KR19990050454A - Chemical vapor deposition of copper thin film by organometallic compound precursor - Google Patents

Chemical vapor deposition of copper thin film by organometallic compound precursor Download PDF

Info

Publication number
KR19990050454A
KR19990050454A KR1019970069573A KR19970069573A KR19990050454A KR 19990050454 A KR19990050454 A KR 19990050454A KR 1019970069573 A KR1019970069573 A KR 1019970069573A KR 19970069573 A KR19970069573 A KR 19970069573A KR 19990050454 A KR19990050454 A KR 19990050454A
Authority
KR
South Korea
Prior art keywords
copper
thin film
pentene
chemical vapor
vapor deposition
Prior art date
Application number
KR1019970069573A
Other languages
Korean (ko)
Other versions
KR100249825B1 (en
Inventor
전치훈
김윤태
백종태
신현국
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019970069573A priority Critical patent/KR100249825B1/en
Publication of KR19990050454A publication Critical patent/KR19990050454A/en
Application granted granted Critical
Publication of KR100249825B1 publication Critical patent/KR100249825B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Abstract

본 발명은 종래의 알루미늄계 반도체 배선에 비해 비저항 및 전자이주(EM: electromigration) 특성면에서 우수한 구리 배선박막을 화학증착법(CVD: chemical vapor deposition)으로 형성시 발생되는 제반 문제점들을 해결하기 위한 것이다.The present invention is to solve the problems caused when forming a copper wiring thin film (CVD: chemical vapor deposition) excellent in the resistivity and electromigration (EM) characteristics compared to the conventional aluminum-based semiconductor wiring.

발명은 구리전구체로서 β-diketonate계 (hfac)CuL 구리화합물에서 리간드 L로써 1-pentene(C5H10)을 사용하여 구리-리간드(Cu-L)를 약하게 결합시킴으로써 증기압을 높여 박막 증착율을 향상시킬 수 있도록 새롭게 합성한 (hfac)Cu(1-pentene) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato(1-pentene)copper(I): C10H11CuF6O2] 화합물을 사용하였다. 이때 (hfac)Cu(1-pentene)에 1-pentene을 첨가한 혼합용액을 구리 증착반응의 전구체로서 사용함으로써 Cu(I)계 액체 전구체의 열적 안정성 문제를 해결하였다. 이와같이 (hfac)Cu(1-pentene) 또는 (hfac)Cu(1-pentene)+(1-pentene) 혼합용액을 구리원으로써 증발시켜 일정온도, 일정압력으로 유지된 화학증착 반응로에 도입함으로써 열에너지에 의한 구리원-기판간 증착반응에 의해 전도체, 절연체, 반도체 기판상에 벌크치에 가까운 낮은 전기비저항과 <111> 결정배향성을 갖는 고순도의 구리박막을 높은 증착율로 재현성있게 형성할 수 있다. 따라서 본 발명에 의한 구리 화학증착법을 사용하여 물리, 화학적으로 우수한 특성을 가져 반도체 배선공정에 적합한 구리박막을 형성할 수 있다.The present invention improves thin film deposition rate by increasing the vapor pressure by weakly bonding copper-ligand (Cu-L) using 1-pentene (C 5 H 10 ) as ligand L in β-diketonate-based (hfac) CuL copper compound as a copper precursor. Newly synthesized (hfac) Cu (1-pentene) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato (1-pentene) copper (I): C 10 H 11 CuF 6 O 2 ] compound was used. At this time, by using a mixed solution of 1-pentene added to (hfac) Cu (1-pentene) as a precursor of the copper deposition reaction, the thermal stability problem of the Cu (I) -based liquid precursors was solved. In this way, (hfac) Cu (1-pentene) or (hfac) Cu (1-pentene) + (1-pentene) mixed solution is evaporated as a copper source and introduced into a chemical vapor deposition reactor maintained at a constant temperature and pressure. By means of the copper source-substrate deposition reaction, a high-purity copper thin film having low electrical resistivity and crystal orientation close to a bulk value can be formed on the conductor, insulator and semiconductor substrate with high deposition rate. Therefore, by using the copper chemical vapor deposition method according to the present invention it is possible to form a copper thin film suitable for the semiconductor wiring process having excellent physical and chemical properties.

Description

유기금속 화합물 전구체에 의한 구리박막의 화학증착 방법Chemical vapor deposition of copper thin film by organometallic compound precursor

본 발명은 종래의 구리 화학증착법에 의한 반도체 배선용 구리박막 제조시 나타나는 제반 문제점들을 해결하기 위한 것으로, 구리 전구체의 열적 안정성을 높여 낮은 증착온도에서 벌크(bulk)치에 가까운 우수한 전기비저항 특성과 <111> 결정배향성을 갖는 구리박막을 높은 증착율로 재현성 있게 형성할 수 있는 구리 화학증착 방법을 제공하기 위함이다.SUMMARY OF THE INVENTION The present invention is to solve various problems in the manufacture of a copper thin film for semiconductor wiring by the conventional copper chemical vapor deposition method, and improves the thermal stability of the copper precursor, excellent electrical resistivity and close to the bulk value at low deposition temperature and <111. It is to provide a copper chemical vapor deposition method capable of reproducibly forming a copper thin film having crystal orientation.

반도체 미세화에 수반된 배선폭 감소 및 배선길이 증가로 인한 신호전달지연 및 전자이주 현상(EM: electromigration)의 해결을 위해 기존 알루미늄계 반도체 배선을 대체할 물질로서 낮은 전기비저항과 높은 EM 내성을 가진 구리가 고려되고 있으며, 특히 우수한 물성의 박막을 얻기 위해 구리 화학증착법(CVD: chemical vapor deposition)의 적용이 검토되고 있다. 이때 구리원으로 (hfac)Cu(VTMS) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato(vinyltrimethylsilane)copper(I):C10H13O2CuF6Si]와 Cu(hfac)2[bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)copper(II): C10H2O4CuF12]로 대표되는 β-diketonate계 Cu(I), Cu(II) 유기금속화합물을 사용하고 있다. 그런데 안정한 고체 전구체인 Cu(hfac)2에 의한 증착박막은 낮은 증착속도 및 높은 비저항값을 보이는 반면, 액체 (hfac)Cu(VTMS) 경우는 Cu(hfac)2보다 증착특성은 우수하나 열적으로 불안정하여 전구체의 상온 보관중 또는 증발과정중에 서서히 변질되어 열화된다. 또한, 구리원의 반응로에로의 공급이 통상 구리원이 담겨진 용기를 직접 가열하는 버블러(bubbler) 방식에 의해 이루어지므로 구리원 온도 및 증기압 요동에 의해 증착공정중 공급유량이 변동하여 정밀한 유량공급이 어렵고 따라서 증착재현성과 증착균일성이 극히 불량하다. 그러므로 근본적으로 열적 안정성, 높은 증기압을 가지는 새로운 구리원의 합성과 이의 전구체로의 이용시 우수한 증착특성을 얻기 위한 화학증착 조건의 확립이 요구되어 왔다.It is a material that will replace the existing aluminum-based semiconductor wiring to solve the signal transmission delay and the electromigration (EM) caused by the reduction of the wiring width and the increase of the wiring length due to the miniaturization of the semiconductor. In particular, the application of copper chemical vapor deposition (CVD: chemical vapor deposition) is under consideration in order to obtain a thin film having excellent physical properties. Where (hfac) Cu (VTMS) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato (vinyltrimethylsilane) copper (I): C 10 H 13 O 2 CuF 6 Si] Β-diketonate Cu represented by Cu (hfac) 2 [ bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) copper (II): C 10 H 2 O 4 CuF 12 ] (I) and Cu (II) organometallic compounds are used. However, the thin film deposited by Cu (hfac) 2, which is a stable solid precursor, exhibits low deposition rate and high resistivity, whereas liquid (hfac) Cu (VTMS) has better deposition characteristics than Cu (hfac) 2 but is thermally unstable. During the normal temperature storage of the precursor or during the evaporation process is gradually deteriorated. In addition, since the supply of the copper source to the reactor is usually performed by a bubbler method of directly heating the vessel containing the copper source, the supply flow rate during the deposition process is changed by the copper source temperature and the vapor pressure fluctuation, so that the precise flow rate It is difficult to supply and therefore extremely poor in deposition reproducibility and deposition uniformity. Therefore, there has been a need for the synthesis of new copper sources with fundamental thermal stability, high vapor pressure, and the establishment of chemical vapor deposition conditions to obtain excellent deposition properties when used as precursors thereof.

구리 화학증착법을 반도체 배선구조 제조에 응용하기 위해서는 전기비저항, 결정배향성 등의 기본적인 박막물성과 더불어 높은 증착율 등의 양호한 증착특성을 우선적으로 확보할 수 있는 증착방법이 개발되어야만 한다. 그런데 종래의 화학증착법에서는 약 130 ∼ 450oC 범위에서 박막증착이 가능하나 높은 증착율로 낮은 전기비저항의 구리박막을 얻기는 매우 어렵다. 즉, 증착율이 높은 고온에서는 결정립 성장에 따른 박막간의 연결성이 불량해져 비저항이 커지는 반면, 낮은 증착온도에서는 조밀한 미세구조로 낮은 비저항의 박막형성이 가능하나 증착율이 느려 실제 제조공정상에의 응용이 제한되는 단점이 있다. 그리고 배선의 EM 내성은 구리박막 경우 Cu(111)/Cu(200)의 결정배향성에 크게 좌우되어 이 비율이 높을 수록 큰 것으로 알려져 있는데, 종래의 화학증착법은 열화학증착 방법이므로 <111> 배향성의 구리박막을 얻기가 용이하지 않다.In order to apply the copper chemical vapor deposition method to the semiconductor wiring structure manufacturing, a deposition method must be developed that can secure a good deposition characteristics such as high deposition rate and basic thin film properties such as electrical resistivity and crystal orientation. However, in the conventional chemical vapor deposition method, it is possible to deposit thin films in the range of about 130 to 450 ° C., but it is very difficult to obtain a low electrical resistivity copper thin film with a high deposition rate. In other words, at a high deposition rate, the connectivity between the thin films due to grain growth is poor and the specific resistance is increased.However, at low deposition temperatures, the microstructure having a low specific resistance is possible due to the dense microstructure, but the deposition rate is low, so the application to the actual manufacturing process is limited. There is a disadvantage. In the case of copper thin film, the EM resistance of the wiring is largely dependent on the crystal orientation of Cu (111) / Cu (200), and it is known that the higher this ratio is, the higher the ratio is. It is not easy to obtain a thin film.

본 발명은 구리 화학증착법에서 구리 전구체의 열화와 분해 및 공급유량 변동에 따른 증착공정의 증착재현성, 균일도 문제를 해결하고, 낮은 증착온도에서 벌크(bulk)치에 가까운 전기비저항과 <111> 결정배향성을 갖는 구리박막을 높은 증착율로 형성할 수 있는 고신뢰성의 구리박막 형성방법을 확보하고자 한다.The present invention solves the problems of deposition reproducibility and uniformity in the deposition process due to deterioration and decomposition of copper precursors and fluctuations in the supply flow in copper chemical vapor deposition, and the electrical resistivity and crystal orientation close to the bulk at low deposition temperature. It is intended to ensure a highly reliable copper thin film formation method capable of forming a copper thin film having a high deposition rate.

본 발명은 구리전구체로서 β-diketonate계 (hfac)CuL 구리화합물에서 리간드 L로써 1-pentene(C5H10)을 사용하여 구리-리간드(Cu-L)를 약하게 결합시킴으로써 증기압을 높여 박막 증착율을 향상시킬 수 있도록 새롭게 합성한 (hfac)Cu(1-pentene) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato(1-pentene)copper(I): C10H11CuF6O2] 화합물을 사용하였다.In the present invention, 1-pentene (C 5 H 10 ) is used as ligand L in β-diketonate-based (hfac) CuL copper compound to weakly bond copper-ligand (Cu-L) to increase vapor pressure to increase the thin film deposition rate. Newly synthesized (hfac) Cu (1-pentene) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato (1-pentene) copper (I): C 10 H 11 CuF 6 O 2 ] compound was used.

이때 (hfac)Cu(1-pentene)에 1-pentene을 첨가한 혼합용액을 구리 증착반응의 전구체로서 사용함으로써 Cu(I)계 액체 전구체의 열적 안정성 문제를 해결하였다.At this time, by using a mixed solution of 1-pentene added to (hfac) Cu (1-pentene) as a precursor for copper deposition reaction, the thermal stability problem of the Cu (I) -based liquid precursors was solved.

이와같이 (hfac)Cu(1-pentene) 또는 (hfac)Cu(1-pentene)+(1-pentene) 혼합용액을 구리원으로써 증발시켜 일정온도, 일정압력으로 유지된 화학증착 반응로에 도입함으로써 열에너지에 의한 구리원-기판간 증착반응에 의해 전도체, 절연체, 반도체 기판상에 고순도의 구리박막을 높은 증착율로 재현성있게 형성할 수 있다.In this way, (hfac) Cu (1-pentene) or (hfac) Cu (1-pentene) + (1-pentene) mixed solution is evaporated as a copper source and introduced into a chemical vapor deposition reactor maintained at a constant temperature and pressure. By means of the copper source-substrate deposition reaction, a high-purity copper thin film can be formed on the conductor, insulator, and semiconductor substrate with high deposition rate.

도 1은 본 발명에서 사용한 구리 화학 증착장치의 계통도.1 is a schematic diagram of a copper chemical vapor deposition apparatus used in the present invention.

도 2는 본 발명에서 사용한 (hfac)Cu(1-pentene): C10H11CuF6O2구리 전구체의 구조식.2 is a structural formula of (hfac) Cu (1-pentene): C 10 H 11 CuF 6 O 2 copper precursor used in the present invention.

도 3은 본 발명의 화학증착 방법에 의해 형성된 구리박막의 증착온도에 따른 증착율과 전기 비저항 변화 특성도.Figure 3 is a characteristic change of the deposition rate and electrical resistivity according to the deposition temperature of the copper thin film formed by the chemical vapor deposition method of the present invention.

도 4는 본 발명의 화학증착 방법에 의해 형성된 구리박막의 증착온도에 따른 표면 및 단면 미세구조의 전자현미경(SEM) 사진을 보인 예시도.Figure 4 is an exemplary view showing an electron microscope (SEM) picture of the surface and cross-sectional microstructure according to the deposition temperature of the copper thin film formed by the chemical vapor deposition method of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1 : 석영제 반응로 2 : 구리원 용기1: quartz reactor 2: copper source container

3 : 구리원 4 : 차단밸브3: copper source 4: shutoff valve

5 : 운반기체 6 : 플랜지5 carrier gas 6 flange

7,8 : 전기로1, 2 9 : 볼 조인트7,8: electric furnace 1, 2 9: ball joint

10 : 진공계 11 : 진공밸브10: vacuum gauge 11: vacuum valve

12 : 기판 13 : 그래파이트 서셉터12 substrate 13 graphite susceptor

이하 본 발명의 실시예를 첨부도면에 의거하여 상세히 기술하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에서 구리박막의 제조방법을 적용하기 위해 사용한 파일롯트형 구리 화학증착장치이다. 석영제 반응로(1)의 입구부 일측벽에 차단밸브(4)를 거쳐 구리원 용기(2)가 설치되고, 그 구리원 용기(2)와 상기 석영제 반응로(1)에 운반기체(Ar, H2, He, N2)(5)를 주입하기 위한 주입구가 설치되고, 플랜지(6)에 의해 입구부가 개폐되는 상기 석영제 반응로(1)의 외주면에는 전기로 1(T/C 1)(7)과 전기로 2(T/C2)(8)가 설치되며, 그 석영제 반응로(1)내에 그래파이트(graphite) 서셉터(13)에 의해 지지되는 기판(12)이 놓여지며, 그 기판(12)에는 상기 플랜지(6)의 외부에서 열전대(T/C 3)가 연결되며, 상기 반응로(1)의 다른 쪽 단부는 볼 조인트(9), 진공계(10) 및 진공밸브(11)를 통해 진공배기를 조절할 수 있도록 구성된다.1 is a pilot type copper chemical vapor deposition apparatus used to apply a method for manufacturing a copper thin film in the present invention. A copper source container 2 is provided on one side wall of the inlet of the quartz reactor 1 via a shutoff valve 4, and a carrier gas (2) is provided in the copper source container 2 and the quartz reactor 1. An inlet for injecting Ar, H 2 , He, N 2 ) 5 is provided, and an electric furnace 1 (T / C) is provided on the outer circumferential surface of the quartz reactor 1 in which the inlet is opened and closed by the flange 6. 1) 7 and an electric furnace 2 (T / C2) 8 are installed, and a substrate 12 supported by a graphite susceptor 13 is placed in the quartz reactor 1. The substrate 12 has a thermocouple T / C 3 connected to the outside of the flange 6, and the other end of the reactor 1 has a ball joint 9, a vacuum gauge 10 and a vacuum valve. It is configured to control the vacuum exhaust through (11).

상기 석영제 반응로(1)는 고온벽 수평형(hot-wall horizontal type) 구조로 내경 45 mm, 두께 2.5 mm, 길이 500 mm의 크기이다. 반응로(1) 전단은 스테인레스 스틸제 플랜지(6)로 밀봉되며 이를 통해 Ar, H2, He, N2등의 운반기체(5)가 공급되며 기판(12)의 온도 측정을 위한 열전대(T/C 3) 연결구가 장착된다. 액체 구리원(3)은 스테인레스 스틸제 용기(2)에 충진되며, 용기(2)는 차단밸브(4)를 통해 석영제 반응로(1)와 연결된다. 전기로 1(7)은 상온의 구리원 용기(2)로부터 증발된 구리원(3)의 응축방지와 운반기체(5)의 예열을 위한 것으로 30 ∼ 35oC 범위로 가열된다. 기판(12)으로는 2×2 cm2크기의 박편을 사용하는데, 그래파이트 서셉터(13)위에 놓여져 전기로 2(8)에 의해 가열된다. 반응로(1)는 공정 대기중에는 로타리베인 진공펌프에 의해 10-2Torr대의 기초진공도로 유지되며, 실제 증착공정시는 진공밸브의 컨덕턴스를 조절하여 반응로 압력을 유지하도록 하였다. 반응로(1)내에 도입된 공정가스는 열에너지에 의해 여기되어 기판(12) 표면에 구리박막을 석출시킨 후 층류흐름을 형성하면서 진공배기된다.The quartz reactor 1 has a hot-wall horizontal type structure having an inner diameter of 45 mm, a thickness of 2.5 mm, and a length of 500 mm. The front end of the reactor 1 is sealed with a flange 6 made of stainless steel through which a carrier gas 5 such as Ar, H 2 , He, N 2, etc. is supplied, and a thermocouple T for measuring the temperature of the substrate 12. / C 3) The connector is mounted. The liquid copper source 3 is filled in a stainless steel container 2, which is connected to the quartz reactor 1 via a shutoff valve 4. Furnace 1 (7) is for preventing condensation of the copper source (3) evaporated from the copper source vessel (2) at room temperature and for preheating of the carrier gas (5) and is heated in the range of 30 to 35 ° C. 2 x 2 cm 2 flakes are used as the substrate 12, which is placed on the graphite susceptor 13 and heated by an electric furnace 2 (8). The reactor 1 is maintained at a basic vacuum of 10 -2 Torr by a rotary vane vacuum pump in the process atmosphere, and in the actual deposition process, the conduction pressure of the vacuum valve is controlled to maintain the reactor pressure. The process gas introduced into the reactor 1 is excited by thermal energy to precipitate a copper thin film on the surface of the substrate 12 and then evacuated while forming a laminar flow.

도 2는 본 발명에서 사용한 순도 99.99%의 (hfac)Cu(1-pentene): C10H11CuF6O2구리 전구체의 화학구조를 나타낸 것이다. 이는 연록색의 β-diketonate계 구리 화합물로서 (hfac)CuL(여기에서 L은 Lewis base ligand)의 구리-리간드 결합이 1-pentene에 의하여 약하게 결합되어 상온에서도 높은 증기압(10-2Torr, 25 ~ 27oC)을 가지므로 유기금속 화학증착시 반응로에 많은 양의 구리원을 공급할 수 있기 때문에 구리박막의 증착율을 높일 수 있다.Figure 2 shows the chemical structure of (hfac) Cu (1-pentene): C 10 H 11 CuF 6 O 2 copper precursor of 99.99% purity used in the present invention. It is a light green β-diketonate-based copper compound, in which copper-ligand bonds of (hfac) CuL (where L is Lewis base ligand) are weakly bound by 1-pentene, resulting in high vapor pressure even at room temperature (10 -2 Torr, 25-27 o Because of C), it is possible to increase the deposition rate of the copper thin film because a large amount of copper source can be supplied to the reactor during the organic metal chemical vapor deposition.

통상 (hfac)CuL의 Cu(I)계 전구체는 2(hfac)CuL → Cu(s)+Cu(hfac)2+2L의 불균등화반응(disproportionation)에 의해 증착반응이 진행된다. 그런데 Cu(I)계 액체 전구체는 대부분 열적으로 불안정하여 구리원의 상온 보관중 또는 증착공정중의 보관용기 가열에 의해 용기내에서도 위의 불균등화반응이 발생하게 된다. 따라서 구리원의 변질과 분해, 공급라인상의 응축/증착 및 입자발생과 함께 용기내의 구리원 온도 및 증기압이 변화하여 증착공정중의 공급유량 요동에 따른 박막증착 재현성, 균일도 등의 문제점이 나타나게 된다.In general, a Cu (I) precursor of (hfac) CuL proceeds by a disproportionation of 2 (hfac) CuL → Cu (s) + Cu (hfac) 2 + 2L. However, Cu (I) -based liquid precursors are mostly thermally unstable, so that disproportionation reactions occur in the container by heating the storage container during normal temperature storage or deposition process of the copper source. Therefore, the copper source temperature and vapor pressure change in the vessel along with the deterioration and decomposition of the copper source, condensation / deposition and supply of particles on the supply line, resulting in problems such as thin film deposition reproducibility and uniformity caused by fluctuations in the supply flow during the deposition process.

본 발명에서는 (hfac)Cu(1-pentene) 구리원의 열적 안정성을 높여주기 위하여, 즉 상온보관중 또는 장시간 가열중에 용기내에서 불균등화반응이 일어나지 않도록 (hfac)Cu(1-pentene) 구리원에 더하여 순도 99.99%의 1-pentene 리간드를 첨가하였다.In the present invention, in order to enhance the thermal stability of the (hfac) Cu (1-pentene) copper source, that is, to prevent disproportionation reaction in the container during normal temperature storage or for long time heating, the (hfac) Cu (1-pentene) copper source In addition 1-pentene ligand of 99.99% purity was added.

먼저, 최적의 구리원 혼합비를 얻기 위하여 표 1에서 1-pentene 첨가비율을 0 ∼ 50 vol%(순수 구리원 양에 대한 값) 범위로 변화시켜 버블러(bubbler) 방식과 기화기(vaporizer) 방식의 두 가지의 구리원 운송방법에서 혼합용액의 열적 안정성을 조사하였다. 30oC 가열조건에서 혼합비를 0%에서 10%로 증가시킴에 따라 혼합용액내의 침전물 등의 분해량이 점차 감소되는 것으로 관찰되었고, 20 ∼ 50% 혼합비에서는 두 가지 운송방식 모두에서 8 시간 이상의 열적 안정성을 보여주고 있다.First, in order to obtain the optimal copper source mixing ratio, the addition ratio of 1-pentene in Table 1 is changed to a range of 0 to 50 vol% (value for the amount of pure copper source), so that the bubbler method and the vaporizer method The thermal stability of the mixed solution was investigated in two copper source transport methods. As the mixing ratio was increased from 0% to 10% at 30 o C heating conditions, the amount of decomposition of precipitates in the mixed solution was observed to decrease gradually, and at 20 to 50% mixing ratio, thermal stability over 8 hours in both modes of transport was observed. Is showing.

따라서 20 vol% 이상의 1-pentene 리간드가 혼합된 (hfac)Cu(1-pentene)+(1-pentene) 용액을 구리원으로 사용함으로써 높은 증기압을 유지하면서도 열적 안정성을 유지할 수 있다.Therefore, by using a (hfac) Cu (1-pentene) + (1-pentene) solution containing 20 vol% or more of 1-pentene ligand as a copper source, thermal stability can be maintained while maintaining high vapor pressure.

그러므로 도 1의 화학증착장치에서 구리원으로 (hfac)Cu(1-pentene) 또는 (hfac)Cu(1-pentene)+(1-pentene) 혼합용액을 사용하거나 이들 구리원을 Ar, H2, He, N2등의 운반기체와 동시에 화학증착 반응로에 도입하여 구리박막을 형성할 수 있다. 특히, 앞의 전구체 혼합용액을 사용시 상기의 β-diketonate계 Cu(I) 액체 구리전구체에서 나타나는 구리원 자체의 변질과 증착공정중 공급유량 요동에 따른 문제점을 배제하여 화학증착 공정의 증착재현성과 증착균일도를 확보할 수 있다.Therefore, in the chemical vapor deposition apparatus of FIG. 1, a mixed solution of (hfac) Cu (1-pentene) or (hfac) Cu (1-pentene) + (1-pentene) is used as the copper source or Ar, H 2 , A copper thin film can be formed by simultaneously introducing a carrier gas such as He or N 2 into a chemical vapor deposition reactor. In particular, the deposition reproducibility and deposition of the chemical vapor deposition process are eliminated by using the precursor mixture solution, excluding the problems caused by the deterioration of the copper source itself and fluctuations in the supply flow during the deposition process, which appear in the β-diketonate Cu (I) liquid copper precursor. Uniformity can be secured.

표 2는 본 발명에서 고안한 구리 화학증착 방법의 전형적인 증착조건을 보인 것이다. 기판으로는p형 <100> Si 박편에 SiO22000Å , 반응성 스퍼터 TiN 900Å 이 순차적으로 입혀진 다층박막 시편을 사용하였다. 증착막의 두께와 미세구조, 결정배향성, 전기비저항은 각각 SEM, x선 회절분석기(XRD), 4 탐침기(4-point probe)로써 측정하였다. 먼저, 본 발명의 화학증착 방법에 의해 형성된 구리박막의 증착율과 전기비저항값 변화와 증착온도간의 상관관계를 분석하였다.Table 2 shows typical deposition conditions of the copper chemical vapor deposition method devised in the present invention. As a substrate, a multilayer thin film specimen in which SiO 2 2000 Pa and reactive sputter TiN 900 Pa was sequentially coated on a p- type Si flake was used. The thickness, microstructure, crystal orientation, and electrical resistivity of the deposited film were measured by SEM, x-ray diffractometer (XRD), and 4-point probe, respectively. First, the correlation between the deposition rate, the change in electrical resistivity value and the deposition temperature of the copper thin film formed by the chemical vapor deposition method of the present invention was analyzed.

도 3은 고온벽형 파일롯트 구리 화학증착 장치에서 구리원 용기내 (hfac)Cu(1-pentene)에 대하여 1-pentene을 50 vol%로 첨가한 혼합물을 전구체로 장입한 후 반응로 압력, 운반기체 유량, 전기로 1의 온도를 각각 0.1 Torr, 0 sccm, 30 ∼ 35oC로 고정시키고 TiN 기판상에 5 ∼ 10 분(구리원 소모량 0.8 ~ 1.2 g) 증착시킨 구리박막의 기판온도(T/C 3: 100 ∼ 200oC)에 따른 증착율과 비저항 변화를 나타낸 것이다. Arrhenius형 plot으로 나타낸 구리박막의 증착율은 100oC에서 200oC로의 기판온도 증가와 함께 1450Å/min에서 3500Å/min로 2 배 정도 급격히 커지고 있다. 따라서 200oC 이하의 저온 증착영역에서 열에너지가 증착초기의 구리 핵생성 밀도와 표면 증착반응 변화에 직접적인 영향을 끼침을 알 수 있다.FIG. 3 shows the reactor pressure and carrier gas after charging a mixture of 50 vol% of 1-pentene with respect to (hfac) Cu (1-pentene) in a copper source vessel in a hot wall pilot copper chemical vapor deposition apparatus. Substrate temperature (T /) of the copper thin film fixed at a flow rate and an electric furnace 1 at 0.1 Torr, 0 sccm, and 30 to 35 ° C., respectively, and deposited for 5 to 10 minutes (copper consumption: 0.8 to 1.2 g) on the TiN substrate. C 3: shows the deposition rate and the specific resistance change according to 100 ~ 200 o C). The deposition rate of the copper thin film represented by the Arrhenius plot is rapidly increasing from 1450Å / min to 3500Å / min with the increase of substrate temperature from 100 o C to 200 o C. Therefore, it can be seen that thermal energy directly affects the copper nucleation density and surface deposition reaction of the initial deposition in the low temperature deposition region below 200 o C.

도 3으로부터 구한 구리 증착반응의 기판온도에 따른 겉보기 활성화에너지값은 3.07 kcal/mol로, 통상 (hfac)Cu(VTMS) 전구체를 사용하여 표면반응 지배영역에서 구한 결과인 5 ∼ 13 kcal/mol과 비교해 보면 아주 낮은 값을 보이고 있다. 이와같은 활성화에너지의 감소는 본 발명에서 사용한 (hfac)Cu(1-pentene) 전구체에서 Cu(hfac)-(1-pentene)간이 약한 결합을 이루므로 기판 표면에로 흡착된 전구체로부터 2(hfac)Cu(1-pentene) → Cu(s)+Cu(hfac)2+2(1-pentene)의 불균등화반응이 낮은 증착온도에서도 용이하게 발생되어 높은 증착율을 보이기 때문이다.The apparent activation energy value according to the substrate temperature of the copper deposition reaction obtained from FIG. 3 is 3.07 kcal / mol, which is usually 5 to 13 kcal / mol obtained from the surface reaction dominant region using (hfac) Cu (VTMS) precursor. In comparison, the value is very low. This reduction in activation energy is due to the weak bonding between Cu (hfac)-(1-pentene) in the (hfac) Cu (1-pentene) precursor used in the present invention. This is because disproportionation of Cu (1-pentene) → Cu (s) + Cu (hfac) 2 +2 (1-pentene) is easily generated even at low deposition temperature and shows high deposition rate.

도 3에 본 발명의 화학증착 방법에 의해 1 ㎛ 이상 두께로 제조한 구리박막의 전기비저항과 증착온도와의 상관관계를 나타내었다. TiN 기판상 구리 증착박막의 비저항값은 100oC에서 2.17μΩ-cm(두께 1.45 ㎛), 150oC에서 1.98μΩ-cm(두께 1.1㎛)로 기판온도가 증가될수록 감소되며, 특히 200oC에서는 1.80 μΩ-cm(두께 2.0 ㎛)의 양호한 전기적 특성을 보이고 있다. 즉, 고온 증착영역에서는 표면 증착반응의 활성화에 의해 구리핵의 생성속도보다 성장속도가 빨라 결정립이 조밀하게 충진되면서 커짐과 함께 박막내 미세기공 밀도가 감소되어 전기비저항 특성이 향상된다.3 shows the correlation between the electrical resistivity and the deposition temperature of the copper thin film manufactured by the chemical vapor deposition method of the present invention to a thickness of 1 ㎛ or more. The resistivity of the copper-deposited thin film on the TiN substrate was 2.17 μΩ-cm (1.45 μm thick) at 100 o C and 1.98 μΩ-cm (1.1 μm thick) at 150 o C and decreased with increasing substrate temperature, in particular 200 o C Shows good electrical properties of 1.80 μΩ-cm (thickness 2.0 μm). That is, in the high temperature deposition region, the growth rate is faster than the copper nucleation rate due to the activation of the surface deposition reaction, densely filling the grains and increasing the micropore density in the thin film, thereby improving the electrical resistivity characteristics.

따라서 (hfac)Cu(1-pentene)+(1-pentene) 혼합용액을 구리원으로 사용함으로써 200oC 이하의 낮은 기판온도에서도 벌크치에 가까운 우수한 비저항 특성을 가진 구리박막을 형성할 수 있다.Therefore, by using the (hfac) Cu (1-pentene) + (1-pentene) mixed solution as the copper source, it is possible to form a copper thin film having excellent resistivity characteristics close to the bulk even at a low substrate temperature of 200 ° C. or less.

도 4는 본 발명의 화학증착 방법에 의해 도 3의 증착조건에서 TiN 기판상에 형성된 구리박막의 증착온도에 따른 표면 및 단면 미세구조의 SEM 사진이다. 단면 미세조직 사진로부터 기판온도 100 ∼ 200oC에서 증착된 구리박막은 평탄한 구조로 표면거칠기가 양호한 상태임을 보여주고 있다. 한편, 100oC 증착박막은 작은 결정립들로 미세기공 밀도가 작은 치밀한 미세구조를 이루고 있으며, 증착온도 증가에 따라 거시적인 박막구조는 유지된 채로 단지 결정립들만이 커져 박막을 조밀하게 충진시키는 형태를 보이고 있다. 따라서 도 3에서의 증착온도에 따른 박막 비저항 특성은 이러한 증착층 미세구조 변화와 관련있는 것으로 사료된다.4 is a SEM photograph of the surface and cross-sectional microstructures of the copper thin film formed on the TiN substrate under the deposition conditions of FIG. 3 by the chemical vapor deposition method of the present invention. From the cross-sectional microstructure photograph, the copper thin film deposited at the substrate temperature of 100 to 200 ° C. shows that the surface roughness is in a good state with a flat structure. On the other hand, the 100 o C deposited thin film has a dense microstructure with small grain size and small pore density. As the deposition temperature increases, only the grains grow and the macroscopic thin film structure is maintained. It is showing. Therefore, the thin film resistivity characteristic according to the deposition temperature in FIG. 3 is considered to be related to the microstructure change of the deposited layer.

표 3은 본 발명의 화학증착 방법에 의해 도 3의 증착조건에서 형성된 구리 박막의 <111> 결정배향성과 증착온도와의 상관관계를 나타낸 것이다. <111> 배향성은 XRD 결과에서 구리의 (200) 피크에 대한 (111) 피크의 강도비로 구하였으며, 일반적인 구리의 분말상태 표준시편의 경우 약 2.174의 값을 나타낸다.Table 3 shows the correlation between the crystal orientation and deposition temperature of the copper thin film formed under the deposition conditions of FIG. 3 by the chemical vapor deposition method of the present invention. The <111> orientation was determined by the ratio of the intensity of the (111) peak to the (200) peak of copper in the XRD results, which is about 2.174 for the standard copper powder standard specimen.

먼저, 증착온도 변화에 따른 결과를 보면 TiN 기판상 증착막은 100oC에서 낮은 증착율로 인한 하부 기판의 TiN(111) 방위의 영향으로 면심입방격자 구조(FCC: face centered cubic) 고유의 Cu(111) 배향성을 보이다가 이후로 증착온도가 증가함에 따라 증착속도가 회복되어 <111> 배향성이 감소되고 있다. 따라서 100oC 정도의 저온 증착조건이 구리박막의 배향성 향상에 유리함을 알 수 있다.First, as a result of the deposition temperature change, the deposited film on the TiN substrate had a Cu (111) face-centered cubic (FCC) -specific Cu (111) due to the influence of the TiN (111) orientation of the lower substrate due to the low deposition rate at 100 o C. ), The deposition rate is restored as the deposition temperature increases, and the <111> orientation is decreased. Therefore, it can be seen that low temperature deposition conditions of about 100 ° C. are advantageous for improving the orientation of the copper thin film.

또한, (hfac)Cu(1-pentene)에 첨가 또는 희석되는 1-pentene의 양을 변화시킴으로써 화학증착 반응로내의 열에너지에 의한 기판상의 구리원-기판간 증착반응을 조절하여 구리 증착막의 박막특성을 더욱 정밀하게 조절할 수 있다. FCC 구조 금속박막으로 이루어진 반도체 배선의 전자풍력이나 응력에 의한 물질이동 현상인 EM에 대한 내성은 <111> 배향성, 배선내 결정립 크기 분포 등에 의해 특히 좌우되는 것으로 알려져 있다.In addition, by controlling the amount of 1-pentene added or diluted in (hfac) Cu (1-pentene), the copper source-substrate deposition reaction on the substrate was controlled by thermal energy in the chemical vapor deposition reactor to improve the thin film characteristics of the copper deposited film. More precise adjustment It is known that resistance to EM, which is a phenomenon of mass transfer due to electron wind or stress, of a semiconductor wiring made of a FCC structure metal thin film is particularly influenced by <111> orientation, grain size distribution in the wiring, and the like.

따라서 (hfac)Cu(1-pentene)-(1-pentene)계에 의해 얻어진 구리박막은 앞의 도 4의 미세구조 결과에서 결정립 크기 분포가 균일하게 치밀한 박막을 이루고 있으며, 또한 표 3에서 100oC 저온증착시 구리박막이 <111> 배향성을 보이므로 이에 의해 배선수명이 긴 고신뢰성의 구리박막을 형성할 수 있다.Therefore, (hfac) Cu (1-pentene ) - copper films is form the grain size distribution uniformly dense thin film on the microstructures result in the previous Figure 4 obtained by the (1-pentene) system, and in Table 3 100 o Since the copper thin film exhibits a <111> orientation at low temperature deposition, a highly reliable copper thin film having a long wiring life can be formed thereby.

본 발명에서는 전기비저항 및 EM 내성 등 물리, 화학적으로 우수한 특성의 반도체 구리배선 박막 형성을 위해 새로운 (hfac)Cu(1-pentene) 구리원을 사용하는 구리 화학증착 방법을 고안하였다. 특히, 구리원의 열적 안정성을 높이기 위하여 1-pentene을 (hfac)Cu(1-pentene)에 첨가한 (hfac)Cu(1-pentene)+(1-pentene)의 혼합용액을 증발시켜 원료기체로 사용하고, 이를 화학증착 반응로에 도입하여 열에너지에 의한 기판상의 증착반응을 제어하는 고신뢰성의 구리 화학증착 방법을 고안하였으며, 이 방법은 종래의 구리 화학증착법과 비교하여 다음과 같은 장점과 작용효과를 가지고 있다.The present invention devised a copper chemical vapor deposition method using a new (hfac) Cu (1-pentene) copper source to form a semiconductor copper wiring thin film having physical and chemical properties such as electrical resistivity and EM resistance. In particular, in order to increase the thermal stability of the copper source, a mixed solution of (hfac) Cu (1-pentene) + (1-pentene), in which 1-pentene is added to (hfac) Cu (1-pentene), is evaporated as a raw material gas. The high-reliability copper chemical vapor deposition method was designed to control the deposition reaction on the substrate by thermal energy by introducing it into a chemical vapor deposition reactor. This method has the following advantages and effects compared to the conventional copper chemical vapor deposition method. Have

첫째, 구리 전구체에서 구리-리간드 결합을 1-pentene에 의해 약화시켜 증기압을 높일 수 있도록 새롭게 합성한 (hfac)Cu(1-pentene) 화합물을 사용하기 때문에 낮은 증착온도에서도 구리박막의 증착율을 향상시킬 수 있다.First, since a newly synthesized (hfac) Cu (1-pentene) compound is used to increase the vapor pressure by weakening the copper-ligand bond by 1-pentene in the copper precursor, it is possible to improve the deposition rate of the copper thin film even at low deposition temperature. Can be.

둘째, (hfac)Cu(1-pentene)에 의해 낮은 증착온도에서 벌크치에 가까운 낮은 전기비저항과 <111> 결정배향성을 갖는 구리박막을 형성할 수 있다.Second, the (hfac) Cu (1-pentene) can form a copper thin film having low electrical resistivity and crystal orientation close to a bulk value at a low deposition temperature.

세째, (hfac)Cu(1-pentene)에 1-pentene을 첨가한 혼합용액을 구리 증착반응의 전구체로 사용하여 열적 안정성을 개선시킴으로써, 종래의 (hfac)Cu(VTMS)를 위시한 Cu(I)계 액체 전구체에서 나타나는 구리원의 변질, 분해, 공급라인상의 구리원 응축, 증착, 입자발생을 방지할 수 있을 뿐만 아니라 증착공정중 공급유량 요동에 따른 문제점을 배제하여 화학증착 방법의 증착재현성과 증착균일도를 확보함과 함께 증착장치의 유지보수 시간을 절감할 수 있다.Third, Cu (I), including (hfac) Cu (VTMS), was improved by improving the thermal stability by using a mixed solution of 1-pentene added to (hfac) Cu (1-pentene) as a precursor for copper deposition. It not only prevents the deterioration, decomposition, copper source condensation, deposition and particle generation of the copper source in the liquid precursor, but also eliminates the problems caused by fluctuations in the supply flow during the deposition process. In addition to ensuring uniformity, it is possible to reduce the maintenance time of the deposition apparatus.

네째, (hfac)Cu(1-pentene)에 첨가 또는 희석되는 1-pentene의 양을 변화시킴으로써 화학증착 반응로내의 열에너지에 의한 기판상의 구리원-기판간 증착반응을 조절하여 구리 증착막의 증착율 및 박막특성을 조절할 수 있다.Fourth, by changing the amount of 1-pentene added or diluted in (hfac) Cu (1-pentene), the deposition rate and thin film of the copper deposition film were controlled by controlling the copper source-substrate deposition reaction on the substrate by the thermal energy in the chemical vapor deposition reactor. You can adjust the characteristics.

따라서 화학증착법을 사용한 고신뢰성의 반도체 구리배선 제조방법을 제공하는 본 발명에 의해 물리, 화학적으로 우수한 특성의 구리박막을 형성할 수 있다.Therefore, according to the present invention, which provides a highly reliable semiconductor copper wiring manufacturing method using a chemical vapor deposition method, it is possible to form a copper thin film having excellent physical and chemical properties.

Claims (8)

기판 장착을 위한 서셉터, 기판 가열원, 구리원과 운반기체의 공정가스 유입부, 압력 및 기판온도 측정부, 진공배기부 등으로 이루어진 반응로내로 (hfac)Cu(1-pentene) [1,1,1,5,5,5-hexafluoro-2,4-pentanedionato(1-pentene)copper(I): C10H11CuF6O2] 화합물을 구리 전구체로 도입하여 전도체, 반도체, 절연체 기판상에 구리박막을 형성하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.(Hfac) Cu (1-pentene) into a reactor consisting of a susceptor for mounting a substrate, a substrate heating source, a process gas inlet for a copper source and a carrier gas, a pressure and substrate temperature measurement unit, and a vacuum exhaust unit [1, 1,1,5,5,5-hexafluoro-2,4-pentanedionato (1-pentene) copper (I): C 10 H 11 CuF 6 O 2 ] on a conductor, semiconductor, or insulator substrate by introducing a copper precursor A method of chemical vapor deposition of a copper thin film by a copper precursor, characterized in that a copper thin film is formed on the copper precursor. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위해 (hfac)Cu(1-pentene) 구리원에 더하여 1-pentene (C5H10) 화합물을 함께 사용하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.A method of chemical vapor deposition of a copper thin film by a copper precursor, characterized by using a 1-pentene (C 5 H 10 ) compound together with (hfac) Cu (1-pentene) copper source to form a copper thin film. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위해 (hfac)Cu(1-pentene)+운반기체를 혼합하거나 (hfac)Cu(1-pentene)+(1-pentene)+운반기체로 혼합된 공정가스를 화학증착계로 사용하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.In order to form a copper thin film, a process gas mixed with (hfac) Cu (1-pentene) + carrier gas or a process gas mixed with (hfac) Cu (1-pentene) + (1-pentene) + carrier gas is used as a chemical vapor deposition system. Chemical vapor deposition method of a copper thin film by the copper precursor characterized by the above-mentioned. 제 3 항에 있어서,The method of claim 3, wherein 구리박막의 형성을 위한 운반기체로는 알곤(Ar), 헬륨(He), 수소(H2), 질소(N2)를 단독, 또는 상호 혼합하여 사용하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.As a carrier gas for the formation of a copper thin film, a copper thin film made of a copper precursor, characterized in that argon (Ar), helium (He), hydrogen (H 2 ), nitrogen (N 2 ) is used alone or in combination with each other. Chemical vapor deposition method. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위한 공정가스 여기원으로 열에너지를 사용하여 기판을 가열하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.A method of chemical vapor deposition of a copper thin film by a copper precursor, characterized in that the substrate is heated using heat energy as a process gas excitation source for forming a copper thin film. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위한 공정가스 여기원으로 열에너지와 플라즈마원을 이용하거나 기판상에 바이어스를 인가하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.A method of chemical vapor deposition of a copper thin film by a copper precursor, comprising using a thermal energy and a plasma source as a process gas excitation source for forming a copper thin film or applying a bias on a substrate. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위해 반응로내의 기판온도를 80 ∼ 300oC 범위에서 증착온도로 사용하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.A method of chemical vapor deposition of a copper thin film by a copper precursor, characterized in that the substrate temperature in the reactor for the formation of a copper thin film using a deposition temperature in the range of 80 ~ 300 ° C. 제 1 항에 있어서,The method of claim 1, 구리박막의 형성을 위해 반응로내의 압력을 0.01 ∼ 100 Torr 범위에서 증착압력으로 사용하는 것을 특징으로 하는 구리전구체에 의한 구리박막의 화학증착 방법.A method of chemical vapor deposition of a copper thin film by a copper precursor, characterized in that the pressure in the reactor is used as a deposition pressure in the range of 0.01 to 100 Torr to form a copper thin film.
KR1019970069573A 1997-12-17 1997-12-17 Method of copper chemical vapor deposition using metalorganic precursor KR100249825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970069573A KR100249825B1 (en) 1997-12-17 1997-12-17 Method of copper chemical vapor deposition using metalorganic precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970069573A KR100249825B1 (en) 1997-12-17 1997-12-17 Method of copper chemical vapor deposition using metalorganic precursor

Publications (2)

Publication Number Publication Date
KR19990050454A true KR19990050454A (en) 1999-07-05
KR100249825B1 KR100249825B1 (en) 2000-03-15

Family

ID=19527596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970069573A KR100249825B1 (en) 1997-12-17 1997-12-17 Method of copper chemical vapor deposition using metalorganic precursor

Country Status (1)

Country Link
KR (1) KR100249825B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479519B1 (en) * 2001-03-27 2005-03-30 샤프 가부시키가이샤 Method of depositing a high-adhesive copper thin film on a metal nitride substrate
KR100536484B1 (en) * 1998-10-16 2006-02-28 학교법인 포항공과대학교 Liquid precursors useful for chemical vapor deposition of copper
WO2008094457A1 (en) * 2007-01-30 2008-08-07 Lam Research Corporation Composition and methods for forming metal films on semiconductor substrates using supercritical solvents
WO2008094494A1 (en) * 2007-01-30 2008-08-07 Lam Research Corporation Compositions and methods for forming and depositing metal films on semiconductor substrates using supercritical solvents

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563085B2 (en) 2009-08-18 2013-10-22 Samsung Electronics Co., Ltd. Precursor composition, methods of forming a layer, methods of forming a gate structure and methods of forming a capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536484B1 (en) * 1998-10-16 2006-02-28 학교법인 포항공과대학교 Liquid precursors useful for chemical vapor deposition of copper
KR100479519B1 (en) * 2001-03-27 2005-03-30 샤프 가부시키가이샤 Method of depositing a high-adhesive copper thin film on a metal nitride substrate
WO2008094457A1 (en) * 2007-01-30 2008-08-07 Lam Research Corporation Composition and methods for forming metal films on semiconductor substrates using supercritical solvents
WO2008094494A1 (en) * 2007-01-30 2008-08-07 Lam Research Corporation Compositions and methods for forming and depositing metal films on semiconductor substrates using supercritical solvents
US7786011B2 (en) 2007-01-30 2010-08-31 Lam Research Corporation Composition and methods for forming metal films on semiconductor substrates using supercritical solvents
US8617301B2 (en) 2007-01-30 2013-12-31 Lam Research Corporation Compositions and methods for forming and depositing metal films on semiconductor substrates using supercritical solvents
US8623764B2 (en) 2007-01-30 2014-01-07 Lam Research Corporation Composition and methods for forming metal films on semiconductor substrates using supercritical solvents

Also Published As

Publication number Publication date
KR100249825B1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5607722A (en) Process for titanium nitride deposition using five-and six-coordinate titanium complexes
US5149596A (en) Vapor deposition of thin films
WO2003096411A1 (en) A method for forming conformal nitrified tantalum silicide films by thermal cvd followed by nitridation
KR100256669B1 (en) Chemical vapor deposition apparatus and method for forming copper film using the same
JP4644359B2 (en) Deposition method
JPS63203772A (en) Vapor growth method for thin copper film
US10287681B2 (en) Copper metal film, method for preparing the same, and method for forming copper interconnect for semiconductor device using the same
CN112501584A (en) Composite coating based on graphite substrate and preparation method thereof
Singh et al. Low-pressure MOCVD of Al2O3 films using aluminium acetylacetonate as precursor: nucleation and growth
US5064686A (en) Sub-valent molybdenum, tungsten, and chromium amides as sources for thermal chemical vapor deposition of metal-containing films
KR100249825B1 (en) Method of copper chemical vapor deposition using metalorganic precursor
Huang et al. Effect of N2 addition on growth and properties of titanium nitride films obtained by atmospheric pressure chemical vapor deposition
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
US20190074218A1 (en) Process of filling the high aspect ratio trenches by co-flowing ligands during thermal cvd
EP1249860A2 (en) Method to improve copper thin film adhesion to metal nitride substrates by the addition of water
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
US7622151B2 (en) Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions
Johnson et al. Nanocrystalline Cu–Ni Thin Film by Plasma-Assisted Liquid Injection Chemical Vapor Deposition
JP2006100811A (en) RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD OF PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING THE RAW MATERIAL LIQUID
TW202031923A (en) A process for producing a thin film of metallic ruthenium by an atomic layer deposition method
Pierson et al. Low temperature growth mechanism of zirconium diboride films synthesised in flowing microwave Ar–BCl3 post-discharges
GB2612892A (en) Method of coating a component for use in a CVD-reactor and component produced by the method
Claessen et al. The 2, 2, 6, 6-tetramethyl-2-sila-3, 5-heptanedione route to the chemical vapor deposition of copper for gigascale interconnect applications
Jansson Chemical vapor deposition of boron carbides
Uchida et al. Properties of A New Liquid Organo Gold Compound for MOCVD

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 18

EXPY Expiration of term