어있는 말토올리고당들은 최종 반응물이 트레할로스와 말토트리오스(maltotriose, G3)이며, 말토트리오스는 더 이상 가수분해되지 않았다. 짝수개의 포도당 단위로 되어있는 말토올리고당들은 최종 반응물이 트레할로스와 말토테트라오스(maltotetraose, G4)이며, 말토테트라오스를 장시간 반응하였을 경우 소량만이 트레할로스와 말토스(maltose)로 전환됨을 알 수 있었다. 말토펜타오스에 BvMTSase를 반응시켰을 때, 말토펜타오스의 약 80%가 말토트리오실 트레할로스(maltotriosyl trehalose)로 전환되었음을 확인하였다. 그러나 말토펜타오스에 BvMTHase를 반응시켰을 때, 이 효소는 말토펜타오스와 직접적으로는 반응하지 않았다. 말토펜타오스에 BvMTSase과 BvMTHase를 모두 반응시킨 경우, 말토펜타오스는 트레할로스와 말토트리오스(maltotriose)로 100% 전환되었다. 분리한 두가지 효소단백질이 전분(soluble starch)과는 어떻게 반응하는지를 알아보기 위하여 전분을 기질로하여 트레할로스 합성반응을 실시하였다. 그 결과, 전분으로부터 트레할로스를 합성하는 것을 확인하였으며, 이 방법에 의해 전분으로부터 트레할로스를 대량 생산할 수 있는 방법을 개발하였다.To confirm whether trehalose can be synthesized using two enzyme proteins BvMTSase and BvMTHase obtained from the isolated gene, each gene was expressed in Escherichia coli, and the two enzyme proteins expressed were purely separated and assayed for trehalose synthesis. . Each structural gene was isolated and inserted into pRSET plasmid, which is an expression vector in E. coli, to induce the expression of each enzyme protein. Each enzyme protein expressed was purified by Ni 2+ -NTA-agarose adsorption gel chromatography, and each enzyme protein was confirmed by SDS-PAGE electrophoresis. In order to assay the trehalose synthesis ability of the two enzyme proteins, trehalose synthesis reaction was carried out using various maltooligosaccharides as substrates. As a result, maltooligosaccharides in odd glucose units were the final reactants trehalose and maltotriose (G3), and maltotriose was no longer hydrolyzed. Maltooligosaccharides, which are even glucose units, were found to be trehalose and maltotetraose (G4), and only a small amount of maltotetraose was converted to trehalose and maltose when maltotetraose was reacted for a long time. When BvMTSase was reacted with maltopentaose, it was confirmed that about 80% of maltopentaose was converted to maltotriosyl trehalose. However, when BvMTHase was reacted with maltopentaose, the enzyme did not react directly with maltopentaose. When maltopentaose was reacted with both BvMTSase and BvMTHase, maltopentaose was converted to trehalose and maltotriose by 100%. Trehalose synthesis was performed using starch as a substrate to see how the two enzyme proteins reacted with starch. As a result, it was confirmed that trehalose was synthesized from starch, and a method for mass production of trehalose from starch was developed by this method.

이하, 본 발명은 실시예를 통하여 보다 상세히 설명하나 본 발명의 범위가 이들 실시예에 의해 제한되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited by these Examples.

실시예 1. 브레비박테리움으로부터의 게놈 DNA 분리Example 1. Genomic DNA Isolation from Brevibacterium

브레비박테리움(Brevibacterium helvolum ATCC 11822)으로부터 게놈 DNA를 분리하기 위하여 샘부룩 등의 방법(Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, 1989)을 변형하여 브레비박테리움으로부터 게놈 DNA를 분리하였다. 브레비박테리움을 37℃ 조건하에서 18시간동안 50mL의 LB 배지를 사용하여 배양하였다. 배양액을 원심분리하여 브레비박테리움을 모으고, TE 완충액(10mM Tris-HCl/pH8.0, 1mM EDTA/pH8.0)을 이용하여 라이소자임(lysozyme)을 2mg/mL의 농도로 제조한 후 5.5mL를 가하였다. 37℃에서 1시간 반응한 후 760㎕의 10% SDS를 가하여 65℃에서 10분간 반응하고, 1mL의 5M NaCl과 800㎕의 CTAB 용액(10% CTAB, 0.7M NaCl)을 첨가한 후 65℃에서 10분간 반응하였다. 반응이 끝난 후 8mL의 페놀과 클로로포름 및 이소아밀알코올을 각각 25:24:1의 부피비로 혼합한 혼합용액을 첨가하고, 원심분리하여 상등액을 취하였다. 상등액과 같은 부피의 이소프로필알코올(isopropyl alcohol)을 첨가한 후 천천히 잘 혼합하여 침전된 DNA를 분리하였다. 분리된 DNA를 500㎕의 TE 완충액에 용해시킨 후, RNase A를 10㎍/mL의 농도로 첨가하여 37℃에서 30분 처리하고, 단백질 가수분해효소 K (proteinase K) 함유용액(5㎎/mL) 10㎕를 가한 후 37℃에서 30분 처리하였다. 반응이 끝난 후 500㎕의 페놀과 클로로포름 및 이소아밀알코올을 각각 25:24:1의 중량부로 혼합한 혼합용액을 첨가하고, 원심분리하여 상등액을 취하였다. 상등액을 취한 후 NaCl을 첨가하여 200mM의 농도로 조성한 후 1mL의 에틸알코올(ethyl alcohol)을 첨가하여 DNA를 침전시켰다.To isolate genomic DNA from Brevibacterium helvolum ATCC 11822, Sambrook et al. (Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, 1989) Modifications isolated genomic DNA from Brevibacterium. Brevibacterium was incubated with 50 mL of LB medium for 18 hours at 37 ° C. The Brevibacterium was collected by centrifugation of the culture medium, and lysozyme was prepared at a concentration of 2 mg / mL using TE buffer (10 mM Tris-HCl / pH8.0, 1 mM EDTA / pH8.0), and then 5.5mL. Was added. After 1 hour of reaction at 37 ° C., 760 μl of 10% SDS was added and reacted at 65 ° C. for 10 minutes. After adding 1 mL of 5M NaCl and 800 μl of CTAB solution (10% CTAB, 0.7M NaCl) at 65 ° C. The reaction was carried out for 10 minutes. After the reaction, a mixed solution of 8 mL of phenol, chloroform and isoamyl alcohol in a volume ratio of 25: 24: 1 was added thereto, and the supernatant was taken by centrifugation. After adding the same volume of isopropyl alcohol (isopropyl alcohol) to the supernatant slowly mixed well to separate the precipitated DNA. After dissolving the isolated DNA in 500 μl of TE buffer, RNase A was added at a concentration of 10 μg / mL and treated at 37 ° C. for 30 minutes, and a solution containing proteinase K (5 mg / mL) was added. ) 10 μl was added and then treated at 37 ° C. for 30 minutes. After the reaction was completed, a mixed solution containing 500 µl of phenol, chloroform, and isoamyl alcohol in a weight part of 25: 24: 1 was added thereto, and the supernatant was collected by centrifugation. After taking the supernatant, NaCl was added to form a concentration of 200 mM, and then 1 mL of ethyl alcohol was added to precipitate DNA.

실시예 2. 트레할로스 생합성 유전자의 분리Example 2 Isolation of Trehalose Biosynthesis Genes

브레비박테리움의 게놈 DNA로부터 트레할로스 합성 유전자의 분리에 이용되는 프로브(probe)는 본 발명자들이 기존에 분리한 마이코박테리움(Mycobacterium tuberculosis H37Rv)의 트레할로스 합성효소 유전자를 이용하였다. 브레비박테리움의 게놈 DNA로부터 트레할로스 합성 유전자를 분리하기 위하여, 브레비박테리움의 게놈 DNA를 BamHI, EcoRI, HindIII, KpnI 및 PstI 각각의 제한효소로 절단하고, 아가로스 겔 전기영동한 다음,32P가 표지된 마이코박테리움의 트레할로스 합성 효소 유전자 DNA 단편을 프로브로 이용하여 서던블럿 분석을 실시하였다(Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, 1989). 실험결과, 도1에서 보듯이, 레인 M1은 DNA 크기마커로서 λDNA를 HindIII로 절단한 결과이고, M2는 DNA 크기마커로서 pUC18 플라스미드 DNA를 EcoRI과 HindIII로 절단한 결과이며 레인 1 부터 5는 브레비박테리움의 게놈 DNA를 BamHI, EcoRI, HindIII, KpnI 및 PstI 각각의 제한효소로 절단한 결과를 나타낸다. 이때, EcoRI으로 절단한 경우 약 4.3kbp 크기의 DNA 단편이 프로브 DNA와 혼성화되었다.The probe used for isolation of trehalose synthetic gene from genomic DNA of Brevibacterium used the trehalose synthase gene of Mycobacterium tuberculosis H37Rv, which the present inventors have previously isolated. To isolate trehalose synthetic genes from Brevibacterium genomic DNA, genomic DNA of Brevibacterium was digested with restriction enzymes of BamHI, EcoRI, HindIII, KpnI and PstI, and then agarose gel electrophoresis, 32 Southern blot analysis was performed using P-labeled Mycobacterium trehalose synthase gene DNA fragment as a probe (Sambrook, J. et al., Molecular Cloning: A Laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory). , 1989). Experimental results, as shown in Figure 1, lane M1 is a DNA size marker as a result of cleavage of λ DNA with HindIII, M2 is a DNA size marker as a result of cleavage of pUC18 plasmid DNA with EcoRI and HindIII and lanes 1 to 5 are Brevibac Genomic DNA of terium is digested with restriction enzymes of BamHI, EcoRI, HindIII, KpnI and PstI, respectively. At this time, the DNA fragment of about 4.3kbp was hybridized with the probe DNA when digested with EcoRI.

이어서, 상기 4.3kbp 크기의 EcoRI DNA 단편을 분리하고 이를 EcoRI으로 절단한 플라스미드 pUC18에 삽입하였다. 이렇게 제조된 재조합 플라스미드로 대장균 MC1061을 형질전환시킨 다음, 콜로니혼성화를 실시하여 양성을 나타내는 대장균을 선별하였으며, 이들 대장균으로부터 플라스미드를 분리하여, 제한효소지도를 작성하고 염기서열을 결정하였다. 상기 분리한 EcoRI DNA 단편을 pBvR4.3이라 명명하고, 염기서열을 결정하여본 결과, pBvR4.3은 트레할로스 합성효소 유전자의 5' 부위 일부분만을 포함하고 있었다. 전체 유전자를 분리하기 위하여 다른 제한효소로 처리한 DNA를 이용하여 서던블럿 분석을 실시한 결과, 브레비박테리움 게놈 DNA를 SalI으로 절단한 경우 약 6.0kbp 크기의 DNA 단편이 프로브 DNA와 혼성화되었다. 6.0kbp 크기의 SalI DNA 단편을 분리하고 이를 SalI으로 절단한 플라스미드 pUC18에 삽입하였다. 이렇게 제조된 재조합 플라스미드로 상기에서 기술한 것과 동일한 방법으로 콜로니혼성화를 실시하여 양성을 나타내는 대장균을 선별하였으며, 이들 대장균으로부터 플라스미드를 분리하여, 제한효소지도를 작성하고 염기서열을 결정하였다. 분리한 SalI DNA 단편을 pBvS6.0이라 명명하고 염기서열을 결정하여본 결과, pBvS6.0은 pBvR4.0의 3' 부위의 약 1kbp 정도가 겹쳐지며 트레할로스 합성효소 유전자의 3' 부위를 전부 포함하고 있었다.The 4.3 kbp sized EcoRI DNA fragment was then isolated and inserted into plasmid pUC18 digested with EcoRI. E. coli MC1061 was transformed with the recombinant plasmid thus prepared, and colony hybridization was performed to select positive E. coli. The plasmid was separated from these E. coli, and a restriction enzyme map was prepared to determine the base sequence. The isolated EcoRI DNA fragment was named pBvR4.3, and the base sequence was determined. As a result, pBvR4.3 contained only a portion of the 5 'region of trehalose synthase gene. Southern blot analysis was performed using DNAs treated with other restriction enzymes to isolate whole genes. As a result of cleavage of Brevibacterium genomic DNA with SalI, a DNA fragment of about 6.0 kbp was hybridized with the probe DNA. SalI DNA fragments of 6.0 kbp size were isolated and inserted into plasmid pUC18 digested with SalI. The recombinant plasmid thus prepared was subjected to colony hybridization in the same manner as described above to select positive E. coli. The plasmid was isolated from these E. coli, and a restriction enzyme map was prepared to determine the base sequence. The isolated SalI DNA fragment was named pBvS6.0 and the nucleotide sequence was determined. As a result, pBvS6.0 overlaps about 1 kbp of the 3 'region of pBvR4.0 and includes all 3' regions of trehalose synthase gene. there was.

상기에서 수득한 pBvR4.3 및 pBvS6.0에 해당하는 DNA 단편의 상대적인 위치 및 제한효소 지도는 도2에 나타내었다. 도2에서, E는 EcoRI, S는 SalI, B는 BamHI, H는 HindIII의 제한효소 절단부위를 각각 나타내며, 화살표는 염기서열이 결정된 DNA 단편 및 서열결정의 방향을 나타낸다.The relative positions and restriction maps of the DNA fragments corresponding to pBvR4.3 and pBvS6.0 obtained above are shown in FIG. 2. In Figure 2, E represents EcoRI, S represents SalI, B represents BamHI, H represents HindIII restriction sites, and arrows indicate the direction of DNA fragment and sequencing determined.

전체 트레할로스 생합성 유전자의 염기서열 및 이로부터 번역되는 아미노산 서열을 도3에 나타내었다. 도3에서, 밑줄친 부분은 리보솜 결합부위, 그림자 부위는 알파-아밀라제 계통의 효소에서 공통적으로 발견되는 아미노산 서열, (눈표)는 번역종결부위를 각각 나타낸다. 실험결과, 염기서열을 결정한 DNA 단편의 크기는 4,715bp이며, 두개의 트레할로스 생합성 관련효소를 암호화하고 있다. 첫번째 유전자는 구조유전자 부분이 2,328bp인 브레비박테리움 말토올리고실트레할로스 합성효소(Brevibacterium maltooligosyltrehalose synthase: BvMTSase) 유전자이고, 이로부터 번역되는 브레비박테리움 말토올리고실트레할로스 합성효소 (BvMTSase)는 아미노산 776개로 구성된 약 85.8kDa의 분자량을 갖는 단백질이다. 이 효소는 말토올리고당(maltooligosaccharide)의 환원말단에 존재하는 α(1→4)글리코시딕 결합을 α(1→1)글리코시딕 결합으로 전환시켜 말토올리고실 트레할로스(maltooligosyltrehalose)를 생성한다. 두번째 유전자는 구조유전자 부분이 1,767bp인 브레비박테리움 말토올리고실트레할로스 가수분해효소(Brevibacterium maltooligosyltrehalose trehalohydrolase: BvMTHase) 유전자이고, 이로부터 번역되는 브레비박테리움 말토올리고실트레할로스 가수분해효소(BvMTHase)는 아미노산 589개로 구성된 약 64.2kDa의 분자량을 갖는 단백질이다. 이 효소는 BvMTSase에 의해 생성된 말토올리고실트레할로스의 말토올리고실 부위와 트레할로스 부위간의 α(1→4) 글리코시딕 결합을 가수분해시켜 포도당의 단위가 2개 적어진 말토올리고당과 트레할로스를 생성한다.The nucleotide sequence of the entire trehalose biosynthesis gene and the amino acid sequence translated therefrom are shown in FIG. 3. In FIG. 3, the underlined portion shows the ribosome binding site, the shadowed portion shows the amino acid sequence commonly found in enzymes of the alpha-amylase line, and the (mark) indicates the translation termination site, respectively. As a result, the DNA fragment having the base sequence was 4,715 bp in size, encoding two trehalose biosynthesis related enzymes. The first gene is the Brevibacterium maltooligosyltrehalose synthase (BvMTSase) gene with a structural gene portion of 2,328bp, and the Brevibacterium maltooligosiltrehalose synthase (BvMTSase) translated therefrom is amino acid 776 It is a protein with a molecular weight of about 85.8kDa consisting of dogs. This enzyme converts α (1 → 4) glycosidic bonds at the reduced end of maltooligosaccharide to α (1 → 1) glycosidic bonds to produce maltooligosyltrehalose. The second gene is the Brevibacterium maltooligosyltrehalose trehalohydrolase (BvMTHase) gene whose structural gene portion is 1,767 bp, and the translated Brevbacterium maltooligosyltrehalose hydrolase (BvMTHase) is It is a protein having a molecular weight of about 64.2 kDa consisting of 589 amino acids. This enzyme hydrolyzes α (1 → 4) glycosidic bonds between the maltooligosil and trehalose sites of maltooligosiltrehalose produced by BvMTSase to produce maltooligosaccharides and trehalose with two fewer glucose units. .

실시예 3. 대장균에서의 BvMTSase 및 BvMTHase 유전자의 발현 및 순수분리Example 3 Expression and Pure Separation of BvMTSase and BvMTHase Genes in Escherichia Coli

상기 실시예 2에서 분리한 유전자로부터 번역되는 BvMTSase 및 BvMTHase 두가지 효소단백질을 이용하여 트레할로스를 합성할 수 있는지 확인하기 위하여 각각의 유전자를 대장균에서 발현시키고, 발현된 두가지 효소단백질을 순수 분리한 후 트레할로스 합성능을 검정하였다. BvMTSase 구조 유전자 부분을 제한효소 EcoRI 및 EcoRv로 처리하여 절단한 절단부위를 대장균에서의 발현벡터인 pRSET 플라스미드에 삽입하여 pBvMTSase 플라스미드를 제조하고, 또한 BvMTHase 구조 유전자 부분을 제한효소 Hind III 및 KpnI으로 처리하여 절단한 절단부위를 대장균에서의 발현벡터인 pRSET 플라스미드에 삽입하여 pBvMTHase 플라스미드를 제조하였다(도4). 이렇게 제조된 각각의 재조합 플라스미드로 대장균 BL21을 형질전환시키고, 12시간 배양한 후, IPTG(isopropyl-β-D-thiogalactoside)를 최종농도 1mM이 되도록 첨가하고 4시간 더 배양하여 각각의 효소단백질의 발현을 유도하였다. 발현된 각각의 효소단백질은 Ni2+-NTA-agarose 흡착 겔 크로마토그래피를 이용하여 순수분리하였고, 발현된 효소 단백질을 SDS-PAGE 전기영동을 실시하였다. 실험결과, 도5에서 보듯이, 레인 M은 단백질분자량마커이고, C는 control 실험으로서 pRSET 플라스미드만을 포함하는 대장균으로부터 전체 단백질을 추출하고 SDS-PAGE 전기영동한 결과이며, 레인 1, 3은 BvMTSase 및 BvMTHase 유전자를 포함하는 pRMTS 및 pRMTH 플라스미드를 대장균에서 유도발현시키고, 각각 전체 단백질을 추출하여 SDS-PAGE 전기영동한 결과이다. 레인 2, 4는 발현된 각각의 효소단백질을 Ni2+-NTA-agarose 흡착 겔 크로마토그래피를 이용하여 순수분리한 결과이다. 이때, BvMTSase 및 BvMTHase 유전자를 포함하는 pRMTS 및 pRMTH 플라스미드를 대장균에서 유도발현시킨 경우, BvMTSase 및 BvMTHase 효소는 특이적으로 다량 발현되었다. 본 발명자들은 형질전환된 상기 대장균을 각각 Escherichia coliBL21(pVvMTHase) 및 Escherichia coliBL21(pVvMTSase)로 명명하고, 한국과학기술연구원 부설 생명공학연구소 유전자은행에 1998년 5월 12일 기탁번호 KCTC 0474BP 및 KCTC 0475BP호로 각각 기탁하였다.In order to confirm whether trehalose can be synthesized using two enzyme proteins BvMTSase and BvMTHase which are translated from the gene isolated in Example 2, each gene is expressed in Escherichia coli, and the two expressed enzyme proteins are purely separated, and then the trehalose sum is combined. Performance was assayed. A cleavage site cut by treatment of the BvMTSase structural gene portion with the restriction enzymes EcoRI and EcoRv was inserted into the pRSET plasmid, which is an expression vector of E. coli, to prepare a pBvMTSase plasmid. The cleaved cleavage site was inserted into the pRSET plasmid, which is an expression vector in Escherichia coli, to prepare a pBvMTHase plasmid (FIG. 4). E. coli BL21 was transformed with each of the recombinant plasmids thus prepared, and cultured for 12 hours, followed by addition of IPTG (isopropyl-β-D-thiogalactoside) to a final concentration of 1 mM and incubation for another 4 hours to express each enzyme protein. Induced. The expressed enzyme protein was purified by Ni 2+ -NTA-agarose adsorption gel chromatography, and the expressed enzyme protein was subjected to SDS-PAGE electrophoresis. Experimental results, as shown in Figure 5, lane M is the protein molecular weight marker, C is a control experiment to extract the entire protein from E. coli containing only pRSET plasmid and SDS-PAGE electrophoresis, lanes 1, 3 are BvMTSase and PRMTS and pRMTH plasmid containing the BvMTHase gene were induced in E. coli, and the entire protein was extracted and SDS-PAGE electrophoresis was performed. Lanes 2 and 4 are the result of pure separation of each expressed protein using Ni 2+ -NTA-agarose adsorption gel chromatography. In this case, when pRMTS and pRMTH plasmids including BvMTSase and BvMTHase genes were induced in E. coli, BvMTSase and BvMTHase enzymes were specifically expressed in large amounts. The present inventors named the transformed Escherichia coli as Escherichia coliBL21 (pVvMTHase) and Escherichia coliBL21 (pVvMTSase), respectively, and deposited with KCTC 0474BP and KCTC 0475BP on May 12, 1998 to the Korea Institute of Science and Technology. Each was deposited.

실시예 4. BvMTSase 및 BvMTHase 효소단백질을 이용한 트레할로스 합성 및 기질 특이성Example 4 Trehalose Synthesis and Substrate Specificity Using BvMTSase and BvMTHase Enzyme Proteins

상기 실시예 3에서 순수 분리한 BvMTSase 및 BvMTHase 효소단백질의 트레할로스 합성능 및 기질 특이성을 알아보기 위하여 여러가지 말토올리고당을 기질로하여 트레할로스 합성실험을 실시하였다. 반응조건은 50mM 인산완충용액(pH 7.0) 조건하에서 여러가지 말토올리고당을 1mM의 농도로 첨가하고 각각 500ng의 순수분리한 효소를 첨가하여 전체 반응부피를 50㎕로 하였다. 이를 37℃에서 1시간 반응시키고, 95℃에서 10분동안 처리하여 반응을 종결시킨 후 얇은막 크로마토그래피 방법으로 트레할로스 합성을 확인하였다. 실험결과, 도6에서 보듯이 레인 1은 기준물질로서 트레할로스(trehalose, T), 말토트리오스(maltotriose, G3), 말토테트라오스(maltotetraose, G4), 말토펜타오스(maltopentaose, G5), 말토헥사오스(maltohexaose, G6), 말토헵타오스(maltoheptaose, G7)의 혼합물이다. 레인 2부터 8까지는 각각 말토트리오스, 말토테트라오스, 말토펜타오스, 말토헥사오스, 말토헵타오스, 말토올리고당 및 수용성 전분을 기질로 사용하여 트레할로스 합성실험을 실시한 결과이다. 5개 이상 홀수개의 포도당 단위로 되어있는 말토올리고당들(레인 2, 4, 6)은 최종 반응물이 트레할로스와 말토트리오스(G3)이며, 말토트리오스는 더 이상 가수분해되지 않았다. 6개 이상 짝수개의 포도당 단위로 되어있는 말토올리고당(레인 3, 5)들은 최종 반응물이 트레할로스와 말토테트라오스(G4)이며, 말토테트라오스를 장시간 반응하였을 경우 소량만이 트레할로스와 말토스(maltose)로 전환되었다. 그러나 전분을 기질로 사용하여 같은 반응조건에서 트레할로스 합성을 실시한 결과는 트레할로스의 생성이 매우 낮은 수준이었다(레인 8).In order to investigate trehalose synthesis ability and substrate specificity of the purely isolated BvMTSase and BvMTHase enzyme proteins in Example 3, trehalose synthesis experiments were performed using various maltooligosaccharides as substrates. Under the conditions of 50 mM phosphate buffer solution (pH 7.0), various maltooligosaccharides were added at a concentration of 1 mM, and 500 ng of pure enzyme was added to make the total reaction volume 50 µl. The reaction was carried out at 37 ° C. for 1 hour, treated at 95 ° C. for 10 minutes to terminate the reaction, and then confirmed trehalose synthesis by thin layer chromatography. Experimental results, as shown in Figure 6 lane 1 is a reference material trehalose (trehalose (T), maltotriose (G3), maltotetraose (maltotetraose (G4), maltopentaose (G5), maltohexa) Maltohexaose (G6), maltoheptaose (maltoheptaose, G7) is a mixture. Lanes 2 to 8 are the results of trehalose synthesis experiments using maltotriose, maltotetraose, maltopentose, maltohexaose, maltoheptaose, maltooligosaccharide, and water-soluble starch as substrates, respectively. Maltooligosaccharides (lanes 2, 4, 6), consisting of five or more odd glucose units, were the final reactants trehalose and maltotriose (G3), and maltotriose was no longer hydrolyzed. Malto-oligosaccharides (lanes 3 and 5) consisting of 6 or more even glucose units are the final reactants trehalose and maltotetraose (G4), and only a small amount of trehalose and maltose when maltotetraose is reacted for a long time Switched to However, trehalose synthesis using starch as a substrate resulted in very low levels of trehalose production (lane 8).

또한, 상기실험에서 사용한 여러가지 말토올리고당 중에서 말토펜타오스를 BvMTSase 및 BvMTHase 효소단백질로 처리하고, 트레할로스 합성을 실시한 후 합성된 트레할로스에 HPLC 방법을 실시하였다. 실험결과, 도7a에서 보듯이 말토펜타오스에 BvMTSase를 반응시켰을 때, 1시간 후 말토펜타오스(G5)의 약 80%가 말토트리오실트레할로스(maltotriosyltrehalose: G3-T)로 전환되었다. 이때, 도7a는 말토펜타오스에 BvMTSase를 반응시킨 후의 HPLC 분석결과이고, 도7b는 말토펜타오스에 BvMTHase를 반응시킨 후의 결과이며 도7c는 말토펜타오스에 BvMTSase과 BvMTHase를 모두 반응시킨 후의 결과이다. 그러나 말토펜타오스에 BvMTHase를 반응시켰을 때, 이 효소는 말토펜타오스와 직접적으로는 반응하지 않았다(도7b). 또한 말토펜타오스에 BvMTSase와 BvMTHase를 모두 반응시킨 경우, 말토펜타오스는 트레할로스와 말토트리오스(maltotriose, G3)로 100% 전환되었다(도7c).In addition, maltopentaose was treated with BvMTSase and BvMTHase enzyme proteins among various maltooligosaccharides used in the above experiment, trehalose synthesis was performed, and then synthesized trehalose was subjected to HPLC method. As a result, as shown in FIG. 7A, when BvMTSase was reacted with maltopentaose, about 80% of maltopentaose (G5) was converted into maltotriosyltrehalose (G3-T) after 1 hour. At this time, Figure 7a is the result of HPLC analysis after the reaction of BvMTSase to maltopentaose, Figure 7b is the result after the reaction of BvMTHase to maltopentaose and Figure 7c is the result after the reaction of both BvMTSase and BvMTHase to maltopentaose. . However, when BvMTHase was reacted with maltopentaose, the enzyme did not directly react with maltopentaose (FIG. 7B). In addition, when both BvMTSase and BvMTHase were reacted with maltopentaose, maltopentaose was 100% converted into trehalose and maltotriose (G3) (FIG. 7C).

실시예 5. 전분으로부터의 트레할로스 합성Example 5. Trehalose Synthesis from Starch

전분을 이용한 트레할로스 합성방법을 개발하기 위하여 수용성 전분(soluble starch)을 기질로 사용하고 반응시간을 72시간까지 연장하였다. 반응조건은 50mM 인산완충용액(pH 7.0) 조건하에서 1% 수용성 전분을 기질로 첨가하고 순수분리한 효소(BvMTSase 및 BvMTHase)를 각각 8㎍씩 첨가하여 전체 반응부피를 100㎕로 하였다. 이를 37℃에서 24, 48, 72시간 반응시키고, 95℃에서 10분동안 처리하여 반응을 종결한 후 전분을 기질로 사용하여 트레할로스 합성반응을 실시하고 얇은막 크레마토그래피 방법에 의해 트레할로스의 합성을 확인하였다. 실험결과, 도8에서 보듯이 레인 M은 기준물질로서 글루코스(glucose, G1), 트레할로스(trehalose, T), 말토트리오스(maltotriose, G3), 말토펜타오스(maltopentaose, G5)의 혼합물을 나타내고, 또한 반응을 72시간까지 트레할로스 합성반응을 진행하였을 경우 반응시간에 따라 전분으로부터 합성되는 트레할로스의 양이 증가되었다. 이때, 상기의 수용성 전분에는 순수 분리한 BvMTSase와 BvMTHase 만을 처리하였다. 또한, 상기의 실험에서, 72시간 반응물을 HPLC 방법에 의해 합성된 트레할로스를 확인하고 합성된 트레할로스의 양을 정량하였다. 실험결과, 도9에서 보듯이 72시간 반응 후에 전분의 18.0%가 트레할로스로 전환되었다.In order to develop trehalose synthesis method using starch, soluble starch was used as a substrate and the reaction time was extended to 72 hours. Under the conditions of 50mM phosphate buffer solution (pH 7.0), 1% water-soluble starch was added as a substrate, and 8 µg each of purely separated enzymes (BvMTSase and BvMTHase) was added to make the total reaction volume 100µl. The reaction was completed at 37 ° C. for 24, 48, and 72 hours, and the reaction was terminated by treatment at 95 ° C. for 10 minutes, followed by trehalose synthesis using starch as a substrate, and synthesis of trehalose by thin layer chromatography. Confirmed. As a result, as shown in Figure 8 lane M represents a mixture of glucose (glucose, G1), trehalose (T), maltotriose (G3), maltopentaose (G5) as a reference material, In addition, when the trehalose synthesis reaction proceeded up to 72 hours, the amount of trehalose synthesized from starch increased with the reaction time. At this time, the water-soluble starch was treated with purely separated BvMTSase and BvMTHase. In addition, in the above experiments, the 72-hour reaction identified the trehalose synthesized by HPLC method and quantified the amount of trehalose synthesized. As a result, as shown in Figure 9 18.0% of the starch was converted to trehalose after 72 hours.

실시예 6. 알파-아밀라제를 이용한 전분으로부터의 트레할로스 합성 효율 증대Example 6 Enhancement of Trehalose Synthesis Efficiency from Starch Using Alpha-amylase

전분으로부터 트레할로스의 생산 효율을 높이기 위하여 수용성 전분(soluble starch)에 알파-아밀라제(α-amylase)를 처리하고 반응시간을 72시간까지 연장하였다. 반응조건은 50mM 인산완충용액(pH 7.0) 조건하에서 1% 수용성 전분을 기질로 첨가하고 0.1단위의 알파-아밀라제, 순수분리한 효소(BvMTSase 및 BvMTHase)를 각각 8㎍을 첨가하여 전체 반응부피를 100㎕로 하였다. 이를 37℃에서 24, 48, 72시간 반응시키고, 95℃에서 10분동안 처리하여 반응을 종결하였다. 실험결과, 도10에서 보듯이 알파-아밀라제를 첨가하고 72시간까지 트레할로스 합성반응을 진행하였을 경우 반응시간에 따라 전분으로부터 합성되는 트레할로스의 양이 알파-아밀라제를 첨가하지 않은 경우(도8)에 비하여 월등히 증가되었다. 또한, 상기의 수용성 전분에 알파-아밀라제를 처리하고 72시간 반응시킨 반응물을 HPLC 방법에 의해 합성된 트레할로스를 확인하고 합성된 트레할로스의 양을 정량하였다. 실험결과, 도11에서 보듯이 72시간 반응 후에 전분의 61.9%가 트레할로스로 전환되었고, 알파-아밀라제를 첨가하지 않은 경우(도8)에 비하여 약 344% 이상의 트레할로스 전환 효율이 증가하였다.To increase the production efficiency of trehalose from starch, soluble starch was treated with alpha-amylase and the reaction time was extended to 72 hours. Under the conditions of 50mM phosphate buffer solution (pH 7.0), 1% water-soluble starch was added as a substrate, and 0.1 μl of alpha-amylase and 8 μg of purified enzymes (BvMTSase and BvMTHase) were respectively added. Μl. The reaction was carried out at 37 ° C. for 24, 48 and 72 hours and the reaction was terminated by treatment at 95 ° C. for 10 minutes. As a result, as shown in FIG. 10, when the trehalose synthesis reaction was performed after adding alpha-amylase to 72 hours, the amount of trehalose synthesized from starch according to the reaction time was not compared with that without adding alpha-amylase (FIG. 8). Significantly increased. In addition, the reaction product treated with alpha-amylase and reacted for 72 hours to the aqueous starch was identified trehalose synthesized by HPLC method and the amount of synthesized trehalose was quantified. As a result, as shown in FIG. 11, after 72 hours of reaction, 61.9% of starch was converted to trehalose, and the trehalose conversion efficiency was increased by about 344% or more compared to the case where no alpha-amylase was added (FIG. 8).

따라서, 본 발명에서 사용한 BvMTSase 및 BvMTHase를 이용하여 트레할로스를 효과적으로 생산하기 위하여는 수용성 전분을 알파-아밀라제 효소로 먼저 처리하여 말토올리고당으로 전환한 후 이를 기질로 사용하면 효과적으로 트레할로스를 대량 생산할 수 있다.Therefore, in order to effectively produce trehalose using BvMTSase and BvMTHase used in the present invention, water-soluble starch is first treated with alpha-amylase enzyme to be converted to maltooligosaccharide and then used as a substrate to efficiently produce trehalose in large quantities.

본 발명은 상기 실시예를 통하여 알 수 있는 바와같이, 브레비박테리움(Brevibacterium helvolum ATCC 11822)에서 분리한 신규한 트레할로스 생합성효소 유전자 및 그로부터 번역되어 생성되는 효소단백질을 제공하는 효과가 있다. 이밖에도 본 발명은 신규한 트레할로스 생합성 유전자를 발현벡터에 재조합한 후, 대장균에서 발현시키고 이로부터 재조합 단백질을 순수 분리하여 말토올리고당 및 전분으로부터 트레할로스를 대량 생산할 수 있는 효과가 있으며 따라서, 저가의 식품첨가제 및 식품보존제를 제공할 수는 효과가 있으므로 식품산업상 매우 유용한 발명인 것이다.As can be seen from the above embodiment, the present invention has the effect of providing a novel trehalose biosynthesis gene isolated from Brevibacterium helvolum ATCC 11822 and an enzyme protein translated therefrom. In addition, the present invention has the effect of recombining a novel trehalose biosynthetic gene into an expression vector and expressing it in E. coli and purely separating the recombinant protein therefrom, thereby producing a large amount of trehalose from malto-oligosaccharides and starch. Since it is effective to provide a food preservative is a very useful invention in the food industry.

Claims (11)

브레비박테리움 (Brevibacterium helvolum) 으로부터 분리된 하기의 염기서열을 가지는 트레할로스 생합성효소 유전자 :Trehalose biosynthetic gene having the following nucleotide sequence isolated from Brevibacterium helvolum: 1 GAATTCACCG CCTTCGTGAA CAAGCTGCGC CACGACCACC CCACGTTCCG CCGCAGCCGC1 GAATTCACCG CCTTCGTGAA CAAGCTGCGC CACGACCACC CCACGTTCCG CCGCAGCCGC 61 TTCTTCGACG GCCGCCCGGT CCGCCGTGGT GAAGGCGAAA AGCTGCCGGA CATCGTCTGG61 TTCTTCGACG GCCGCCCGGT CCGCCGTGGT GAAGGCGAAA AGCTGCCGGA CATCGTCTGG 121 CTGAAGACCG ACGGCACCGA GATGCTGCCC GAGGGACTGG GGGAGTGGCT TCGGCCGGAC121 CTGAAGACCG ACGGCACCGA GATGCTGCCC GAGGGACTGG GGGAGTGGCT TCGGCCGGAC 181 CATCGGCGTG TTCTACAACG GTGACGGCAT CCAGGAACAG GATTCCCGCG GCCGCCGGAT181 CATCGGCGTG TTCTACAACG GTGACGGCAT CCAGGAACAG GATTCCCGCG GCCGCCGGAT 241 CACCGATGAC AGCTTCATCA TGGCCTTCAA CGCCCATGAC GATGCCGTGG ACTTCTGCCT241 CACCGATGAC AGCTTCATCA TGGCCTTCAA CGCCCATGAC GATGCCGTGG ACTTCTGCCT 301 TCCCGCCGAG GAGTACTCCC AGTACTGGGA GGTCCAATTC GATACCGCCG CCCACGCGGA301 TCCCGCCGAG GAGTACTCCC AGTACTGGGA GGTCCAATTC GATACCGCCG CCCACGCGGA 361 CGACTACCAA CCGCTCAAGG CCGGTGCCAC GCTGAAGCTG GACGCGAAAT CCATGGTGGT361 CGACTACCAA CCGCTCAAGG CCGGTGCCAC GCTGAAGCTG GACGCGAAAT CCATGGTGGT 421 CCTGCGCGCC TACTCCGGCC CCGAAGAAGA AGTCGACTAC TCCGCCAGCG GCCTCCATTG421 CCTGCGCGCC TACTCCGGCC CCGAAGAAGA AGTCGACTAC TCCGCCAGCG GCCTCCATTG 481 CGTCCATGGC CGAACCAGGA AGAAACCCCA CGAAGAAATG GTGGGAAACC CCAAACCAAG481 CGTCCATGGC CGAACCAGGA AGAAACCCCA CGAAGAAATG GTGGGAAACC CCAAACCAAG 541 GCTGCCGAAA CCCACCAAAG CAAGGGCAAC GGGCGCCGAC GAAAGACGCC CAGGCATGAA541 GCTGCCGAAA CCCACCAAAG CAAGGGCAAC GGGCGCCGAC GAAAGACGCC CAGGCATGAA 601 GACTCCGGTC TCCACTTACC GCTTTCAAAT CCGCACCAGC TTCACCCTGT TCGACGCCGC601 GACTCCGGTC TCCACTTACC GCTTTCAAAT CCGCACCAGC TTCACCCTGT TCGACGCCGC 661 TGAACAGGTC CCGTATTTGA AGGACCTCCG CGTCCACTGG GTGTTCCTCT CGCCCATCCT661 TGAACAGGTC CCGTATTTGA AGGACCTCCG CGTCCACTGG GTGTTCCTCT CGCCCATCCT 721 CACCGCGGAA AAAGGTTCGG AACACGGTTA CAACTCAACC GATCCCTCCC CCGTGGACCC721 CACCGCGGAA AAAGGTTCGG AACACGGTTA CAACTCAACC GATCCCTCCC CCGTGGACCC 781 CGACCGTGGC GGGCCGAAGG CCCTGCAGGC ATTGTCCAAG GTGGCCCGCA AACACGGAAT781 CGACCGTGGC GGGCCGAAGG CCCTGCAGGC ATTGTCCAAG GTGGCCCGCA AACACGGAAT 841 GGGCGTCCTG CTGGACATCG TGACCAACCA CGTCGGTGTG GCCACTCCCG TGCAGAATCC841 GGGCGTCCTG CTGGACATCG TGACCAACCA CGTCGGTGTG GCCACTCCCG TGCAGAATCC 901 CTGGTGGTGG TCCCTGCTCA AGGAGGGCCG CAAATCGCCC TACGCCGAAG CGTTCGACGT901 CTGGTGGTGG TCCCTGCTCA AGGAGGGCCG CAAATCGCCC TACGCCGAAG CGTTCGACGT 961 CGACTGGGAC CTGGGCGGCG GAAAGGTCCG GCTGCCCATG CTGGGCTCGG ACAACAACCT961 CGACTGGGAC CTGGGCGGCG GAAAGGTCCG GCTGCCCATG CTGGGCTCGG ACAACAACCT 1021 GGACAACCTG GAGGTCAAGG ACGGCAAACT CCGCTACTAC AACCACCGGT CGTTCCGGTT1021 GGACAACCTG GAGGTCAAGG ACGGCAAACT CCGCTACTAC AACCACCGGT CGTTCCGGTT 1081 GGGGAAGGAG AACAGGGAAG GCGATTCCCT GCAGGAGGTG CACACCCGCC AGCACTACCA1081 GGGGAAGGAG AACAGGGAAG GCGATTCCCT GCAGGAGGTG CACACCCGCC AGCACTACCA 1141 GCTGATGGAC TGGCGCCGCG CGGACGCCGA GCTGAATTAC CGTCGTTTTT TGGCGGTGAC1141 GCTGATGGAC TGGCGCCGCG CGGACGCCGA GCTGAATTAC CGTCGTTTTT TGGCGGTGAC 1201 CACGCTGGCC GGCATCCGGG TGGAGGAACC GTCTGTCTTC GAGAAGGTTC ATGCCGAGGT1201 CACGCTGGCC GGCATCCGGG TGGAGGAACC GTCTGTCTTC GAGAAGGTTC ATGCCGAGGT 1261 GGGCCGGTGG TTCACCGAGG GCCTGGTGGA CGGGTTCCGC GTGGACCACC CGGACGGATT1261 GGGCCGGTGG TTCACCGAGG GCCTGGTGGA CGGGTTCCGC GTGGACCACC CGGACGGATT 1321 CGCCGATCCC GACCGGTACTTCCGGTGGTT CAAGGACGTC AGCGGGGGCG CATACGTCCT1321 CGCCGATCCC GACCGGTACTTCCGGTGGTT CAAGGACGTC AGCGGGGGCG CATACGTCCT 1381 GGTGGAGAAA ATCCTGGAGC CGGGCGAAGT GCTGCCGCAG GACTTCGCCT GCGAAGGCAC1381 GGTGGAGAAA ATCCTGGAGC CGGGCGAAGT GCTGCCGCAG GACTTCGCCT GCGAAGGCAC 1441 CACCGGATAC GACGCACTGG CTGACGTGGA CCGGGTCTTC GTTGACCCGG CGGGGCAGCA1441 CACCGGATAC GACGCACTGG CTGACGTGGA CCGGGTCTTC GTTGACCCGG CGGGGCAGCA 1501 GGCGCTGGAC GCACTGGATG CTTCCCTGCG GGGCACCTCC GAACCCGCCG ACTACGCCGA1501 GGCGCTGGAC GCACTGGATG CTTCCCTGCG GGGCACCTCC GAACCCGCCG ACTACGCCGA 1561 AATGATCCGC GGCACCAAGC GCATGATCGC CGACGGCATC CTGCGCTCCG AGGTGCTGCG1561 AATGATCCGC GGCACCAAGC GCATGATCGC CGACGGCATC CTGCGCTCCG AGGTGCTGCG 1621 GCTGGCCCGG CTGGTACCTG AATCCCACGG TTTCAGCGTT GACCAGGCAG CGGATGCGAT1621 GCTGGCCCGG CTGGTACCTG AATCCCACGG TTTCAGCGTT GACCAGGCAG CGGATGCGAT 1681 CGCGGAAATC ATCGCATCGT TCCCGGTGTA CCGGTCCTAC CTGCCGGTGG GCGCCGACGT1681 CGCGGAAATC ATCGCATCGT TCCCGGTGTA CCGGTCCTAC CTGCCGGTGG GCGCCGACGT 1741 CCTCAAGGAG GCGTGCGAGT CCGCCGCCGC GCACCGGCCG GACCTGGAGG TGGCGGTGGG1741 CCTCAAGGAG GCGTGCGAGT CCGCCGCCGC GCACCGGCCG GACCTGGAGG TGGCGGTGGG 1801 AACCCTCCAG CCGCTGCTGC TGGATCCCGC CAAACCCATC GCCATCCGGT TCCAGCAGAC1801 AACCCTCCAG CCGCTGCTGC TGGATCCCGC CAAACCCATC GCCATCCGGT TCCAGCAGAC 1861 CTCCGGCATG GTCATGGCCA AGGGCGTGGA GGACACCGCG TTCTACCGCT ACACCCGGCT1861 CTCCGGCATG GTCATGGCCA AGGGCGTGGA GGACACCGCG TTCTACCGCT ACACCCGGCT 1921 GGACACGCTG ACCGAAGTGG GCGCTGAGCC TACCGAGTTC GCCGTGTCTC CGCAGGAGTT1921 GGACACGCTG ACCGAAGTGG GCGCTGAGCC TACCGAGTTC GCCGTGTCTC CGCAGGAGTT 1981 CCACCAGCGG ATGGAGCGCC GTCAGCAGGA GCTGCCGCTG TCCATGACCA CGTTGTCCAC1981 CCACCAGCGG ATGGAGCGCC GTCAGCAGGA GCTGCCGCTG TCCATGACCA CGTTGTCCAC 2041 CCACGACACC AAGCGCAGCG AGGATGCCAG GGCCCGGATC TCGGTCATCG CTGAACTGCC2041 CCACGACACC AAGCGCAGCG AGGATGCCAG GGCCCGGATC TCGGTCATCG CTGAACTGCC 2101 GGAGGAGTGG GCGGAAACGC TGGCGGAACT GCGTAAACTG GCGCCGATCC CGGACGGCCC2101 GGAGGAGTGG GCGGAAACGC TGGCGGAACT GCGTAAACTG GCGCCGATCC CGGACGGCCC 2161 GTTCGAGAAC CTGCTGTGGC AGGCAATCGT CGGCGCCTGG CCGGCAAGCC GGGAACGGCT2161 GTTCGAGAAC CTGCTGTGGC AGGCAATCGT CGGCGCCTGG CCGGCAAGCC GGGAACGGCT 2221 TCAGGGTTAC GCCGAAAAGG CAGCCCGGGA GGCCGGCAAC TCCACCAAGT GGACCGACCC2221 TCAGGGTTAC GCCGAAAAGG CAGCCCGGGA GGCCGGCAAC TCCACCAAGT GGACCGACCC 2281 CAACGAGGAC TTCGAGTCCA AGGTGCAGGC CGCCGTCGAT GCAGTCTTCG ACGACGCCAA2281 CAACGAGGAC TTCGAGTCCA AGGTGCAGGC CGCCGTCGAT GCAGTCTTCG ACGACGCCAA 2341 GGTCGCCAAG GTTCTCACGG ACTTCGTGGC CCGGATCGCT GCCTTTTCCG CGGCCAACTC2341 GGTCGCCAAG GTTCTCACGG ACTTCGTGGC CCGGATCGCT GCCTTTTCCG CGGCCAACTC 2401 GGTTTCCGCC AAGCTGGTCC AGCTGACCAT GCCCGGCGTG CCTGATGTGT ACCAGGGCAG2401 GGTTTCCGCC AAGCTGGTCC AGCTGACCAT GCCCGGCGTG CCTGATGTGT ACCAGGGCAG 2461 CGAACTCTGG GAACGCTCGC TCACGGAACC GGACAACCGC CGGCCCCTGG ACTTCGGTGC2461 CGAACTCTGG GAACGCTCGC TCACGGAACC GGACAACCGC CGGCCCCTGG ACTTCGGTGC 2521 CCGGCAGGAA GCACTGGCAA AGCTCCAACC CCGGTGCCTT GCCCGAACGC GGGCACAGAA2521 CCGGCAGGAA GCACTGGCAA AGCTCCAACC CCGGTGCCTT GCCCGAACGC GGGCACAGAA 2581 GCGCACCAAG CTTCTGGTCA CCTCGCGGGC ACTGCGCCTG CGCCGGGACC GGCCGGAGCT2581 GCGCACCAAG CTTCTGGTCA CCTCGCGGGC ACTGCGCCTG CGCCGGGACC GGCCGGAGCT 2641 GTTCCAGGGG TACTCGCCGG TGAACGCCAG CGGTGCCGCG GCGGACCACC TGCTCGCGTT2641 GTTCCAGGGG TACTCGCCGG TGAACGCCAG CGGTGCCGCG GCGGACCACC TGCTCGCGTT 2701 CAGCCGCGGA ACAGACGCTG ACTCCGGTGC CCTTACGCTG GCCACCCGGC TCCCCGCCGG2701 CAGCCGCGGA ACAGACGCTG ACTCCGGTGC CCTTACGCTG GCCACCCGGC TCCCCGCCGG 2761 ACTGCAGGCC GGCGGCGGCT GGCGGGACAC CGCCGTCGAC CTTCCCACTG CCATGCGCGA2761 ACTGCAGGCC GGCGGCGGCT GGCGGGACAC CGCCGTCGAC CTTCCCACTG CCATGCGCGA 2821 CGAACTCACC GGGGCCAGCT ACGGACCCGG CCAGGTTTCG GTCGCGGAGG TGCTGGGTAC2821 CGAACTCACC GGGGCCAGCT ACGGACCCGG CCAGGTTTCG GTCGCGGAGG TGCTGGGTAC 2881 CTACCCGGTG GCCCTGCTGG CACCTGTGGA TGGAGAAAAG GCATGACCTT GGTCAACGTT2881 CTACCCGGTG GCCCTGCTGG CACCTGTGGA TGGAGAAAAG GCATGACCTT GGTCAACGTT 2941 GGACCCGAAC GCTTTGATGT GTGGGCGCCG GATGTTTCGT CCGTGGTGTT GGTGGCTGAC2941 GGACCCGAAC GCTTTGATGT GTGGGCGCCG GATGTTTCGT CCGTGGTGTT GGTGGCTGAC 3001 GGCCGGCAGT ACCCCATGCA AAAAAAGGAA ACGGCGCCCG GCTCTGAAGG ATGGTGGACG3001 GGCCGGCAGT ACCCCATGCA AAAAAAGGAA ACGGCGCCCG GCTCTGAAGG ATGGTGGACG 3061 GCGTCCGACG CCCCCCCGAA CGGTGATGTG GACTACGGCT ACCTGCTGGA CGGCAACACC3061 GCGTCCGACG CCCCCCCGAA CGGTGATGTG GACTACGGCT ACCTGCTGGA CGGCAACACC 3121 ACCCCTGTCC CGGAACCCCG CTCCCGCCGG CTCCCCGCCG GCGTCCACAA TCATTCCCGG3121 ACCCCTGTCC CGGAACCCCG CTCCCGCCGG CTCCCCGCCG GCGTCCACAA TCATTCCCGG 3181 ACCTACAATC CCCCCCCCTA CCGTTGGCAG GATTCCCGGT GGCGCGGCAA GGAACTGCAG3181 ACCTACAATC CCCCCCCCTA CCGTTGGCAG GATTCCCGGT GGCGCGGCAA GGAACTGCAG 3241 GGAACCCTCA TCTACCAACT CCATGTGGGC ACCTCCACGC CCGATGGGAC CTTGGACGCC3241 GGAACCCTCA TCTACCAACT CCATGTGGGC ACCTCCACGC CCGATGGGAC CTTGGACGCC 3301 GCAGGGGAGA AGCTCAGCTA CCTGGTGGAC CTGGGCATCG ACTTCATCGA ACTGCTGCCG3301 GCAGGGGAGA AGCTCAGCTA CCTGGTGGAC CTGGGCATCG ACTTCATCGA ACTGCTGCCG 3361 GTCAACGGCT TCAACGGAAC CCACAACTGG GGCTACGACG GCGTCCAGTG GTACACCGTC3361 GTCAACGGCT TCAACGGAAC CCACAACTGG GGCTACGACG GCGTCCAGTG GTACACCGTC 3421 CACGAAGGCT ATGGCGGCCC TGCTGCGTAC CAGCGGTTCG TCGACGCCGC CCACGCCGCA3421 CACGAAGGCT ATGGCGGCCC TGCTGCGTAC CAGCGGTTCG TCGACGCCGC CCACGCCGCA 3481 GGACTGGGCG TCATCCAGGA CGTGGTGTAC AACCACCTGG GACTTAGGGG CAACTACTTC3481 GGACTGGGCG TCATCCAGGA CGTGGTGTAC AACCACCTGG GACTTAGGGG CAACTACTTC 3541 CCAAAGTTGG GCCCGAACCT GAAACAGGGC GACGCCAACA CCTTGGGTGA TTCGGTGAAC3541 CCAAAGTTGG GCCCGAACCT GAAACAGGGC GACGCCAACA CCTTGGGTGA TTCGGTGAAC 3601 TTGGACGGGG CCGGTTCGGA TGTGTTCCGG GAATACATCC TGGACAACGC CGCCCTGTGG3601 TTGGACGGGG CCGGTTCGGA TGTGTTCCGG GAATACATCC TGGACAACGC CGCCCTGTGG 3661 GTGGGGGACT ACCACGTGGA CGGGGTGGGA TTCGATGCCG TGCACGCGGT GCGGGACGAG3661 GTGGGGGACT ACCACGTGGA CGGGGTGGGA TTCGATGCCG TGCACGCGGT GCGGGACGAG 3721 AGGGCCGTGC ACATCTTGGA GGACCTGGGA GCCTTGGGCG ACGCTATTTC GGGTGAGACC3721 AGGGCCGTGC ACATCTTGGA GGACCTGGGA GCCTTGGGCG ACGCTATTTC GGGTGAGACC 3781 GGGCTGCCCA AGACCCTCAT CGCGGAATCG GACTTCAACA ACCCGCGCCT GATCTACCCC3781 GGGCTGCCCA AGACCCTCAT CGCGGAATCG GACTTCAACA ACCCGCGCCT GATCTACCCC 3841 CGCGACGTGA ACGGGTACGG TCTGGCCGGG CAGTGGAGTG ACGACTTCCA CACCGCGGTG3841 CGCGACGTGA ACGGGTACGG TCTGGCCGGG CAGTGGAGTG ACGACTTCCA CACCGCGGTG 3901 CACGTCAGCG TCAGCGGCGA AACCACCGGT TACTACTCGG ACTTCGAATC CCTTGCCGTG3901 CACGTCAGCG TCAGCGGCGA AACCACCGGT TACTACTCGG ACTTCGAATC CCTTGCCGTG 3961 CTGGCCAAGG TGCTCAAGGA CGGGTTCCTG CACGACGGCA GCTACTCCAG CTTCCGCGGA3961 CTGGCCAAGG TGCTCAAGGA CGGGTTCCTG CACGACGGCA GCTACTCCAG CTTCCGCGGA 4021 CGGCACCACG GCCGGCCCAT CAACCCATCG TTGGCCAACC CGGCGGCGCT GGTGGTCTGC4021 CGGCACCACG GCCGGCCCAT CAACCCATCG TTGGCCAACC CGGCGGCGCT GGTGGTCTGC 4081 AACCAGAACC ATGACCAGAT CGGCAACCGG GCCACGGGGG ACAGGCTGTC GCAGTCGCTG4081 AACCAGAACC ATGACCAGAT CGGCAACCGG GCCACGGGGG ACAGGCTGTC GCAGTCGCTG 4141 TCCTACGGGC AGCTGGCTGT GGCGGCGGTG CTTACGCTGA CCTCGCCGTT CACGCCCATG4141 TCCTACGGGC AGCTGGCTGT GGCGGCGGTG CTTACGCTGA CCTCGCCGTT CACGCCCATG 4201 CTGTTCATGG GTGAGGAATA CGGCGCTTCC ACGCCCTGGC AGTTTTTCAC CTCGCACCCC4201 CTGTTCATGG GTGAGGAATA CGGCGCTTCC ACGCCCTGGC AGTTTTTCAC CTCGCACCCC 4261 GAACCGGAGC TTGGTAAGGC CACCGCGGAA GGCCGCATCA AAGAATTCGA GCGCATGGGG4261 GAACCGGAGC TTGGTAAGGC CACCGCGGAA GGCCGCATCA AAGAATTCGA GCGCATGGGG 4321 TGGGATCCCG CCGTCGTGCC TGACCCGCAG GACCCGGAAA CCTTCAACCG CTCCAAGCTG4321 TGGGATCCCG CCGTCGTGCC TGACCCGCAG GACCCGGAAA CCTTCAACCG CTCCAAGCTG 4381 GACTGGTCCG AGGCCTCCAC GGGTGACCAT GCGCGGCTGC TGGAGCTGTA CAAGTCGCTG4381 GACTGGTCCG AGGCCTCCAC GGGTGACCAT GCGCGGCTGC TGGAGCTGTA CAAGTCGCTG 4441 ACGGCGCTGC GCCGCGAGCA TCCGGACCTG GCAGATCTCG GCTTTGGCCA GACGGAGGTT4441 ACGGCGCTGC GCCGCGAGCA TCCGGACCTG GCAGATCTCG GCTTTGGCCA GACGGAGGTT 4501 TCGTTCGACG ACGACGCCGG CTGGCTGCGC TTCAGGCCGG TCTCCGTGGA GGTGCTCGTG4501 TCGTTCGACG ACGACGCCGG CTGGCTGCGC TTCAGGCCGG TCTCCGTGGA GGTGCTCGTG 4561 AACCTGTCAG ACGCCAAGGT ACGGCTGGAT GATGCGGCAG GTGACCTCCT TCTGGCCACG4561 AACCTGTCAG ACGCCAAGGT ACGGCTGGAT GATGCGGCAG GTGACCTCCT TCTGGCCACG 4621 GACGAAGGGA ACCCTCTGGA CGGCGGGTCC CTCGCCCTGG TGCCGTGGAG TGCCGCGGTC4621 GACGAAGGGA ACCCTCTGGA CGGCGGGTCC CTCGCCCTGG TGCCGTGGAG TGCCGCGGTC 4681 CTCAAGTCCT GAATCAGCGG TTACCCGGGG GCATG4681 CTCAAGTCCT GAATCAGCGG TTACCCGGGG GCATG 제 1항에 있어서, 상기 트레할로스 생합성효소 유전자는 브레비박테리움의 게놈 DNA를 제한효소 EcoRI 및 SalI 으로 절단하여 분리되는 것을 특징으로하는 트레할로스 생합성효소 유전자.The trehalose biosynthesis gene according to claim 1, wherein the trehalose biosynthesis gene is isolated by cleaving the Brevibacterium genomic DNA with restriction enzymes EcoRI and SalI. 브레비박테리움 (Brevibacterium helvolum)으로부터 분리된 하기의 염기서열을 가지는 말토올리고실트레할로스 합성효소(BvMTSase)의 구조유전자 :Structural genes of maltooligosiltrehalose synthetase (BvMTSase) having the following nucleotide sequence isolated from Brevibacterium helvolum: 1 ATG AAG ACT CCG GTC TCC ACT TAC CGC TTT CAA ATC CGC ACC AGC TTC1 ATG AAG ACT CCG GTC TCC ACT TAC CGC TTT CAA ATC CGC ACC AGC TTC 49 ACC CTG TTC GAC GCC GCT GAA CAG GTC CCG TAT TTG AAG GAC CTC CGC49 ACC CTG TTC GAC GCC GCT GAA CAG GTC CCG TAT TTG AAG GAC CTC CGC 97 GTC CAC TGG GTG TTC CTC TCG CCC ATC CTC ACC GCG GAA AAA GGT TCG97 GTC CAC TGG GTG TTC CTC TCG CCC ATC CTC ACC GCG GAA AAA GGT TCG 145 GAA CAC GGT TAC AAC TCA ACC GAT CCC TCC CCC GTG GAC CCC GAC CGT145 GAA CAC GGT TAC AAC TCA ACC GAT CCC TCC CCC GTG GAC CCC GAC CGT 193 GGC GGG CCG AAG GCC CTG CAG GCA TTG TCC AAG GTG GCC CGC AAA CAC193 GGC GGG CCG AAG GCC CTG CAG GCA TTG TCC AAG GTG GCC CGC AAA CAC 241 GGA ATG GGC GTC CTG CTG GAC ATC GTG ACC AAC CAC GTC GGT GTG GCC241 GGA ATG GGC GTC CTG CTG GAC ATC GTG ACC AAC CAC GTC GGT GTG GCC 289 ACT CCC GTG CAG AAT CCC TGG TGG TGG TCC CTG CTC AAG GAG GGC CGC289 ACT CCC GTG CAG AAT CCC TGG TGG TGG TCC CTG CTC AAG GAG GGC CGC 337 AAA TCG CCC TAC GCC GAA GCG TTC GAC GTC GAC TGG GAC CTG GGC GGC337 AAA TCG CCC TAC GCC GAA GCG TTC GAC GTC GAC TGG GAC CTG GGC GGC 385 GGA AAG GTC CGG CTG CCC ATG CTG GGC TCG GAC AAC AAC CTG GAC AAC385 GGA AAG GTC CGG CTG CCC ATG CTG GGC TCG GAC AAC AAC CTG GAC AAC 433 CTG GAG GTC AAG GAC GGC AAA CTC CGC TAC TAC AAC CAC CGG TCG TTC433 CTG GAG GTC AAG GAC GGC AAA CTC CGC TAC TAC AAC CAC CGG TCG TTC 481 CGG TTG GGG AAG GAG AAC AGG GAA GGC GAT TCC CTG CAG GAG GTG CAC481 CGG TTG GGG AAG GAG AAC AGG GAA GGC GAT TCC CTG CAG GAG GTG CAC 529 ACC CGC CAG CAC TAC CAG CTG ATG GAC TGG CGC CGC GCG GAC GCC GAG529 ACC CGC CAG CAC TAC CAG CTG ATG GAC TGG CGC CGC GCG GAC GCC GAG 577 CTG AAT TAC CGT CGT TTT TTG GCG GTG ACC ACG CTG GCC GGC ATC CGG577 CTG AAT TAC CGT CGT TTT TTG GCG GTG ACC ACG CTG GCC GGC ATC CGG 625 GTG GAG GAA CCG TCT GTC TTC GAG AAG GTT CAT GCC GAG GTG GGC CGG625 GTG GAG GAA CCG TCT GTC TTC GAG AAG GTT CAT GCC GAG GTG GGC CGG 673 TGG TTC ACC GAG GGC CTG GTG GAC GGG TTC CGC GTG GAC CAC CCG GAC673 TGG TTC ACC GAG GGC CTG GTG GAC GGG TTC CGC GTG GAC CAC CCG GAC 721 GGA TTC GCC GAT CCC GAC CGG TAC TTC CGG TGG TTC AAG GAC GTC AGC721 GGA TTC GCC GAT CCC GAC CGG TAC TTC CGG TGG TTC AAG GAC GTC AGC 769 GGG GGC GCA TAC GTC CTG GTG GAG AAA ATC CTG GAG CCG GGC GAA GTG769 GGG GGC GCA TAC GTC CTG GTG GAG AAA ATC CTG GAG CCG GGC GAA GTG 817 CTG CCG CAG GAC TTC GCC TGC GAA GGC ACC ACC GGA TAC GAC GCA CTG817 CTG CCG CAG GAC TTC GCC TGC GAA GGC ACC ACC GGA TAC GAC GCA CTG 865 GCT GAC GTG GAC CGG GTC TTC GTT GAC CCG GCG GGG CAG CAG GCG CTG865 GCT GAC GTG GAC CGG GTC TTC GTT GAC CCG GCG GGG CAG CAG GCG CTG 913 GAC GCA CTG GAT GCT TCC CTG CGG GGC ACC TCC GAA CCC GCC GAC TAC913 GAC GCA CTG GAT GCT TCC CTG CGG GGC ACC TCC GAA CCC GCC GAC TAC 961 GCC GAA ATG ATC CGC GGC ACC AAG CGC ATG ATC GCC GAC GGC ATC CTG961 GCC GAA ATG ATC CGC GGC ACC AAG CGC ATG ATC GCC GAC GGC ATC CTG 1009 CGC TCC GAG GTG CTG CGG CTG GCC CGG CTG GTA CCT GAA TCC CAC GGT1009 CGC TCC GAG GTG CTG CGG CTG GCC CGG CTG GTA CCT GAA TCC CAC GGT 1057 TTC AGC GTT GAC CAG GCA GCG GAT GCG ATC GCG GAA ATC ATC GCA TCG1057 TTC AGC GTT GAC CAG GCA GCG GAT GCG ATC GCG GAA ATC ATC GCA TCG 1105 TTC CCG GTG TAC CGG TCC TAC CTG CCG GTG GGC GCC GAC GTC CTC AAG1105 TTC CCG GTG TAC CGG TCC TAC CTG CCG GTG GGC GCC GAC GTC CTC AAG 1153 GAG GCG TGC GAG TCC GCC GCC GCG CAC CGG CCG GAC CTG GAG GTG GCG1153 GAG GCG TGC GAG TCC GCC GCC GCG CAC CGG CCG GAC CTG GAG GTG GCG 1201 GTG GGA ACC CTC CAG CCG CTG CTG CTG GAT CCC GCC AAA CCC ATC GCC1201 GTG GGA ACC CTC CAG CCG CTG CTG CTG GAT CCC GCC AAA CCC ATC GCC 1249 ATC CGG TTC CAG CAG ACC TCC GGC ATG GTC ATG GCC AAG GGC GTG GAG1249 ATC CGG TTC CAG CAG ACC TCC GGC ATG GTC ATG GCC AAG GGC GTG GAG 1297 GAC ACC GCG TTC TAC CGC TAC ACC CGG CTG GAC ACG CTG ACC GAA GTG1297 GAC ACC GCG TTC TAC CGC TAC ACC CGG CTG GAC ACG CTG ACC GAA GTG 1345 GGC GCT GAG CCT ACC GAG TTC GCC GTG TCT CCG CAG GAG TTC CAC CAG1345 GGC GCT GAG CCT ACC GAG TTC GCC GTG TCT CCG CAG GAG TTC CAC CAG 1393 CGG ATG GAG CGC CGT CAG CAG GAG CTG CCG CTG TCC ATG ACC ACG TTG1393 CGG ATG GAG CGC CGT CAG CAG GAG CTG CCG CTG TCC ATG ACC ACG TTG 1441 TCC ACC CAC GAC ACC AAG CGC AGC GAG GAT GCC AGG GCC CGG ATC TCG1441 TCC ACC CAC GAC ACC AAG CGC AGC GAG GAT GCC AGG GCC CGG ATC TCG 1489 GTC ATC GCT GAA CTG CCG GAG GAG TGG GCG GAA ACG CTG GCG GAA CTG1489 GTC ATC GCT GAA CTG CCG GAG GAG TGG GCG GAA ACG CTG GCG GAA CTG 1537 CGT AAA CTG GCG CCG ATC CCG GAC GGC CCG TTC GAG AAC CTG CTG TGG1537 CGT AAA CTG GCG CCG ATC CCG GAC GGC CCG TTC GAG AAC CTG CTG TGG 1585 CAG GCA ATC GTC GGC GCC TGG CCG GCA AGC CGG GAA CGG CTT CAG GGT1585 CAG GCA ATC GTC GGC GCC TGG CCG GCA AGC CGG GAA CGG CTT CAG GGT 1633 TAC GCC GAA AAG GCA GCC CGG GAG GCC GGC AAC TCC ACC AAG TGG ACC1633 TAC GCC GAA AAG GCA GCC CGG GAG GCC GGC AAC TCC ACC AAG TGG ACC 1681 GAC CCC AAC GAG GAC TTC GAG TCC AAG GTG CAG GCC GCC GTC GAT GCA1681 GAC CCC AAC GAG GAC TTC GAG TCC AAG GTG CAG GCC GCC GTC GAT GCA 1729 GTC TTC GAC GAC GCC AAG GTC GCC AAG GTT CTC ACG GAC TTC GTG GCC1729 GTC TTC GAC GAC GCC AAG GTC GCC AAG GTT CTC ACG GAC TTC GTG GCC 1777 CGG ATC GCT GCC TTT TCC GCG GCC AAC TCG GTT TCC GCC AAG CTG GTC1777 CGG ATC GCT GCC TTT TCC GCG GCC AAC TCG GTT TCC GCC AAG CTG GTC 1825 CAG CTG ACC ATG CCC GGC GTG CCT GAT GTG TAC CAG GGC AGC GAA CTC1825 CAG CTG ACC ATG CCC GGC GTG CCT GAT GTG TAC CAG GGC AGC GAA CTC 1873 TGG GAA CGC TCG CTC ACG GAA CCG GAC AAC CGC CGG CCC CTG GAC TTC1873 TGG GAA CGC TCG CTC ACG GAA CCG GAC AAC CGC CGG CCC CTG GAC TTC 1921 GGT GCC CGG CAG GAA GCA CTG GCA AAG CTC CAA CCC CGG TGC CTT GCC1921 GGT GCC CGG CAG GAA GCA CTG GCA AAG CTC CAA CCC CGG TGC CTT GCC 1969 CGA ACG CGG GCA CAG AAG CGC ACC AAG CTT CTG GTC ACC TCG CGG GCA1969 CGA ACG CGG GCA CAG AAG CGC ACC AAG CTT CTG GTC ACC TCG CGG GCA 2017 CTG CGC CTG CGC CGG GAC CGG CCG GAG CTG TTC CAG GGG TAC TCG CCG2017 CTG CGC CTG CGC CGG GAC CGG CCG GAG CTG TTC CAG GGG TAC TCG CCG 2065 GTG AAC GCC AGC GGT GCC GCG GCG GAC CAC CTG CTC GCG TTC AGC CGC2065 GTG AAC GCC AGC GGT GCC GCG GCG GAC CAC CTG CTC GCG TTC AGC CGC 2113 GGA ACA GAC GCT GAC TCC GGT GCC CTT ACG CTG GCC ACC CGG CTC CCC2113 GGA ACA GAC GCT GAC TCC GGT GCC CTT ACG CTG GCC ACC CGG CTC CCC 2161 GCC GGA CTG CAG GCC GGC GGC GGC TGG CGG GAC ACC GCC GTC GAC CTT2161 GCC GGA CTG CAG GCC GGC GGC GGC TGG CGG GAC ACC GCC GTC GAC CTT 2209 CCC ACT GCC ATG CGC GAC GAA CTC ACC GGG GCC AGC TAC GGA CCC GGC2209 CCC ACT GCC ATG CGC GAC GAA CTC ACC GGG GCC AGC TAC GGA CCC GGC 2257 CAG GTT TCG GTC GCG GAG GTG CTG GGT ACC TAC CCG GTG GCC CTG CTG2257 CAG GTT TCG GTC GCG GAG GTG CTG GGT ACC TAC CCG GTG GCC CTG CTG 2305 GCA CCT GTG GAT GGA GAA AAG GCA TGA2305 GCA CCT GTG GAT GGA GAA AAG GCA TGA 제 3항에 있어서, 상기 말토올리고실트레할로스 생합성효소(BvMTSase) 유전자를 제한효소 EcoRI 및 EcoRV로 처리하고 pRSET 플라스미드의 EcoRI, PvuII 자리에 삽입하여 제조된 pBvMTSase 플라스미드.The pBvMTSase plasmid of claim 3 prepared by treating the maltooligosiltrehalose biosynthetic enzyme (BvMTSase) gene with restriction enzymes EcoRI and EcoRV and inserting into EcoRI, PvuII sites of the pRSET plasmid. 제 3항에 있어서, 상기 구조유전자로부터 번역되는 하기의 아미노산서열을 가지는 말토올리고실트레할로스 생합성효소(BvMTSase) 단백질 :According to claim 3, Maltooligosiltrehalose biosynthesis (BvMTSase) protein having the following amino acid sequence translated from the structural gene: 1 Met Lys Thr Pro Val Ser Thr Tyr Arg Phe Gln Ile Arg Thr Ser Phe1 Met Lys Thr Pro Val Ser Thr Tyr Arg Phe Gln Ile Arg Thr Ser Phe 17 Thr Leu Phe Asp Ala Ala Glu Gln Val Pro Tyr Leu Lys Asp Leu Arg17 Thr Leu Phe Asp Ala Ala Glu Gln Val Pro Tyr Leu Lys Asp Leu Arg 33 Val His Trp Val Phe Leu Ser Pro Ile Leu Thr Ala Glu Lys Gly Ser33 Val His Trp Val Phe Leu Ser Pro Ile Leu Thr Ala Glu Lys Gly Ser 49 Glu His Gly Tyr Asn Ser Thr Asp Pro Ser Pro Val Asp Pro Asp Arg49 Glu His Gly Tyr Asn Ser Thr Asp Pro Ser Pro Val Asp Pro Asp Arg 65 Gly Gly Pro Lys Ala Leu Gln Ala Leu Ser Lys Val Ala Arg Lys His65 Gly Gly Pro Lys Ala Leu Gln Ala Leu Ser Lys Val Ala Arg Lys His 81 Gly Met Gly Val Leu Leu Asp Ile Val Thr Asn His Val Gly Val Ala81 Gly Met Gly Val Leu Leu Asp Ile Val Thr Asn His Val Gly Val Ala 97 Thr Pro Val Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg97 Thr Pro Val Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg 113 Lys Ser Pro Tyr Ala Glu Ala Phe Asp Val Asp Trp Asp Leu Gly Gly113 Lys Ser Pro Tyr Ala Glu Ala Phe Asp Val Asp Trp Asp Leu Gly Gly 129 Gly Lys Val Arg Leu Pro Met Leu Gly Ser Asp Asn Asn Leu Asp Asn129 Gly Lys Val Arg Leu Pro Met Leu Gly Ser Asp Asn Asn Leu Asp Asn 145 Leu Glu Val Lys Asp Gly Lys Leu Arg Tyr Tyr Asn His Arg Ser Phe145 Leu Glu Val Lys Asp Gly Lys Leu Arg Tyr Tyr Asn His Arg Ser Phe 161 Arg Leu Gly Lys Glu Asn Arg Glu Gly Asp Ser Leu Gln Glu Val His161 Arg Leu Gly Lys Glu Asn Arg Glu Gly Asp Ser Leu Gln Glu Val His 177 Thr Arg Gln His Tyr Gln Leu Met Asp Trp Arg Arg Ala Asp Ala Glu177 Thr Arg Gln His Tyr Gln Leu Met Asp Trp Arg Arg Ala Asp Ala Glu 193 Leu Asn Tyr Arg Arg Phe Leu Ala Val Thr Thr Leu Ala Gly Ile Arg193 Leu Asn Tyr Arg Arg Phe Leu Ala Val Thr Thr Leu Ala Gly Ile Arg 209 Val Glu Glu Pro Ser Val Phe Glu Lys Val His Ala Glu Val Gly Arg209 Val Glu Glu Pro Ser Val Phe Glu Lys Val His Ala Glu Val Gly Arg 225 Trp Phe Thr Glu Gly Leu Val Asp Gly Phe Arg Val Asp His Pro Asp225 Trp Phe Thr Glu Gly Leu Val Asp Gly Phe Arg Val Asp His Pro Asp 241 Gly Phe Ala Asp Pro Asp Arg Tyr Phe Arg Trp Phe Lys Asp Val Ser241 Gly Phe Ala Asp Pro Asp Arg Tyr Phe Arg Trp Phe Lys Asp Val Ser 257 Gly Gly Ala Tyr Val Leu Val Glu Lys Ile Leu Glu Pro Gly Glu Val257 Gly Gly Ala Tyr Val Leu Val Glu Lys Ile Leu Glu Pro Gly Glu Val 273 Leu Pro Gln Asp Phe Ala Cys Glu Gly Thr Thr Gly Tyr Asp Ala Leu273 Leu Pro Gln Asp Phe Ala Cys Glu Gly Thr Thr Gly Tyr Asp Ala Leu 289 Ala Asp Val Asp Arg Val Phe Val Asp Pro Ala Gly Gln Gln Ala Leu289 Ala Asp Val Asp Arg Val Phe Val Asp Pro Ala Gly Gln Gln Ala Leu 305 Asp Ala Leu Asp Ala Ser Leu Arg Gly Thr Ser Glu Pro Ala Asp Tyr305 Asp Ala Leu Asp Ala Ser Leu Arg Gly Thr Ser Glu Pro Ala Asp Tyr 321 Ala Glu Met Ile Arg Gly Thr Lys Arg Met Ile Ala Asp Gly Ile Leu321 Ala Glu Met Ile Arg Gly Thr Lys Arg Met Ile Ala Asp Gly Ile Leu 337 Arg Ser Glu Val Leu Arg Leu Ala Arg Leu Val Pro Glu Ser His Gly337 Arg Ser Glu Val Leu Arg Leu Ala Arg Leu Val Pro Glu Ser His Gly 353 Phe Ser Val Asp Gln Ala Ala Asp Ala Ile Ala Glu Ile Ile Ala Ser353 Phe Ser Val Asp Gln Ala Ala Asp Ala Ile Ala Glu Ile Ile Ala Ser 369 Phe Pro Val Tyr Arg Ser Tyr Leu Pro Val Gly Ala Asp Val Leu Lys369 Phe Pro Val Tyr Arg Ser Tyr Leu Pro Val Gly Ala Asp Val Leu Lys 385 Glu Ala Cys Glu Ser Ala Ala Ala His Arg Pro Asp Leu Glu Val Ala385 Glu Ala Cys Glu Ser Ala Ala Ala His Arg Pro Asp Leu Glu Val Ala 401 Val Gly Thr Leu Gln Pro Leu Leu Leu Asp Pro Ala Lys Pro Ile Ala401 Val Gly Thr Leu Gln Pro Leu Leu Leu Asp Pro Ala Lys Pro Ile Ala 417 Ile Arg Phe Gln Gln Thr Ser Gly Met Val Met Ala Lys Gly Val Glu417 Ile Arg Phe Gln Gln Thr Ser Gly Met Val Met Ala Lys Gly Val Glu 433 Asp Thr Ala Phe Tyr Arg Tyr Thr Arg Leu Asp Thr Leu Thr Glu Val433 Asp Thr Ala Phe Tyr Arg Tyr Thr Arg Leu Asp Thr Leu Thr Glu Val 449 Gly Ala Glu Pro Thr Glu Phe Ala Val Ser Pro Gln Glu Phe His Gln449 Gly Ala Glu Pro Thr Glu Phe Ala Val Ser Pro Gln Glu Phe His Gln 465 Arg Met Glu Arg Arg Gln Gln Glu Leu Pro Leu Ser Met Thr Thr Leu465 Arg Met Glu Arg Arg Gln Gln Glu Leu Pro Leu Ser Met Thr Thr Leu 481 Ser Thr His Asp Thr Lys Arg Ser Glu Asp Ala Arg Ala Arg Ile Ser481 Ser Thr His Asp Thr Lys Arg Ser Glu Asp Ala Arg Ala Arg Ile Ser 497 Val Ile Ala Glu Leu Pro Glu Glu Trp Ala Glu Thr Leu Ala Glu Leu497 Val Ile Ala Glu Leu Pro Glu Glu Trp Ala Glu Thr Leu Ala Glu Leu 513 Arg Lys Leu Ala Pro Ile Pro Asp Gly Pro Phe Glu Asn Leu Leu Trp513 Arg Lys Leu Ala Pro Ile Pro Asp Gly Pro Phe Glu Asn Leu Leu Trp 529 Gln Ala Ile Val Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Gly529 Gln Ala Ile Val Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Gly 545 Tyr Ala Glu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Lys Trp Thr545 Tyr Ala Glu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Lys Trp Thr 561 Asp Pro Asn Glu Asp Phe Glu Ser Lys Val Gln Ala Ala Val Asp Ala561 Asp Pro Asn Glu Asp Phe Glu Ser Lys Val Gln Ala Ala Val Asp Ala 577 Val Phe Asp Asp Ala Lys Val Ala Lys Val Leu Thr Asp Phe Val Ala577 Val Phe Asp Asp Ala Lys Val Ala Lys Val Leu Thr Asp Phe Val Ala 593 Arg Ile Ala Ala Phe Ser Ala Ala Asn Ser Val Ser Ala Lys Leu Val593 Arg Ile Ala Ala Phe Ser Ala Ala Asn Ser Val Ser Ala Lys Leu Val 609 Gln Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Ser Glu Leu609 Gln Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Ser Glu Leu 625 Trp Glu Arg Ser Leu Thr Glu Pro Asp Asn Arg Arg Pro Leu Asp Phe625 Trp Glu Arg Ser Leu Thr Glu Pro Asp Asn Arg Arg Pro Leu Asp Phe 641 Gly Ala Arg Gln Glu Ala Leu Ala Lys Leu Gln Pro Arg Cys Leu Ala641 Gly Ala Arg Gln Glu Ala Leu Ala Lys Leu Gln Pro Arg Cys Leu Ala 657 Arg Thr Arg Ala Gln Lys Arg Thr Lys Leu Leu Val Thr Ser Arg Ala657 Arg Thr Arg Ala Gln Lys Arg Thr Lys Leu Leu Val Thr Ser Arg Ala 673 Leu Arg Leu Arg Arg Asp Arg Pro Glu Leu Phe Gln Gly Tyr Ser Pro673 Leu Arg Leu Arg Arg Asp Arg Pro Glu Leu Phe Gln Gly Tyr Ser Pro 689 Val Asn Ala Ser Gly Ala Ala Ala Asp His Leu Leu Ala Phe Ser Arg689 Val Asn Ala Ser Gly Ala Ala Ala Asp His Leu Leu Ala Phe Ser Arg 705 Gly Thr Asp Ala Asp Ser Gly Ala Leu Thr Leu Ala Thr Arg Leu Pro705 Gly Thr Asp Ala Asp Ser Gly Ala Leu Thr Leu Ala Thr Arg Leu Pro 721 Ala Gly Leu Gln Ala Gly Gly Gly Trp Arg Asp Thr Ala Val Asp Leu721 Ala Gly Leu Gln Ala Gly Gly Gly Trp Arg Asp Thr Ala Val Asp Leu 737 Pro Thr Ala Met Arg Asp Glu Leu Thr Gly Ala Ser Tyr Gly Pro Gly737 Pro Thr Ala Met Arg Asp Glu Leu Thr Gly Ala Ser Tyr Gly Pro Gly 753 Gln Val Ser Val Ala Glu Val Leu Gly Thr Tyr Pro Val Ala Leu Leu753 Gln Val Ser Val Ala Glu Val Leu Gly Thr Tyr Pro Val Ala Leu Leu 769 Ala Pro Val Asp Gly Glu Lys Ala ***769 Ala Pro Val Asp Gly Glu Lys Ala *** 브레비박테리움 (Brevibacterium helvolum)으로부터 분리된 하기의 염기서열을 가지는 말토올리고실트레할로스 가수분해효소(BvMTHase)의 구조유전자 :Structural genes of maltooligosiltrehalose hydrolase (BvMTHase) having the following base sequence isolated from Brevibacterium helvolum: 1 ATG ACC TTG GTC AAC GTT GGA CCC GAA CGC TTT GAT GTG TGG GCG CCG1 ATG ACC TTG GTC AAC GTT GGA CCC GAA CGC TTT GAT GTG TGG GCG CCG 49 GAT GTT TCG TCC GTG GTG TTG GTG GCT GAC GGC CGG CAG TAC CCC ATG49 GAT GTT TCG TCC GTG GTG TTG GTG GCT GAC GGC CGG CAG TAC CCC ATG 97 CAA AAA AAG GAA ACG GCG CCC GGC TCT GAA GGA TGG TGG ACG GCG TCC97 CAA AAA AAG GAA ACG GCG CCC GGC TCT GAA GGA TGG TGG ACG GCG TCC 145 GAC GCC CCC CCG AAC GGT GAT GTG GAC TAC GGC TAC CTG CTG GAC GGC145 GAC GCC CCC CCG AAC GGT GAT GTG GAC TAC GGC TAC CTG CTG GAC GGC 193 AAC ACC ACC CCT GTC CCG GAA CCC CGC TCC CGC CGG CTC CCC GCC GGC193 AAC ACC ACC CCT GTC CCG GAA CCC CGC TCC CGC CGG CTC CCC GCC GGC 241 GTC CAC AAT CAT TCC CGG ACC TAC AAT CCC CCC CCC TAC CGT TGG CAG241 GTC CAC AAT CAT TCC CGG ACC TAC AAT CCC CCC CCC TAC CGT TGG CAG 289 GAT TCC CGG TGG CGC GGC AAG GAA CTG CAG GGA ACC CTC ATC TAC CAA289 GAT TCC CGG TGG CGC GGC AAG GAA CTG CAG GGA ACC CTC ATC TAC CAA 337 CTC CAT GTG GGC ACC TCC ACG CCC GAT GGG ACC TTG GAC GCC GCA GGG337 CTC CAT GTG GGC ACC TCC ACG CCC GAT GGG ACC TTG GAC GCC GCA GGG 385 GAG AAG CTC AGC TAC CTG GTG GAC CTG GGC ATC GAC TTC ATC GAA CTG385 GAG AAG CTC AGC TAC CTG GTG GAC CTG GGC ATC GAC TTC ATC GAA CTG 433 CTG CCG GTC AAC GGC TTC AAC GGA ACC CAC AAC TGG GGC TAC GAC GGC433 CTG CCG GTC AAC GGC TTC AAC GGA ACC CAC AAC TGG GGC TAC GAC GGC 481 GTC CAG TGG TAC ACC GTC CAC GAA GGC TAT GGC GGC CCT GCT GCG TAC481 GTC CAG TGG TAC ACC GTC CAC GAA GGC TAT GGC GGC CCT GCT GCG TAC 529 CAG CGG TTC GTC GAC GCC GCC CAC GCC GCA GGA CTG GGC GTC ATC CAG529 CAG CGG TTC GTC GAC GCC GCC CAC GCC GCA GGA CTG GGC GTC ATC CAG 577 GAC GTG GTG TAC AAC CAC CTG GGA CTT AGG GGC AAC TAC TTC CCA AAG577 GAC GTG GTG TAC AAC CAC CTG GGA CTT AGG GGC AAC TAC TTC CCA AAG 625 TTG GGC CCG AAC CTG AAA CAG GGC GAC GCC AAC ACC TTG GGT GAT TCG625 TTG GGC CCG AAC CTG AAA CAG GGC GAC GCC AAC ACC TTG GGT GAT TCG 673 GTG AAC TTG GAC GGG GCC GGT TCG GAT GTG TTC CGG GAA TAC ATC CTG673 GTG AAC TTG GAC GGG GCC GGT TCG GAT GTG TTC CGG GAA TAC ATC CTG 721 GAC AAC GCC GCC CTG TGG GTG GGG GAC TAC CAC GTG GAC GGG GTG GGA721 GAC AAC GCC GCC CTG TGG GTG GGG GAC TAC CAC GTG GAC GGG GTG GGA 769 TTC GAT GCC GTG CAC GCG GTG CGG GAC GAG AGG GCC GTG CAC ATC TTG769 TTC GAT GCC GTG CAC GCG GTG CGG GAC GAG AGG GCC GTG CAC ATC TTG 817 GAG GAC CTG GGA GCC TTG GGC GAC GCT ATT TCG GGT GAG ACC GGG CTG817 GAG GAC CTG GGA GCC TTG GGC GAC GCT ATT TCG GGT GAG ACC GGG CTG 865 CCC AAG ACC CTC ATC GCG GAA TCG GAC TTC AAC AAC CCG CGC CTG ATC865 CCC AAG ACC CTC ATC GCG GAA TCG GAC TTC AAC AAC CCG CGC CTG ATC 913 TAC CCC CGC GAC GTG AAC GGG TAC GGT CTG GCC GGG CAG TGG AGT GAC913 TAC CCC CGC GAC GTG AAC GGG TAC GGT CTG GCC GGG CAG TGG AGT GAC 961 GAC TTC CAC ACC GCG GTG CAC GTC AGC GTC AGC GGC GAA ACC ACC GGT961 GAC TTC CAC ACC GCG GTG CAC GTC AGC GTC AGC GGC GAA ACC ACC GGT 1009 TAC TAC TCG GAC TTC GAA TCC CTT GCC GTG CTG GCC AAG GTG CTC AAG1009 TAC TAC TCG GAC TTC GAA TCC CTT GCC GTG CTG GCC AAG GTG CTC AAG 1057 GAC GGG TTC CTG CAC GAC GGC AGC TAC TCC AGC TTC CGC GGA CGG CAC1057 GAC GGG TTC CTG CAC GAC GGC AGC TAC TCC AGC TTC CGC GGA CGG CAC 1105 CAC GGC CGG CCC ATC AAC CCA TCG TTG GCC AAC CCG GCG GCG CTG GTG1105 CAC GGC CGG CCC ATC AAC CCA TCG TTG GCC AAC CCG GCG GCG CTG GTG 1153 GTC TGC AAC CAG AAC CAT GAC CAG ATC GGC AAC CGG GCC ACG GGG GAC1153 GTC TGC AAC CAG AAC CAT GAC CAG ATC GGC AAC CGG GCC ACG GGG GAC 1201 AGG CTG TCG CAG TCG CTG TCC TAC GGG CAG CTG GCT GTG GCG GCG GTG1201 AGG CTG TCG CAG TCG CTG TCC TAC GGG CAG CTG GCT GTG GCG GCG GTG 1249 CTT ACG CTG ACC TCG CCG TTC ACG CCC ATG CTG TTC ATG GGT GAG GAA1249 CTT ACG CTG ACC TCG CCG TTC ACG CCC ATG CTG TTC ATG GGT GAG GAA 1297 TAC GGC GCT TCC ACG CCC TGG CAG TTT TTC ACC TCG CAC CCC GAA CCG1297 TAC GGC GCT TCC ACG CCC TGG CAG TTT TTC ACC TCG CAC CCC GAA CCG 1345 GAG CTT GGT AAG GCC ACC GCG GAA GGC CGC ATC AAA GAA TTC GAG CGC1345 GAG CTT GGT AAG GCC ACC GCG GAA GGC CGC ATC AAA GAA TTC GAG CGC 1393 ATG GGG TGG GAT CCC GCC GTC GTG CCT GAC CCG CAG GAC CCG GAA ACC1393 ATG GGG TGG GAT CCC GCC GTC GTG CCT GAC CCG CAG GAC CCG GAA ACC 1441 TTC AAC CGC TCC AAG CTG GAC TGG TCC GAG GCC TCC ACG GGT GAC CAT1441 TTC AAC CGC TCC AAG CTG GAC TGG TCC GAG GCC TCC ACG GGT GAC CAT 1489 GCG CGG CTG CTG GAG CTG TAC AAG TCG CTG ACG GCG CTG CGC CGC GAG1489 GCG CGG CTG CTG GAG CTG TAC AAG TCG CTG ACG GCG CTG CGC CGC GAG 1537 CAT CCG GAC CTG GCA GAT CTC GGC TTT GGC CAG ACG GAG GTT TCG TTC1537 CAT CCG GAC CTG GCA GAT CTC GGC TTT GGC CAG ACG GAG GTT TCG TTC 1585 GAC GAC GAC GCC GGC TGG CTG CGC TTC AGG CCG GTC TCC GTG GAG GTG1585 GAC GAC GAC GCC GGC TGG CTG CGC TTC AGG CCG GTC TCC GTG GAG GTG 1633 CTC GTG AAC CTG TCA GAC GCC AAG GTA CGG CTG GAT GAT GCG GCA GGT1633 CTC GTG AAC CTG TCA GAC GCC AAG GTA CGG CTG GAT GAT GCG GCA GGT 1681 GAC CTC CTT CTG GCC ACG GAC GAA GGG AAC CCT CTG GAC GGC GGG TCC1681 GAC CTC CTT CTG GCC ACG GAC GAA GGG AAC CCT CTG GAC GGC GGG TCC 1729 CTC GCC CTG GTG CCG TGG AGT GCC GCG GTC CTC AAG TCC TGA1729 CTC GCC CTG GTG CCG TGG AGT GCC GCG GTC CTC AAG TCC TGA 제 6항에 있어서, 상기 말토올리고실트레할로스 가수분해효소(BvMTHase) 유전자를 제한효소 Hind III 및 KpnI로 처리하고 pRSET 플라스미드의 Hind III, KpnI 자리에 삽입하여 제조된 pBvMTHase 플라스미드.7. The pBvMTHase plasmid of claim 6 prepared by treating the maltooligosiltrehalose hydrolase (BvMTHase) gene with restriction enzymes Hind III and KpnI and inserting into Hind III, KpnI sites of the pRSET plasmid. 제 6항에 있어서, 상기 구조유전자로부터 번역되는 하기의 아미노산서열을 가지는 말토올리고실트레할로스 가수분해효소(BvMTHase) 단백질 :According to claim 6, Maltooligosiltrehalose hydrolase (BvMTHase) protein having the following amino acid sequence translated from the structural gene: 1 Met Thr Leu Val Asn Val Gly Pro Glu Arg Phe Asp Val Trp Ala Pro1 Met Thr Leu Val Asn Val Gly Pro Glu Arg Phe Asp Val Trp Ala Pro 17 Asp Val Ser Ser Val Val Leu Val Ala Asp Gly Arg Gln Tyr Pro Met17 Asp Val Ser Ser Val Val Leu Val Ala Asp Gly Arg Gln Tyr Pro Met 33 Gln Lys Lys Glu Thr Ala Pro Gly Ser Glu Gly Trp Trp Thr Ala Ser33 Gln Lys Lys Glu Thr Ala Pro Gly Ser Glu Gly Trp Trp Thr Ala Ser 49 Asp Ala Pro Pro Asn Gly Asp Val Asp Tyr Gly Tyr Leu Leu Asp Gly49 Asp Ala Pro Pro Asn Gly Asp Val Asp Tyr Gly Tyr Leu Leu Asp Gly 65 Asn Thr Thr Pro Val Pro Glu Pro Arg Ser Arg Arg Leu Pro Ala Gly65 Asn Thr Thr Pro Val Pro Glu Pro Arg Ser Arg Arg Leu Pro Ala Gly 81 Val His Asn His Ser Arg Thr Tyr Asn Pro Pro Pro Tyr Arg Trp Gln81 Val His Asn His Ser Arg Thr Tyr Asn Pro Pro Pro Tyr Arg Trp Gln 97 Asp Ser Arg Trp Arg Gly Lys Glu Leu Gln Gly Thr Leu Ile Tyr Gln97 Asp Ser Arg Trp Arg Gly Lys Glu Leu Gln Gly Thr Leu Ile Tyr Gln 113 Leu His Val Gly Thr Ser Thr Pro Asp Gly Thr Leu Asp Ala Ala Gly113 Leu His Val Gly Thr Ser Thr Pro Asp Gly Thr Leu Asp Ala Ala Gly 129 Glu Lys Leu Ser Tyr Leu Val Asp Leu Gly Ile Asp Phe Ile Glu Leu129 Glu Lys Leu Ser Tyr Leu Val Asp Leu Gly Ile Asp Phe Ile Glu Leu 145 Leu Pro Val Asn Gly Phe Asn Gly Thr His Asn Trp Gly Tyr Asp Gly145 Leu Pro Val Asn Gly Phe Asn Gly Thr His Asn Trp Gly Tyr Asp Gly 161 Val Gln Trp Tyr Thr Val His Glu Gly Tyr Gly Gly Pro Ala Ala Tyr161 Val Gln Trp Tyr Thr Val His Glu Gly Tyr Gly Gly Pro Ala Ala Tyr 177 Gln Arg Phe Val Asp Ala Ala His Ala Ala Gly Leu Gly Val Ile Gln177 Gln Arg Phe Val Asp Ala Ala His Ala Ala Gly Leu Gly Val Ile Gln 193 Asp Val Val Tyr Asn His Leu Gly Leu Arg Gly Asn Tyr Phe Pro Lys193 Asp Val Val Tyr Asn His Leu Gly Leu Arg Gly Asn Tyr Phe Pro Lys 209 Leu Gly Pro Asn Leu Lys Gln Gly Asp Ala Asn Thr Leu Gly Asp Ser209 Leu Gly Pro Asn Leu Lys Gln Gly Asp Ala Asn Thr Leu Gly Asp Ser 225 Val Asn Leu Asp Gly Ala Gly Ser Asp Val Phe Arg Glu Tyr Ile Leu225 Val Asn Leu Asp Gly Ala Gly Ser Asp Val Phe Arg Glu Tyr Ile Leu 241 Asp Asn Ala Ala Leu Trp Val Gly Asp Tyr His Val Asp Gly Val Gly241 Asp Asn Ala Ala Leu Trp Val Gly Asp Tyr His Val Asp Gly Val Gly 257 Phe Asp Ala Val His Ala Val Arg Asp Glu Arg Ala Val His Ile Leu257 Phe Asp Ala Val His Ala Val Arg Asp Glu Arg Ala Val His Ile Leu 273 Glu Asp Leu Gly Ala Leu Gly Asp Ala Ile Ser Gly Glu Thr Gly Leu273 Glu Asp Leu Gly Ala Leu Gly Asp Ala Ile Ser Gly Glu Thr Gly Leu 289 Pro Lys Thr Leu Ile Ala Glu Ser Asp Phe Asn Asn Pro Arg Leu Ile289 Pro Lys Thr Leu Ile Ala Glu Ser Asp Phe Asn Asn Pro Arg Leu Ile 305 Tyr Pro Arg Asp Val Asn Gly Tyr Gly Leu Ala Gly Gln Trp Ser Asp305 Tyr Pro Arg Asp Val Asn Gly Tyr Gly Leu Ala Gly Gln Trp Ser Asp 321 Asp Phe His Thr Ala Val His Val Ser Val Ser Gly Glu Thr Thr Gly321 Asp Phe His Thr Ala Val His Val Ser Val Ser Gly Glu Thr Thr Gly 337 Tyr Tyr Ser Asp Phe Glu Ser Leu Ala Val Leu Ala Lys Val Leu Lys337 Tyr Tyr Ser Asp Phe Glu Ser Leu Ala Val Leu Ala Lys Val Leu Lys 353 Asp Gly Phe Leu His Asp Gly Ser Tyr Ser Ser Phe Arg Gly Arg His353 Asp Gly Phe Leu His Asp Gly Ser Tyr Ser Ser Phe Arg Gly Arg His 369 His Gly Arg Pro Ile Asn Pro Ser Leu Ala Asn Pro Ala Ala Leu Val369 His Gly Arg Pro Ile Asn Pro Ser Leu Ala Asn Pro Ala Ala Leu Val 385 Val Cys Asn Gln Asn His Asp Gln Ile Gly Asn Arg Ala Thr Gly Asp385 Val Cys Asn Gln Asn His Asp Gln Ile Gly Asn Arg Ala Thr Gly Asp 401 Arg Leu Ser Gln Ser Leu Ser Tyr Gly Gln Leu Ala Val Ala Ala Val401 Arg Leu Ser Gln Ser Leu Ser Tyr Gly Gln Leu Ala Val Ala Ala Val 417 Leu Thr Leu Thr Ser Pro Phe Thr Pro Met Leu Phe Met Gly Glu Glu417 Leu Thr Leu Thr Ser Pro Phe Thr Pro Met Leu Phe Met Gly Glu Glu 433 Tyr Gly Ala Ser Thr Pro Trp Gln Phe Phe Thr Ser His Pro Glu Pro433 Tyr Gly Ala Ser Thr Pro Trp Gln Phe Phe Thr Ser His Pro Glu Pro 449 Glu Leu Gly Lys Ala Thr Ala Glu Gly Arg Ile Lys Glu Phe Glu Arg449 Glu Leu Gly Lys Ala Thr Ala Glu Gly Arg Ile Lys Glu Phe Glu Arg 465 Met Gly Trp Asp Pro Ala Val Val Pro Asp Pro Gln Asp Pro Glu Thr465 Met Gly Trp Asp Pro Ala Val Val Pro Asp Pro Gln Asp Pro Glu Thr 481 Phe Asn Arg Ser Lys Leu Asp Trp Ser Glu Ala Ser Thr Gly Asp His481 Phe Asn Arg Ser Lys Leu Asp Trp Ser Glu Ala Ser Thr Gly Asp His 497 Ala Arg Leu Leu Glu Leu Tyr Lys Ser Leu Thr Ala Leu Arg Arg Glu497 Ala Arg Leu Leu Glu Leu Tyr Lys Ser Leu Thr Ala Leu Arg Arg Glu 513 His Pro Asp Leu Ala Asp Leu Gly Phe Gly Gln Thr Glu Val Ser Phe513 His Pro Asp Leu Ala Asp Leu Gly Phe Gly Gln Thr Glu Val Ser Phe 529 Asp Asp Asp Ala Gly Trp Leu Arg Phe Arg Pro Val Ser Val Glu Val529 Asp Asp Asp Ala Gly Trp Leu Arg Phe Arg Pro Val Ser Val Glu Val 545 Leu Val Asn Leu Ser Asp Ala Lys Val Arg Leu Asp Asp Ala Ala Gly545 Leu Val Asn Leu Ser Asp Ala Lys Val Arg Leu Asp Asp Ala Ala Gly 561 Asp Leu Leu Leu Ala Thr Asp Glu Gly Asn Pro Leu Asp Gly Gly Ser561 Asp Leu Leu Leu Ala Thr Asp Glu Gly Asn Pro Leu Asp Gly Gly Ser 577 Leu Ala Leu Val Pro Trp Ser Ala Ala Val Leu Lys Ser ***577 Leu Ala Leu Val Pro Trp Ser Ala Ala Val Leu Lys Ser *** 말토올리고실트레할로스 합성효소(BvMTSase) 또는 말토올리고실트레할로스 가수분해효소(BvMTHase)의 유전자를 이용하여 그에 대응하는 효소단백질을 각각 생산함을 특징으로 하는 효소 단백질 제조방법.Enzyme protein production method characterized in that for producing the enzyme protein corresponding to each using the gene of maltooligosiltrehalose synthase (BvMTSase) or maltooligosiltrehalose hydrolase (BvMTHase). 제 9항에 있어서, 상기 두가지 효소단백질을 이용하여 전분으로부터 트레할로스의 생산방법.10. The method according to claim 9, wherein the two enzyme proteins are used to produce trehalose from starch. 제9항 또는 제10항에 있어서, 상기 두가지 효소단백질을 이용하여 전분으로부터 트레할로스를 생산함에 있어서 전분에 알파-아밀라제를 처리함을 특징으로 하는 트레할로스의 생산방법.The method for producing trehalose according to claim 9 or 10, wherein the starch is treated with alpha-amylase in producing trehalose from the starch using the two enzyme proteins.
KR1019980020710A 1998-06-03 1998-06-03 Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby KR20000000845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980020710A KR20000000845A (en) 1998-06-03 1998-06-03 Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980020710A KR20000000845A (en) 1998-06-03 1998-06-03 Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby

Publications (1)

Publication Number Publication Date
KR20000000845A true KR20000000845A (en) 2000-01-15

Family

ID=19538370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980020710A KR20000000845A (en) 1998-06-03 1998-06-03 Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby

Country Status (1)

Country Link
KR (1) KR20000000845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969713A (en) * 2016-05-23 2016-09-28 江南大学 Genetically engineered bacteria of high-yield malto-oligosaccharide-based trehalose-hydrolyzing enzyme and application of genetically engineered bacteria
KR102367594B1 (en) 2020-12-11 2022-02-25 주식회사 이너트론 Antenna for hidden camera detector
KR20220069427A (en) 2020-11-20 2022-05-27 주식회사 이너트론 Detecting apparatus for hidden camera
KR20220073340A (en) 2020-11-26 2022-06-03 장성수 Integrated hidden camera detecting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969713A (en) * 2016-05-23 2016-09-28 江南大学 Genetically engineered bacteria of high-yield malto-oligosaccharide-based trehalose-hydrolyzing enzyme and application of genetically engineered bacteria
KR20220069427A (en) 2020-11-20 2022-05-27 주식회사 이너트론 Detecting apparatus for hidden camera
KR20220073340A (en) 2020-11-26 2022-06-03 장성수 Integrated hidden camera detecting system
KR102367594B1 (en) 2020-12-11 2022-02-25 주식회사 이너트론 Antenna for hidden camera detector

Similar Documents

Publication Publication Date Title
US6555348B2 (en) Enzyme isolated from a Bifidobacterium
KR960014703B1 (en) Cephalosporin acetylhydrolase gene and protein encoded by the gene
Lee et al. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose
Barbeyron et al. Arylsulphatase from Alteromonas carrageenovora
Kim et al. Analysis of the Gene Encoding Cyclomaltodextrinase from AlkalophilicBacillussp. I-5 and Characterization of Enzymatic Properties
Uotsu-Tomita et al. Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the α-amylase genes
KR20000023095A (en) Non-reducing saccharide-forming enzyme, trehalose-releasing enzyme, and process for producing saccharides using the enzyems
JPH0884586A (en) Recombinant type thermostable enzyme capable of producing nonreducing glucide having trehalose structure at terminal from reducing starch sugar
EP0567785B1 (en) Protein having alpha-glucosidase activity, DNA having genetic information thereof, and production of alpha-glucosidase
KR20000000845A (en) Novel gene encoding trehalose biosynthetic enzyme and production method of trehalose thereby
JP3557272B2 (en) Recombinant enzyme, its production method and use
JPH07298880A (en) Recombinant type enzyme, its production and use
JPH08263A (en) Recombination enzyme for converting maltose into trehalose
Hidaka et al. Maltose phosphorylase from a deep-sea Paenibacillus sp.: Enzymatic properties and nucleotide and amino-acid sequences
KR0133727B1 (en) Polypeptide possessing isoamylase activity andpre paration method thereof
Li et al. Cloning and expression of β-glucosidase from Flavobacterium meningosepticum: A new member of family B β-glucosidase
WO2005003343A1 (en) Novel microorganism, maltose phosphorylase, trehalose phosphorylase, and processes for producing these
JP2612687B2 (en) Polypeptide having cyclomaltodextrin glucanotransferase activity
KR100319539B1 (en) Novel trehalose synthase fusion gene and fusion protein and process for preparation of trehalose therefrom
Mesta et al. Construction of a chimeric xylanase using multidomain enzymes from Neocallimastix frontalis
Na et al. Cloning and nucleotide sequence of the α-amylase gene from alkalophilic Pseudomonas sp. KFCC 10818
JP3557276B2 (en) DNA encoding an enzyme, recombinant DNA containing the same, and transformant
KR100343543B1 (en) Discovery of Bacillus stearothermophilus L1(KCTC 8954P) producing a novel lipase and development of its efficient production method using Escherichia coli BL21(DE3)/pSLE2(KCTC 8955P)
JP3557271B2 (en) DNA encoding an enzyme, recombinant DNA containing the same, and transformant
KR101834493B1 (en) A novel β-Mannosidase and producing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application