KR19990051827A - Device for flaw detection of sheet steel by leak magnetic flux method - Google Patents
Device for flaw detection of sheet steel by leak magnetic flux method Download PDFInfo
- Publication number
- KR19990051827A KR19990051827A KR1019970071236A KR19970071236A KR19990051827A KR 19990051827 A KR19990051827 A KR 19990051827A KR 1019970071236 A KR1019970071236 A KR 1019970071236A KR 19970071236 A KR19970071236 A KR 19970071236A KR 19990051827 A KR19990051827 A KR 19990051827A
- Authority
- KR
- South Korea
- Prior art keywords
- flaw detection
- magnetic flux
- sensor
- magnetic
- steel sheet
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 35
- 239000010959 steel Substances 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 238000007716 flux method Methods 0.000 title claims abstract description 13
- 230000007547 defect Effects 0.000 claims abstract description 26
- 230000006698 induction Effects 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 230000001939 inductive effect Effects 0.000 abstract description 2
- 230000004907 flux Effects 0.000 description 15
- 230000005415 magnetization Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C51/00—Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
본 발명은 누설자속법에 의한 박강판 결함의 탐상장치에 관한 것으로서, 누설자속법에 의한 박강판의 결함을 자기센서로 탐상하는 탐상장치에 있어서, 전원공급장치(10)로부터 전원이 인가되는 홀자기센서(11)에 증폭기(12)를 통해 유도자장에 의한 영향을 제거하는 고대역통과필터(13)를 연결하고, 이 고대역통과필터(13)에다 잡음을 억제하여 잡음과 신호의 비를 향상시키는 증폭기 및 저대역통과필터(14)를 통해 출력부(15)를 연결하여 이루어진 구성으로 센서 주변에 아주 복잡한 자기차폐구조물을 설치할 필요가 없으므로 자기 센서부를 간단하게 구성할 수 있는 장점이 있을 뿐만 아니라 우수한 감도를 갖고 가격이 저렴한 장점이 있으며, 기기의 운용방식도 편리한 이점이 있는 것이다.The present invention relates to a flaw detection device for thin steel plate defects by the leak magnetic flux method, and in a flaw detection device for flaw flaw detection of a thin steel sheet by the leak magnetic flux method, a hole to which power is applied from the power supply device (10). A high bandpass filter 13 is connected to the magnetic sensor 11 to remove the influence of the inductive magnetic field through the amplifier 12, and the noise is suppressed to the high bandpass filter 13 to reduce the ratio of noise and signal. By connecting the output unit 15 through the amplifier and the low pass filter 14 to improve, there is no need to install a very complex magnetic shield structure around the sensor, there is an advantage that can easily configure the magnetic sensor unit In addition, it has the advantages of excellent sensitivity and low cost, and the operation method of the device also has the advantage of convenience.
Description
본 발명은 박강판의 결함을 홀(Hall)자기센서를 이용하여 검출하는 누설자속법에 의한 박강판 결함의 탐상장치에 관한 것이다.The present invention relates to a flaw detection apparatus for a thin plate defect by a leak magnetic flux method for detecting a defect of a thin plate using a Hall magnetic sensor.
박강판에 존재하는 결함은 크게 표면에 노출된 결함인 표면결함과 강판의 내부에 존재하는 내부결함으로 구분되며, 표면결함으로는 롤마크(roll mark), 덜마크(dull mark), 덴트(dent), 스티커(sticker), 버클(buckle)등이 있고, 내부결함으로는 비금속 개재물이 있다. 박강판의 내부 혹은 표면흠을 검출하기 위해서는 한국 특허공고 제96-5364호에 개시된 바와 같이 박강판을 자화시키고, 자화된 박강판에 존재하는 흠 주위에 발생하는 누설자속을 자기센서로 검출하는 누설자속 탐상법을 사용하고 있다. 이러한 누설자속 탐상법의 원리는 도 1에 나타낸 바와 같이 박강판(1)의 결함(2)을 찾기 위해서는 철심(3)에 코일(4)을 감아 만든 전자석으로 박강판(1)을 자화시켜야 한다. 박강판(1)을 자화시키기 위하여 영구자석을 사용할 수도 있으나 강판의 두께, 물성등의 변수에 따라 자화강도도 달라야 하므로 영구자석은 적합하지 않다. 전자석은 도 1에 나타낸 자화전원장치(5)에 의하여 자화강도를 조절할 수 있으므로 자화를 위한 적합한 방법이다. 자화기를 통한 자화는 일반적으로 박강판이 거의 포화될 정도의 자화를 위한 전류를 공급해 준다. 즉, 박강판은 자성 물질이어야 하므로 비선형적인 자기특성을 지니고 있으므로 자화전류에 따른 자화정도는 비선형적이 되고 일정한 자화전류에서는 포화된다. 박강판에 흠이 존재할 경우 흠에의해 발생되는 누설자속을 자기센서(6)로 측정하는데 그 누설자속의 모양은 도 2에 도시한 바와 같다. 도 2에 있어서, 결함(2)에 의해 발생되는 누설자속(A),(B)은 흠의 크기에 비해 상당히 넓은 영역까지 그 신호를 확장시킨다. 예컨대 0.3mmΦ 직경의 구멍이 박강판에 발생했을 경우 센서와 박강판의 거리인 리프트오프(lift off) 2mm에서 누설자속 신호가 센서에 미치는 영역은 약 14mm까지 확장되고, 직경 0.1mm인 관통홀의 경우는 약 12mm이다. 한편 두 경우의 결함에 의한 누설자속의 신호 크기는 약 3배정도 0.3mm인 경우가 0.1mm인 경우보다 크다. 이러한 공간확장성을 이용하여 강판의 전 폭에 대한 결함을 탐상하고자 할 경우 강판의 폭 방향으로 자기센서를 강판의 전폭에 걸쳐 일렬로 배열한다.The defects in the thin steel plate are classified into surface defects, which are largely exposed defects on the surface, and internal defects existing inside the steel sheet, and surface defects include roll marks, dull marks, and dents. ), Stickers and buckles, and internal defects include nonmetallic inclusions. In order to detect the internal or surface flaws of the thin steel sheet, as disclosed in Korean Patent Publication No. 96-5364, the magnetic sheet is magnetized, and a leak that detects leakage magnetic flux generated around the flaw present in the magnetized thin steel sheet by a magnetic sensor. Magnetic flux scanning is used. As shown in FIG. 1, in order to find the defect 2 of the thin steel sheet 1, the leak magnetic flux flaw detection method must magnetize the thin steel sheet 1 with an electromagnet formed by winding the coil 4 around the iron core 3. . Permanent magnets may be used to magnetize the thin steel sheet 1, but the permanent magnets are not suitable because the magnetization strengths should also vary according to the thickness, physical properties, and the like. The electromagnet is a suitable method for magnetization because the magnetization strength can be adjusted by the magnetization power supply 5 shown in FIG. Magnetization through a magnetizer generally provides the current for magnetization to the extent that the sheet steel is nearly saturated. That is, since the thin steel sheet must be a magnetic material and has nonlinear magnetic properties, the magnetization degree according to the magnetization current becomes nonlinear and is saturated at a constant magnetization current. When a flaw exists in a thin steel plate, the magnetic flux of the leaked magnetic flux generated by the flaw is measured by the magnetic sensor 6, and the shape of the leaked magnetic flux is as shown in FIG. In Fig. 2, the leakage magnetic fluxes A and B caused by the defect 2 extend the signal to a region which is considerably wider than the size of the defect. For example, if a hole with a diameter of 0.3 mm Φ occurs in the steel sheet, the area where the leakage magnetic flux signal extends to about 14 mm at the lift-off 2 mm, the distance between the sensor and the steel sheet, is increased to about 14 mm. Is about 12mm. On the other hand, the signal magnitude of the leakage magnetic flux due to the defects in both cases is about three times larger than that of 0.3 mm in 0.3 mm. In order to detect defects with respect to the full width of the steel sheet using such spatial expandability, magnetic sensors are arranged in a line over the full width of the steel sheet in the width direction of the steel sheet.
누설자속을 측정하기 위해서는 박강판에 수직한 성분의 자장(A)이나 수평한 성분의 자장(B)을 측정해야 하는데, 일반적으로 센서의 배치와 신호의 처리 측면에서 유리한 수직 자장(A)을 측정한다. 도 2에서 흠 중앙 부위의 수직 성분 누설자속이 비선형적으로 굴곡이 진것(실선)은 리프트오프가 작을 경우이고, 리프트오프가 큰 경우는 거의 선형적(점선)으로 된다.In order to measure the leakage magnetic flux, it is necessary to measure the magnetic field (A) of the component perpendicular to the thin steel sheet or the magnetic field (B) of the horizontal component. In general, the vertical magnetic field (A) which is advantageous in terms of sensor placement and signal processing is measured. do. In Fig. 2, when the vertical component leakage magnetic flux at the center portion of the groove is nonlinearly curved (solid line), the liftoff is small, and when the liftoff is large, it is almost linear (dotted line).
이러한 누설자속법에 의한 박강판 결함의 탐상장치는 최종제품을 생산하기 전에 그 모재의 결함을 탐상하는 장치로 모재의 품질을 평가하여 결함이 존재하는 강판을 가공하므로 인한 경제적 시간적 손실을 피하고, 고품질의 생산품을 수요가에게 납품하므로써 클레임 율을 저하시키고, 제품의 부가가치를 향상시킬 수 있으므로 그 경제적 가치가 클 뿐만 아니라 기술적 가치도 크다.The flaw detection device for thin steel plate defects by the leakage flux method is a device for flaw detection of the base metal prior to the production of the final product. By supplying the product to the demand price, the claim rate can be lowered, and the added value of the product can be improved.
종래에는 유럽특허 제0544911A1호(Method and Detecting Magnetic Flux, NNK)에 개시된 것으로서 박강판의 흠을 탐상하기 위하여 비교적 감도가 높은 피크(peak)검출 형식의 플럭스게이트 센서를 사용하였고, 강판의 흠이 아닌 다른 요인에 의해 발생되는 자기장의 분포영역이 흠에 의한 것보다는 수배 이상 넓은 것을 착안하여 두 센서에서 측정한 자장을 차감하는 방법으로 흠에 의한 신호만 추출하였다. 그러나 이 경우는 센서자체의 동작범위가 수 가우스(Gauss)에 불가하므로 강한 자장 내에서 도체인 강판이 수십에서 수백mpm 정도의 속도로 운동할 때 발생하는 수십 가우스 정도의 큰 유도 자장에 의해 센서는 동작을 할 수 없게 된다. 따라서 이 경우는 센서가 안정되게 동작하도록 하기 위해 센서주변에 아주 복잡한 자기차폐 구조물을 설치 하여야 하며, 동일한 자기차폐능 및 센서의 출력을 얻기 위해 센서의 배열이 아주 정교하여야 하는 단점이 있다. 따라서 종래의 누설자속법에 의한 박강판의 흠 탐상기술은 제작의 단가가 높을 뿐만 아니라 기기의 운영에 있어서도 상당한 어려움이 있었다.Conventionally, as disclosed in European Patent No. 0544911A1 (Method and Detecting Magnetic Flux, NNK), a relatively sensitive peak detection type fluxgate sensor is used to detect a flaw in a thin steel sheet. Taking into account that the distribution area of the magnetic field caused by other factors is several times wider than that of the defect, only the signal due to the defect was extracted by subtracting the magnetic field measured by the two sensors. However, in this case, since the operating range of the sensor itself is not possible for several Gauss, the sensor is prevented by a large induction magnetic field of tens of Gauss, which occurs when the conductor steel plate moves at a speed of tens to hundreds of mpm within a strong magnetic field You will not be able to operate. Therefore, in this case, a very complex magnetic shielding structure should be installed around the sensor in order to operate the sensor stably, and the arrangement of the sensor must be very precise to obtain the same magnetic shielding ability and the output of the sensor. Therefore, the flaw flaw detection technique of the thin steel sheet by the conventional leak magnetic flux method has not only a high manufacturing cost but also a considerable difficulty in the operation of the apparatus.
본 발명은 상기한 종래 박강판 결함 탐상장치가 갖는 문제점들을 해결하고자 발명한 것으로서, 동작범위가 넓고, 감도가 우수한 홀자기센서를 이용하여 박강판에 존재하는 결함을 탐상함으로써 장치의 제작을 용이하게 하고, 그 제작단가를 저감시키며, 기기의 운용도 편리한 누설자속법에 의한 박강판 결함의 탐상장치를 제공함에 그 목적이 있다.The present invention has been invented to solve the problems of the conventional flaw flaw detection device described above, by using a magnetic field sensor having a wide operating range and excellent sensitivity to flaw present in the flap sheet to facilitate the manufacture of the device It is an object of the present invention to provide a flaw detection apparatus for thin steel sheet defects by the leak magnetic flux method, which reduces the manufacturing cost and reduces the manufacturing cost.
도 1 은 누설자속법에 의한 탐상원리를 나타낸 개념도,1 is a conceptual diagram showing the principle of flaw detection by the leakage magnetic flux method,
도 2 는 흠에 의해 발생되는 누설자속의 모양을 나타낸 도면,2 is a view showing the shape of the leakage magnetic flux generated by the flaw,
도 3 은 본 발명 누설자속법에 의한 박강판 결함의 탐상장치의 구성도이다.3 is a configuration diagram of a flaw detection apparatus for a thin steel sheet defect by the leak magnetic flux method of the present invention.
<도면의 주요부호에 대한 설명><Description of Major Symbols in Drawing>
1: 박강판 2: 결함1: sheet steel 2: defect
3: 철심 4: 코일3: iron core 4: coil
5: 자화전원장치 6: 자기센서5: magnetization power supply 6: magnetic sensor
10: 전원공급장치 11: 홀자기센서10: Power Supply 11: Hall Magnetic Sensor
12: 증폭기 13: 고대역통과필터12: Amplifier 13: Highpass Filter
14: 증폭기 및 저대역통과필터 15: 출력부14: amplifier and low pass filter 15: output
A: 수직성분 B: 수평성분A: vertical component B: horizontal component
상기한 목적을 달성하기 위한 본 발명 누설자속법에 의한 박강판 결함의 탐상장치는 누설자속법에 의한 박강판의 결함을 자기센서로 탐상하는 탐상장치에 있어서, 전원공급장치(10)로부터 전원이 인가되는 홀자기센서(11)에 증폭기(12)를 통해 유도자장에 의한 영향을 제거하는 고대역통과필터(13)를 연결하고, 이 고대역통과필터(13)에다 잡음을 억제하여 잡음과 신호의 비를 향상시키는 증폭기 및 저대역통과필터(14)를 통해 출력부(15)를 연결하여 자기센서의 조절기를 하이브리드 집적회로로 구성한 것을 특징으로 한다.The flaw detection apparatus for the thin steel plate defect by the leakage magnetic flux method of the present invention for achieving the above object is a flaw detection apparatus for flaws the flaw of the steel sheet by the leakage magnetic flux method with a magnetic sensor, the power supply from the power supply device 10 A high bandpass filter 13 for removing the influence of an inductive magnetic field through an amplifier 12 is connected to an applied magnetic field sensor 11, and the noise is suppressed to the high bandpass filter 13 by suppressing noise. It is characterized in that the regulator of the magnetic sensor is configured as a hybrid integrated circuit by connecting the output unit 15 through an amplifier and a low pass filter 14 to improve the ratio of the ratio.
이하 첨부 도면을 참조하여 본 발명의 구성 및 작용을 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation of the present invention.
도 3은 본 발명 누설자속법에 의한 박강판 결함의 탐상장치의 구성도로서, 현재 시판되고 있는 홀자기센서 중에서 저렴한 가격이며, 감도가 우수한 센서를 선택하여 그 조절기를 도 3과 같이 구성하였다. 이러한 조절기는 하이브리드 집적회로(hybride IC)로 구성 하였으므로 그 크기는 25㎜x45㎜이다. 하이브리드 집적회로 내에는 홀센서를 안정되게 동작시키기 위하여 일정한 전압의 직류전압을 인가하는 전원공급장치(10)가 내장되어 있으며, 홀자기센서(11)의 출력신호를 증폭기(12)에서 1차 증폭을 한 후 이 신호를 고대역통과필터(13)에 입력 하였다. 따라서 홀자기센서(11)의 출력신호는 강판의 속도에 의해 발생하는 유도자장을 제거하므로 종래의 기술과 같은 더 이상의 자기차폐나 센서의 배열을 위한 노력은 필요 없게 된다. 고대역통과필터(13)를 거친 누설자속 신호는 증폭기 및 저대역통과필터(14)에 인가되며, 여기서 강판의 폭 방향으로 배열된 모든 홀자기센서(11)에 대한 이익을 조절하게 되고, 고주파수의 잡음을 없앤다. 탐상장치는 잡음의 특성을 향상시키기 위하여 홀자기센서(11)의 바로 위에 설치 하였고, 센서와 센서의 거리는 5㎜로 배열하였다. 이렇게 하므로써 본 발명 누설자속법에 의한 박강판 결함의 탐상장치는 간단한 자기 센서부를 구성하여 우수한 감도를 나타내는 효과 뿐만 아니라 저렴한 가격 및 기기 운용이 편리한 장점을 갖는다.FIG. 3 is a schematic diagram of a flaw detection apparatus for a thin steel sheet defect according to the present invention, and a low-cost, high-sensitivity sensor is selected among commercially available Hall magnetic sensors, and the regulator is configured as shown in FIG. 3. This regulator is composed of a hybrid IC (hybride IC), the size is 25㎜x45㎜. In the hybrid integrated circuit, a power supply device 10 is applied to apply a DC voltage of a constant voltage to stably operate the hall sensor. The output signal of the Hall magnetic sensor 11 is first amplified by the amplifier 12. The signal was input to the high pass filter (13). Therefore, since the output signal of the Hall magnetic sensor 11 removes the induction magnetic field generated by the speed of the steel sheet, no further magnetic shielding or arrangement of the sensor as in the prior art is required. The leakage magnetic flux signal passing through the high pass filter 13 is applied to the amplifier and the low pass filter 14, where the gain for all the Hall magnetic sensors 11 arranged in the width direction of the steel sheet is adjusted, and the high frequency Eliminate the noise of The flaw detector was installed directly above the Hall magnetic sensor 11 to improve the noise characteristics, and the distance between the sensor and the sensor was 5 mm. By doing so, the flaw detection device for the thin steel sheet defect according to the present invention has a merit of having a simple magnetic sensor unit to show excellent sensitivity as well as low cost and convenient device operation.
본 발명에 사용한 홀자기센서(11)는 시중에 판매되고 있는 고감도, 저가의 홀자기센서이며, 도 3에 나타낸 전원공급장치(10)에는 하이브리드 집적회로 내의 각종 집적회로의 동작을 위한 ±15V의 전원 리드선이 있으며, 정류기를 이용한 1.5V 정전압을 출력할 수 있도록 되어 있다.The Hall magnetic sensor 11 used in the present invention is a high sensitivity, low cost Hall magnetic sensor on the market, and the power supply device 10 shown in FIG. 3 has a ± 15V for operation of various integrated circuits in a hybrid integrated circuit. There is a power supply lead and it can output 1.5V constant voltage using rectifier.
1.5V의 정전압은 전압 폴로우(follower)를 거쳐 홀자기센서(11)에 일정하게 인가된다. 한편 홀자기센서(11)의 출력은 증폭기(12)에서 약100배의 이득으로 일정하게 설정된 집적회로를 거치게 되며, 증폭된 신호는 능동소자로 구성된 임계주파수가 약10Hz인 고대역통과필터(13)에 입력된다. 예컨대 전자석에 인가되는 자화전류가 5A이고, 리프트오프가 2㎜일 경우 약 1000mpm의 속도로 주행하는 강판에 유도된 와전류에 의한 유도자장은 약 100 가우스 이므로 센서의 동작범위는 적어도 105 가우스는 되어야 자기차폐를 하지 않아도 된다. 본 발명에 사용한 홀자기센서(11)는 약 1테슬라(Tesla) 정도의 동작범위를 가지고 있으므로 자기차폐는 필요하지 않게된다. 고대역통과필터(13)를 거친 누설자속 신호는 불과 수백 mV 정도이며, 여기에는 공기중에 노출되어 있는 고주파수의 잡음성분이 중첩되어 있다. 따라서 본 발명에서는 집적회로의 동작범위 내에서 결함에 의한 신호를 안정적으로 취하기 위해 약 20배의 이득을 가진 증폭기(12)를 사용하였고, 동시에 약 10KHz의 임계주파수를 가진 저역통과필터를 구성하였다.A constant voltage of 1.5 V is constantly applied to the Hall magnetic sensor 11 via a voltage follower. On the other hand, the output of the Hall magnetic sensor 11 is passed through the integrated circuit is set constant with a gain of about 100 times in the amplifier 12, the amplified signal is a high-pass filter 13, the critical frequency of the active element is about 10Hz ) Is entered. For example, if the magnetizing current applied to the electromagnet is 5 A and the lift-off is 2 mm, the induction magnetic field caused by the eddy current induced on the steel plate traveling at a speed of about 1000 mpm is about 100 gauss, so the operating range of the sensor should be at least 105 gauss. There is no need to shield. Since the Hall magnetic sensor 11 used in the present invention has an operating range of about 1 Tesla, magnetic shielding is not necessary. The leakage magnetic flux signal passing through the high pass filter 13 is only a few hundred mV, and the high frequency noise components exposed to the air are superimposed thereon. Therefore, in the present invention, an amplifier 12 having a gain of about 20 times is used to stably take a signal due to a defect within an operating range of an integrated circuit, and a low pass filter having a threshold frequency of about 10 KHz is configured at the same time.
또한 홀자기센서(11)에 의한 누설자속 신호는 수mV 정도로 아주 미세하므로 잡음특성을 향상시키기 위하여 하이브리드 집적회로는 센서의 바로 위 약 20㎜에 설치하였고, 센서와 센서의 거리는 5㎜로 배열하였다.In addition, since the leakage magnetic flux signal by the Hall magnetic sensor 11 is very fine, such as a few mV, the hybrid integrated circuit is installed about 20 mm above the sensor to improve the noise characteristics, and the distance between the sensor and the sensor is 5 mm. .
따라서 본 발명 누설자속법에 의한 박강판 결함의 탐상장치는 센서 주변에 아주 복잡한 자기차폐구조물을 설치할 필요가 없으므로 자기 센서부를 간단하게 구성할 수 있는 장점이 있을 뿐만 아니라 우수한 감도를 갖고 가격이 저렴한 장점이 있으며, 기기의 운용방식도 편리한 이점이 있다.Therefore, the flaw detection device for the thin plate defect according to the present invention does not need to install a very complex magnetic shield structure around the sensor, so that the magnetic sensor part can be simply configured, and the sensitivity is low and the price is low. There is also a convenient way of operating the device.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970071236A KR100352133B1 (en) | 1997-12-20 | 1997-12-20 | Device for flaw detection of sheet steel by leak magnetic flux method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970071236A KR100352133B1 (en) | 1997-12-20 | 1997-12-20 | Device for flaw detection of sheet steel by leak magnetic flux method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990051827A true KR19990051827A (en) | 1999-07-05 |
KR100352133B1 KR100352133B1 (en) | 2002-11-18 |
Family
ID=37489186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970071236A KR100352133B1 (en) | 1997-12-20 | 1997-12-20 | Device for flaw detection of sheet steel by leak magnetic flux method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100352133B1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2861581B2 (en) * | 1991-06-04 | 1999-02-24 | 日本鋼管株式会社 | Magnetic detection method and device |
JPH06265526A (en) * | 1993-03-12 | 1994-09-22 | Nippon Steel Corp | Leakage flux flaw detecting apparatus |
JP3584452B2 (en) * | 1995-11-17 | 2004-11-04 | Jfeスチール株式会社 | Micro defect detector |
-
1997
- 1997-12-20 KR KR1019970071236A patent/KR100352133B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100352133B1 (en) | 2002-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3811039B2 (en) | Magnetic leak detection sensor for magnetic flaw detector | |
US4954777A (en) | Device for defect testing of non-ferromagnetic test samples and for ferromagnetic inclusions | |
KR100487737B1 (en) | Leakage flux flaw detecting method and method for manufacturing hot rolled steel sheet using the same | |
EP0801304A1 (en) | Magnetic sensor, and magnetic flaw detection method and apparatus using the magnetic sensor | |
JPH1025658A (en) | Method and apparatus for detecting magnetic material in non-magnetic product | |
WO1991013347A1 (en) | Magnetic flaw detector for thin steel belt | |
KR100352133B1 (en) | Device for flaw detection of sheet steel by leak magnetic flux method | |
JP3584452B2 (en) | Micro defect detector | |
JPH06294850A (en) | Method and apparatus for measuring weak magnetism and non-destructive inspecting method using the same | |
JP3584453B2 (en) | Micro defect detector | |
US5122743A (en) | Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation | |
JP3743191B2 (en) | Eddy current testing | |
CN112444219B (en) | Non-contact ultrasonic electromagnetic coating thickness measuring method and detection device thereof | |
JPH08193980A (en) | Method and device for magnetic flaw detection | |
GB1468852A (en) | Method and device for eddy-current detection of a change in magnetic behaviour of a material | |
JPH04296648A (en) | Method and device for magnetic crack detection | |
JPH05264508A (en) | Method and apparatus for nondestructive measurement of quenched and hardened range | |
KR100388313B1 (en) | Signal Processing Method for Defect Detection of Steel Sheets | |
JP2005106602A (en) | Magnetic flaw detection sensor | |
EP0544911A1 (en) | Method and device for detecting magnetic flux | |
JPH0843358A (en) | Eddy-current flaw detecting method for steel pipe | |
KR100285641B1 (en) | Method for processing signals of magnetic sensor for detecting defects on steel sheet | |
JPH0815227A (en) | Magnetizing device for steel plate | |
JPH03277962A (en) | Magnetic flaw detecting apparatus | |
JP2663767B2 (en) | Transformation rate measuring method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19971220 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19991206 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19971220 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20011025 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20020731 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020827 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020828 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20050728 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20060802 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20070802 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20080801 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20090825 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20100827 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20110805 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20120816 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20120816 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20130823 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20130823 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140825 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20140825 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150824 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20150824 Start annual number: 14 End annual number: 14 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20170705 |