KR19990064998A - Method for separating and purifying germanium oxide from germanium ore - Google Patents

Method for separating and purifying germanium oxide from germanium ore Download PDF

Info

Publication number
KR19990064998A
KR19990064998A KR1019980000004A KR19980000004A KR19990064998A KR 19990064998 A KR19990064998 A KR 19990064998A KR 1019980000004 A KR1019980000004 A KR 1019980000004A KR 19980000004 A KR19980000004 A KR 19980000004A KR 19990064998 A KR19990064998 A KR 19990064998A
Authority
KR
South Korea
Prior art keywords
germanium
ore
oxide
hydrochloric acid
germanium oxide
Prior art date
Application number
KR1019980000004A
Other languages
Korean (ko)
Other versions
KR100262820B1 (en
Inventor
이남출
Original Assignee
이남출
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이남출 filed Critical 이남출
Priority to KR1019980000004A priority Critical patent/KR100262820B1/en
Publication of KR19990064998A publication Critical patent/KR19990064998A/en
Application granted granted Critical
Publication of KR100262820B1 publication Critical patent/KR100262820B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/02Germanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 게르마늄광석으로 부터 산화게르마늄을 정재하는 방법에 관한 것으로 게르마늄광석을 1.030℃~1.050℃로 고온소성하여 게르마늄광석에 함유된 비소, 안티모니, 유황, 납 등의 유해물질을 쉽게 제거함과 동시에 β산화게르마늄을 용해성이 있는 α-산화게르마늄으로 전이시킨 광석분말을 왕수 및 염산의 혼합산으로 용해 반응시켜 여과하고 여액에 다시 염산을 첨가시켜 산화게르마늄을 사염화게르마늄으로 반응시킨 용액을 증류하여 사염화게르마늄을 얻고 이를 비이온증류수로 가수분해 하므로서, 게르마늄광석으로 부터 산화게르마늄을 분리정제 하는 방법.The present invention relates to a method for refining germanium oxide from germanium ore by heating the germanium ore at 1.030 ° C. to 1.050 ° C. at a high temperature to easily remove harmful substances such as arsenic, antimony, sulfur, and lead contained in the germanium ore. The ore powder from which β germanium oxide is transferred to soluble α-germanium oxide is dissolved and reacted with a mixed acid of aqua regia and hydrochloric acid, filtered, and hydrochloric acid is added to the filtrate to distill the solution of germanium oxide with germanium tetrachloride to distill the germanium tetrachloride. Obtaining and hydrolyzing it with nonionic distilled water to separate and purify germanium oxide from germanium ore.

Description

[발명의 명칭][Name of invention]

게르마늄 광석으로부터 산화게르마늄을 분리정제 하는 방법How to separate and purify germanium oxide from germanium ore

[발명의 상세한 설명]Detailed description of the invention

가. 발명의 목적end. Purpose of the Invention

본 발명은 경상북도 경주시 산내면 대현리 산 587번지 풍원광산에서 체굴되는 게르마나이트(GERMAITE)광석으로 부터 산화게르마늄을 침출 분리시키는 정제 방법에 관한 것으로서, 더욱 구체적으로는 게르마늄광석을 선광하여 분쇄공정 고온소성공정, 여과공정, 중화증류, 가수분해공정을 거쳐 산화게르마늄을 침출정제하는 방법을 제공함에 있다.The present invention relates to a refining method for leaching and separating germanium oxide from germanium ore excavated from GERMAITE ore at 587, Daehyeon-ri, Gyeonggi, Gyeongsangbuk-do, Korea. To provide a method for leaching and purifying germanium oxide through a filtration process, neutralization distillation, and hydrolysis.

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

다양한 성분으로 구성되는 게르마늄광석으로 부터 유해물 및 불순물을 제거하여 고순도의 산화게르마늄을 분리 추출하는 기술분야로 이 분야의 발전과정과 종래 기술을 살펴보면 1886년 독일화학자 WINKLER가 게르마늄을 처음 발견하여 그 원소명을 조국인 독일을 기념하여 게르마늄(GERMANIUM)이라 명명하고 그 다음에 그는 이미 GHCl3, Def4, K2GeF6, 및 Ge[(2H5)4등의 게르마늄 화합물을 합성하였다.It is a technology that separates and extracts high purity germanium oxide by removing harmful substances and impurities from germanium ore composed of various components. Looking at the development process and prior art of this field, German chemist WINKLER first discovered germanium in 1886. Was named GERMANIUM in honor of his native Germany, and then he had already synthesized germanium compounds such as GHCl 3 , Def 4 , K 2 GeF 6 , and Ge [ ( 2H5 ) 4 .

그 후 30년간 그 화합물에는 어떠한 실제적인 응용이 얹어서 이들에 관한 연구는 대체로 침체상태에 빠져 있었다.For the next thirty years, the compound had some practical application, and the study of them was largely stagnant.

그 후 1916년 Buchanan은 가정 먼저 염산을 증류하여 섬아연광으로 부터 GeCl4를 추출해냈다. 미국의 데니스등은 적합한 증류장치를 선택하여 염소를 첨가하여 증류과정을 통해 게르마늄과 비소를 분리시킴을 지적했고 Grilman 등은 3-4N HCl 매체에서 염소를 넣어 증류하면 게르마늄과 비소, 셀램, 안티몬을 분리 할수 있다는 보고서를 제출했다. 그러나 Sandell은 6-7N염산매체로 증류하여 GeCl4를 가장 적절한 조건으로 정제하여 광범위하게 채택하였다.In 1916, Buchanan first distilled hydrochloric acid and extracted GeCl 4 from splendid ore. Dennis et al. Pointed out that a suitable distillation system is used to separate germanium and arsenic by distillation by adding chlorine.Grilman et al. The report was submitted for separation. Sandell, however, was widely employed by distilling with 6-7N hydrochloric acid to purify GeCl 4 to the most appropriate conditions.

New Combe등은 8N 이상 염산에서 사염화탄소를 이용하여 추출했고 게르마늄과 비소, 안티몬을 분리했다.New Combe et al. Extracted with carbon tetrachloride from 8N hydrochloric acid and separated germanium, arsenic and antimony.

STRIKLAND는 농염산 매개체 중에서 사염화탄소를 이용하여 추출했고 최후에 trioxalicalid게르마늄 형식으로 회수했다.STRIKLAND was extracted using carbon tetrachloride from concentrated hydrochloric acid and was finally recovered in the form of trioxalicalid germanium.

근래에는 GeCL2를 사염화탄소, n-Hexane, 헵텐사이크로 핵산에서 추출한 후 분광도법 또는 원자흡수스펙트럼으로 측정하는 많은 기술발표가 있었다.In recent years, there have been many technical publications in which GeCL 2 is extracted from carbon tetrachloride, n-Hexane, heptene cyclohexane, and then measured by spectrophotometry or atomic absorption spectrum.

가까가다 히데무(垣花秀式)는 농염산 매개체중 Ge(Ⅳ)에서 강알칼리형 음이온 교환 수지를 흡착하였다.Close Heidemu adsorbed strong alkali type anion exchange resin in Ge (IV) in concentrated hydrochloric acid.

요시노 유기찌(吉野論吉)는 실험에서 As(Ⅲ)는 농염산에서 부분적으로 흡착되었으나 As(Ⅴ)는 흡착되지 않았음을 입증했고 Dowex2, Dowex1을 Ge[(Ⅳ)-As(Ⅴ)]와 분리하는 방법을 채택하였다. Klement는 Dowex50 양이온 교환수지를 이용하여 게르마늄과 동등한 기타 원소를 분리해 냈고 게르마늄이 수지를 흡착하지 못하도록 했다.In the experiment, Yoshino Organicchi demonstrated that As (III) was partially adsorbed in concentrated hydrochloric acid, but As (V) was not adsorbed, and Dowex2 and Dowex1 were Ge [(Ⅳ) -As (Ⅴ)]. Adopted a separation method. Klement used Dowex50 cation exchange resins to separate other elements equivalent to germanium and prevent the germanium from adsorbing the resin.

CABEll등은 PH2인 게르마늄 함유시약을 강산형 양이온과 약염기성 음이온 조직의 혼합수지에서 GeCl4를 분리해냈으며 게르마늄은 또한 폴리석탄산을 이용하여 수지교환하여 황산아연에서 분리해냈다.CABEll, et al., Isolated GeCl 4 from a mixture of strong acid cations and weakly basic anionic tissues with a pH 2 germanium-containing reagent, and germanium was also separated from zinc sulfate by resin exchange using polycarbonate.

Alimarin 등도 6N 황산매개체 중에서 황화수소를 통하여 게르마늄을 분리해 냈다고 제안했다. FOSTER 등은 황화게르마늄산이 묽은산에서 분해되지 않는 특징을 이용하여 게르마늄과 비소를 분리해냈다.Alimarin et al. Proposed to separate germanium from hydrogen sulfide in 6N sulfate media. FOSTER and others separated germanium and arsenic using the feature that germanium sulfide does not decompose in dilute acid.

그 밖에도 미량의 게르마늄은 Fe(OH)3혹은 몰리브텐인산암모늄을 이용하여 공동으로 침전물을 얻고 이로부터 분리해내는 방법들이 있다 하겠다.In addition, trace amounts of germanium may be obtained by jointly obtaining and separating the precipitate using Fe (OH) 3 or ammonium molybdate phosphate.

이상과 같이 종래 기술들은 원광으로부터 산화게르마늄이나 게르마늄을 분리 추출하는 방법들이 일괄 공정이 아니고 부분 적인 기술에 불과하며 게르마늄 원광석은 광석의 종류가 다양한 형태로 나타나므로 산화게르마늄을 분리추출 하는 방법들이 크게 또는 적은 차이가 있다 할 것이다.As described above, the conventional methods of separating and extracting germanium oxide or germanium from ore are not batch processes but only partial techniques. Since germanium ore is represented in various forms, the methods of separating and extracting germanium oxide are large or There will be little difference.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

게르마늄의 산지는 자이레공화국, 남서아프리카, 콩고, 볼리비아, 미국중부 등에서 동, 아연광산에서 생산되는 광석에 미량으로 함유되어 있다.Germanium is produced in small amounts in ores produced in copper and zinc mines in Zaire, Southwest Africa, Congo, Bolivia, and the United States.

아프리카는 전세계 생산량의 2/3를 생산하고 있으며, 게르마늄은 세계적으로 희귀 금속의 원소로서 우리나라 및 일본 등지에서는 게르마늄광산이 없는 것으로 되어있고 중국에서 소량으로 생산되고 있으나 대부분이 일본에서 전량 수입해가고 있다.Africa produces two-thirds of the world's production, and germanium is a rare metal element in the world. It is said that there is no germanium mine in Korea and Japan, and it is produced in small quantities in China, but most of it is imported from Japan. .

또 우리나라에서도 적은량의 무기게르마늄(Ge, GeO, GeO2)을 수입하여 반도체 및 광학제품 합성에 사용하고 있으나 고가 품이면서 합성기술상에 문제점을 안고 있어 일부 제품은 합성된 완제품을 수입하여 사용하고 있는 실정이다.In addition, a small amount of inorganic germanium (Ge, GeO, GeO 2 ) is imported from Korea and used for the synthesis of semiconductors and optical products, but it is expensive and has problems in the synthesis technology. to be.

이와 같은 상황에서 1995년말 경상북도 경주시 산내면 대현리 산 587번지 “풍원광산에 바이오세라믹 및 자바사이트(Chabcsite)광물 주변에서 게르마늄광석을 발견하여 경원대학교 자연과학대학에서 게르마늄 함유 광물임을 확인됨에 따라 2년간에 걸쳐 게르마늄광석의 종류 게르마늄의 구성성분 게르마늄광석으로부터 무기산화게르마늄 및 게르마늄을 분리추출하는 방법을 완성하였다.Under these circumstances, at the end of 1995, 587, Daehyeon-ri, Sannae-myeon, Gyeongju, Gyeongsangbuk-do, “We found germanium ore in the Pungwon mine near the bioceramic and Javacsite minerals. Types of Germanium Ore A method of separating and extracting inorganic germanium oxide and germanium from the germanium constituent component of germanium has been completed.

그러나 풍원광산에서 생산되는 게르마늄광석은 타지역에서 생산되는 광석에 비해 특이한 것은 납, 비소, 안티몬과 같은 유해금속 및 철분과 물의 함량이 높고 게르마늄 함량이 0.36%(산화게르마늄 함량으로는 0.6)로서 극히 낮은 광석이라 할 수 있다.However, the germanium ore produced in Poongwon mine is unusual compared to the ore produced in other regions. It is extremely harmful because it contains high amounts of harmful metals such as lead, arsenic, and antimony, iron and water, and germanium content of 0.36% (0.6 for germanium oxide). It can be called a low ore.

이와 같은 광석의 물성과 구성성분에 적합하게 유해물질을 효과적으로 제거하고 종래 분리추출법을 부분적으로 개량 보완하므로서 부가가치가 큰 고순도의 무기게르마늄을 광석으로부터 효과적으로 분리정제 하는 방법을 해결함에 있다 하겠다.It is to solve the method of effectively separating and purifying high-purity inorganic germanium from the ore by effectively removing the harmful substances suitable for the physical properties and components of such ores and partially improving and supplementing the conventional separation extraction method.

[발명의 기술구성][Technical composition of the invention]

본 발명의 기본 원료로서 사용되는 게르마늄광석은 풍원광산에서 체굴되는 대략 Cu3(Ge, Fe)S4인 분자결정구조를 갖는 게르마나이트(Germanite)류에 속하는 원광석으로 그 구성성분이 아래와 같으며 이를 다른 게르마늄광석과 비교한 성분대비표를 표 1로 나타내었다.Germanium ore used as a basic raw material of the present invention is a raw ore belonging to germanite (Germanite) having a molecular crystal structure of approximately Cu 3 (Ge, Fe) S 4 excavated in Pungwon mine, its composition is as follows Table 1 shows the composition comparison table compared with other germanium ores.

[표 1] 게르마늄광석 성분대비표[Table 1] Germanium Ore Component Comparison Table

33 44 22 22 22 22 22 33 33 33 22 22 22 22 22 33 55 33

Claims (1)

우리나라 풍원광산에서 채굴되는 게르마늄광석을 200메쉬 이상으로 미세분말화 한 것을 2~3시간 고온소성하고 소성한 미세분말을 왕수 50wt%에 염산 50wt%를 혼합한 무기산에 동일 중량으로 첨가하여 온도 82~85℃로 유지한 상태에서 충분히 반응시킨 다음 여과하여 잔사(slag)를 제거하고 농축여액에 동일 중량의 염산을 첨가한 후 온도 82~85℃로 유지한 상태에서 반응과 동시에 증류하여 사염화게르마늄(GeCl4)을 얻고 이를 온도 100℃ 이상으로 유지된 상태에서 비이온 증류수로 가수분해함을 특징으로 하는 게르마늄광석으로 부터 산화게르마늄을 분리 정제하는 방법.Micropowders of germanium ore mined from Pungwon mines of Korea to 200 mesh or more are heated at high temperature for 2 to 3 hours and calcined fine powder is added to the inorganic acid mixed with 50wt% hydrochloric acid and 50wt% hydrochloric acid at the same weight. After sufficiently reacting in the state maintained at 85 ° C, the residue was filtered to remove the residue, and hydrochloric acid having the same weight was added to the concentrated filtrate, and then distilled simultaneously with the reaction while maintaining the temperature at 82-85 ° C. 4 ) obtaining and purifying the germanium oxide from the germanium ore, characterized in that it is hydrolyzed with non-ion distilled water in the state of maintaining the temperature above 100 ℃.
KR1019980000004A 1998-01-05 1998-01-05 The method of seperation andpurification of germanium oxide from germanium mineral KR100262820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980000004A KR100262820B1 (en) 1998-01-05 1998-01-05 The method of seperation andpurification of germanium oxide from germanium mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980000004A KR100262820B1 (en) 1998-01-05 1998-01-05 The method of seperation andpurification of germanium oxide from germanium mineral

Publications (2)

Publication Number Publication Date
KR19990064998A true KR19990064998A (en) 1999-08-05
KR100262820B1 KR100262820B1 (en) 2000-09-01

Family

ID=19530969

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980000004A KR100262820B1 (en) 1998-01-05 1998-01-05 The method of seperation andpurification of germanium oxide from germanium mineral

Country Status (1)

Country Link
KR (1) KR100262820B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005722A (en) * 2001-07-10 2003-01-23 (주)나인디지트 Manufacturing method of metal Germanium without liquid and refining device thereof
KR101103580B1 (en) * 2009-07-03 2012-01-10 박만조 A Method for Cultivation for Germanium King Oyster Mushroom
KR20220012548A (en) * 2020-07-23 2022-02-04 김정기 Process for breeding animal with organic germanium-ion water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005722A (en) * 2001-07-10 2003-01-23 (주)나인디지트 Manufacturing method of metal Germanium without liquid and refining device thereof
KR101103580B1 (en) * 2009-07-03 2012-01-10 박만조 A Method for Cultivation for Germanium King Oyster Mushroom
KR20220012548A (en) * 2020-07-23 2022-02-04 김정기 Process for breeding animal with organic germanium-ion water

Also Published As

Publication number Publication date
KR100262820B1 (en) 2000-09-01

Similar Documents

Publication Publication Date Title
KR101412462B1 (en) Highly Purified Nickel Sulfate from Nickel and Cobalt Mixed hydroxide precipitation and the Manufacturing Method of the Same
CN105296754B (en) Method for separating copper, cobalt and manganese from impurity-removed solution of copper, manganese, cobalt, calcium and zinc chloride
JPH0328376B2 (en)
CN1827527A (en) Process for preparing lithium chlorate by lithium extracted from lepidolite
CN1884099A (en) Method for preparing manganese sulfate by reduction leaching of manganese ore using discard molasses and sulfuric acid
US4233063A (en) Process for producing cobalt powder
WO2003078670A1 (en) Method for separating platinum group element
Kamran Haghighi et al. Roadmap for recycling of germanium from various resources: reviews on recent developments and feasibility views
CN104944469A (en) Technique for producing high-purity antimonous oxide by processing stibnite concentrate through wet method
CN110791657A (en) Comprehensive utilization method of multiple elements in sintering dust collection ash of steel plant
AU756317B2 (en) Separation and concentration method
JP5589854B2 (en) How to recover bismuth
CN1062175A (en) Produce the method for Silver Nitrate, recovery copper, lead, antimony by lead anode slurry
CN113979476A (en) Method for preparing ammonium tetramolybdate product by back extraction and impurity removal
CN1146982A (en) Process for producing potassium sulfate and its by-product using potassium ore
CN113774220B (en) Method for recovering molybdenum, bismuth and vanadium from waste catalysts of acrylic acid and methacrylic acid and esters thereof
KR19990064998A (en) Method for separating and purifying germanium oxide from germanium ore
CN108531729A (en) A kind of vanadium iron separation method containing vanadium solution
JP3822409B2 (en) Ga, Ge, In separation method
CN1033280C (en) Recovery method for smoke containing iron, manganese, zinc, lead and other elements
CN1020273C (en) Method for producing barium carbonate
CN1098215C (en) Process for treating ammonium para-tungstate crystal mother solution
CN100441707C (en) Wet chemical method for lead zinc composite extraction from lead zinc tailings
JP2004190058A (en) Method of separating and refining iridium
US4049514A (en) Zinc hydrometallurgical process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050510

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee