KR19990084819A - Catalyst and method for producing nitrogen oxide and particulate matter discharged from diesel engine at the same time - Google Patents

Catalyst and method for producing nitrogen oxide and particulate matter discharged from diesel engine at the same time Download PDF

Info

Publication number
KR19990084819A
KR19990084819A KR1019980016823A KR19980016823A KR19990084819A KR 19990084819 A KR19990084819 A KR 19990084819A KR 1019980016823 A KR1019980016823 A KR 1019980016823A KR 19980016823 A KR19980016823 A KR 19980016823A KR 19990084819 A KR19990084819 A KR 19990084819A
Authority
KR
South Korea
Prior art keywords
catalyst
particulate matter
nitrogen oxide
hydrate
nitrate
Prior art date
Application number
KR1019980016823A
Other languages
Korean (ko)
Other versions
KR100258585B1 (en
Inventor
강동진
홍성수
오광중
조경목
류봉기
박대원
Original Assignee
토니헬
볼보건설기계코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토니헬, 볼보건설기계코리아 주식회사 filed Critical 토니헬
Priority to KR1019980016823A priority Critical patent/KR100258585B1/en
Publication of KR19990084819A publication Critical patent/KR19990084819A/en
Application granted granted Critical
Publication of KR100258585B1 publication Critical patent/KR100258585B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 제거할 수 있는 촉매 및 그 제조방법에 관한 것으로, 1-X-Y: X : Y: 1(X 및 Y는 0 내지 1이고, X+Y는 0 내지 1)몰비의 La 질산염 또는 그 수화물, Cs 질산염 또는 그 수화물, Ce 질산염 또는 그 수화물, 및 Co 질산염 또는 그 수화물을 능금산과 혼합하여 물에 녹여 용액으로 만들고, 염기를 첨가하여 pH를 약산성으로 조절한 후, 건조 및 소성시키는 것으로 구성되는 란타노이드계 페롭스카이트 촉매의 제조방법 및 상기 방법에 의해 제조된 X가 0 내지 1이고, M이 Cs 또는 Ce인 일반식 La1-XMXCoO3의 란타노이드계 페롭스카이트 촉매를 특징으로 한다.The present invention relates to a catalyst capable of simultaneously removing nitrogen oxide and particulate matter discharged from a diesel engine, and a method for preparing the same, wherein 1-XY: X: Y: 1 (X and Y are 0 to 1, and X + Y 0 to 1) molar ratio of La nitrate or its hydrate, Cs nitrate or its hydrate, Ce nitrate or its hydrate, and Co nitrate or its hydrate are mixed with nitric acid and dissolved in water to make a solution. And a lanthanoid of general formula La1-XMXCoO3, wherein X is 0 to 1 and M is Cs or Ce, and the lanthanoid-based perovskite catalyst is composed of drying and calcining. It is characterized by a perovskite catalyst.

Description

디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 제거하기 위한 촉매 및 그 제조방법Catalyst and method for producing nitrogen oxide and particulate matter discharged from diesel engine at the same time

본 발명은 디젤엔진에서 배출되는 질소산화물 및 입자상 물질을 동시에 제거하기 위한 촉매 및 그 제조방법에 관한 것으로, 더욱 상세하게는 디젤엔진에서 배출되는 질소산화물 및 입자상 물질을 동시에 제거하기 위한 란타노이드계 페롭스카이트 촉매 및 능금산법에 의한 이들의 제조방법에 관한 것이다.The present invention relates to a catalyst for simultaneously removing nitrogen oxide and particulate matter discharged from a diesel engine and a method of manufacturing the same, and more particularly, to a lanthanoid-based ferrophor for simultaneously removing nitrogen oxide and particulate matter discharged from a diesel engine. The present invention relates to a sky catalyst and a process for producing them by the nitric acid method.

디젤엔진에서 배출되는 오염물질로는 일산화탄소, 탄화수소, 질소산화물 및 입자상 물질등이 있다. 디젤엔진은 공기가 비교적 충분한 상태에서 운전되므로, 이들 오염물질 가운데 일산화탄소와 탄화수소는 휘발유 자동차에 비해 크게 문제가 없는 편이다. 그러나, 질소 산화물(NOx)과 입자상 물질은 디젤 자동차 오염물질로 크게 문제가 되고 있으므로 이에 대한 효과적인 처리가 필요한 실정이다. 이러한 처리를 위해 연소실 개선, 연료분사의 개선, 흡기계의 개선 및 배출가스의 재순환 등을 이용하고 있으나, 아직 완벽한 기술로서 인정받지는 못하고 있는 실정이다. 질소산화물은 광화학 스모그 등 심각한 환경문제를 야기한다. 따라서, 자동차 배기가스 중의 질소산화물을 줄이려는 노력이 꾸준히 진행되어 왔었다. 현재까지 알려진 질소 산화물의 처리방법으로 주로 촉매를 이용하여 연료에 포함되어 있는 질소 화합물을 미리 제거하는 연료 탈질화법, 연소 과정에서 이를 줄이는 연소수정법 및 배기가스를 처리하는 후처리법 등이 있다. 이 중에서 세계적으로 가장 많은 연구가 진행되고 있는 것은 후처리법 중에서 촉매를 이용하여 질소 산화물을 분해하는 방법이다. 휘발유 자동차의 삼원촉매의 개발 이후 많은 연구가 진행되고 있으며, 금속으로 치환된 제올라이트나 금속산화물 촉매들이 개발되어 왔다.Pollutants emitted from diesel engines include carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter. Diesel engines operate with relatively sufficient air, so carbon monoxide and hydrocarbons are less problematic than gasoline vehicles. However, since nitrogen oxides (NOx) and particulate matter are a big problem as diesel vehicle pollutants, there is a need for effective treatment. For this treatment, combustion chamber improvement, fuel injection improvement, intake system improvement, and exhaust gas recirculation are used, but they are not yet recognized as a perfect technology. Nitrogen oxides cause serious environmental problems such as photochemical smog. Therefore, efforts to reduce nitrogen oxides in automobile exhaust gas have been steadily progressed. Known methods for treating nitrogen oxides include fuel denitrification, which preliminarily removes nitrogen compounds contained in the fuel using catalysts, combustion modifications for reducing them during combustion, and post-treatment for treating exhaust gases. Among them, the most researched in the world is a method of decomposing nitrogen oxide using a catalyst in the post-treatment method. Since the development of the three-way catalyst of gasoline cars, many studies have been conducted, and metal-substituted zeolite or metal oxide catalysts have been developed.

또한, 본 발명자는 디젤엔진에서 배출되는 질소산화물을 분해시키기 위한 촉매에 관해 연구한 결과 표면적이 크고 질소 산화물 분해 반응에서 우수한 촉매활성 및 질소산화물의 전환율을 나타내는 란타나이드계 페롭스카이트 촉매를 개발하여 한국 특허출원 제 97-14017 호에 게재한 바 있다.In addition, the present inventors have studied a catalyst for decomposing nitrogen oxides emitted from a diesel engine, and thus, a lanthanide-based perovskite catalyst having a large surface area and excellent catalytic activity and conversion rate of nitrogen oxides in a nitrogen oxide decomposition reaction was developed. It was published in Korean Patent Application No. 97-14017.

한편, 디젤엔진에서 많이 배출되는 입자상 물질은 크게 용해성 유기물질(Soluble Organic Fraction : SOF), 그을음 및 황화물로 구성된다. 따라서, 배기가스 성분중 대부분 탄화수소로 구성되는 SOF, 기상 탄화수소, 일산화탄소 및 냄새성분의 제거가 필요하다. 이러한 배출가스를 정화시키는 기술은 크게 대체연료로의 전환, 경유의 고품질화, 엔진성능의 개선 및 후처리장치의 부착 등을 포함하며 이들은 상호 보완되어 사용된다.On the other hand, the particulate matter that is emitted a lot from the diesel engine is largely composed of Soluble Organic Fraction (SOF), soot and sulfide. Therefore, it is necessary to remove SOF, gaseous hydrocarbons, carbon monoxide and odor components which are mostly composed of hydrocarbons in the exhaust gas components. The technologies for purifying this exhaust gas largely include conversion to alternative fuel, high quality of diesel, improvement of engine performance and attachment of aftertreatment devices, which are complementary to each other.

후처리 기술은 경유 엔진에서 배출되는 배기가스 내에 포함된 공해물질을 운행조건에서 연속적으로 제거하는 기술로서 배기가스 내의 매연을 여과제로 여과 및 포집하는 여과기술과 포집된 입자상 물질을 운행조건에서 연속적으로 연소시켜 여과장치를 재생시키는 재생기술로 나누어진다. 이들 후처리 기술 중에서 필터 트랩 방식은 매우 높은 여과효율을 나타내므로 세계적으로 활발한 연구가 진행되고 있으며, 현재 실차실험 및 상업화단계의 개발도 추진되고 있다. 그러나, 필터 트랩 방식의 입자상 물질 제거장치는 콘트롤 장치의 복잡성, 내구성 및 가격 등의 문제가 있다.Post-treatment technology is a technology that continuously removes pollutants contained in exhaust gas emitted from diesel engines under operating conditions. It is a filtration technology that filters and collects soot in exhaust gas with a filter and continuously collects particulate matter under operating conditions. It is divided into regeneration technology that burns and regenerates the filtration device. Among these post-treatment technologies, the filter trap method shows very high filtration efficiency, and therefore, active research is being conducted worldwide, and the development of actual vehicle experiment and commercialization stage is also being promoted. However, the particulate matter removing device of the filter trap method has problems such as complexity, durability and price of the control device.

한편, 디젤 자동차에서 배출되는 입자상 물질을 촉매를 사용하여 저감시키는 촉매전환장치는 입자상 물질의 저감 뿐 아니라 일산화탄소, 탄화수소, 냄새성분, 알데히드, PAH, 니트로-PAH와 같은 기상 또는 입자상 물질에 결합된 유해물질까지도 제거한다. 또한, 장치구조가 간단하고 가격이 저렴하며 연료소모율이 상대적으로 낮아 자동차의 자동차의 변경이 필요하지 않아 쉽게 장착할 수 있다. 따라서, 높은 활성을 가진 촉매만 개발되면 담체에 담지시켜 사용할 경우, 트랩 시스템과 같이 입자상 물질을 여과한 후 재생하여야 하는 재생 시스템의 복잡성, 난점 및 고비용의 문제점을 해결할 수 있다.On the other hand, catalytic converters for reducing particulate matter emitted from diesel vehicles using catalysts are not only harmful to particulate matter but also harmful to gaseous or particulate matter such as carbon monoxide, hydrocarbons, odorants, aldehydes, PAH, and nitro-PAH. Remove the material. In addition, the device structure is simple, the price is low, and the fuel consumption rate is relatively low, so it is not necessary to change the car of the car can be easily installed. Therefore, if only a catalyst having high activity is developed and used on a carrier, it is possible to solve the problems of complexity, difficulty and high cost of a regeneration system that require regeneration after filtering particulate matter such as a trap system.

현재까지 입자상 물질의 제거에 이용되어 온 촉매는 주로 금속 산화물들로서, PbO, Co3O4, V2O5, MoO3 및 CuO 등이 좋은 활성을 나타내는 것으로 알려져 있다. 또한 귀금속 촉매로 백금이나 팔라듐 등이 우수한 촉매로 보고되어 있으며, 부반응인 이산화황의 산화를 억제하는 바나듐 산화물이 조촉매로 사용되어진 보고도 있다.The catalysts used to remove particulate matters to date are mainly metal oxides, and it is known that PbO, Co 3 O 4, V 2 O 5, MoO 3 and CuO exhibit good activity. In addition, as a noble metal catalyst, platinum, palladium and the like have been reported as excellent catalysts, and there have been reports that vanadium oxides that inhibit oxidation of sulfur dioxide, which is a side reaction, have been used as cocatalysts.

그러나, 현재까지 질소산화물과 입자상 물질을 동시에 제거하는 촉매의 실용화는 이루어지지 않은 실정이다.However, until now, practical use of a catalyst for simultaneously removing nitrogen oxide and particulate matter has not been achieved.

따라서, 본 발명의 목적은 디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 제거할 수 있는 촉매를 제공하는 것이다.Accordingly, an object of the present invention is to provide a catalyst capable of simultaneously removing nitrogen oxide and particulate matter discharged from a diesel engine.

본 발명의 다른 목적은 디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 높은 효율로 제거할 수 있는 촉매의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a catalyst capable of simultaneously removing nitrogen oxide and particulate matter discharged from a diesel engine with high efficiency.

상기한 본 발명의 목적은 1-X-Y: X : Y: 1(X 및 Y는 0 내지 1이고, X+Y는 0 내지 1)몰비의 La 질산염 또는 그 수화물, Cs 질산염 또는 그 수화물, Ce 질산염 또는 그 수화물, 및 Co 질산염 또는 그 수화물을 능금산과 혼합하여 물에 녹여 용액으로 만들고, 염기를 첨가하여 pH를 약산성으로 조절한 후, 건조 및 소성시키는 것으로 구성되는 란타노이드계 페롭스카이트 촉매의 제조방법에 의해 달성된다.The above object of the present invention is 1-XY: X: Y: 1 (X and Y is 0 to 1, X + Y is 0 to 1) molar ratio La nitrate or its hydrate, Cs nitrate or its hydrate, Ce nitrate Alternatively, the hydrate and Co nitrate or its hydrate are mixed with nitric acid to dissolve in water to form a solution, and the base is adjusted to weakly acidic pH to prepare a lanthanoid-based perovskite catalyst comprising drying and calcining. Is achieved by the method.

또한 본 발명의 다른 목적은 상기 방법에 의해 제조된 X 및 Y는 0 내지 1이고, X+Y는 0 내지 1인 일반식 La1-X-YCsXCeYCoO3의 란타노이드계 페롭스카이트 촉매에 의해 달성된다.Another object of the present invention is achieved by a lanthanoid-based perovskite catalyst of general formula La1-X-YCsXCeYCoO3 wherein X and Y are 0 to 1 and X + Y is 0 to 1 prepared by the above method.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

란타노이드계 페롭스카이트 촉매는 종래에는 고상반응법으로 제조하거나 구연산법으로 제조하였다. 그러나, 이러한 방법에 의해 제조된 란타노이드계 페롭스카이트 촉매는 표면적이 적었으므로, 본 발명에서는 능금산법으로 제조한 결과 고상반응법으로 제조한 경우보다 표면적이 약 50배 정도 증가하였다. 표면적의 증가로 인해 질소산화물의 분해반응 및 입자상 물질의 산화반응에서 활성이 증가하였다. 또, 란타노이드계 페롭스카이트 촉매의 A 사이트(Site)를 알칼리 금속으로 치환시키면 반응활성이 크게 증가함을 확인할 수 있었다. 또한, 고상법으로 제조된 촉매의 경우 대부분 400℃ 이상의 고온에서만 활성을 나타내나 본 발명에 의해 제조된 촉매는 250-400℃에서 높은 활성을 나타내었다.Lanthanoid-based perovskite catalysts are conventionally prepared by the solid phase reaction method or by the citric acid method. However, since the lanthanoid-based perovskite catalyst prepared by this method had a small surface area, in the present invention, the surface area of the lanthanoid-based perovskite catalyst was increased by about 50 times as compared to that produced by the solid phase reaction method. Due to the increase of the surface area, the activity increased in the decomposition of nitrogen oxides and the oxidation of particulate matter. In addition, when the A site (Site) of the lanthanoid-based perovskite catalyst was replaced with an alkali metal, it was confirmed that the reaction activity was greatly increased. In addition, in the case of the catalyst prepared by the solid-phase method, most of the activity only at a high temperature of 400 ℃ or more, but the catalyst prepared by the present invention showed a high activity at 250-400 ℃.

촉매를 구성하는 각 금속의 질산염이나 그 수화물과 능금산을 혼합하여 물에 녹인 후, 암모니아수 등의 염기를 가해 pH를 약산성으로 조절하고, 건조기에서 고온건조로 충분히 건조시켜 다공질로 만든다. 분쇄하여 분말로 만들어 3단계에 걸쳐 온도를 변화시켜가면서 소성하여 본 발명의 란타노이드계 페롭스카이트 촉매를 제조한다.Nitrate of each metal constituting the catalyst, its hydrate, and nitric acid are mixed and dissolved in water, and then a pH such as aqueous ammonia is added to adjust the pH to weak acidity, and then dried sufficiently in a drier at high temperature to be porous. The lanthanoid-based perovskite catalyst of the present invention is prepared by pulverizing and pulverizing the powder to change the temperature over three steps.

본 발명에 따르는 질소산화물의 분해반응 및 입자상 물질의 산화반응은 상압의 압력과 넓은 범위의 온도에서 행해지는 것이 바람직하다. 왜냐하면 실제 배출가스의 온도가 운전조건에 따라 여러 온도를 나타내기 때문이다. 또한, 질소산화물의 농도, 환원제인 탄화수소의 농도, 산소의 농도 및 수증기의 농도 등도 실제 배출가스의 농도범위를 전부 보전할 수 있는 범위를 택하였다. 그리고, 공간속도역시 실제 배출가스의 농도범위를 전부 보전할 수 있는 범위를 택하였다. 그리고 공간속도 역시 실제 배출가스의 조건에 맞추어 행하였다.The decomposition reaction of nitrogen oxides and the oxidation reaction of particulate matter according to the present invention are preferably carried out at atmospheric pressure and at a wide range of temperatures. This is because the actual exhaust gas temperature shows several temperatures depending on the operating conditions. In addition, the concentration of nitrogen oxide, the concentration of hydrocarbon as a reducing agent, the concentration of oxygen, and the concentration of water vapor, etc. were also selected to preserve the concentration range of the actual exhaust gas. In addition, the space velocity was selected to preserve the concentration range of the actual exhaust gas. The space velocity was also adjusted to the conditions of the actual emissions.

즉, 상압의 압력과 200-700℃, 바람직하게는 250-400℃의 온도 범위에서, 질소산화물의 농도를 0-2000ppm, 환원제인 탄화수소의 농도를 0-2000ppm으로 하고 환원제로는 에탄, 프로판, 프로필렌 등의 탄화수소를 사용하였고, 산소의 농도를 0-20%, 물의 농도를 0-20%, 이산화황의 농도를 0-2000ppm, 공간속도는 10,000-100,000hr-1의 조건에서 행하였다.In other words, at a pressure of atmospheric pressure and a temperature range of 200-700 ° C., preferably 250-400 ° C., the concentration of nitrogen oxide is 0-2000 ppm and the concentration of hydrocarbon, which is a reducing agent, is 0-2000 ppm, and the reducing agent is ethane, propane, Hydrocarbons such as propylene were used, and the concentration of oxygen was 0-20%, the concentration of water 0-20%, the concentration of sulfur dioxide 0-2000ppm, and the space velocity 10,000-10,000hr-1.

또, 배출가스 중의 질소산화물 및 입자상 물질 제거를 위한 촉매로 사용하려면 장시간에 걸쳐 안정한 상태를 유지하여야 한다. 즉, 20,000km 이상의 주행에서도 그 활성을 유지하여야 하므로, 본 발명에서도 장시간에 걸쳐 촉매의 활성시험을 행하였다.In addition, in order to be used as a catalyst for removing nitrogen oxides and particulate matter in the exhaust gas, a stable state must be maintained for a long time. That is, since the activity must be maintained even when traveling more than 20,000 km, the catalyst activity test was also carried out for a long time in the present invention.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

La(NO3)3·6H2O 6.6691g, Ce(NO3)3·6H2O 2.1931g, CsNO3 1.0828g, Co(NO3)2·6H2O 7.5007g을 1N 능금산 6.7g과 혼합하고 초순수 100cc에 녹여 용액으로 만들고, 10%로 희석시킨 암모니아수에 서서히 적가하였다. 전체 용액을 충분히 교반하여 pH를 4.0으로 조절하였다. 건조기에서 150℃의 온도로 건조시켜 다공질로 만들고, 분쇄하였다. 전기로에서 200℃에서 30분, 350℃에서 30분, 600℃에서 12시간동안 소성시켜 촉매분말을 제조하였다. 이 촉매의 표면적은 25㎡/g이었다.6.6691g of La (NO3) 3.6H2O, 2.1931g of Ce (NO3) 3.6H2O, 1.0828g of CsNO3, 7.5007g of Co (NO3) 2.6H2O were mixed with 6.7g of 1N nitric acid and dissolved in 100cc of ultrapure water to make a solution. It was slowly added dropwise to ammonia water diluted to%. The whole solution was stirred well to adjust the pH to 4.0. Dry at a temperature of 150 ° C. in a drier to make porous and pulverized. A catalyst powder was prepared by calcination at 200 ° C. for 30 minutes, 350 ° C. for 30 minutes, and 600 ° C. for 12 hours. The surface area of this catalyst was 25 m 2 / g.

이 촉매를 고정상 반응장치의 반응기에 입자상 물질과 함께 넣고, 200-400℃의 온도 범위에서, 질소산화물의 농도 600ppm, 프로판의 농도를 1000ppm, 산소의 농도를 4%, 물의 농도를 5%, 이산화황의 농도를 1000ppm, 공간속도는 30,000hr-1의 조건에서 상압반응시킨 후, 생성물을 질소산화물 분석기 및 기체 크로마토그래피로 분석하였다. 분석결과는 표 1에 나타내었다.This catalyst is placed together with particulate matter in a reactor of a fixed bed reactor, and the concentration of 600 ppm of nitrogen oxides, 1000 ppm of propane, 4% of oxygen, 5% of water, and sulfur dioxide in the temperature range of 200-400 ° C. After the concentration of 1000ppm and the space velocity of the reaction at 30,000hr-1 at atmospheric pressure, the product was analyzed by nitrogen oxide analyzer and gas chromatography. The analysis results are shown in Table 1.

또, 장기간에 걸친 촉매의 안정성을 시험하기 위해 반응온도 300℃, 질소산화물의 농도 600ppm, 프로판의 농도를 1000ppm, 산소의 농도를 4%, 물의 농도를 5%, 이산화황의 농도를 1000ppm, 공간속도는 30,000hr-1의 조건에서 48시간 후, 생성물을 질소산화물 분석기 및 기체 크로마토그래피로 분석하였다. 질소산화물의 전환율은 31.8%, 입자상 물질의 제거율은 45.6%로 초기와 거의 변화가 없음을 알 수 있었다.In addition, to test the stability of the catalyst over a long period of time, the reaction temperature is 300 ° C, the nitrogen oxide concentration is 600 ppm, the propane concentration is 1000 ppm, the oxygen concentration is 4%, the water concentration is 5%, the sulfur dioxide concentration is 1000 ppm, and the space velocity. After 48 hours at 30,000hr-1 the product was analyzed by nitrogen oxide analyzer and gas chromatography. The conversion rate of nitrogen oxide was 31.8% and the removal rate of particulate matter was 45.6%.

실시예 2Example 2

La(NO3)3·6H2O 6.6691g, Ce(NO3)3·6H2O 4.3862g, Co(NO3)2·6H2O 7.5007g을 1N 능금산 6.7g과 혼합하고 초순수 100cc에 녹여 용액으로 만들고, 10%로 희석시킨 암모니아수에 서서히 적가하였다. 전체 용액을 충분히 교반하여 pH를 4.0으로 조절하였다. 건조기에서 150℃의 온도로 건조시켜 다공질로 만들고, 분쇄하였다. 전기로에서 200℃에서 30분, 350℃에서 30분, 600℃에서 12시간동안 소성시켜 촉매분말을 제조하였다. 이 촉매의 표면적은 20㎡/g이었다.6.6691g of La (NO3) 3.6H2O, 4.3862g of Ce (NO3) 3.6H2O, and 7.5007g of Co (NO3) 2.6H2O were mixed with 6.7g of 1N nitric acid, dissolved in 100cc of ultrapure water, and diluted to 10%. It was slowly added dropwise to ammonia water. The whole solution was stirred well to adjust the pH to 4.0. Dry at a temperature of 150 ° C. in a drier to make porous and pulverized. A catalyst powder was prepared by calcination at 200 ° C. for 30 minutes, 350 ° C. for 30 minutes, and 600 ° C. for 12 hours. The surface area of this catalyst was 20 m 2 / g.

이 촉매를 고정상 반응장치의 반응기에 입자상 물질과 함께 넣고, 200-400℃의 온도 범위에서, 질소산화물의 농도 600ppm, 프로판의 농도를 1000ppm, 산소의 농도를 4%, 물의 농도를 5%, 이산화황의 농도를 1000ppm, 공간속도는 30,000hr-1의 조건에서 상압반응시킨 후, 생성물을 질소산화물 분석기 및 기체 크로마토그래피로 분석하였다. 분석결과는 표 1에 나타내었다.This catalyst is placed together with particulate matter in a reactor of a fixed bed reactor, and the concentration of 600 ppm of nitrogen oxides, 1000 ppm of propane, 4% of oxygen, 5% of water, and sulfur dioxide in the temperature range of 200-400 ° C. After the concentration of 1000ppm and the space velocity of the reaction at 30,000hr-1 at atmospheric pressure, the product was analyzed by nitrogen oxide analyzer and gas chromatography. The analysis results are shown in Table 1.

또, 장기간에 걸친 촉매의 안정성을 시험하기 위해 반응온도 300℃, 질소산화물의 농도 600ppm, 프로판의 농도를 1000ppm, 산소의 농도를 4%, 물의 농도를 5%, 이산화황의 농도를 1000ppm, 공간속도는 30,000hr-1의 조건에서 48시간 후, 생성물을 질소산화물 분석기 및 기체 크로마토그래피로 분석하였다. 질소산화물의 전환율은 58.0%, 입자상 물질의 제거율은 34.1%로 초기와 거의 변화가 없음을 알 수 있었다.In addition, to test the stability of the catalyst over a long period of time, the reaction temperature is 300 ° C, the nitrogen oxide concentration is 600 ppm, the propane concentration is 1000 ppm, the oxygen concentration is 4%, the water concentration is 5%, the sulfur dioxide concentration is 1000 ppm, and the space velocity. After 48 hours at 30,000hr-1 the product was analyzed by nitrogen oxide analyzer and gas chromatography. The conversion rate of nitrogen oxide was 58.0% and the removal rate of particulate matter was 34.1%.

실시예 3Example 3

La(NO3)3·6H2O 11.1601g, Co(NO3)2·6H2O 7.5007g을 1N 능금산 6.7g과 혼 합하고 초순수 100cc에 녹여 용액으로 만들고, 10%로 희석시킨 암모니아수에 서서히 적가하였다. 전체 용액을 충분히 교반하여 pH를 4.0으로 조절하였다. 건조기에서 150℃의 온도로 건조시켜 다공질로 만들고, 분쇄하였다. 전기로에서 200℃에서 30분, 350℃에서 30분, 600℃에서 12시간동안 소성시켜 촉매분말을 제조하였다.11.1601g of La (NO3) 3.6H2O and 7.5007g of Co (NO3) 2.6H2O were mixed with 6.7g of 1N nitric acid, dissolved in 100cc of ultrapure water to make a solution, and slowly added dropwise to ammonia water diluted to 10%. The whole solution was stirred well to adjust the pH to 4.0. Dry at a temperature of 150 ° C. in a drier to make porous and pulverized. A catalyst powder was prepared by calcination at 200 ° C. for 30 minutes, 350 ° C. for 30 minutes, and 600 ° C. for 12 hours.

이 촉매를 고정상 반응장치의 반응기에 입자상 물질과 함께 넣고 한 후, 200-700℃의 온도 범위에서, 질소산화물의 농도 600ppm, 프로판의 농도를 1000ppm, 산소의 농도를 4%, 물의 농도를 5%, 이산화황의 농도를 1000ppm, 공간속도는 30,000hr-1의 조건에서 상압반응시킨 후, 생성물을 질소산화물 분석기 및 기체 크로마토그래피로 분석하였다. 분석결과는 표 1에 나타내었다.After the catalyst was put together with the particulate matter in the reactor of the fixed bed reactor, 600 ppm of nitrogen oxide, 1000 ppm of propane, 4% of oxygen, and 5% of water in the temperature range of 200-700 ° C. After atmospheric pressure reaction at a concentration of 1000 ppm of sulfur dioxide and a space velocity of 30,000 hr-1, the product was analyzed by nitrogen oxide analyzer and gas chromatography. The analysis results are shown in Table 1.

반응온도Reaction temperature 전환율Conversion rate 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 질소산화물Nitrogen oxide 입자상물질Particulate matter 질소산화물Nitrogen oxide 입자상물질Particulate matter 질소산화물Nitrogen oxide 입자상물질Particulate matter 200200 00 00 00 00 00 00 220220 62.462.4 8.48.4 47.247.2 1.71.7 10.210.2 0.30.3 240240 86.186.1 11.211.2 59.859.8 1.81.8 24.524.5 0.50.5 260260 71.671.6 14.314.3 78.978.9 4.34.3 43.443.4 0.90.9 280280 63.563.5 21.821.8 65.365.3 12.512.5 53.253.2 1.71.7 300300 32.232.2 46.246.2 58.758.7 34.734.7 41.641.6 3.53.5 340340 14.814.8 75.575.5 30.130.1 76.976.9 27.127.1 16.016.0 360360 10.210.2 97.097.0 14.714.7 93.493.4 10.210.2 34.034.0 400400 8.58.5 100.0100.0 11.211.2 98.998.9 8.98.9 57.557.5

상기 표 1에서 알 수 있는 바와 같이, 본 발명의 촉매의 경우 종래의 고상반응법에 의해 제조된 촉매에 비해 표면적이 크므로 질소산화물의 전환율과 입자상 물질의 제거효율이 우수함을 알 수 있다. 또한, 제조과정에서 Cs 질산염 또는 그 수화물, 및 Ce 질산염 또는 그 수화물 중에 하나 이상이 원료로 포함된 경우, 특히 두 금속원료가 동시에 포함된 경우에 질소산화물의 전환율과 입자상 물질의 제거효율이 가장 탁월하였다.As can be seen in Table 1, the catalyst of the present invention has a large surface area compared to the catalyst prepared by the conventional solid phase reaction method, it can be seen that the conversion of nitrogen oxides and the removal efficiency of particulate matter is excellent. In addition, when one or more of Cs nitrate or its hydrate and Ce nitrate or its hydrate are included in the manufacturing process, especially when two metal raw materials are included at the same time, the conversion rate of nitrogen oxide and removal efficiency of particulate matter are most excellent. It was.

상기한 바와 같이, 본 발명의 란타노이드계 페롭스카이트 촉매는 디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 효율적으로 제거할 수 있고 장기간의 사용에도 활성이 변하지 않는 우수한 촉매이다.As described above, the lanthanoid-based perovskite catalyst of the present invention is an excellent catalyst that can efficiently remove nitrogen oxide and particulate matter discharged from a diesel engine at the same time and does not change its activity even in long-term use.

Claims (2)

1-X-Y: X : Y: 1(X 및 Y는 0 내지 1이고, X+Y는 0 내지 1)몰비의 La 질산염 또는 그 수화물, Cs 질산염 또는 그 수화물, Ce 질산염 또는 그 수화물, 및 Co 질산염 또는 그 수화물을 능금산과 혼합하여 물에 녹여 용액으로 만들고, 염기를 첨가하여 pH를 약산성으로 조절한 후, 건조 및 소성시키는 것으로 구성되는 란타노이드계 페롭스카이트 촉매의 제조방법.1-XY: X: Y: 1 (X and Y are 0 to 1, X + Y is 0 to 1) molar ratio La nitrate or its hydrate, Cs nitrate or its hydrate, Ce nitrate or its hydrate, and Co nitrate Or mixing the hydrate with nitric acid to dissolve in water to form a solution, adding a base to adjust the pH to weakly acidic, and then drying and calcining the lanthanoid perovskite catalyst. 청구항 1의 방법에 의해 제조된 X 및 Y는 0 내지 1이고, X+Y는 0 내지 1인 일반식 La1-X-YCsXCeYCoO3의 란타노이드계 페롭스카이트 촉매.X and Y prepared by the method of claim 1 is 0 to 1, X + Y is 0 to 1 Lanthanoid-based perovskite catalyst of the general formula La1-X-YCsXCeYCoO3.
KR1019980016823A 1998-05-11 1998-05-11 Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same KR100258585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980016823A KR100258585B1 (en) 1998-05-11 1998-05-11 Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980016823A KR100258585B1 (en) 1998-05-11 1998-05-11 Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same

Publications (2)

Publication Number Publication Date
KR19990084819A true KR19990084819A (en) 1999-12-06
KR100258585B1 KR100258585B1 (en) 2000-07-01

Family

ID=19537218

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980016823A KR100258585B1 (en) 1998-05-11 1998-05-11 Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same

Country Status (1)

Country Link
KR (1) KR100258585B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155603A (en) * 2022-08-04 2022-10-11 中国石油大学(北京) Bimetallic element co-doped lanthanum-based perovskite oxide catalyst and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155603A (en) * 2022-08-04 2022-10-11 中国石油大学(北京) Bimetallic element co-doped lanthanum-based perovskite oxide catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR100258585B1 (en) 2000-07-01

Similar Documents

Publication Publication Date Title
US9855528B2 (en) System for the purification of exhaust gas from an internal combustion engine
Gilot et al. A review of NOx reduction on zeolitic catalysts under diesel exhaust conditions
KR0136893B1 (en) Selective catalytic reduction of nitrogen oxide
KR20190052715A (en) Catalyzed substrate and exhaust system for internal combustion engines
CA2605255A1 (en) Catalyst and catalyst structure for reduction of nitrogen oxides, and method for catalytic reduction of nitrogen oxides
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
US20040209770A1 (en) Catalyst and method for the catalytic reduction of nitrogen oxides
KR100213183B1 (en) Catalyst for purifying exhaust gases of automobile and preparing method thereof
AU2007302446A1 (en) Alkali resistant catalyst
US6489259B2 (en) Mixed zeolite NOx catalyst
JPH0483516A (en) Removal of nitrogen oxide
KR100258585B1 (en) Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same
US5955046A (en) Catalytic material for removing nitrogen oxides apparatus for treating nitrogen oxides using the material, and method of removing nitrogen oxides
AU2003244103A1 (en) Catalyst and method for clarifying exhaust gas
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
JP2506578B2 (en) Method for purifying exhaust gas containing nitrogen oxides
KR100455271B1 (en) Catalyst for purifying exhaust gas of automobiles and method for manufacturing the same
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR100349451B1 (en) FABRICATION METHOD OF DeNOx CATALYST
KR20000072255A (en) Fabrication of catalyst for removal of NOx and VOCs in Diesel Vehicle Emissions
Heylen New adsorptive, catalytic and photocatalytic approaches for elimination of NOx and NH3 from a gas stream
KR20050047596A (en) Device for purifying exhaust gas of diesel vehicle
JPH07171394A (en) Catalyst for reduction and removal of nitrogen oxide and usage method of catalyst thereof
KR19980077049A (en) Catalyst and method for producing the catalyst for decomposing nitrogen oxide emitted from diesel engine

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee