KR20000000603A - Process for producing functional polyurethane hydrogel - Google Patents

Process for producing functional polyurethane hydrogel Download PDF

Info

Publication number
KR20000000603A
KR20000000603A KR1019980020286A KR19980020286A KR20000000603A KR 20000000603 A KR20000000603 A KR 20000000603A KR 1019980020286 A KR1019980020286 A KR 1019980020286A KR 19980020286 A KR19980020286 A KR 19980020286A KR 20000000603 A KR20000000603 A KR 20000000603A
Authority
KR
South Korea
Prior art keywords
polyurethane
peg
polyol
hydrogel
temperature
Prior art date
Application number
KR1019980020286A
Other languages
Korean (ko)
Other versions
KR100273169B1 (en
Inventor
이재석
이진희
Original Assignee
김효근
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김효근, 광주과학기술원 filed Critical 김효근
Priority to KR1019980020286A priority Critical patent/KR100273169B1/en
Publication of KR20000000603A publication Critical patent/KR20000000603A/en
Application granted granted Critical
Publication of KR100273169B1 publication Critical patent/KR100273169B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE: A process for producing a functional polyurethane hydrogel which improves bio compatibility and excellent mechanical, physical properties, thus can be widely applied for medical materials is provided. CONSTITUTION: The process is characterized by simultaneously forming urethane bonding and allophanate by thermal cross linking of a polyol and a diisocyanate at a high temperature of 80-100°C. The polyol is PEG (polyethylene glycol) having a molecular weight of 3400 or 4600, and the diisocyanate is methylenebis-phenyl-isocyanate having high water-swelling power and LCST (lower critical solution temperature). The obtained functional polyurethane hydrogel has reversible water-swelling power in accordance with temperature and is sensitive to thermal stimulus.

Description

기능성 폴리우레탄 하이드로겔의 제조방법Method of producing functional polyurethane hydrogel

본 발명에서는 새로운 제조 공정을 통하여 우수한 생체적합성을 가지고 합성 방법 및 조건에 따라 다양한 물리적, 기계적 특성을 지니며 폭넓은 의료용 소재로 응용 가능한 기능성 폴리우레탄 하이드로겔의 제조방법에 관한것으로 특히, 생체 재료에 이용하기 위해서 폴리올은 무독성이고 면역 반응이 일어나지 않으며 친수성을 지님으로서 수분흡수력이 뛰어난 PEG(Polyethylene Glycol)을 이용하는 방법에 관한 것이다.The present invention relates to a method for producing a functional polyurethane hydrogel having excellent biocompatibility through a new manufacturing process and having various physical and mechanical properties according to synthetic methods and conditions, and applicable to a wide range of medical materials. In order to use the polyol is a non-toxic, immune reaction does not occur and has a hydrophilic property of PEG (Polyethylene Glycol) is excellent.

우레탄은 1849년 독일의 Wurtz와 Hoffman이 최초로 이소시아네이트와 히드록시 화합물의 반응을 발표하면서부터 알려지게 되었다. 1937년에 이르러서는 Otto Bayer에 의해 상업적인 용도로 사용되었고 나일론과 경쟁하기 위해서 폴리에스테르계 우레탄이 공업적으로 생산되기 시작하였다. 2차 대전이 시작되면서 섬유, 도료, 발포체용 우레탄의 개발이 활성화되었으며 2차 세계 대전이 종식된 후에는 독일의 기술이 알려지면서 미국, 영국, 독일에서 광범위한 연구와 개발이 시작되었다. 초기에는 디이소시아네이트와 폴리에스테르계 폴리올로 한정되었지만 가공성, 비용, 폼의 물성 등의 문제로 대체 가능한 다른 히드록시 화합물로 눈을 돌리게 되었으며 1957년에 이르러서는 가격적인 이점뿐만 아니라 폼의 물성을 향상시킨 아주 다양한 용도의 폴리에테르계 폴리올이 생산되었다.Urethanes became known since 1849 when Wurtz and Hoffman of Germany announced the first reaction of isocyanates with hydroxy compounds. By 1937, Otto Bayer was used for commercial purposes, and polyester-based urethanes began to be produced industrially to compete with nylon. The development of urethane for textiles, paints and foams was activated by the start of World War II. After the end of World War II, extensive research and development began in the United States, the United Kingdom and Germany, with the German technology becoming known. Initially confined to diisocyanates and polyester-based polyols, it turned to other hydroxy compounds that could be replaced by problems such as processability, cost, and foam properties. By 1957, the foam properties were improved as well as cost advantages. Polyether based polyols have been produced for a wide variety of applications.

현재 폴리우레탄은 기간 산업의 필수 불가결한 고분자 재료로써 건물 단열재로부터 시작하여 자동차, 일반 기계, 선박, 가구, 신발, 의류 등의 넓은 제품 영역을 이루고 있으며 접착제, 코팅, 고무, 엔지니어링 플라스틱 등의 형태로 산업분야에서 널리 사용되는 재료이다. 특히 장기간 혈액 내에서 안정한 특성을 지님으로 인공 장기, 인공 혈관, 요도용 카테테, 약물 방출 체계, 필름이나 폼 형태의 상처치료용 드레싱 등의 다양한 의료용 소재로 이용되기도 한다. 이러한 광범위한 분야를 갖게 된 원인은 폴리우레탄 합성시 사용되는 폴리올과 디이소시아네이트의 특성에 따라 물성 및 기계적 성질이 다양한 고분자 재료를 합성할 수 있는 장점 때문이다. 즉 분자량, 연질 분절(soft segment)과 경질 분절(hard segment)의 형태와 상호작용, 그리고 결정화도에 의해서 원하는 물성을 지닌 폴리우레탄 제품을 만들 수 있다. 일반적으로 폴리올의 분자량이 증가할수록 상분리도와 결정화도가 증가하여 어느 정도의 한계 분자량까지는 기계적 물성이 우수한 것으로 보고된 바가 있고 경질 분절의 함량이 증가할수록 응력은 증가하고 변형은 감소하는 것으로 알려져 있다.Currently, polyurethane is an indispensable polymer material for the core industry, starting from building insulation and forming a wide range of products such as automobiles, general machinery, ships, furniture, shoes, and clothing, and in the form of adhesives, coatings, rubber, engineering plastics, etc. It is a material widely used in the industrial field. In particular, it is stable in the blood for a long time, so it can be used for various medical materials such as artificial organs, blood vessels, urethral catheters, drug release systems, and film or foam wound dressings. The reason for having such a wide range of fields is due to the advantage of synthesizing polymer materials having various physical and mechanical properties depending on the properties of the polyol and diisocyanate used in the synthesis of polyurethane. That is, the molecular weight, the shape and interaction of the soft and hard segments, and the degree of crystallinity can be used to produce polyurethane products with the desired properties. In general, as the molecular weight of the polyol increases, the degree of phase separation and crystallinity increases, so that the mechanical properties up to a certain limit molecular weight have been reported to be excellent, and as the content of the hard segment increases, the stress increases and the deformation decreases.

폴리우레탄은 기존에 알려진 제품군 이외에도 앞으로 새로운 형태의 제품으로 개발될 수 있는 가능성이 매우 큰 고분자 재료라 볼 수 있다.Polyurethane is a polymer material that is very likely to be developed as a new type of product in addition to the known product range.

폴리우레탄 합성의 기본을 이루는 이소시아네이트의 반응은 활성 수소를 포함하는 화합물과 이소시아네이트기를 갖고 있는 화합물 사이에서 일어나고 주반응으로는 먼저 이소시아네이트와 알코올과의 우레탄 결합의 형성 및 이소시아네이트와 아민과의 우레아 결합의 형성이다. 그리고 때때로 반응 중에 물의 존재가 최종 생성물의 분자량과 기계적 물성에 나쁜 영향을 미치기도 하지만 폼의 생성에 중요한 매개체로 작용하기도 한다. 대부분의 반응은 반응성이 우수한 방향족 이소시아네이트를 제외하고는 거의 50℃ 이상에서 주반응이 일어나고 이소시아네이트와의 반응성은 1차 알코올 보다 아민이 10정도 우수하다.The reaction of isocyanates, which form the basis of polyurethane synthesis, takes place between compounds containing active hydrogen and compounds having isocyanate groups. to be. And sometimes the presence of water during the reaction has an adverse effect on the molecular weight and mechanical properties of the final product, but also acts as an important medium for the formation of the foam. Most of the reactions have the main reaction at almost 50 ℃ except for the highly reactive aromatic isocyanate, and the reactivity with isocyanate is about 10 amines superior to the primary alcohol.

부반응으로는 높은 온도에서 우레탄 결합과 우레아 결합이 각각 이소시아네이트와 친핵성 부과 반응을 일으킴으로써 알로판네이트와 비우렛 결합을 일으키는데 이들은 결과적으로 고분자 사슬 내에 화학적 가교 구조를 이루기도 한다. 흔히 폴리우레탄 반응시 폴리올 보다 이소시아네이트의 몰비를 약간 과량으로 삽입하고 최종 생성물을 형성 후에 높은 열을 가함으로써 가교 결합을 일으키기도 한다. 특히 알로판네이트 반응은 높은 온도에서 가역적이기 때문에 소량의 알로판네이트 결합을 가진 폴리우레탄을 녹인 후 식히면서 다시 알로판네이트를 재형성함으로써 성형이 가능하다. 흔히 이런 알로판네이트 결합은 일반적으로 80℃ 이상에서 형성된다.As a side reaction, urethane bonds and urea bonds at each temperature cause nucleophilic immobilization reactions with isocyanates, resulting in allophanate and biuret bonds, which in turn form chemically crosslinked structures in the polymer chain. Often, polyurethane reactions cause crosslinking by inserting a slightly excess molar ratio of isocyanate than polyol and applying high heat after forming the final product. In particular, since the allopanate reaction is reversible at high temperatures, it is possible to mold by dissolving a polyurethane having a small amount of allopanate bond and then reforming the allopanate while cooling. Often such allopanate bonds are generally formed at 80 ° C. or higher.

그밖에 부반응으로는 이소시아네이트의 이합체(dimer)와 삼량체(trimer)의 형성을 들 수 있는데 이합체는 지방족 이소시아네이트으로부터 형성되고 150℃ 이상에서 가역적이며 삼량체는 지방족과 방향족 이소시아네이트로부터 형성되고 상대적으로 높은 온도에서도 안정된다.Other side reactions include the formation of dimers and trimers of isocyanates, which are formed from aliphatic isocyanates, reversible above 150 ° C, and trimers are formed from aliphatic and aromatic isocyanates and at relatively high temperatures. It is stable.

뛰어난 물리적, 기계적 특성과 상대적으로 우수한 혈액 적합성, 장기간 동안 생체 내에서의 안정성 등으로 의료용 소재로 널리 이용되는 폴리우레탄을 이용하여 하이드로겔 형태의 소재를 개발하고자 하는 연구는 오래 전부터 실시되어 왔다.Research into the development of a hydrogel type material using polyurethane widely used as a medical material due to its excellent physical and mechanical properties, relatively good blood compatibility and stability in vivo for a long time has been conducted for a long time.

지금까지 연구되어진 폴리우레탄 하이드로겔은 이소시아네이트와 가교제를 이용하여 PEG(polyethylene glycol)를 그라프트시켜 생체적합성과 수팽윤도를 향상시킨 하이드로겔, 기능성기가 2개 이상인 이소시아네이트를 이용한 하이드로겔, L-lysine과 PEO(polyethylene oxide)을 이용하여 만든 수용성 폴리에테르우레탄을 기본으로 하는 하이드로겔 등이 있다. 이들은 주로 인공 장기나 카테터, 약물전단을 위한 소재 등과 같은 의료용 분야뿐만 아니라 효소나 생체(biomass) 등의 고정화에도 이용되었다.Polyurethane hydrogels that have been studied so far are isocyanate and a crosslinking agent to grafted PEG (polyethylene glycol) to improve biocompatibility and water swelling. Hydrogels based on water-soluble polyetherurethanes made using polyethylene oxide (PEO). They are mainly used for immobilization of enzymes or biomass as well as medical fields such as artificial organs, catheters, and materials for drug shear.

본 발명에서는 기존의 폴리우레탄 탄성체의 제조 공정보다 반응 시간이 단축되고 성형이 용이한 새로운 제조 공정을 통하여 기존의 폴리우레탄겔의 물성치와는 다른 새로운 소재를 합성하고자 한다.In the present invention, the reaction time is shorter than that of the conventional polyurethane elastomer, and a new material different from that of the existing polyurethane gel may be synthesized through a new manufacturing process that is easy to mold.

도 1 는 분자량이 3,400인 PEG를 이용한 폴리우레탄 하이드로겔의 온도에 따른 수팽윤도의 변화를 나타낸 그래프1 is a graph showing the change of water swelling degree according to the temperature of polyurethane hydrogel using PEG having a molecular weight of 3,400

도 2 은 분자량이 4,600인 PEG를 이용한 폴리우레탄 하이드로겔의 온도에 따른 수팽윤도의 변화를 나타낸 그래프2 is a graph showing the change of water swelling degree according to the temperature of polyurethane hydrogel using PEG having a molecular weight of 4,600

도 3 는 폴리우레탄 하이드로겔의 열적자극에 대한 수팽윤도의 변화(MDI : PEG = 3 : 1)를 나타낸 그래프3 is a graph showing the change in water swelling degree (MDI: PEG = 3: 1) for thermal stimulation of polyurethane hydrogel

도 4 는 SEM을 이용한 폴리우레탄 겔의 단면 분석(MDI : PEG = 3 : 1)사진4 is a cross-sectional analysis (MDI: PEG = 3: 1) of the polyurethane gel using SEM

도 5 은 SEM을 이용한 폴리우레탄 겔의 단면 분석(MDI : PEG = 5 : 1)사진이5 is a cross-sectional analysis (MDI: PEG = 5: 1) of the polyurethane gel using SEM

다.All.

본 발명에서는 친수성을 지닌 선형(고분자 사슬 엉킴포함) 폴리우레탄만으로는 하이드로겔의 수팽윤도와 기계적 물성에 한계가 있기때문에 열적 가교에 의해서 우레탄 결합에 알로판네이트를 도입하여 화학적 가교 구조를 지닌 폴리우레탄 하이드로겔을 합성하였다. 기존의 폴리우레탄 탄성체의 제조에서는 폴리우레탄 프리폴리머를 합성하고 사슬연장제를 이용하여 사슬을 확장시킨 후 고온에 의한 가교(curing)를 시켰지만 본 실험에서는 사슬연장제를 사용하지 않고 폴리올과 과량의 디이소시아네이트를 고온에서 반응시킴으로써 우레탄 결합과 알로판네이트를 동시에 형성시켰으며 반응식은 다음과 같다.In the present invention, since only hydrophilic linear (including polymer chain entanglement) polyurethane has a limitation in the water swelling and mechanical properties of the hydrogel, the polyurethane hydro having a chemical crosslinking structure is introduced by introducing allophanate into the urethane bond by thermal crosslinking. Gels were synthesized. In the production of conventional polyurethane elastomers, polyurethane prepolymers were synthesized and the chains were expanded using chain extenders and then crosslinked by high temperature. In this experiment, polyol and excess diisocyanate were used without using chain extenders. By reacting at a high temperature to form a urethane bond and allophanate at the same time, the reaction formula is as follows.

열적 가교에 의한 폴리우레탄 하이드로겔의 합성.Synthesis of Polyurethane Hydrogels by Thermal Crosslinking.

단량체로는 친수성을 지닌 선형 폴리우레탄의 결과를 바탕으로, 수팽윤도가 우수하고 LCST(lower critical solution temperature) 특성을 가지는 것으로 관찰되어진 디이소시아네이트로는 MDI(Methylenebis-Phenyl-Isocynate), 폴리올로는 분자량이 3,400과 4,600인 PEG(Polyethylene Glycol), 용매로는 THF(Tetrahydrofuran)와 DMF(Dimethylformamide)를 9:1의 부피비율로 된 혼합용매를 이용하였다.Based on the result of the hydrophilic linear polyurethane as a monomer, the diisocyanate observed to have excellent water swelling and lower critical solution temperature (LCST) characteristics is MDI (Methylenebis-Phenyl-Isocynate) as a polyol, and molecular weight as a polyol. 3,400 and 4,600 PEG (Polyethylene Glycol), and a solvent was used as a solvent with a volume ratio of 9: 1 of THF (Tetrahydrofuran) and DMF (Dimethylformamide).

본 발명의 대한 설명을 다음의 실시예와 시험예로 더욱 자세히 설명하고자 한다. 그러나 아래의 실시예와 시험예가 본 발명의 기술적 범위를 한정하는 것은 아니다.The description of the present invention will be described in more detail with the following examples and test examples. However, the following examples and test examples do not limit the technical scope of the present invention.

< 실시예 1 > 반응물의 정제Example 1 Purification of Reactant

폴리우레탄 하이드로겔의 합성시 사용한 디이소시아네이트 MDI (4,4'- methylenebis-phenyl-isocyanate; ACORS)는 50℃로 1∼2시간 보관하여 냉각으로 인해 결정화되지 않도록 가열하면서 침전되어진 이합체(dimer)를 걸러낸 후 정제한 핵산에 침전하고 3∼4일 동안 진공 오븐에서 건조하여 사용하였다. 폴리올로 이용한 PEG(polyethyleneglycol; Aldrich Chemical Co.)는 30분 동안 100℃에서 감압하여 수분을 제거후 사용하였다. 용매로 사용한 THF(tetrahydrofuran; Fisher Scientific Co. GR grade)은 CaH2존재 하에서 4시간 동안 환류시킨 뒤 증류하여 사용하였고 DMF(dimethylformamide; J. T. Baker, 99.9%)는 나트륨을 사용하여 실온에서 24시간 반응시킨 후 감압 증류로 정제한 뒤 4A 분자체를 넣어 일주일 동안 보관후 사용하였다.Diisocyanate MDI (4,4'-methylenebis-phenyl-isocyanate; ACORS) used in the synthesis of polyurethane hydrogel was stored at 50 ° C for 1 to 2 hours to prevent dimer precipitated while heating to prevent crystallization due to cooling. After filtration, it was precipitated in purified nucleic acid and dried in a vacuum oven for 3 to 4 days. PEG (polyethyleneglycol; Aldrich Chemical Co.) used as a polyol was used after removing water at 100 ° C. under reduced pressure for 30 minutes. THF (tetrahydrofuran; Fisher Scientific Co. GR grade) used as a solvent was refluxed for 4 hours in the presence of CaH 2 and distilled. DMF (dimethylformamide; JT Baker, 99.9%) was reacted with sodium for 24 hours at room temperature. After purification by distillation under reduced pressure, 4A molecular sieve was put and stored for a week.

수분을 제거하여 위해 사용한 Na(Fluka Chemika), CaH2(Sigma Chemical Co. 95%), 분자체(4A, 4-8 mesh; ACROS)는 별다른 처리 없이 사용하였다.Na (Fluka Chemika), CaH 2 (Sigma Chemical Co. 95%) and molecular sieves (4A, 4-8 mesh; ACROS) used for removing water were used without any treatment.

< 실시예 2 > 열적 가교에 의한 폴리우레탄 하이드로겔의 합성Example 2 Synthesis of Polyurethane Hydrogel by Thermal Crosslinking

먼저 잘 정제된 THF와 DMF를 9:1의 부피 비율로 된 혼합용매를 만든 다음 1시간 동안 가스를 제거(degassing)시킨 후 50ml에, 100℃에서 감압하여 수분을 제거한 PEG 10g을 녹인 후 80℃로 온도가 고정된 반응조에 넣고 콘덴서를 이용하여 환류시켰다. 모든 장치가 완료되면 MDI와 PEG의 몰비(2:1, 3:1, 4:1, 5:1)와 PEG의 분자량에 따라 PEG 10g에 상응하는 MDI를 50ml 혼합용매에 80℃ 온도로 녹이며 촉매는 사용하지 않는다. 반응 시간은 용액의 점도와 제조한 하이드로겔의 물성을 조절하기 위해 1∼3 시간 범위 내에서 조절한다.First, a well-purified THF and DMF were mixed in a volume ratio of 9: 1, and then degassed for 1 hour, and then dissolved in 50 ml, and 10 g of PEG removed from water at 100 ° C. under reduced pressure was dissolved at 80 ° C. The furnace was put in a fixed temperature reactor and refluxed using a condenser. When all the devices were completed, the MDI corresponding to 10 g of PEG was dissolved at 80 ° C. in a 50 ml mixed solvent according to the molar ratio of MDI and PEG (2: 1, 3: 1, 4: 1, 5: 1) and the molecular weight of PEG. Do not use. The reaction time is adjusted within the range of 1 to 3 hours to control the viscosity of the solution and the physical properties of the prepared hydrogel.

합성이 완료된 후 점성을 가진 용액은 테프론 필름이 코팅된 샤알레에 부어 3일 동안 상온에서 건조시켰고 반응 용매를 완전히 제거하기 위해 80℃에서 4일 동안 감압 하에서 건조시킨 후 고른 필름을 얻기 위해 캐스팅(casting)시 샤알레의 가장자리에 붙어 있는 필름을 칼로 떼어내고 주사기를 이용하여 기포를 제거한다.After the synthesis was completed, the viscous solution was poured into a Teflon film-coated shale, dried at room temperature for 3 days, and dried under reduced pressure at 80 ° C. for 4 days to completely remove the reaction solvent, followed by casting to obtain an even film. During casting, peel off the film attached to the edge of the chaele with a knife and use a syringe to remove bubbles.

< 시험예 1 > 수팽윤도 측정<Test Example 1> Water swelling measurement

하이드로겔의 수팽윤도 측정 시에는 캐스팅의 방법으로 필름을 제조하는데, 이렇게 제조된 소재를 넓이 1cm2정도로 손상이 가지 않게 잘라서 pH가 7.4인 완충 용액에서 시간과 온도의 조건을 달리하면서 측정한 후 수팽윤된 상태의 시편을 거즈에 잘 닦아서 표면에 물기가 없도록 한다. 그리고 수팽윤도는 흡수된 물의 무게를 고분자 매트릭스의 무게로 나눈 값으로 정의한다.When measuring the water swelling degree of the hydrogel, a film is produced by casting. The prepared material is cut to a width of about 1 cm 2 without damage, and then measured under different conditions of time and temperature in a buffer solution having a pH of 7.4. Clean the swollen specimen with gauze to keep the surface dry. And water swelling degree is defined as the weight of water absorbed divided by the weight of the polymer matrix.

PEG의 분자량이 1000, 2000, 3400, 4600 별로 몰비를 고정시키고 화학적 가교반응을 한 결과 PEG의 분자량이 3,400과 4,600에서 수팽윤도가 각각 9배, 10배 정도의 우수한 수팽윤도가 관찰되었고 PEG의 분자량이 2,000 이하는 수팽윤도가 극히 작은 필름 형태의 소재를 얻었으며 PEG의 분자량이 증가할수록 수팽윤도의 증가함을 알 수 있었다. 그리고 MDI와 PEG의 몰비에 따라 다른 수팽윤도를 가지는데 그 이유는 PEG에 대한 MDI의 몰비가 증가할수록 폴리우레탄 겔 내의 PEG의 함량이 줄어들고 상대적으로 친수성도가 떨어지기 때문으로 해석된다.As the molecular weight of PEG was fixed at 1000, 2000, 3400, and 4600, and chemical crosslinking reaction, the water swelling degree was 9 times and 10 times, respectively, at 3,400 and 4,600. Below 2,000, the film was obtained with a very small water swelling degree, and it was found that the water swelling degree increased as the molecular weight of PEG increased. In addition, the water swelling degree is different depending on the molar ratio of MDI and PEG. The reason is that as the molar ratio of MDI to PEG increases, the content of PEG in the polyurethane gel decreases and the hydrophilicity decreases relatively.

PEG의 분자량의 각각 3,400과 4,600에서 MDI와 PEG의 몰비를 변화시키면서 합성한 하이드로겔의 수팽윤도를 측정한 결과 온도가 증가함에 따라 수팽윤도가 감소하는 현상을 나타냈으며 또한 온도에 따라 수팽윤도가 가역적으로 변화하였다.As a result of measuring the water swelling degree of the hydrogel synthesized by changing the molar ratio of MDI and PEG at 3,400 and 4,600 of the molecular weight of PEG, the water swelling degree decreased with increasing temperature, and the water swelling degree was reversible with temperature. Changed to.

< 시험예 2 > 기계적 물성 측정Test Example 2 Measurement of Mechanical Properties

폴리우레탄 하이드로겔의 기계적 물성시험은 Instron testing machine을 사용하고 ASTM D638M-V type으로 시편을 잘랐다. 필름의 준비는 합성후 캐스팅하여 일주일동안 상온에서 보관하였으며 수팽윤된 하이드로겔의 측정시에는 상온에서 48시간 증류수에 담가두었다. 필름의 두께는 0.1∼0.3mm이고 50mm/min속도로 시편을 당겼다.Mechanical properties of polyurethane hydrogels were tested using an Instron testing machine and the specimens were cut to ASTM D638M-V type. Preparation of the film was cast after synthesis and stored at room temperature for one week, and soaked in distilled water at room temperature for 48 hours when measuring the water-swelled hydrogel. The thickness of the film was 0.1-0.3 mm and the specimens were pulled at a rate of 50 mm / min.

전체적인 경향으로는 PEG의 분자량이 3,400 보다 4,600의 경우에, 기존의 논문과 같이 결정화도와 상분리도의 증가로 인한 전단 응력과 탄성계수, 변형이 모두 증가함이 관찰되었다. 또한 MDI와 PEG의 몰비에 따른 효과는 몰비가 증가할수록 전단 응력과 탄성계수, 변형이 모두 감소하는 경향을 보였다(표 1). 이는 기존의 폴리우레탄 겔의 경우 경질 분절의 양이 증가할수록 전단 응력과 탄성계수는 증가하고 변형은 감소하는 경향과는 대조적인 결과이다. 이것은 합성 방법에 있어서 MDI의 몰비가 증가할수록 폴리우레탄 프리폴리머의 합성과 더불어 알로판네이트 형성이 활발히 일어나므로 선형 고분자의 합성이 어려워지게 된다. 따라서 전체 가교 구조 중에 선형적인 우레탄 결합이 차지하는 비율이 작아지므로 폴리우레탄의 분절 형태가 사라지고, 대신 불규칙한 가교 구조를 이루는 알로판네이트 결합이 많이 분포하기 때문으로 보인다.Overall, when the molecular weight of PEG was 4,600 rather than 3,400, the shear stress, modulus of elasticity, and deformation increased due to the increase of crystallinity and phase separation as in the previous paper. In addition, the effect of the molar ratio of MDI and PEG showed that the shear stress, modulus of elasticity and deformation decreased with increasing molar ratio (Table 1). This is in contrast to the tendency of shear stress and modulus to increase and deformation to decrease as the amount of hard segments increases. This is because in the synthesis method, as the molar ratio of MDI increases, allophanate formation takes place together with the synthesis of the polyurethane prepolymer, which makes it difficult to synthesize the linear polymer. Therefore, since the proportion of linear urethane bonds in the total crosslinked structure becomes small, the segmental form of polyurethane disappears, and instead, it appears that many allophanate bonds forming an irregular crosslinked structure are distributed.

< 시험예 3 > SEM(Scanning electron microscope)측정<Test Example 3> SEM (Scanning electron microscope) measurement

폴리우레탄 하이드로겔의 단면을 SEM(Scanning electron microscope)을 통해서 관찰하기 위해 시료의 표면에 직선으로 약한 자국을 낸후 액체질소하에서 5분정도 얼린 후 부러뜨리고 금으로 코팅하여 1500 배로 관찰하였다.In order to observe the cross section of the polyurethane hydrogel through a scanning electron microscope (SEM), the surface of the sample was weakly formed in a straight line, frozen in liquid nitrogen for about 5 minutes, broken, coated with gold, and observed at 1500 times.

SEM을 통한 폴리우레탄 겔의 단면 측정에 의한 전체적인 형태로부터 MDI와 PEG의 몰비가 5:1인 경우에는 3:1의 경우보다 MDI의 몰비가 많음으로써 알로판네이트가 형성되어질 가능성이 높은 것으로 추정된다. 그리고 이런 알로판네이트의 형성이 사다리꼴 형태로 선형 프리폴리머를 연결시켜 주는 역할이 아니라, 우레탄 결합이 생성되면 바로 알로판네이트 결합이 생성됨으로 해서 가교 구조를 예측하지 못하는 방사 형태로 사슬이 이루어지리라 추측된다. 따라서 캐스팅시 고분자 사슬이 충전될 때 형태상으로 몰비가 3:1의 경우에 좀더 촘촘한 거미줄 형태로 구성되어 있음을 확인하였다. 또한 이러한 영향으로 MDI와 PEG의 몰비가 3:1인 경우에 5:1의 경우 보다 기계적 물성이 우수하고 더욱 수팽윤되어지는 것으로 보인다.From the overall shape of the polyurethane gel measured by SEM, it is estimated that allophanate is more likely to be formed when the molar ratio of MDI and PEG is 5: 1 than that of 3: 1. . In addition, the formation of allophanate is not a role of connecting linear prepolymers in the form of trapezoids, but it is assumed that allopanate bonds are formed as soon as urethane bonds are formed, so that the chains are formed in a radial form that cannot predict the crosslinking structure. . Therefore, it was confirmed that when the polymer chain is charged during casting, the molar ratio is composed of a more dense spider web in the case of 3: 1. In addition, due to these effects, the mechanical properties and water swelling of the MDI and PEG in the molar ratio of 3: 1 are better than that of 5: 1.

수팽윤된 하이드로겔의 기계적 물성 측정에 있어서는 건조된 겔과 차이점은 MDI와 PEG의 몰비가 증가함에 따라 탄성계수가 겔에 함유된 물의 영향으로 오히려 증가하는 경향이 나타났고 전체적인 전단 응력과 변형의 값은 건조된 겔에 비교해서 상당량 감소하였다(표 2).In the measurement of the mechanical properties of water-swelled hydrogels, the difference between the dried gels was that the modulus of elasticity increased with the influence of water in the gel as the molar ratio of MDI and PEG increased. Silver was significantly reduced compared to the dried gel (Table 2).

표 1. 폴리우레탄겔의 기계적 특성Table 1. Mechanical Properties of Polyurethane Gel

고분자Polymer 전단응력(MPa)Shear stress (MPa) 변형율(%)% Strain 탄성(MPa)Elasticity (MPa) PEG 분자량PEG molecular weight MDI : PEGMDI: PEG 34003400 2 : 12: 1 8.138.13 12401240 19.4619.46 34003400 3 : 13: 1 7.287.28 856856 13.5413.54 34003400 4 : 14: 1 5.285.28 591591 5.175.17 34003400 5 : 15: 1 2.852.85 158158 2.732.73 46004600 2 : 12: 1 16.7116.71 18561856 32.8732.87 46004600 3 : 13: 1 13.5113.51 15331533 25.4925.49 46004600 4 : 14: 1 8.688.68 954954 14.4714.47 46004600 5 : 15: 1 6.666.66 674674 10.5010.50

표 2. 폴리우레탄 하이드로겔의 기계적 물성Table 2. Mechanical Properties of Polyurethane Hydrogels

고분자Polymer 전단응력(MPa)Shear stress (MPa) 변형율(%)% Strain 탄성(MPa)Elasticity (MPa) PEG 분자량PEG molecular weight MDI : PEGMDI: PEG 수팽윤도(시간)Water swelling degree (hours) 34003400 2 : 12: 1 9.049.04 0.72350.7235 434.56434.56 0.29980.2998 34003400 3 : 13: 1 6.156.15 0.64860.6486 253.90253.90 0.41890.4189 34003400 4 : 14: 1 4.354.35 0.39760.3976 86.4386.43 0.60210.6021 34003400 5 : 15: 1 3.233.23 0.26780.2678 32.3332.33 0.84600.8460 46004600 2 : 12: 1 10.2010.20 0.97560.9756 687.45687.45 0.25760.2576 46004600 3 : 13: 1 7.277.27 0.83040.8304 463.80463.80 0.30970.3097 46004600 4 : 14: 1 5.355.35 0.65960.6596 118.70118.70 0.51070.5107 46004600 5 : 15: 1 3.513.51 0.56760.5676 93.1693.16 0.80400.8040

본 발명은 새로운 제조공정을 통하여 합성한 기능성 폴리우레탄 하이드로겔이 온도에 따라 수팽윤도가 변화하며 열적자극에 민감한 감온성 및 가역적인 수팽윤도를 나타냄으로써 기존의 폴리우레탄 겔과 다른 기계적 물성을 갖는 폴리우레탄 하이드로겔을 합성할 수 있다.The present invention is a functional polyurethane hydrogel synthesized through a new manufacturing process, the water swelling degree changes with temperature and exhibits a thermosensitive and reversible water swelling sensitivity sensitive to thermal stimulation, and thus has a different mechanical property from that of the conventional polyurethane gel. Hydrogels can be synthesized.

Claims (2)

폴리우레탄을 이용한 하이드로 겔에 있어서, 폴리올과 디이소시야네이트를 고온에서 열적가교시켜 우레탄 결합과 알로판네이트를 동시에 형성시키는 것을 특징으로 하는 기능성 폴리우레탄 하이드로 겔의 제조방법.A hydrogel using a polyurethane, wherein the polyol and diisocynate are thermally crosslinked at high temperature to simultaneously form a urethane bond and an allophanate. 제 1 항에 있어서, 폴리올은 폴리에틸렌 글리콜(Polyethylene Glycol) 분자량이 3,400과 4,600인 것을 사용하고, 디이소시아네이트는 메틸렌비스 페닐 이소시아네이트(Methylenebis-Phenyl-Isocyanate)를 사용하여 80∼100℃의 온도에서 반응시키는 것을 특징으로 하는 기능성 폴리우레탄 하이드로 겔의 제조방법.The method of claim 1, wherein the polyol is a polyethylene glycol (Polyethylene Glycol) molecular weight of 3,400 and 4,600 is used, the diisocyanate is reacted at a temperature of 80 ~ 100 ℃ using Methylenebis-Phenyl-Isocyanate Method for producing a functional polyurethane hydrogel, characterized in that.
KR1019980020286A 1998-06-01 1998-06-01 Preparation method of fuctional polyurethan hydrogel KR100273169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980020286A KR100273169B1 (en) 1998-06-01 1998-06-01 Preparation method of fuctional polyurethan hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980020286A KR100273169B1 (en) 1998-06-01 1998-06-01 Preparation method of fuctional polyurethan hydrogel

Publications (2)

Publication Number Publication Date
KR20000000603A true KR20000000603A (en) 2000-01-15
KR100273169B1 KR100273169B1 (en) 2000-12-01

Family

ID=19538091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980020286A KR100273169B1 (en) 1998-06-01 1998-06-01 Preparation method of fuctional polyurethan hydrogel

Country Status (1)

Country Link
KR (1) KR100273169B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586087B2 (en) 2007-05-03 2013-11-19 Sungkyunkwan University Foundation For Corporate Collaboration Temperature and pH-sensitive block copolymer having excellent gel strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586087B2 (en) 2007-05-03 2013-11-19 Sungkyunkwan University Foundation For Corporate Collaboration Temperature and pH-sensitive block copolymer having excellent gel strength

Also Published As

Publication number Publication date
KR100273169B1 (en) 2000-12-01

Similar Documents

Publication Publication Date Title
US4131604A (en) Polyurethane elastomer for heart assist devices
JP7306985B2 (en) polysaccharide-containing polyurethane polymer
CA1335317C (en) Fluorinated polyetherurethanes and medical devices therefrom
US4623347A (en) Antithrombogenic elastomer products
US4523005A (en) Extrudable polyurethane for prosthetic devices prepared from a diisocyanate, a polytetramethylene ether polyol, and 1,4-butane diol
CA1272732A (en) Repeating block, oligomer-free, polyphase, thermoformable polyurethanes and method of preparation thereof
CN107286313A (en) A kind of degradable polyurethane foam and its application
CN110117348B (en) Polyurethane material, preparation method and application thereof, polymer material and 3D (three-dimensional) stent
GB2276627A (en) Random block copolymers
US4935480A (en) Fluorinated polyetherurethanes and medical devices therefrom
JPS61166820A (en) Manufacture of polyurethane resin
JPS58132017A (en) Extrudable polyurethane for prosthesis
JPS6410542B2 (en)
US3635907A (en) Process for the production of polyurethanes
KR100347502B1 (en) Cycloaliphatic Thermoplastic Polyurethane Elastomer
Wang et al. Thermo-responsive, mechanically robust and 3D printable supramolecular hydrogels
Ulubayram et al. Polyurethanes: effect of chemical composition on mechanical properties and oxygen permeability
KR100273169B1 (en) Preparation method of fuctional polyurethan hydrogel
CN107778452B (en) Long-chain alkane polyurethane and preparation method and application thereof
CN115572366B (en) Pressure-resistant temperature-sensitive thermoplastic polylactic acid-based polyurethane elastomer and preparation method and application thereof
EP0205815B1 (en) Use of an antithrombogenic synthetic elastomer and process of preparation thereof
JP3309373B2 (en) Polyurethane elastomer-forming composition and hollow fiber binder using the same
TW200427731A (en) Novel chain extender useful in the manufacture of polyurethanes and the corresponding polyurethanes
JP2001136960A (en) Cell culture membrane
KR100285238B1 (en) Medical Polyurethane with Polydimethylsiloxane (PDMS) and Polyethylene Glycol (PEG)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120628

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140821

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150813

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 18

EXPY Expiration of term