KR19990085717A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
KR19990085717A
KR19990085717A KR1019980018311A KR19980018311A KR19990085717A KR 19990085717 A KR19990085717 A KR 19990085717A KR 1019980018311 A KR1019980018311 A KR 1019980018311A KR 19980018311 A KR19980018311 A KR 19980018311A KR 19990085717 A KR19990085717 A KR 19990085717A
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
electrode active
secondary battery
lithium ion
Prior art date
Application number
KR1019980018311A
Other languages
Korean (ko)
Other versions
KR100303537B1 (en
Inventor
조헌구
최완욱
윤상영
류재율
Original Assignee
손욱
삼성전관 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성전관 주식회사 filed Critical 손욱
Priority to KR1019980018311A priority Critical patent/KR100303537B1/en
Publication of KR19990085717A publication Critical patent/KR19990085717A/en
Application granted granted Critical
Publication of KR100303537B1 publication Critical patent/KR100303537B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

리튬 이온 이차 전지에 관한 것으로서, 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 전해질 및 세퍼레이터를 포함하며, 상기 음극 활물질은 리튬 양극을 사용한 반쪽 전지에서의 초기 충방전 효율이 70∼80%의 범위에서 방전 용량이 α(Ah/g)인 흑연계 탄소 활물질인 것인 리튬 이온 이차 전지에 있어서, 상기 양극 활물질에 대한 음극 활물질의 중량비가 1.1α∼1.6α인 것을 특징으로 하는 리튬 이온 이차 전지를 제공한다. 이 전지는 수명이 길고, 안전하며 용량이 크다.A lithium ion secondary battery, comprising: a positive electrode including a positive electrode active material, a negative electrode including an negative electrode active material, an electrolyte, and a separator, wherein the negative electrode active material has an initial charge / discharge efficiency of 70 to 80% in a half battery using a lithium positive electrode. In the lithium ion secondary battery which is a graphite-based carbon active material having a discharge capacity of α (Ah / g) in the range, the weight ratio of the negative electrode active material to the positive electrode active material is 1.1α to 1.6α, characterized in that Provide a battery. The battery is long, safe and large in capacity.

Description

리튬 이온 이차 전지Lithium ion secondary battery

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이온 이차 전지에 관한 것으로서, 상세하게는 수명이 길고, 안정하며, 용량이 큰 리튬 이온 이차 전지에 관한 것이다.The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery having a long life, a stable and large capacity.

[종래 기술][Prior art]

최근 카메라 일체형 VTR, 오디오, 랩탑형 퍼스널 컴퓨터, 휴대용 전화기 등의 새로운 포터블 전자기기의 소형화 및 경량화 추세와 관련하여, 이들 기기의 전원으로 사용되는 전지의 성능을 고성능화하고, 대용량화하는 기술이 필요하게 되었으며, 특히 경제적인 측면에서 이들 전지의 제조 원가를 절감하는 기술 개발 노력이 진행되고 있다. 일반적으로 전지는 망간 전지, 알카리 전지, 수은 전지, 산화은 전지 등과 같이 일회용으로 사용하는 1차 전지와 납축전지, 금속수소화물을 음극 활물질로 하는 Ni-MH(니켈-메탈하이드라이드) 전지, 밀폐형 니켈-카드뮴 전지와 리튬-금속 전지, 리튬-이온 전지(LIB: Lithium Ion Battery), 리튬-폴리머 전지(LPB: Lithium Polymer Battery)와 같은 리튬군 전지 등과 같이 재충전하여 사용할 수 있는 이차 전지, 그리고 연료 전지, 태양 전지 등으로 구분할 수 있다.Recently, with the trend toward miniaturization and lightening of new portable electronic devices such as camera-integrated VTRs, audio, laptop personal computers, portable telephones, and the like, there is a need for a technology for increasing the performance and capacity of batteries used as power sources for these devices. In particular, efforts are being made to develop technologies that reduce manufacturing costs of these batteries, particularly in economic terms. In general, batteries include primary batteries used for single use, such as manganese batteries, alkaline batteries, mercury batteries, and silver oxide batteries, Ni-MH (nickel-metal hydride) batteries using lead-acid batteries, and metal hydrides as negative active materials, and sealed nickel. Rechargeable secondary batteries such as cadmium batteries, lithium-metal batteries, lithium-ion batteries (LIB), lithium-ion batteries such as lithium polymer batteries (LPB), and fuel cells , Solar cells and the like.

이 중 1차 전지는 용량이 적고, 수명이 짧으며, 재활용이 되지 않으므로 환경 오염을 일으키는 문제점이 있는데 반하여, 이차 전지는 재충전하여 사용할 수 있어 수명이 길며, 전압도 1차 전지보다 월등히 높아 성능과 효율성 측면에서 우수하며, 폐기물의 발생도 적어 환경 보호 측면에서도 우수하다.Among them, primary batteries have a small capacity, short lifespan, and are not recycled, causing environmental pollution. On the other hand, secondary batteries can be recharged and used for a long time, and voltage is much higher than that of primary batteries. It is excellent in terms of efficiency, and generates less waste, which is also excellent in environmental protection.

상기한 전지 중 리튬 계열 이차 전지가 다른 전지에 비하여 작동 전압과 중량당 에너지 밀도가 우수하여 현재 휴대폰, 노트북 컴퓨터, 캠코더 등 소형 경량화가 요구되는 첨단 전자 기기 분야에서 그 수요가 증가하고 있다.Among the above-described batteries, lithium-based secondary batteries have a higher operating voltage and energy density per weight than other batteries, and thus, demands of the lithium-based secondary batteries are increasing in the field of high-tech electronic devices such as mobile phones, notebook computers, camcorders, and the like which require small size and light weight.

상기한 리튬 계열 이차 전지는 양극, 음극, 전해질로 구성되어 있고 전해질이 액체 유기용매로 구성된 액체 리튬 계열 전지와 폴리머로 구성된 폴리머 리튬 계열 전지가 있다.The lithium-based secondary battery includes a liquid lithium-based battery composed of a positive electrode, a negative electrode, an electrolyte, and an electrolyte composed of a liquid organic solvent, and a polymer lithium-based battery composed of a polymer.

상기한 양극활물질로는 리튬 금속 또는 리튬 전이 금속 산화물(LiCoO2, LiNiO2, LiMn2O4, LiNixCo1-xOy)을 사용하고, 세퍼레이터로는 폴리에틸렌 계열의 다공성 고분자를 사용한다. 또한, 음극활물질로는 초기에는 리튬 금속을 사용하였는데 충방전 과정에서 용량이 크게 감소되고 리튬 이온이 석출되어 덴드라이트(dendrite)상을 형성함에 따라서 세퍼레이터를 파괴하여 전지의 수명을 단축시키는 결과를 초래하였다. 이를 해결하기 위하여 리튬 합금을 사용하였으나, 리튬 금속을 사용하는 경우에 발생하는 상기한 문제점을 크게 개선하지 못하였다. 이러한 문제점을 해결하기 위하여 전해액 중의 Li 이온이 탄소 재료 속으로 인터카레이션(intercalation)되고 다시 디인터카레이션(deintercalation)되는 과정을 반복하는 과정에서 전기 에너지를 저장 방출하는 정도가 달라지는 원리를 이용하여 최근에는 탄소재를 음극활물질로 사용하고 있다. 음극활물질로 사용하는 탄소재 물질에는 비정질 탄소계 물질과 결정성 탄소계 물질이 있다.Lithium metal or a lithium transition metal oxide (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi x Co 1-x O y ) is used as the cathode active material, and a polyethylene-based porous polymer is used as the separator. In addition, lithium metal was initially used as a negative electrode active material, and in the process of charging and discharging, the capacity is greatly reduced, and lithium ions are precipitated to form a dendrite phase, which causes the separator to be destroyed, resulting in a shorter battery life. It was. In order to solve this problem, a lithium alloy was used, but the above-described problems caused when using lithium metal did not greatly improve. In order to solve this problem, the principle of storing and releasing electric energy in the process of repeating the process of intercalating and deintercalating Li ions in the electrolyte into the carbon material is used. Recently, carbon materials are used as negative electrode active materials. The carbonaceous material used as the negative electrode active material includes an amorphous carbon material and a crystalline carbon material.

고용량의 전지를 제조하기 위하여는 상기한 음극 및 양극의 중량비를 적절히 조절하여야한다. 양극 활물질로 LiCoO2를 사용하고 메조카본 마이크로비즈(mesocarbon microbeads) 또는 메조카본 파이버(mesocarbon fiber) 등의 초기사이클의 이용효율이 90% 이상으로 높은 탄소 재료를 음극으로 사용하는 리튬 이온 이차 전지의 경우는 음극과 양극의 중량비를 용이하게 조절할 수 있다. 그러나 초기 리튬 이온 이용 효율(방출 용량/흡장 용량)이 70∼80%로 낮는 음극 활물질을 사용하는 경우에는 음극과 양극의 중량 및 용량비를 적정한 수준으로 설계하기가 어렵다. 따라서, 전지 전체의 효율이 최적화되기 어려워 수명이 길고 용량이 크며, 특히 안정성있는 리튬 전지를 제조하기 힘든 문제점이 있다.In order to manufacture a high capacity battery, the weight ratio of the negative electrode and the positive electrode must be properly adjusted. Lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using carbon material as a negative electrode with high efficiency of 90% or more in the initial cycle such as mesocarbon microbeads or mesocarbon fiber The weight ratio of the negative electrode and the positive electrode can be easily adjusted. However, when using a negative electrode active material having a low initial lithium ion utilization efficiency (emission capacity / storage capacity) of 70 to 80%, it is difficult to design an appropriate weight and capacity ratio of the negative electrode and the positive electrode. Therefore, it is difficult to optimize the efficiency of the entire battery, the long life and the large capacity, there is a problem in particular difficult to manufacture a stable lithium battery.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 음극 및 양극 활물질 중량비를 최적의 조건으로 조절하여 수명이 길고, 용량이 크며 안정성 있는 리튬 이온 이차 전지를 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide a lithium ion secondary battery having a long life, large capacity and stable by adjusting the weight ratio of the negative electrode and the positive electrode active material to the optimum conditions.

[과제를 해결하기 위한 수단][Means for solving the problem]

상기한 목적을 달성하기 위하여, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 전해질; 및 세퍼레이터를 포함하며, 상기 음극 활물질은 리튬 양극을 사용한 반쪽 전지에서의 초기 충방전 효율이 70∼80%의 범위에서 방전 용량이 α(Ah/g)인 리튬 이온 이차 전지에 있어서, 상기 양극 활물질에 대한 음극 활물질의 중량비가 1.1α∼1.6α인 것을 특징으로 하는 리튬 이온 이차 전지를 제공한다.In order to achieve the above object, the present invention is a positive electrode comprising a positive electrode active material; A negative electrode including a negative electrode active material; Electrolyte; And a separator, wherein the negative electrode active material is a lithium ion secondary battery having a discharge capacity of α (Ah / g) in a range of 70 to 80% of an initial charge and discharge efficiency in a half battery using a lithium positive electrode, wherein the positive electrode active material It provides a lithium ion secondary battery characterized in that the weight ratio of the negative electrode active material to the ratio of 1.1α to 1.6α.

이하 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 리튬 이온 이차 전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 전해질 및 세퍼레이터를 포함하며, 상기 음극 활물질은 리튬 양극을 사용한 반쪽 전지에서의 초기 충방전 효율이 70∼80%의 범위에서 방전 용량이 α(Ah/g)인 흑연계 탄소 활물질인 것인 리튬 이온 이차 전지에 있어서, 상기 양극 활물질에 대한 음극 활물질의 중량비가 1.1α∼1.6α인 것을 특징으로 한다.The lithium ion secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including an negative electrode active material, an electrolyte and a separator, wherein the negative electrode active material has an initial charge and discharge efficiency of 70 to 80% in a half cell using a lithium positive electrode. In the lithium ion secondary battery which is a graphite-based carbon active material having a discharge capacity of α (Ah / g) in the range, the weight ratio of the negative electrode active material to the positive electrode active material is 1.1α to 1.6α.

양극 활물질에 대한 음극 활물질의 중량비가 1.1α 미만인 경우는 음극 표면에 리튬 금속의 석출이 일어나서, 덴드라이트를 형성하여 세퍼레이터를 파괴하고 따라서 전지의 단락이 발생하므로 위험하여 바람직하지 않다. 또한, 1.6α보다 큰 경우는 초기 충방전 효율이 현저하게 떨어지므로 바람직하지 않다.When the weight ratio of the negative electrode active material to the positive electrode active material is less than 1.1α, lithium metal is precipitated on the surface of the negative electrode, which forms a dendrite, destroys the separator, and thus shorts the battery. Moreover, when larger than 1.6 (alpha), since initial stage charging and discharging efficiency falls remarkably, it is not preferable.

상기 양극 활물질은 LiCoO2를 사용한다.LiCoO 2 is used as the cathode active material.

[실시예]EXAMPLE

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 일실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are merely examples of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

양극의 제조Manufacture of anode

LiCoO291 중량%, 도전제 4 중량% 및 결착제 5 중량%를 혼합하여 슬러리를 제조하였다. 상기 슬러리를 두께 10㎛, 폭 46㎜의 알루미늄 박판의 양면에 균일하게 도포하고 압연하여 12.16g의 활물질 중량을 가지는 양극을 제조하였다.A slurry was prepared by mixing 91 wt% LiCoO 2 , 4 wt% conductive material and 5 wt% binder. The slurry was uniformly coated and rolled on both sides of an aluminum thin plate having a thickness of 10 μm and a width of 46 mm to prepare a positive electrode having an active material weight of 12.16 g.

음극의 제조Preparation of Cathode

흑연계 탄소재료 90 중량%에 결착제 10 중량%를 첨가하고 혼합하여 슬러리를 제조하였다. 상기 슬러리를 두께 20㎛, 폭 46㎜ 동판의 양면에 균일하게 도포하고 압연하여 4.57g의 활물질 중량을 갖는 음극을 제조하였다.Slurry was prepared by adding 10 wt% of binder to 90 wt% of graphite carbon material. The slurry was uniformly coated and rolled on both sides of a 20 μm thick and 46 mm wide copper plate to prepare a negative electrode having an active material weight of 4.57 g.

전해질의 제조Preparation of Electrolyte

에틸렌 카보네이트와 디메틸카보네이트의 부피비가 1 : 1인 용액에 LiPF6을 1몰 용해하여 유기전해액을 제조하였다.An organic electrolyte was prepared by dissolving 1 mol of LiPF 6 in a solution having a volume ratio of ethylene carbonate and dimethyl carbonate of 1: 1.

전지의 제조Manufacture of batteries

상기한 방법으로 제조한 양극과 음극을 탭 웰딩하고 폴리프로필렌 재질의 세퍼레이터(celgard 2400)을 사이에 두고 와인딩하여 젤리 롤 타입상으로 만든 다음 18650 타입의 원통형 캔에 삽입후 전해액 4.8g을 붓고 상부용접하여 리튬 이온 이차 전지를 제조하였다.The positive electrode and the negative electrode manufactured by the above method were tab-welded and wound with a polypropylene separator (celgard 2400) in between to make a jelly roll type, and then inserted into an 18650 cylindrical can. To produce a lithium ion secondary battery.

상기한 방법으로 음극을 제조한 후 리튬 대극의 코인 타입의 반쪽 전지를 제조하고 0.5mA/㎠의 정전류로 0.001V 정전압에서 5mA/g 전류 컷 오프하여 충전하고 같은 전류로 1V까지 정전류 방전하여 탄소활물질의 용량과 효율을 측정한 결과 초기방전 용량 330mAh/g, 효율 72%의 결과를 나타내었다.After preparing the negative electrode by the above-described method, a coin-type half-cell of lithium counter electrode was prepared, cut off at 5 mA / g current at 0.001 V constant voltage at a constant current of 0.5 mA / cm 2, and then charged at a constant current to 1 V at the same current to obtain a carbon active material. As a result of measuring the capacity and efficiency of, the initial discharge capacity was 330mAh / g and the efficiency was 72%.

(실시예 2-3)(Example 2-3)

음극 활물질 중량을 하기한 표 1에 나타낸 것과 같이 변경한 것을 제외하고는 제외하고는 상기한 실시예 1과 동일하게 리튬 이온 이차 전지를 제조하였다.A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight of the negative electrode active material was changed as shown in Table 1 below.

(대조예 1-2)(Control 1-2)

음극 활물질의 중량을 하기한 표 1에 나타낸 것과 같이 변경한 것을 제외하고는 상기한 실시예 1과 동일하게 리튬 이온 이차 전지를 제조하였다.A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight of the negative electrode active material was changed as shown in Table 1 below.

상기한 실시예 1-3 및 대조예 1-2의 방법으로 제조한 리튬 이온 전지를 300mA의 정전류로 4.1V의 정전압에서 3시간 동안 충전하고 같은 전류크기로 2.75V 종지전압으로 방전하였다. 이 충방전하는 동안 초기효율과 30사이클 후의 용량비(사이클 특성) 그리고 리튬 석출 유무를 측정하여 그 결과를 하기한 표 1에 나타내었다.The lithium ion battery prepared by the method of Example 1-3 and Comparative Example 1-2 was charged for 3 hours at a constant voltage of 4.1V with a constant current of 300mA and discharged to a 2.75V end voltage with the same current size. During the charging and discharging, the initial efficiency, the capacity ratio (cycle characteristics) after 30 cycles, and the presence or absence of lithium precipitation were measured and the results are shown in Table 1 below.

α=0.33α = 0.33 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 대조예 1Comparative Example 1 대조예 2Comparative Example 2 음극 질량[g]Cathode Mass [g] 4.574.57 5.585.58 6.396.39 3.673.67 7.447.44 양극 질량[g]Anode Mass [g] 12.1612.16 12.1612.16 12.1612.16 12.1612.16 12.1612.16 음/양극 중량비Negative / positive weight ratio 1.15α1.15α 1.39α1.39α 1.59α1.59α 0.9α0.9α 1.85α1.85α 초기효율[%]Initial Efficiency [%] 9292 9191 9090 9191 8585 사이클 특성[%]Cycle characteristic [%] 9494 9494 9595 8484 9494 리튬석출 유무Lithium Precipitation 석출 ×Precipitation × 석출 ×Precipitation × 석출 ×Precipitation × 석출 ○Precipitation ○ 석출 ×Precipitation ×

상기 표에 나타낸 것과 같이, 양극에 대한 음극활물질의 중량비가 1.1α인 경우 음극 표면에 리튬 금속의 석출이 일어나고 1.6α 이상의 경우 초기충방전 효율이 심각하게 떨어짐을 알 수 있다. 따라서 중량비가 1.1α∼1.6α에서 리튬 금속의 석출을 방지하고 안정성을 확보할 있으며 높은 초기효율과 장수명의 리튬이온이차전지를 설계할 수 있다.As shown in the table, when the weight ratio of the negative electrode active material to the positive electrode is 1.1α it can be seen that the precipitation of lithium metal occurs on the surface of the negative electrode, the initial charge and discharge efficiency is severely lowered if more than 1.6α. Therefore, the weight ratio of 1.1α to 1.6α prevents the precipitation of lithium metal and ensures stability, and it is possible to design a high initial efficiency and long life lithium ion secondary battery.

상기한 바와 같이, 본 발명은 양극 및 음극 활물질의 중량비율을 조절하여 수명이 길고, 안전하며 용량이 큰 리튱 이온 이차 전지를 제조할 수 있다.As described above, the present invention can manufacture a lithium ion secondary battery having a long life, safety and large capacity by adjusting the weight ratio of the positive electrode and the negative electrode active material.

Claims (3)

양극 활물질을 포함하는 양극;A positive electrode including a positive electrode active material; 음극 활물질을 포함하는 음극;A negative electrode including a negative electrode active material; 전해질; 및Electrolyte; And 세퍼레이터Separator 를 포함하며, 상기 음극 활물질은 리튬 양극을 사용한 반쪽 전지에서의 초기 충방전 효율이 70∼80%의 범위에서 방전 용량이 α(Ah/g)인 흑연계 탄소 활물질인 것인 리튬 이온 이차 전지에 있어서,The negative electrode active material is a lithium ion secondary battery that is a graphite-based carbon active material having a discharge capacity of α (Ah / g) in the range of 70 to 80% of the initial charge and discharge efficiency in the half-cell using a lithium positive electrode In 상기 양극 활물질에 대한 음극 활물질의 중량비가 1.1α∼1.6α인 것을 특징으로 하는 리튬 이온 이차 전지.The weight ratio of the negative electrode active material to the positive electrode active material is 1.1α to 1.6α, characterized in that the lithium ion secondary battery. 제 1 항에 있어서, 상기 음극 활물질은 비정질계 탄소재인 것인 리튬 이온 이차 전지.The lithium ion secondary battery of claim 1, wherein the negative electrode active material is an amorphous carbon material. 제 1 항에 있어서, 상기 양극 활물질은 LiCoO2인 것인 리튬 이온 이차 전지.The lithium ion secondary battery of claim 1, wherein the cathode active material is LiCoO 2 .
KR1019980018311A 1998-05-21 1998-05-21 Lithium ion secondary battery KR100303537B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980018311A KR100303537B1 (en) 1998-05-21 1998-05-21 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980018311A KR100303537B1 (en) 1998-05-21 1998-05-21 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
KR19990085717A true KR19990085717A (en) 1999-12-15
KR100303537B1 KR100303537B1 (en) 2001-11-30

Family

ID=37529791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980018311A KR100303537B1 (en) 1998-05-21 1998-05-21 Lithium ion secondary battery

Country Status (1)

Country Link
KR (1) KR100303537B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790270B1 (en) * 2003-05-16 2008-01-02 마쯔시다덴기산교 가부시키가이샤 Nonaqueous electrolyte secondary battery and charge/discharge system thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168714A (en) * 1992-11-30 1994-06-14 Ricoh Co Ltd Electrode and secondary battery using thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790270B1 (en) * 2003-05-16 2008-01-02 마쯔시다덴기산교 가부시키가이샤 Nonaqueous electrolyte secondary battery and charge/discharge system thereof
US9088035B2 (en) 2003-05-16 2015-07-21 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and charge/discharge system thereof

Also Published As

Publication number Publication date
KR100303537B1 (en) 2001-11-30

Similar Documents

Publication Publication Date Title
WO2022206877A1 (en) Electrochemical device and electronic device
Megahed et al. Lithium-ion rechargeable batteries
EP2427929B1 (en) Li-ion battery with blended electrode
US20230231100A1 (en) Electrochemical devices, electronic devices
US20220020976A1 (en) Method of producing negative electrode for secondary battery
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
KR100560538B1 (en) Negative active material for rechargeable ion lithium battery
KR20150133167A (en) Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
KR100335222B1 (en) Nonaqueous Electrolyte
CN215644574U (en) Electrode plate of secondary battery and secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
KR100303537B1 (en) Lithium ion secondary battery
CN2433737Y (en) Lithium ion power cell
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JPH09171825A (en) Secondary battery having nonaqueous solvent
KR102536141B1 (en) Electrolyte system for lithium metal battery and lithium metal battery comprising the same
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
CN2433736Y (en) Lithium ion secondary battery
KR20190083108A (en) Electrolyte system and lithium metal battery comprising the same
JPH07302618A (en) Secondary battery with nonaqueous solvent electrolyte
US20210234149A1 (en) Lithium cells and methods of making and use thereof
JPH08190933A (en) Secondary battery having nonaqueous solvent electrolyte
JP2001313024A (en) Lithium secondary battery
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
KR100553733B1 (en) Organic electrolyte compositions and lithium secondary battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170622

Year of fee payment: 17

EXPY Expiration of term