KR19990040554A - Manufacturing method of preform for optical fiber using quartz powder fusion - Google Patents

Manufacturing method of preform for optical fiber using quartz powder fusion Download PDF

Info

Publication number
KR19990040554A
KR19990040554A KR1019970060997A KR19970060997A KR19990040554A KR 19990040554 A KR19990040554 A KR 19990040554A KR 1019970060997 A KR1019970060997 A KR 1019970060997A KR 19970060997 A KR19970060997 A KR 19970060997A KR 19990040554 A KR19990040554 A KR 19990040554A
Authority
KR
South Korea
Prior art keywords
preform
manufacturing
quartz powder
primary preform
primary
Prior art date
Application number
KR1019970060997A
Other languages
Korean (ko)
Other versions
KR100235556B1 (en
Inventor
조준형
권영일
최인식
양영규
김길선
Original Assignee
권문구
엘지전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권문구, 엘지전선 주식회사 filed Critical 권문구
Priority to KR1019970060997A priority Critical patent/KR100235556B1/en
Publication of KR19990040554A publication Critical patent/KR19990040554A/en
Application granted granted Critical
Publication of KR100235556B1 publication Critical patent/KR100235556B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/07Controlling or regulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

본 발명은 광섬유용 프리폼 제조방법에 관한 것으로, 특히 고품질의 광섬유용 프리폼 제조비용을 획기적으로 절감하기 위한 방법에 관한 것이다. 일반적으로 프리폼 제조방법은 MCVD공법이나 VAD공법을 많이 이용해왔으나, 그 각각이 약간의 문제점을 포함하고 있다. 예로 MCVD공법은 고순도의 석영관을 사용하므로 그 제조비용이 높고 규격의 제한이 따르는 문제점이 있으며, VAD의 공법은 제조시 규격의 제한은 없으나 제조공정이 많은 점이 지적되고 있다. 이에 본 발명은 MCVD공법으로 1차 프리폼을 생산해서 본 발명의 덮개 내부에 장착시켜 일정하게 회전시키고 그 저부에 일정한 속도로 왕복 운동하는 산, 수소 버너를 석영분말을 분사하는 곳에 통과시키면 상기 석영분말은 용융되고 용융입자가 되어 1차 프리폼에 도포되고 이를 계속적으로 반복시키면 1차 프리폼에 클래드층이 형성된 2차 프리폼이 되며, 이를 적정 온도의 소결로에서 유리화하여 고품질의 대형 프리폼을 구하는 것이다.The present invention relates to a method for manufacturing preforms for optical fibers, and more particularly, to a method for dramatically reducing the cost of manufacturing high-quality preforms for optical fibers. In general, the preform manufacturing method has used a lot of MCVD method or VAD method, each of which has some problems. For example, the MCVD method uses a high-purity quartz tube, so the manufacturing cost is high and there is a problem in that the specification is limited. The VAD method has many manufacturing processes, although there is no limitation in the specification at the time of manufacturing. Accordingly, the present invention produces the primary preform by MCVD method, and is mounted inside the cover of the present invention, and rotates constantly and passes the acid and hydrogen burners, which reciprocate at a constant speed, to the quartz spraying part. Is melted, becomes molten particles, and is applied to the primary preform and continuously repeated to form a secondary preform having a cladding layer formed on the primary preform, which is vitrified in a sintering furnace at an appropriate temperature to obtain a high quality large preform.

Description

석영분말 융사장치를 이용한 광섬유용 프리폼 제조방법Manufacturing method of preform for optical fiber using quartz powder fusion

본 발명은 광섬유용 프리폼 제조방법에 대한 것으로 특히 고품질의 광섬유용 프리폼 제조비용을 절감하는 방법에 관한 것이다. 종래의 광섬유 제조용 프리폼 제조공법으로는 주로 jacketing 석영관을 사용하는 MVCD(Modified Chemical Vaper Deposition)공법과 jacketing 석영관을 사용하지 않는 VAD(Vaper Phase Axial Deposition)공법을 주로 이용해 온 것이 사실이다. 종래의 기술인 MVCD공법은 불순물이 적은 고순도의 기 성형된 대형 석영관을 이용하므로 그 제조비용이 고가이고 1차 프리폼에 클래드를 형성하기 위하여 jacketing 석영관을 이용하고 도 2의 B에 도시된 것과 같이 2차 프리폼을 형성하기 위하여 석영관은 수직선반을 이용하기 때문에 크기에 한계가 있으며 프리폼과 연료분사 토치가 노출되어 있으므로 과열온도가 일정하지 않아 석영분말 용융입자의 증착 효율이 떨어지는 단점이 있다. 또한 VAD 공법은 jacketing 석영관을 이용하지 않기 때문에 크기에 한계는 없으나 코아제조에서부터 2차 프리폼 공정에서 발생하는 유독가스의 처리에 문제점이 있고 도 3에 도시된 것과 같이 유리화 제조공정인 소결로가 1단계 더 있는 그 공정이 다단으로 이루어져 있어 비용에 부담이 있다.The present invention relates to a method for manufacturing a preform for an optical fiber, and more particularly, to a method for reducing the manufacturing cost of a high quality preform for an optical fiber. It is true that conventional preform manufacturing methods for optical fiber manufacturing have mainly used Modified Chemical Vaper Deposition (MVCD) method using jacketing quartz tube and Vaper Phase Axial Deposition (VAD) method without jacketing quartz tube. The conventional MVCD method uses a high purity preformed quartz tube with low impurities, and thus, the manufacturing cost is high and a jacketing quartz tube is used to form a clad on the primary preform, and as shown in FIG. The quartz tube is limited in size because it uses a vertical shelf to form the secondary preform, and since the preform and the fuel injection torch are exposed, the superheat temperature is not constant, so that the deposition efficiency of the quartz powder molten particles is lowered. In addition, since the VAD method does not use a jacketing quartz tube, there is no limit in size, but there is a problem in the treatment of toxic gases generated in the second preform process from the coazo, and the sintering furnace, which is a vitrification manufacturing process as shown in FIG. The process, which has a further stage, consists of multiple stages, which burdens the cost.

상기한 종래의 문제점을 개선하고자 본 발명이 안출된 것으로, 제1차 프리폼에 고순도의 클래드층을 형성하기 위하여 덮개를 구성하고 그 덮개의 내부 온도를 일정하게 유지하며 석영분말이 균등하고 신속히 도포되도록 하기 위하여 비활성기체로 합성반응에 유용되는 작동가스를 주입하여 용융분사를 가속시켜 그 증착을 용이하게 하며, 덮개 내부에서 연소되는 연료는 완전연소에 가까운 연료가 필요하며, 상기 연료의 지속적인 연소로 인하여 유독가스의 발생을 예상할 수 있으므로 가스의 유도관을 구성할 필요가 있다. 석영분말의 용융분사에 의해 클래드층을 형성하는 프리폼에 그 클래드층이 균등하게 도포되어 원하는 굵기와 무게의 적정치를 센서에 의해 결정되도록 하기 위하여 광학적 센서가 바람직하며, 상기와 같은 일단의 구성으로 제2차 프리폼을 제조하는 제조과정에서 발생하는 오차를 최소화하도록 하여 연료, 석영분말, 시간의 낭비를 방지할 수 있는 광섬유용 프리폼 제조방법을 제공하는데 본 발명의 목적이 있다.The present invention has been made to improve the above-described problems, to form a cover to form a high-purity cladding layer on the first preform, to maintain a constant internal temperature of the cover and to apply the quartz powder uniformly and quickly In order to facilitate the deposition by injecting a working gas useful for the synthesis reaction to the inert gas to facilitate the deposition, the fuel burned in the lid needs a fuel close to complete combustion, due to the continuous combustion of the fuel Since the generation of toxic gas can be expected, it is necessary to construct a gas induction pipe. An optical sensor is preferable in order to uniformly apply the clad layer to the preform forming the clad layer by melt spraying of quartz powder so that an appropriate value of the desired thickness and weight is determined by the sensor. It is an object of the present invention to provide a method for manufacturing a preform for an optical fiber which can prevent the waste of fuel, quartz powder, and time by minimizing an error occurring during the manufacturing process of manufacturing the second preform.

도 1은 석영계의 싱글모드 광섬유의 단면도.1 is a cross-sectional view of a quartz-based single mode optical fiber.

도 2A는 MCVD공법의 1차 프리폼 제조공정도.Figure 2A is a first preform manufacturing process diagram of the MCVD method.

도 2B는 MCVD공법의 2차 프리폼 제조공정도.Figure 2B is a secondary preform manufacturing process diagram of the MCVD method.

도 3A는 VAD공법의 1차 프리폼 제조공정도.Figure 3A is a first preform manufacturing process diagram of the VAD method.

도 3B는 VAD공법의 1차 프리폼 불순물 제거공정도.Figure 3B is a first preform impurity removal process of the VAD method.

도 3C는 VAD공법의 2차 프리폼 제조공정도.Figure 3C is a secondary preform manufacturing process diagram of the VAD method.

도 3D는 VAD공법의 2차 프리폼 유리화 제조공정도.3D is a secondary preform vitrification manufacturing process diagram of the VAD method.

도 4A는 본 발명의 1차 프리폼 제조공정도.Figure 4A is a primary preform manufacturing process of the present invention.

도 4B는 본 발명의 2차 프리폼 제조공정도Figure 4B is a secondary preform manufacturing process diagram of the present invention

도 4C는 본 발명의 유리화 제조공정도.Figure 4C is a vitrification manufacturing process of the present invention.

도면의주요부분에대한부호의설명Explanation of symbols on the main parts of the drawing

14 : 클래드 15 : 가스공급장치 16 : 열선반14 clad 15 gas supply device 16 hot lathe

17 : 버너 18 : 프리폼(18a,18b,18c) 19 : 석영관17: burner 18: preform (18a, 18b, 18c) 19: quartz tube

20 : 소결로(20a,20b,20c) 21 : 배기관 22 : 덮개20: sintering furnace (20a, 20b, 20c) 21: exhaust pipe 22: cover

23 : 반응원료공급장치23: reaction raw material supply device

도 1은 광섬유의 단면도를 도시한 것으로 클래드(14)층의 범위를 인식코자 함이며, 도 2는 기존의 MCVD공법으로 1차 프리폼(18a)의 생성과 2차 프리폼(18b)의 생성과정을 도시한 것이며, 도 3은 기존의 VAD공법으로 코아(39)제조 후에 소결로(20a)를 통과하고 2차 프리폼(18b)제조 후에 소결로(20b)를 통과하는, 즉 다단의 경로를 도시한 것이며, 도 4는 본 발명의 프리폼(18c) 제조과정을 도시 한 것이다. 코어(13)를 핵으로 그 주위에 양질의 클래드(14)층을 형성하기 위하여 크게 MCVD공법 열선반(16)의 1차 프리폼(18a) 위에 클래드(14)층 형성을 위한 석영분말 열융사장치와 1차 프리폼(18a)에 도포된 석영내의 불순물을 제거하고 유리화시키는 소결로(20c)를 구성으로 하며, 부분적으로는 MCVD공법의 열선반(16)에서 제조된 1차 프리폼(18a)을 덮개(22)내부에 장착하고 회전시키는 선반부(31)와 클래드(14)층을 형성시키기 위한 반응원료 및 산, 수소 공급을 위한 반응원료장치(23) 및 가스공급장치(15) 그리고 상기 구동을 제어하는 제어반(32)으로 구성되고, 석영분말을 열융사하기 위한 열융사 건(GUN)부(17), 열융사로 도포된 석영분말의 무게 및 외경을 측정하는 측정부(52), 석영분말의 균등한 도포를 위한 제어부(46)로 구성되어 있다. 기존의 MCVD공법의 열선반(16)위에 설치된 1차 프리폼(18a) 성형장치에서 형성된 코아를 2차 프리폼(18b)으로 형성하기 위하여 수직선반(33)에 세우고 그 외부에 석영관(19)을 씌워 회전시키며 산, 수소를 연소하여 분사하는 토치(34)에 의해 2차 프리폼(18b)을 구하는 장치에서, 상기 1차 프리폼(18a) 성형장치를 본 발명의 구성의 일부로 하고, 기존의 VAD공법의 도 3에 도시된 것과 같이 코어(39)가 수납된 용기(41)에 반응원료 및 연소가스(SiCl4,O2H2)와 (SiCl4, GeCl4,O2H2) 튜브(42,43)를 통하여 주입하여 형성된 1차 프리폼(18a)을 1차 소결로(20a)에서 불순물을 제거하고 도 3의 D와 같이 반응원료(SiCl4),(42)와 연소가스(O2H2)를 같이 버너(45)로 분사하여 2차 프리폼(18b)을 형성하며 형성한 2차 프리폼(18b)을 2차 소결로(20b)에 통과시켜 완성되는 장치에서 소결로(20b)를 본 발명의 구성으로 하여, 첨부된 도면과 실시 예를 참고하여 본 발명에 대해서 상세히 설명하고자 한다. MCVD공법에서 생성된 1차 프리폼(18a)을 열선반(16)위에 형성된 덮개(22)내부의 선반부(31)에 일정한 속도로 회전할 수 있도록 설치하고 산, 수소버너(17)가 일정한 속도로 왕복운동할 수 있도록 열선반(16)에 가이드 레일(51)을 구성하여 버너(17)의 상부에 설치된 1차 프리폼(18a)에 균등하게 열전달이 되도록 한다. 상기 버너(17)의 가스분사시 석영분말을 같이 분사하면 석영분말이 용융입자가 활성화되므로 아르곤(Ar)등 비활성가스를 분사하여 용융입자가 프리폼(18b)에 증착이 잘되도록 구성하고 덮개(22)의 상부면 어느 일측에 덮개(22)내부의 가스를 배출하는 배기관(21)을 형성하며, 또한 덮개(22) 일측에 프리폼(18b)의 외경과 무게를 일정하게 그리고 연속적으로 형성하기 위하여 광학적 센서(52)를 구비하여 반응하게 하고 그 반응에 의하여 연료분사와 반응원료분사량을 제어토록 한다. 상기와 같이 열융사에 의하여 제조된 2차 프리폼(18b)을 불순물을 제거하고 유리화하기 위하여 소결로(20c)에 장착시킨다. 상기 소결로(20c)에 폭기성이 있는 연료(He, Cl2),(53)를 주입하여 약 1100°C에서 2차 프리폼(18b)을 회전 및 이동시키며 융사시켜 불순물을 제거한 후 연료(He)를 재분사하여 1500°C에서 2차 프리폼(18b)을 유리화하여 고품질의 프리폼(18c)을 얻는다.1 is a cross-sectional view of an optical fiber to recognize the range of the cladding 14 layer, and FIG. 2 illustrates a process of generating a primary preform 18a and a secondary preform 18b using a conventional MCVD method. 3 shows a multi-stage path through the sintering furnace 20a after the core 39 is manufactured by the conventional VAD method and through the sintering furnace 20b after the preparation of the secondary preform 18b. 4 illustrates a manufacturing process of the preform 18c of the present invention. Quartz powder thermal melting apparatus for forming the clad 14 layer on the primary preform 18a of the MCVD hot lathe 16 in order to form a high quality clad 14 layer around the core 13 as the nucleus. And a sintering furnace 20c for removing and vitrifying the impurities in the quartz applied to the primary preform 18a, and partially covering the primary preform 18a manufactured in the hot lathe 16 of the MCVD method. (22) a reaction raw material device 23 and a gas supply device 15 for supplying acid and hydrogen, and a reaction raw material for forming a shelf part 31 and a clad 14 layer to be mounted and rotated inside. The control panel 32 to control the heat melting gun (GUN) unit 17 for thermal melting the quartz powder, the measuring unit 52 for measuring the weight and outer diameter of the quartz powder coated by thermal melting, the quartz powder of It is comprised by the control part 46 for uniform application | coating. In order to form the core formed in the primary preform 18a forming apparatus installed on the hot lathe 16 of the conventional MCVD method as the secondary preform 18b, the quartz lathe 19 is placed outside the vertical lathe 33. In the apparatus which obtains the secondary preform 18b by the torch 34 which burns and rotates and burns acid and hydrogen, the said primary preform 18a shaping | molding apparatus is part of the structure of this invention, and the existing VAD method As shown in FIG. 3, the reaction raw material and the combustion gas (SiCl 4, O 2 H 2 ) and (SiCl 4 , GeCl 4, O 2 H 2 ) tubes 42 are placed in a container 41 in which the core 39 is accommodated. The primary preform 18a formed by injection through the 43 is removed from the primary sintering furnace 20a and reactants (SiCl 4 ), 42 and the combustion gas (O 2 H) as shown in FIG. 2) as a spray to the burner 45, the secondary preform (18b) in the formation to form a secondary preform (18b) to the second (20b in the finished device and passed through a sintering furnace (20b) to the sintering) Due to the configuration of the invention, with reference to the accompanying drawings and embodiments to be described in detail the invention. The primary preform 18a produced by the MCVD method is installed on the shelf part 31 inside the cover 22 formed on the heat shelf 16 so as to rotate at a constant speed, and the acid and hydrogen burners 17 have a constant speed. The guide rails 51 are formed on the hot lathe 16 so as to reciprocate in a manner such that the heat is uniformly transmitted to the primary preform 18a installed on the burner 17. When the quartz powder is sprayed together during the gas injection of the burner 17, the molten particles are activated by the quartz powder, so that inert gas such as argon (Ar) is sprayed so that the molten particles are well deposited on the preform 18b. The exhaust pipe 21 for discharging the gas inside the cover 22 is formed on one side of the upper surface of the cover), and on the one side of the cover 22, an optical fiber is formed to continuously and continuously form the outer diameter and weight of the preform 18b. A sensor 52 is provided to react and the fuel injection and the reaction raw material injection amount are controlled by the reaction. As described above, the secondary preform 18b manufactured by thermal melting is mounted on the sintering furnace 20c to remove impurities and vitrify. Injecting aerated fuel (He, Cl 2 ), 53 into the sintering furnace (20c) by rotating and moving the secondary preform (18b) at about 1100 ° C to remove impurities by removing the fuel (He ) Is re-injected to vitrify the secondary preform 18b at 1500 ° C. to obtain a high quality preform 18c.

종래의 기술인 MCVD공법은 불순물이 적은 석영관을 제조하여 사용하므로 석영관 제조비용이 추가되어 프리폼 제조비용이 고가이며, 프리폼의 2차 성형시 그 제조공법상 프리폼이 수직으로 고정되어 크기에 한계가 있으며 그 공정이 노출되어 있으므로 균등한 가열이 불가능하여 코아층의 증착효율이 낮은 감이 있으며, VAD공법은 프리폼의 대형화는 가능하나 그 제조과정이 다단으로 되어 있어 설비투자에 부담이 크며, 제조과정에서 발생하는 유독가스를 집진하여 한 곳으로 배출하는 배기관이 없으므로 제조공정이 상기 가스에 노출되어 생산성을 기대할 수 없다. 따라서 본 발명에 의한 프리폼 제조방법은 상기한 문제점들을 개선한 것으로, 2차 프리폼 형성시 석영관을 사용하지 않고 석영분말을 이용하므로 석영관 제조비용이 절감되고 덮개 내부에서 성형되므로 유독가스를 한 곳으로 배기할 수 있으며 프리폼의 대형화도 기대할 수 있는 유익한 발명이다.The conventional MCVD method manufactures and uses quartz tubes with few impurities, which adds quartz tube manufacturing cost, which leads to high preform manufacturing cost, and the preform is vertically fixed during the secondary molding of the preform. Since the process is exposed, it is impossible to evenly heat the core layer, so there is a feeling that the core layer's deposition efficiency is low. The VAD method can increase the size of the preform, but the manufacturing process is multi-stage, which burdens the facility investment. Since there is no exhaust pipe that collects the toxic gas generated and discharges it to one place, the manufacturing process is exposed to the gas and productivity cannot be expected. Therefore, the method of manufacturing the preform according to the present invention improves the above-mentioned problems, and since the quartz powder is used instead of the quartz tube when forming the secondary preform, the manufacturing cost of the quartz tube is reduced and the inside of the cover is molded in one place. It is an advantageous invention that can be exhausted and that the preform can be enlarged.

Claims (3)

MCVD공법으로 생성된 1차 프리폼(18a)에 양질의 클래드(14)층을 형성하기 위하여, 버너(17)가 왕복 이동할 수 있도록 열선반(16)에 가이드 레일(51)을 형성하며 그 위에 버너(17)에서 생성되는 가스를 배출하기 위한 덮개(22)를 형성하고, 그 내부의 상부에 1차 프리폼(18a)을 고정시키기 위한 선반(31)을 형성하고, 덮개(22)의 일측에 상기 1차 프리폼(18a)에 형성되는 클래드(14)층의 무게와 외경이 일정하게 형성됨을 감지하는 감지센서(52)와, 열선반(16)의 일측에 반응원료 공급장치(23)를 구비하여 이루어짐을 특징으로 하는 석영분말 융사장치를 이용한 광섬유용 프리폼 제조방법.In order to form a high quality clad 14 layer on the primary preform 18a generated by the MCVD method, a guide rail 51 is formed on the hot lathe 16 so that the burner 17 can reciprocate and a burner thereon. A cover 22 for discharging the gas generated at 17 is formed, and a shelf 31 for fixing the primary preform 18a is formed at an upper portion of the inside thereof, and on one side of the cover 22. It is provided with a detection sensor 52 for detecting the weight and outer diameter of the cladding 14 layer formed on the primary preform 18a and the reaction material supply device 23 on one side of the hot lathe 16. Method for producing a preform for optical fibers using a quartz powder fusion filament, characterized in that made. 제1항에 있어서, 버너(17)의 열공급 연료는 산, 수소 가스로 이루어짐을 특징으로 하는 석영분말 융사장치를 이용한 광섬유용 프리폼 제조방법.The method of claim 1, wherein the heat supply fuel of the burner (17) is made of acid and hydrogen gas. 제1항에 있어서, 버너(17)의 열분사에 분사되는 반응료는 석영분말로 이루어짐을 특징으로 하는 석영분말 융사장치를 이용한 광섬유 프리폼 제조방법.The method according to claim 1, wherein the reactant injected into the thermal spraying of the burner (17) is made of quartz powder.
KR1019970060997A 1997-11-19 1997-11-19 Method for producing grass preform for optical fiber using thermal spraying of quartz powder KR100235556B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970060997A KR100235556B1 (en) 1997-11-19 1997-11-19 Method for producing grass preform for optical fiber using thermal spraying of quartz powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970060997A KR100235556B1 (en) 1997-11-19 1997-11-19 Method for producing grass preform for optical fiber using thermal spraying of quartz powder

Publications (2)

Publication Number Publication Date
KR19990040554A true KR19990040554A (en) 1999-06-05
KR100235556B1 KR100235556B1 (en) 1999-12-15

Family

ID=19525038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970060997A KR100235556B1 (en) 1997-11-19 1997-11-19 Method for producing grass preform for optical fiber using thermal spraying of quartz powder

Country Status (1)

Country Link
KR (1) KR100235556B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426394B1 (en) * 2001-10-26 2004-04-08 엘지전선 주식회사 The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896102B1 (en) 2008-02-14 2009-05-07 엘에스전선 주식회사 Apparatus and method for correcting center of gravity in the vapor axial deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426394B1 (en) * 2001-10-26 2004-04-08 엘지전선 주식회사 The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition

Also Published As

Publication number Publication date
KR100235556B1 (en) 1999-12-15

Similar Documents

Publication Publication Date Title
RU2217391C2 (en) Method of forming tubular element for production of optical fiber by means of external plasma precipitation from vapor phase
US4336049A (en) Method for producing multi-component glass fiber preform
US7363776B2 (en) Method for forming fused quartz using deuterium
JPH0127005B2 (en)
US4259101A (en) Method for producing optical fiber preform
RU2235071C2 (en) Method for preparing optical fiber blank
US4642129A (en) Method for manufacturing preforms of glass for optical fibers
US20030101772A1 (en) Manufacturing method for optical fiber preform
KR100235556B1 (en) Method for producing grass preform for optical fiber using thermal spraying of quartz powder
US7003984B2 (en) Hybrid manufacturing process for optical fibers
WO2004014812A1 (en) Method and apparatus for manufacturing optical fiber preforms, using the outside vapor deposition process
EP0072069A1 (en) Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres
US7703305B2 (en) Overcladding an optical fiber preform using an air-argon plasma torch
KR20020067992A (en) Method of forming soot preform
JPS60264338A (en) Manufacture of optical fiber preform
JPH0327493B2 (en)
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JPS646132B2 (en)
JPS5845131A (en) Build-up method for glass layer
JPS5747735A (en) Manufacture of base material for optical fiber
JPS62162646A (en) Production of glass fine particle deposit
JPS6114085B2 (en)
JPH1121143A (en) Production of preform for optical fiber
JPH03103333A (en) Apparatus for producing optical fiber preform
JPH0535691B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080331

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee