KR19990068887A - Manufacturing method of lead acid battery positive plate - Google Patents

Manufacturing method of lead acid battery positive plate Download PDF

Info

Publication number
KR19990068887A
KR19990068887A KR1019980002788A KR19980002788A KR19990068887A KR 19990068887 A KR19990068887 A KR 19990068887A KR 1019980002788 A KR1019980002788 A KR 1019980002788A KR 19980002788 A KR19980002788 A KR 19980002788A KR 19990068887 A KR19990068887 A KR 19990068887A
Authority
KR
South Korea
Prior art keywords
lead
electrode plate
positive electrode
acid battery
battery positive
Prior art date
Application number
KR1019980002788A
Other languages
Korean (ko)
Other versions
KR100250866B1 (en
Inventor
송현우
허성혁
Original Assignee
홍건희
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍건희, 한국타이어 주식회사 filed Critical 홍건희
Priority to KR1019980002788A priority Critical patent/KR100250866B1/en
Publication of KR19990068887A publication Critical patent/KR19990068887A/en
Application granted granted Critical
Publication of KR100250866B1 publication Critical patent/KR100250866B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 납축전지 양극판의 제조방법에 관한 것으로 더욱 상세하게는 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하는 단계, 이를 납 또는 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계, 및 전기를 흘려주어 이 숙성 활물질을 이산화납으로 변환시키는 화성단계로 이루어지는 납축전지 양극판의 제조에 있어서, 상기 혼합 및 반죽단계에 전체연분의 5 내지 10 중량%의 이산화납 분말을 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a lead-acid battery positive plate, and more particularly, a step of mixing and kneading lead powder composed of fine powders of lead and lead oxide together with water and sulfuric acid, and collecting a lead or lead alloy into a lattice current collector. In the manufacture of a lead-acid battery positive electrode plate consisting of a step of making a aging active material containing lead tetrabasic sulphate after application and drying for a certain time after application to, and converting the aging active material to lead dioxide by flowing electricity, It relates to a method for producing a lead acid battery positive electrode plate, characterized in that the addition of 5 to 10% by weight of lead dioxide powder of the total lead in the mixing and kneading step.

본 발명에 따른 양극판은 기존의 사염기황산납을 사용하여 제작한 양극판에 비해 화성효율 및 초기성능이 향상되었다.The positive electrode plate according to the present invention has improved chemical conversion efficiency and initial performance compared to the positive electrode plate manufactured using the conventional lead tetrabasic sulfate.

Description

납축전지 양극판의 제조방법Manufacturing method of lead acid battery positive plate

납축전지의 양극판은 일반적으로 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하여 활물질을 만들고, 이를 납 혹은 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 숙성활물질을 만들고, 전기를 흘려서 활물질을 이산화납으로 변환시키는 화성단계에 의하여 제조된다. 상기 숙성은 60℃이하에서 실행하는 저온숙성법과 80℃이상에서 실행하는 고온숙성법의 두 가지 방법이 있다. 이들 중 저온숙성의 경우는 삼염기황산납(tribasic lead sulfate ; 3PbO·PbSO4·H2O)이 형성되고, 고온숙성의 경우는 사염기황산납(tetrabasic lead sulfate ; 4PbO·PbSO4)이 주로 형성된다.The positive electrode plate of lead-acid battery is generally made by mixing and kneading lead powder composed of fine powders of lead and lead oxide with water and sulfuric acid to make an active material, and then applying it to a grid-shaped current collector made of lead or lead alloy and aging for a certain time. And drying to make a maturation active material, and flowing through electricity to convert the active material into lead dioxide. There are two methods for the aging: a low temperature aging method performed at 60 ° C. or lower and a high temperature aging method performed at 80 ° C. or higher. Among them, tribasic lead sulfate (3PbO · PbSO 4 · H 2 O) is formed at low temperature aging, and tetrabasic lead sulfate (4PbO · PbSO 4 ) is mainly used at high temperature aging. Is formed.

종래에는 저온숙성법이 많이 사용되어 왔으나, 삼염기황산납은 입자크기가 5㎛안팎으로 아주 작기 때문에 이로부터 화성되어 생성되는 활물질은 표면적은 크지만 입자간 결합력이 약하여 수명이 짧고 숙성시간이 적어도 15시간이상으로 매우 길기 때문에 점차 고온숙성법으로 대체되고 있다.Conventionally, the low temperature aging method has been used a lot, but the lead tribasic sulfate has a very small particle size of about 5 μm, so that the active material formed from this compound has a large surface area but a weak bonding force between particles, resulting in a short life and at least a aging time. Since it is very long (more than 15 hours), it is gradually being replaced by a high temperature aging method.

고온숙성법으로 사염기황산납을 생성하여 제작한 납축전지는 일반적으로 저온숙성법으로 삼염기황산납을 생성하여 제작한 납축전지보다 수명성능이 우수하다. 그러나, 고온숙성에 의해 형성된 사염기황산납은 40㎛이상의 큰 입자가 형성되어, 화성과정에서 이산화납으로 변하는 비율(이하, 화성효율이라 함)이 낮아서, 사용 초기 성능이 떨어지는 문제가 있다. 특히 자동차 시동용으로 사용하는 경우에는 이는 큰 문제점이 되기 때문에 아직까지도 이 용도의 전지에는 저온숙성법이 주로 사용되고 있다.Lead-acid batteries produced by producing lead tetrabasic sulfate by high temperature aging are generally superior to lead-acid batteries produced by producing lead tribasic sulfate by low temperature aging. However, the lead tetrabasic sulfate formed by high temperature aging has a problem that large particles of 40 µm or more are formed, and the rate of conversion to lead dioxide in the chemical conversion process (hereinafter referred to as chemical conversion efficiency) is low, resulting in poor initial performance. In particular, when used for starting a car, this is a big problem, so the low temperature aging method is still mainly used in the battery for this purpose.

이에 본 발명은 사염기황산납의 화성효율과 초기성능이 삼염기황산납에 비해 떨어지는 단점을 해결하기 위해 사염기황산납을 혼합 숙성할 때 이산화납 분말을 첨가하여 화성효율과 초기성능을 향상시키는 것을 그 과제로 한다.Therefore, the present invention improves the chemical conversion efficiency and initial performance by adding lead dioxide powder when mixing and aging lead tetrabasic sulfate to solve the disadvantage that the conversion efficiency and initial performance of lead tetrachloride are lower than that of lead tribasic sulfate. Let's do that task.

본 발명은 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하는 단계, 이를 납 또는 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계, 및 전기를 흘려주어 이 숙성 활물질을 이산화납으로 변환시키는 화성단계로 이루어지는 납축전지 양극판의 제조에 있어서, 상기 혼합 및 반죽단계에 전체연분의 5 내지 10 중량%의 이산화납 분말을 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법에 관한 것이다.The present invention is a step of mixing and kneading the lead powder composed of fine powders of lead and lead oxide with water and sulfuric acid, and applying it to a grid-shaped current collector made of lead or lead alloy, and then aged and dried for a certain period of time. In the production of a lead-acid battery positive electrode plate comprising a step of making a lead-containing aging active material, and converting the aging active material to lead dioxide by flowing electricity, 5 to 10% by weight of the total lead in the mixing and kneading step The present invention relates to a method for producing a lead acid battery positive electrode plate, wherein a lead dioxide powder is added.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

상기 이산화납 분말은 시판되는 화합물을 사용하지 않고, 기존의 화성시킨 극판 또는 폐극판에서 활물질을 분리하여 사용한다. 일반적으로 삼염기황산납 극판의 경우 화성시킨 극판은 85% 이상의 이산화납, 10% 미만의 일산화납 및 5% 미만의 황산납으로 구성되어 있다. 여기서 분리시킨 이산화납은 극판 제조시 쉽게 섞일수 있는 크기로 갈아 분말로 만든다.The lead dioxide powder does not use a commercially available compound, but separates and uses an active material from an existing converted electrode plate or a closed electrode plate. Generally, in the case of a lead tribasic sulfate plate, the plated electrode plate is composed of 85% or more of lead dioxide, less than 10% of lead monoxide, and less than 5% of lead sulfate. The lead dioxide isolated here is ground to a size that can be easily mixed during manufacture of the plates to make powder.

이와같은 이산화납 분말은 활물질 혼합시에 전체연분의 5 내지 10 중량%를 첨가하는 것이 바람직하다. 혼합시 첨가된 이산화납은 숙성시 화학변화나 상변화를 일으키지 않고 사염기황산납 주위에서 작은입자로서 존재하거나, 서로서로 연결되어 전류가 흐를수 있는 길을 형성한다. 이 때 형성된 전류의 통로(path)는 화성시에 활물질의 전류 수입성을 증가시켜 화성효율을 향상시킨다. 또한, 크기 5 ㎛ 이하의 이산화납 입자들은 크기 40㎛ 이상의 사염기황산납 입자 주위에 균일하게 흩어져 있기 때문에 사염기황산납이 이산화납으로 변환되는 현상을 입자 전체에 골고루 일어나게 만든다. 이 혼합물을 XRD 로 분석하면 81 내지 94%의 사염기 황산납이 검출되고, 4내지 2%의 이산화납이 검출된다. 검출된 이산화납의 양이 첨가한 비율 즉, 5내지 10% 보다 적게 나오는 것은 이산화납이 물 분자와 비정질의 입자를 형성하기 때문이다.Such lead dioxide powder is preferably added to 5 to 10% by weight of the total lead at the time of mixing the active material. Lead dioxide added during mixing is present as small particles around lead tetrabasic sulfate without causing chemical or phase change during aging, or is connected to each other to form a path through which current can flow. The current path formed at this time increases current importability of the active material at the time of chemical conversion, thereby improving chemical conversion efficiency. In addition, the lead dioxide particles having a size of 5 μm or less are uniformly scattered around the lead tetrachloride sulfate particles having a size of 40 μm or more, which leads to the uniform conversion of lead tetrachloride to lead dioxide. When the mixture is analyzed by XRD, 81 to 94% of tetrabasic lead sulfate is detected, and 4 to 2% of lead dioxide is detected. The amount of lead dioxide detected is less than the added rate, i.e., 5 to 10%, because lead dioxide forms amorphous particles with water molecules.

또한, 이 양극판을 주사전자현미경으로 조사하면 40㎛ 이상의 사염기황산납이 생성되어 있고, 그 주위에 이산화납이 1 - 5㎛작은 덩어리를 형성하며 사염기황산납과 접촉하고 있다. 사염기황산납의 크기나 구조는 이산화납의 첨가에 관계없이 변화하지 않는다.When the positive electrode plate was irradiated with a scanning electron microscope, lead tetrachloride sulfate of 40 µm or more was formed, and lead dioxide was formed in contact with lead tetrabasic sulfate, forming a small mass of 1-5 µm around the lead. The size and structure of lead tetrabasic sulfate do not change regardless of the addition of lead dioxide.

이하, 본 발명을 실시예로 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 1 내지 3Examples 1 to 3

바톤 포트(Barton Pot)방식으로 제조한 연분에 기존의 극판에서 분리한 이산화납 분말을 전체연분의 5내지 10 중량%(실시예 1은 5 중량%, 실시예 2는 7.5 중량%, 실시예3은 10중량%)로 첨가하여, 물 및 비중 1.4의 황산과 통상의 자동차용축전지에 사용하는 배합비로 혼합하였다. 이 페이스트를 1.5%의 안티몬을 함유하는 납합금으로 된 격자형의 집전체에 도포한 후, 92℃, 99% 상대습도에서 3시간동안 숙성하고 3일간 대기중에서 건조시켜 사염기황산납 양극판을 제조하였다. 이를 이론전류량의 140%로 화성시킨 후 성분을 분석하여 그 결과를 표 1에 나타내었다.5 to 10% by weight of the lead dioxide powder separated from the existing electrode plate in the powder produced by the Barton Pot method (Example 1 is 5% by weight, Example 2 is 7.5% by weight, Example 3 Silver 10% by weight), and the mixture was mixed with water and sulfuric acid having a specific gravity of 1.4 at a compounding ratio used for a conventional automotive battery. The paste was applied to a lattice-shaped current collector made of a lead alloy containing 1.5% antimony, and then aged at 92 ° C. and 99% relative humidity for 3 hours and dried in air for 3 days to prepare a lead tetrachloride positive electrode plate. It was. This was converted to 140% of the theoretical amount of current, and then the components were analyzed and the results are shown in Table 1.

제조된 양극판을 이용하여 양극 2매, 음극 3매 및 다공성의 폴리에틸렌 격리판으로 구성되고, 전해액이 비중 1.28의 황산인 20Ah(5시간율 기준)-2V의 전지를 조립하였다. 이 전지로 5시간율(4.0A)로 용량시험을 하여 표 1에 함께 나타내었다.The prepared positive electrode plate was assembled with a positive electrode plate, a negative electrode plate 3, and a porous polyethylene separator, and a battery of 20 Ah (based on a 5 hour rate) -2V having an electrolyte of 1.28 sulfuric acid as a specific gravity was assembled. This battery was tested for capacity at a rate of 5 hours (4.0A) and is shown in Table 1 together.

비교예 1 및 2Comparative Examples 1 and 2

통상의 삼염기황산납(비교예 1)과 사염기황산납(비교예 2)을 사용하여 실시예 1내지 3과 유사하게 양극판을 제조하고, 또한 전지를 조립하였다. 양극판을 상기 실시예 1내지 3과 동일하게 화성시키고 성분을 분석하여 그 결과를 표 1에 함꼐 나타내었다. 또한 제작한 전지로 상기 실시예와 동일하게 용량시험을 하여 표 1에 나타내었다.Using conventional lead tribasic sulfate (Comparative Example 1) and lead tetrabasic sulfate (Comparative Example 2), a positive electrode plate was prepared in a similar manner to Examples 1 to 3, and a battery was assembled. The positive electrode plate was formed in the same manner as in Examples 1 to 3 and the components were analyzed and the results are shown in Table 1 below. In addition, the prepared battery was subjected to the capacity test in the same manner as in Example, shown in Table 1.

성분비(%)Component ratio (%) 실시예Example 비교예Comparative example 1One 22 33 1One 22 PbOPbO 3434 1515 8.78.7 1414 3838 PbO2 PbO 2 5555 7878 87.287.2 8484 4848 PbSO4 PbSO 4 1010 5.95.9 4.14.1 1One 1313 용 량 시 험Capacity test 초기용량(단위:Ah)Initial capacity (unit: Ah) 1717 20.520.5 2222 2323 14.714.7

표 1에 나타난바와 같이, 본 발명에 따른 실시예 1내지 3의 양극판은 순수 사염기황산납인 비교예 2에 비하여 화성효율(PbO2생성율)이 크게 증가하고, 초기용량 또한 크게 증가함을 알 수 있다. 7.5 중량% 이상의 이산화납을 첨가한 경우 제작 전지의 기준치인 (20Ah)를 초과한다.As shown in Table 1, the positive electrode plates of Examples 1 to 3 according to the present invention significantly increased the chemical conversion efficiency (PbO 2 production rate) and the initial capacity also greatly compared with Comparative Example 2 which is pure tetrabasic sulfate. Can be. When 7.5 weight% or more of lead dioxide is added, it exceeds (20 Ah) which is the reference value of the produced battery.

본 발명에 따라 이산화납 분말을 첨가하여 제조한 납축전지 양극판은 기존의 사염기화산납에 비해 이산화납의 생성율 및 초기용량이 크게 증가하여 화성효율 및 초기성능을 향상되었다.The lead-acid battery positive electrode plate prepared by adding lead dioxide powder according to the present invention has significantly increased the production rate and initial capacity of lead dioxide compared to the conventional lead tetrachloride oxide, thereby improving chemical conversion efficiency and initial performance.

Claims (2)

납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하는 단계, 이를 납 또는 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계, 및 전기를 흘려주어 이 숙성 활물질을 이산화납으로 변환시키는 화성단계로 이루어지는 납축전지 양극판의 제조에 있어서, 상기 혼합 및 반죽단계에 전체연분의 5 내지 10 중량%의 이산화납 분말을 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법.Mixing and kneading lead powder consisting of fine powders of lead and lead oxide together with water and sulfuric acid, and applying it to a grid-shaped current collector made of lead or lead alloy, and then aged and dried for a certain period of time to contain lead tetrachloride In the production of a lead-acid battery positive electrode plate comprising the step of making a matured active material, and the flow of electricity to convert the aged active material into lead dioxide, in the mixing and kneading step 5 to 10% by weight of lead dioxide A method for producing a lead acid battery positive electrode plate, characterized in that the powder is added. 제 1항에 있어서, 이산화납 분말은 화성된 극판 또는 폐극판으로부터 채취한 활물질에서 분리하여 사용하는 납축전지 양극판의 제조방법.The method of manufacturing a lead acid battery positive electrode plate according to claim 1, wherein the lead dioxide powder is separated from an active material collected from the converted electrode plate or the closed electrode plate.
KR1019980002788A 1998-02-02 1998-02-02 A method for preparing anode plate of lead storage battery KR100250866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980002788A KR100250866B1 (en) 1998-02-02 1998-02-02 A method for preparing anode plate of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980002788A KR100250866B1 (en) 1998-02-02 1998-02-02 A method for preparing anode plate of lead storage battery

Publications (2)

Publication Number Publication Date
KR19990068887A true KR19990068887A (en) 1999-09-06
KR100250866B1 KR100250866B1 (en) 2000-04-01

Family

ID=19532329

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980002788A KR100250866B1 (en) 1998-02-02 1998-02-02 A method for preparing anode plate of lead storage battery

Country Status (1)

Country Link
KR (1) KR100250866B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200040961A (en) 2018-10-10 2020-04-21 주식회사 한국아트라스비엑스 Manufacturing method of ceramic coated separator using spin coating

Also Published As

Publication number Publication date
KR100250866B1 (en) 2000-04-01

Similar Documents

Publication Publication Date Title
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
MXPA06004510A (en) Battery paste material and method.
JP2001229920A (en) Method of manufacturing sealed lead acid battery
CN112436147B (en) High-temperature paste mixing process for lead paste of lead-acid storage battery
KR101775335B1 (en) Manufacturing method of positive grid for lead-acid battery
KR100250866B1 (en) A method for preparing anode plate of lead storage battery
KR100266133B1 (en) A method for preparing anode plate of lead storage battery using activated material cured at high temperature
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
JPH11162456A (en) Lead-acid battery
KR100342198B1 (en) Method for producing the positive plate of a lead battery
JPH10270028A (en) Positive electrode plate for lead-acid battery
KR100266132B1 (en) A method for preparing anode plate of lead storage battery
JP2002100347A (en) Lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH10247491A (en) Lead-acid battery and its manufacture
CN114975895B (en) Positive electrode lead paste of lead-acid battery, positive electrode, preparation method of positive electrode, battery and electric vehicle
KR20080055533A (en) Method for manufacturing positive plate 0f storage battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
KR100468957B1 (en) Method for the formation of positive plate of a lead storage battery
JP2553624B2 (en) Paste type cadmium negative electrode
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2000036305A (en) Plate for lead-acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JPH0528993A (en) Manufacture of lead-acid battery electrode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060104

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee