KR19990042113A - Reactor multi-gap measuring device - Google Patents

Reactor multi-gap measuring device Download PDF

Info

Publication number
KR19990042113A
KR19990042113A KR1019970062817A KR19970062817A KR19990042113A KR 19990042113 A KR19990042113 A KR 19990042113A KR 1019970062817 A KR1019970062817 A KR 1019970062817A KR 19970062817 A KR19970062817 A KR 19970062817A KR 19990042113 A KR19990042113 A KR 19990042113A
Authority
KR
South Korea
Prior art keywords
measuring
sensor
gap
reactor
reactor vessel
Prior art date
Application number
KR1019970062817A
Other languages
Korean (ko)
Other versions
KR100294620B1 (en
Inventor
정우태
박치용
Original Assignee
이종훈
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사 filed Critical 이종훈
Priority to KR1019970062817A priority Critical patent/KR100294620B1/en
Publication of KR19990042113A publication Critical patent/KR19990042113A/en
Application granted granted Critical
Publication of KR100294620B1 publication Critical patent/KR100294620B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 발명은 원자로에 있어서 사람이 접근할 수 없는 부분에 위치한 다수개의 간극을 원격으로 동시에 측정할 수 있는 장치에 관한 것으로, 상세하게는 공압실린더(19)에 압력 공기를 주입하지 않은 상태에서 측정봉(18)의 초기 위치를 설정하여 이 상태에서 거리측정센사(16)의 초기값들을 기록하고, 압력 공기의 주입에 의하여 공압실린더(19)의 피스톤봉(22)이 측정 위치로 이동하면, 이에 따라 피스톤봉(22)에 연결된 고정판(20)이 같이 측정 위치로 이동하고, 고정판(20)에 연결된 다수개의 거리측정센사(16)도 함께 측정 위치로 이동하며, 측정봉(18)이 측정 대상 물체에 접촉함에 따라 센사스프링(25)이 측정 대상 물체의 요철의 크기에 따라 압축되며, 모든 측정봉(18)이 측정 대상 물체에 접촉한 후 거리측정센사(16)에서 출력되는 최종값들을 읽으며 초기값들과 비교하여 여러 개소의 간극을 동시에 원격으로 측정하는 것을 원리로 하는 다중 간극 측정 장치.The present invention relates to a device capable of remotely and simultaneously measuring a plurality of gaps located in an inaccessible part of a nuclear reactor, and in particular, the measuring rod without injecting pressure air into the pneumatic cylinder (19) Set the initial position of 18 to record the initial values of the distance measuring sensor 16 in this state, and when the piston rod 22 of the pneumatic cylinder 19 is moved to the measurement position by injection of pressure air, The fixed plate 20 connected to the piston rod 22 moves to the measurement position accordingly, and the plurality of distance measuring sensors 16 connected to the fixed plate 20 also move to the measurement position, and the measuring rod 18 is the measurement target. As the sensor contacts the object, the sensor spring 25 is compressed according to the size of the unevenness of the object to be measured, and after all the measuring rods 18 are in contact with the object to be measured, the final values output from the distance measuring sensor 16 are read. With the initial values A multi-gap measuring device based on the principle of remotely measuring several gaps at the same time in comparison.

Description

원자로 다중간극 측정장치Reactor multi-gap measuring device

본 발명은 원자로용기의 내부에 노심지지통, 노심경통, 하부지지 구조물등을 설치함에 있어 노심지지통 하부에 설치된 노심지지통 돌출물과 원자로용기 하부에 설치된 원자로용기 돌출물 사이의 간극을 측정하는 장치에 관한 발명이다.The present invention provides a device for measuring the gap between the core support protrusions installed in the lower core support and the reactor vessel protrusions installed in the bottom of the reactor vessel in installing the core support, core barrel, lower support structure, etc. in the reactor vessel. Invention.

본 발명을 보다 상세하게 설명하면 종래의 원자력발전소 건설시 원자로용기(1)의 내부에 노심지지통(6), 노심경통(5), 그리고 하부지지구조물(7)을 장착하는데 있어서 이들을 각각 분리된 상태로 공장에서 제작하여 건설 현장으로 이동시킨 다음 현장에서 용접하여 설치하는 방법을 채택하였다.The present invention will be described in more detail in the installation of the core support cylinder 6, the core barrel 5, and the lower support structure 7 inside the reactor vessel 1 in the construction of a conventional nuclear power plant. In the state, it was manufactured at the factory, moved to the construction site, and then welded and installed at the site.

이러한 종래방법은 시공에 있어서 작업자는 노심지지통(6) 하부에 설치된 노심지지통 돌출물(11)과 원자로용기 하부에 설치된 원자로용기 돌출물(12) 사이의 간극(13)을 측정하기 위해 원자로용기에 들어가야 한다.In the conventional method, in the construction, the operator may measure the gap 13 between the core support protrusion 11 installed below the core support 6 and the reactor vessel protrusion 12 installed below the reactor vessel. You have to go in.

따라서 작업자가 들어갈 수 있도록 노심지지통(6)와 하부지지구조물(7)을 분리된 형태로 제작한다. 간극(13)을 측정하기위해서는 하부지지구조물(7)은 설치하지않은 상태에서 노심지지통(6)만 원자로 용기 속에 설치한 다음 작업자가 원자로용기(1)에 들어가 간극(13)을 측정한 후 간극(13)의 크기에 따라 메움쇠(도면에 표시되지 않음)를 적절히 가공해 원자로용기돌출물홈(14)에 장착한다.Therefore, the core support container (6) and the lower support structure (7) is manufactured in a separate form so that the worker can enter. In order to measure the gap 13, only the core support container 6 is installed in the reactor vessel without the lower support structure 7 installed, and then the operator enters the reactor vessel 1 to measure the gap 13. In accordance with the size of the gap 13, the filling pad (not shown) is appropriately processed and mounted in the reactor vessel projection groove 14.

메움쇠를 설치한 다음 하부지지구조물(7)과 노심지지통(6) 하부 플랜지의 접촉 부분을 용접한다.After the filling is installed, the lower support structure (7) and the core flange (6) contact portion of the lower flange is welded.

이러한 현장에서 용접과 용접후의 비파괴 검사에 수개월이 소요되어 원자력발전소 전체 건설공기가 지연되어 전력생산과 발전소건설 단가를 상승시키는 요인으로 등장하고 있다.In these sites, the welding and non-destructive inspection after welding takes months, and the construction air of the nuclear power plant is delayed, which is causing the power generation and the cost of power plant construction to rise.

원자로는 외관상으로 원자로용기(1), 원자로용기뚜껑(2), 제어봉구동장치(3) 등으로 구성되어 있고 원자로용기(1)의 내부구조물로는 핵연료집합체(4), 핵연료집합체(4)를 감싸고 있는 노심경통(5), 노심경통(5) 및 핵연료집합체(4)를 지지하는 노심지지통(6) 등이 설치되어 있다. 노심경통(5) 및 핵연료집합체(4)의 아래에는 하부 지지구조물(7)이 설치되어 노심경통(5) 및 핵연료집합체(4)의 중량을 지지하고 있으며 하부지지구조물(7)은 원자로 내의 노심정지물(8) 위에 안착되어 있다.The reactor consists of a reactor vessel (1), a reactor vessel lid (2), a control rod driving device (3), and the like, and the internal structure of the reactor vessel (1) includes a fuel assembly (4) and a fuel assembly (4). The core barrel (5), the core barrel (5), and the core support cylinder (6) for supporting the nuclear fuel assembly (4) are provided. A lower support structure (7) is installed below the core barrel (5) and the fuel assembly (4) to support the weight of the core barrel (5) and the fuel assembly (4), and the lower support structure (7) is the core in the reactor. It is seated on the stationary 8.

핵연료집합체(4)의 핵분열 연쇄반응에 의하여 발생한 열은 입구노즐(9)로 유입되는 낮은 온도의 냉각재에 의하여 흡수된다. 온도가 상승한 냉각재는 출구노즐(10)을 통하여 증기발생기(도면에 표시되지 않음)로 전달되어 발생된 증기를 이용하여 터빈(도면에 표시되지 않음)을 회전시켜 전기를 발생시킨다.The heat generated by the nuclear fission chain reaction of the nuclear fuel assembly 4 is absorbed by the coolant of low temperature flowing into the inlet nozzle 9. The coolant whose temperature rises is transferred to the steam generator (not shown) through the outlet nozzle 10 to generate electricity by rotating the turbine (not shown) using the generated steam.

기존의 원자력발전소 건설에 있어서 원자로용기(1)에 노심지지통(6), 노심경통(5), 그리고 하부지지구조물(7)의 설치방법은 원자로용기(1)에 노심지지통(6)을 설치하고 그 하부의 노심지지통돌출물(11)과 원자로용기돌출물(12) 사이의 간극(13)을 측정하여 간극(13)의 크기에 따라 메움쇠를 가공하여 장착한다. 노심지지통(6)에 하부지지구조물(7) 및 노심경통(5)을 설치하고 노심지지통(6)을 제거한 후 하부지지구조물(7)과 노심경통(5)을 노심지지통(6)에 용접하여 일체형으로 된 노심지지통(6), 하부지지구조물(7), 그리고 노심경통(5)을 원자로용기(1)에 설치하는 방법을 채택함으로서 공기지연과 건설단가 인상을 초래하여 왔다.In the existing nuclear power plant construction, the core support container (6), the core barrel (5), and the lower support structure (7) are installed in the reactor vessel (1). The gap 13 between the core support cylinder projections 11 and the reactor vessel projections 12 at the bottom thereof is measured, and the padding is machined and mounted according to the size of the clearance 13. After installing the lower support structure (7) and the core barrel (5) in the core support (6) and removing the core support (6), the lower support structure (7) and the core barrel (5) to the core support (6) By adopting the method of installing the core support cylinder 6, the lower support structure 7, and the core barrel 5 into the reactor vessel 1 by welding to the unit, the air delay and the construction unit cost have been increased.

본 발명은 원자력발전소 건설에 있어서, 공기지연의 주된 요인이 되고 있는 원자로의 내부구조물의 장착을 단순화시키기 위해서는 노심지지통(6)과 하부지지구조물(7)을 공장에서 일체형으로 용접하고 현장에서는 설치만 하면 될 수 있도록 하는 공정개선이 필요하며 작업자가 원자로용기에 들어 가지 않고도 노심지지통 돌출물(11)의 표면경화부(15)와 원자로용기 돌출물홈(14) 사이의 간극(13)을 원격으로 측정할 수 있는 센사가 필요하며, 이를 위하여 제 3도에서 보여주는 것과 같은 원자로 다중간극 측정장치(26)를 개발하였다. 이 장치를 사용하여 원자력발전소 원자로 내부구조물의 설치공정을 획기적으로 개선함으로써 원자력발전소 건설공기 단축과 건설단가 절감 및 용접 품질향상을 얻을 수 있다.The present invention, in the nuclear power plant construction, in order to simplify the installation of the internal structure of the reactor, which is the main factor of air delay, the core support container 6 and the lower support structure (7) are integrally welded in the factory and installed in the field It is necessary to improve the process so that it can be done and remotely close the gap 13 between the surface hardening portion 15 of the core support protrusion 11 and the reactor vessel protrusion groove 14 without the operator entering the reactor vessel. A sensor that can measure is needed, and for this purpose, the reactor multi-gap measuring device 26 has been developed as shown in FIG. By using this device, the installation process of the reactor internal structure can be drastically improved, which can shorten the construction time of nuclear power plant, reduce construction cost, and improve welding quality.

도 1은 본 발명의 원자로 단면구성도1 is a cross-sectional view of the reactor of the present invention

도 2는 본 발명의 노심 지지통 돌출물 및 원자로 용기 토출물의 발췌단면도로서FIG. 2 is an excerpted sectional view of the core support projection and the reactor vessel discharge of the present invention. FIG.

(a)는 노심 지지통 돌출물의 단면도(a) is a cross-sectional view of the core support projection

(b)는 (a)부분 A-A 단면도(b) is (a) partial A-A cross section

도 3은 본 발명의 원자로 다중간극 측정장치 본체의 구성도로서3 is a configuration diagram of a nuclear reactor multi-gap measuring apparatus of the present invention.

(a)는 원자로 다중간극 측정장치의 상부구성도(a) is the upper configuration diagram of the reactor multi-gap measuring device.

(b)는 원자로 다중간극 측정장치의 정면도(b) is a front view of the reactor multigap measuring device;

(c)는 (b)에서의 B-B 단면도(c) is B-B sectional drawing in (b)

(d)는 원자로 다중간극 측정장치의 측면도(d) is a side view of the reactor multigap measuring device;

도 4는 원자로 다중간극 측정장치를 노심 지지통 돌출물에 장착하여 간극을 측정하는 상태도4 is a state diagram of measuring the gap by mounting the reactor multi-gap measuring device to the core support projections;

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

1 : 원자로용기 2 : 원자로용기뚜껑1: reactor vessel 2: reactor vessel lid

3 : 제어봉 구동장치 4 : 핵연료집합체3: control rod drive device 4: nuclear fuel assembly

5 : 노심경통 6 : 노심지지통5: core pain 6: core support

7 : 하부지지구조물 8 : 노심정지물7: lower support structure 8: core stop

9 : 입구노즐 10 : 출구노즐9: entry nozzle 10: exit nozzle

11 : 노심지지통 돌출물 12 : 원자로용기돌출물11: core support protrusion 12: reactor vessel protrusion

13 : 간극 14 : 원자로용기돌출물홈13: gap 14: reactor vessel projection groove

15 ; 표면경화부 16 : 거리측정센사15; Surface Hardening Part 16: Distance Measuring Sensor

17 : 센사틀 18 : 측정봉17: Sensatle 18: measuring rod

19 : 공압실린더 20 : 고정판19: pneumatic cylinder 20: fixed plate

21 : 피스톤 22 : 피스톤봉21: piston 22: piston rod

23 : 공기주입구 24 : 실린더스프링23: air inlet 24: cylinder spring

25 : 센사스프링 26 : 원자로다중간극측정장치25: sensor spring 26: reactor multi-gap measuring device

본 발명의 원자로 다중간극 측정장치(26)를 사용함으로써 원자로 설치공정은 일체형으로 용접된 하부지지구조물(7), 노심경통(5), 그리고 노심지지통(6)을 원자로용기(1) 내에 설치하고 노심지지통돌출물(11)의 표면경화부(15)와 원자로용기돌출물(12) 사이의 간극(13)을 원자로 다중간극 측정장치(26)를 사용하여 원격으로 측정하고 일체형의 하부 지지구조물(7), 노심경통(5), 그리고 노심지지통(6)을 원자로용기(1)에서 제거하고 메움쇠를 가공하여 원자로용기 돌출물홈(14)에 장착하므로서 일체형으로 된 하부지지구조물(7), 노심경통(5), 그리고 노심지지통(6)을 원자로용기(1)에 설치된다.By using the reactor multi-gap measuring device 26 of the present invention, the reactor installation process includes installing the lower support structure 7, the core barrel 5, and the core support 6 that are integrally welded into the reactor vessel 1. The gap 13 between the surface hardening portion 15 and the reactor vessel projections 12 of the core support cylinder projections 11 is measured remotely using the reactor multi-gap measuring device 26, and the integral lower support structure ( 7), the lower barrel structure (5), and the core support cylinder (6) is removed from the reactor vessel (1) and machined to fill in the reactor vessel projection groove (14) by integrally supporting the lower support structure (7), The core barrel (5) and the core support cylinder (6) are installed in the reactor vessel (1).

본 발명의 원자로 다중간극 측정장치(26)는 제 3도에서 보는 바와 같이 다수개의 거리측정센사(16), 이 센사들을 정해진 위치에 설치하기 위한 센사틀(17), 거리측정센사(16)에 장착되어 접촉식으로 거리를 측정하는 측정봉(18), 측정봉(18)을 측정 대상 물체로 이동시키기 위한 공압실린더(19), 다수개의 측정봉(18)과 공압실린더(19)에 장착된 피스톤봉(22)을 간극 측정 위치로 함께 이동시키기 위한 고정판(20)으로 구성된다. 간극을 측정하는 12개의 거리측정센사(16)은 LVDT(Linear Variable Distance Transducer) 혹은 직선형가변저항기(Linear Potentiometer)를 사용한다. LVDT나 직선형가변저항기는 측정봉(18)의 위치에 따라 센사의 저항값이 달라지는 것을 이용한 것으로 특히 LVDT의 경우 정밀도가 몇 미크론에 달하는 것도 있어서 정밀 측정시 활용한다.As shown in FIG. 3, the reactor multi-gap measuring device 26 of the present invention includes a plurality of distance measuring sensors 16, a sensor frame 17 for installing these sensors at a predetermined position, and a distance measuring sensor 16. Mounted on the measuring rod 18 for measuring distance by contact, pneumatic cylinder 19 for moving the measuring rod 18 to the object to be measured, a plurality of measuring rods 18 and pneumatic cylinder 19 It consists of a fixed plate 20 for moving the piston rod 22 together to the gap measurement position. The 12 distance measuring sensors 16 for measuring the gap use a linear variable distance transducer (LVDT) or a linear potentiometer. LVDT or linear variable resistor is used to change the resistance value of the sensor according to the position of the measuring rod 18, especially in the case of LVDT has a precision of several microns, it is used in the precision measurement.

한편 이러한 접촉식 거리측정센사(16) 대신 요구되는 센사의 정밀도에 따라 비접촉식의 초음파 센사 및 레이저거리 측정기를 사용할 수도 있다. 비접촉식 센사를 사용할 경우에는 거리측정을 위해 센사를 측정대상물체와 접촉시킬 필요가 없으므로 공압실린더(19)와 같은 장치가 없어도 간극 측정이 가능하다.On the other hand, in accordance with the required precision of the sensor instead of the contact distance measuring sensor 16 may be used a non-contact ultrasonic sensor and laser range finder. In the case of using a non-contact sensor, it is not necessary to contact the sensor with the object to be measured for distance measurement, so that a gap measurement can be performed without a device such as a pneumatic cylinder 19.

이 경우에는 간극(13)을 측정하기 위해 센사의 측정부를 이동시킬 필요가 없어져서 센사스프링(25), 고정판(20), 그리고 공압실린더(19)를 장착할 필요가 없다는 장점이 있다.In this case, there is no need to move the measuring unit of the sensor to measure the gap 13, there is an advantage that it is not necessary to mount the sensor spring 25, the fixed plate 20, and the pneumatic cylinder (19).

그러나 표면경화부(15)에 가공되어 있는 구멍의 직경이 작아 설치가 어려우며 측정 정밀도가 다소 저하되는 문제점이 있다.However, since the diameter of the hole processed in the surface hardening portion 15 is small, it is difficult to install and there is a problem that the measurement accuracy is somewhat lowered.

제 3도(c)에 나타낸 바와 같이 총 12개의 측정봉(18)은 센사스프링(25)을 통해 고정판(20)에 연결되며 이들 센사와 함께 고정판(20)에 연결된 공압실린더(19)에 의하여 모든 거리측정센사(16)들이 동시에 같은 방향으로 움직이도록 되어 있다.As shown in FIG. 3 (c), a total of 12 measuring rods 18 are connected to the fixed plate 20 through the sensor springs 25 and by the pneumatic cylinder 19 connected to the fixed plate 20 together with these sensors. All the distance measuring sensors 16 are configured to move in the same direction at the same time.

피스톤봉(22)은 압축공기를 공기주입구(23)를 통해 공압실린더(19)의 경통 내부에 주입함으로써 왼쪽으로 움직이며, 주입된 공기를 배출시킴으로써 공압실린더(19) 내부에 장착된 실린더스프링(24)의 반력에 의하여 오른쪽으로 움직인다. 이 피스톤봉(22)은 거리측정센사(16)들이 장착된 고정판(20)에 연결되어 있으서 피스톤봉의 움직임에 따라 모든 거리측정센사(16)들이 같은 방향으로 움직인다. 공압실린더(19)내에 공기가 주입되어 고정판(20)이 이동함에 따라 고정판에 부착된 센사스프링(25)이 이동하며 측정봉(18)들이 측정대상물에 접촉함에 따라 센사스프링(25)은 적당히 압축된다. 이렇게 모든 측정봉(18)들이 측정대상물과 접촉한 상태에서 12개소의 간극을 측정한 다음 공압실린더(19)에 주입된 공기를 배출시키면 실린더스프링(24)의 반력에 의하여 고정판(20)이 오른쪽으로 끝까지 이동한다.The piston rod 22 moves to the left by injecting compressed air into the barrel of the pneumatic cylinder 19 through the air inlet 23, and discharges the injected air to the cylinder spring mounted inside the pneumatic cylinder 19 ( It moves to the right by reaction of 24). The piston rod 22 is connected to the fixed plate 20 on which the distance measuring sensors 16 are mounted so that all the distance measuring sensors 16 move in the same direction as the piston rod moves. As air is injected into the pneumatic cylinder 19 and the fixed plate 20 moves, the sensor spring 25 attached to the fixed plate moves. As the measuring rods 18 come into contact with the measurement object, the sensor spring 25 is appropriately compressed. do. When all the measuring rods 18 are in contact with the object to be measured, the gap of 12 points is measured, and then the air injected into the pneumatic cylinder 19 is discharged, and the fixed plate 20 is right by the reaction force of the cylinder spring 24. To the end.

이 때 고정판(22)에 센사스프링(25)이 부착되어 있고, 또 센사스프링(25)에 측정봉(18)의 한쪽 끝이 부착되어 있으므로 측정봉(18)들이 모두 오른쪽 동시에 이동한다.At this time, the sensing rod 25 is attached to the fixing plate 22, and one end of the measuring rod 18 is attached to the sensing spring 25 so that all of the measuring rods 18 simultaneously move to the right.

제 4도에서는 노심지지통(6)에 원자로 다중간극 측정장치(26)를 설치하여 원자로 용기돌출물홈(14)와 돌출물 표면경화부(15) 사이의 간극을 측정하는 개념도에 나타난 바와 같이 원자로 다중간극 측정장치는 노심지지통(6)에 볼트 등에 의하여 설치된 다음 원자로용기(1)내에 투입된다.In FIG. 4, the reactor multi-gap measuring device 26 is installed in the core support 6 to measure the gap between the reactor vessel projection groove 14 and the projection surface hardening portion 15, as shown in the conceptual diagram. The gap measuring device is installed in the core support 6 by bolts or the like, and then is inserted into the reactor vessel 1.

이 때 노심지지통 돌출물(11)과 원자로용기 돌출물(12)은 서로 결합된다. 이 상태에서 공압실린더(19)에 공기가 주입되어 간극(13)을 측정한다. 이렇게 측정된 12개소의 간극(13)에 맞추어 메움쇠를 가공한 다음 원자로용기 돌출물홈(14)에 장착함으로써 노심지지통(6)이 원자로용기(1)와 정확하게 결합된다.At this time, the core support protrusion 11 and the reactor vessel protrusion 12 are coupled to each other. In this state, air is injected into the pneumatic cylinder 19 to measure the gap 13. The core holder 6 is accurately coupled with the reactor vessel 1 by machining the pads in accordance with the 12 gaps 13 measured in this way and then mounting the reactor vessel projection groove 14.

원자로 다중간극 측정장치(26)를 사용할 경우에는 원자력발전소 건설시 원자로 용기(1)내에 노심지지통(6)을 설치하는 공정을 간략화 할 수 있다. 하부지지구조물(7), 노심경통(5), 그리고 노심지지통(6)을 공장에서 정밀장비를 사용하여 용접한 후 건설현장에서는 단지 설치만 하도록 하여 용접품질을 향상시킬 수 있고 전체건설공기를 단축할 수 있다. 또한 간극(13) 측정이 자동화 됨으로 인하여 측정정밀도와 신뢰도가 향상되며 측정 시간이 단축된다.In the case of using the reactor multi-gap measuring device 26, the process of installing the core support container 6 in the reactor vessel 1 in the construction of a nuclear power plant can be simplified. The lower support structure (7), the core barrel (5), and the core support cylinder (6) are welded using precision equipment at the factory, and only at the construction site can be installed to improve the welding quality and improve the overall construction air. It can be shortened. In addition, because the gap 13 is automated, measurement accuracy and reliability are improved, and measurement time is shortened.

Claims (4)

원자력발전소의 원자로용기(1)의 내부에 노심지지통(6)을 설치하는 공정에 있어서, 원자로용기돌출물(12)과 노심지지통돌출물(11) 사이의 간극(13)을 측정하기 위해 여러개의 거리측정센사(16)을 센사틀(17)에 설치하고 측정봉(18)의 한 쪽 끝에 센사스프링(25)을 고정시키며 센사스프링(25)의 다른쪽 끝 부분은 고정판에 부착시키고 공압실린더(19)를 사용하여 고정판(20)을 이동시키도록 구성된 것을 특징으로 하는 원자로 다중간극 측정장치.In the process of installing the core support cylinder 6 inside the reactor vessel 1 of the nuclear power plant, several gaps 13 are measured to measure the gap 13 between the reactor vessel projections 12 and the core support cylinder projections 11. Install the distance measuring sensor (16) to the sensor frame (17) and fix the sensor spring (25) at one end of the measuring rod (18), attach the other end of the sensor spring (25) to the fixed plate and pneumatic cylinder ( 19) Reactor multi-gap measuring device, characterized in that configured to move the fixed plate (20) using. 제 1항에 있어서,The method of claim 1, 거리측정센사(16)로 다선형 거리측정전위차계(LVDT:Linear Variable Distance Transducer) 혹은 직선형전위차계(LP:Linear Potentiometer)를 사용하는 것을 특징으로 하는 원자로 다중간극 측정장치.Reactor multi-gap measuring apparatus characterized by using a linear variable distance transducer (LVDT) or a linear potentiometer (LP) as the distance measuring sensor (16). 제 1항에 있어서,The method of claim 1, 공압실린더(19) 대신에 유압실린더 또는 전기모터와 볼스크류를 사용하는 것을 특징으로 하는 원자로 다중간극 측정장치.Reactor multi-gap measuring apparatus, characterized in that for using a hydraulic cylinder or an electric motor and a ball screw instead of a pneumatic cylinder (19). 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 거리측정센서(16)에 있어서 초음파거리측정센서 혹은 레이저거리측정센서로 대체함으로서 측정부를 단순화 시키는 것을 특징으로 하는 원자로 다중간격 측정장치.Reactor multi-gap measuring apparatus characterized in that the measuring unit is simplified by replacing the ultrasonic measuring sensor or the laser measuring sensor in the distance measuring sensor (16).
KR1019970062817A 1997-11-25 1997-11-25 Multi-gap measuring apparatus for nuclear reactor installation KR100294620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970062817A KR100294620B1 (en) 1997-11-25 1997-11-25 Multi-gap measuring apparatus for nuclear reactor installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970062817A KR100294620B1 (en) 1997-11-25 1997-11-25 Multi-gap measuring apparatus for nuclear reactor installation

Publications (2)

Publication Number Publication Date
KR19990042113A true KR19990042113A (en) 1999-06-15
KR100294620B1 KR100294620B1 (en) 2001-09-17

Family

ID=37527563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970062817A KR100294620B1 (en) 1997-11-25 1997-11-25 Multi-gap measuring apparatus for nuclear reactor installation

Country Status (1)

Country Link
KR (1) KR100294620B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871599B1 (en) * 2007-06-28 2008-12-02 한국수력원자력 주식회사 Reactor internals gap - automatic remote measuring system and method
WO2010064740A1 (en) * 2008-12-01 2010-06-10 Korea Hydro & Nuclear Power Co., Ltd. Apparatus and method for automatically and remotely measuring the internal gap of a reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200447715Y1 (en) * 2007-12-12 2010-02-12 한국수력원자력 주식회사 Automatic remote measuring digital probe fixing apparatus for measuring gap of reactor inner structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871599B1 (en) * 2007-06-28 2008-12-02 한국수력원자력 주식회사 Reactor internals gap - automatic remote measuring system and method
WO2010064740A1 (en) * 2008-12-01 2010-06-10 Korea Hydro & Nuclear Power Co., Ltd. Apparatus and method for automatically and remotely measuring the internal gap of a reactor
CN102017009A (en) * 2008-12-01 2011-04-13 韩国水力原子力株式会社 Apparatus and method for automatically and remotely measuring the internal gap of a reactor
EP2362967A1 (en) * 2008-12-01 2011-09-07 Korea Hydro&Nuclear Power Co., Ltd. Apparatus and method for automatically and remotely measuring the internal gap of a reactor
EP2362967A4 (en) * 2008-12-01 2014-07-16 Korea Hydro & Nuclear Power Co Apparatus and method for automatically and remotely measuring the internal gap of a reactor
CN102017009B (en) * 2008-12-01 2014-07-16 韩国水力原子力株式会社 Apparatus and method for automatically and remotely measuring the internal gap of a reactor

Also Published As

Publication number Publication date
KR100294620B1 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
KR900005645B1 (en) Rotating head for tube inspection
SE463587B (en) INSPECTION DEVICE FOR A BRAIN CARTRIDGE
EP0827158B1 (en) Apparatus and method for replacing internal components in a nuclear reactor
KR19990042113A (en) Reactor multi-gap measuring device
EP0393097B1 (en) Molding and gauging system
US5066452A (en) Ultrasonic profilometry system for control rod wear
EP0294474A1 (en) Apparatus and method for indicating the extent of movement of a movable member of an electromagnetic device.
KR20110083639A (en) Improvements to the detection of deposits that include at least one ferromagnetic material on or close to the outer wall of a tube
CN102017009B (en) Apparatus and method for automatically and remotely measuring the internal gap of a reactor
US20140331738A1 (en) Optical switch system for a prover
KR100609259B1 (en) Fuel rod testing apparatus
KR0184857B1 (en) Rotor bore inspection system
US6895066B1 (en) Measuring head and measuring assembly for a nuclear fuel rod
GB1584946A (en) Ultrasonic calibration assembly
KR100729029B1 (en) High temperature and high press water loop environmental fatigue test machine
CN100468027C (en) Process for monitoring cylinder pressure
KR100871599B1 (en) Reactor internals gap - automatic remote measuring system and method
CN213714256U (en) Sensor linear inspection machine
Brochard et al. Seismic analysis of LMFBR cores, mock-up RAPSODIE
KR20240025333A (en) Measuring method of gap height of snap ring mounting portion and apparatus therefor
Kiss et al. On-line monitoring to assure structural integrity of nuclear reactor components
Kieffer Strain Gage Installation Tool
Sowa Irradiated fuel examination and measurement
JP3051639B2 (en) Travel position detector for piping support equipment
Spanner et al. Calibration System with Microinch Precision at Temperatures to 500° C

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20160412

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 17

EXPY Expiration of term