KR19990037377A - Method of manufacturing long life electroluminescent fluorescent material - Google Patents

Method of manufacturing long life electroluminescent fluorescent material Download PDF

Info

Publication number
KR19990037377A
KR19990037377A KR1019980044814A KR19980044814A KR19990037377A KR 19990037377 A KR19990037377 A KR 19990037377A KR 1019980044814 A KR1019980044814 A KR 1019980044814A KR 19980044814 A KR19980044814 A KR 19980044814A KR 19990037377 A KR19990037377 A KR 19990037377A
Authority
KR
South Korea
Prior art keywords
reaction vessel
coating
phosphor
oxygen
introducing
Prior art date
Application number
KR1019980044814A
Other languages
Korean (ko)
Other versions
KR100366887B1 (en
Inventor
첸-웬 판
리차드 쥐. 더블유. 진저리치
튜안 안 당
데일 이. 벤자민
Original Assignee
조셉 에스. 로마나우
오스람 실바니아 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조셉 에스. 로마나우, 오스람 실바니아 인코포레이티드 filed Critical 조셉 에스. 로마나우
Publication of KR19990037377A publication Critical patent/KR19990037377A/en
Application granted granted Critical
Publication of KR100366887B1 publication Critical patent/KR100366887B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

불활성 기체를 반응용기로 도입하고; 형광물질 입자를 반응용기에 충진하며; 반응용기를 반응온도로 가열하며; 코팅 전구체를 반응용기로 도입하며; 산소/오존 혼합물을 반응용기로 도입한 다음; 교반, 불활성 가스 유동, 산소/오존 혼합물 유동 및 전구체 공급을 형광물질 입자를 코팅하기에 충분한 시간 동안 유지하는 단계를 포함하는 형광물질 입자의 코팅방법. 본 방법에 의해 3,100 시간 이상의 반감기 및 6 루멘/와트(lm/w) 이상의 효력을 지닌 형광물질이 수득된다.Introducing an inert gas into the reaction vessel; Filling the reaction vessel with fluorescent particles; Heating the reaction vessel to the reaction temperature; Introducing a coating precursor into the reaction vessel; Introducing an oxygen / ozone mixture into the reaction vessel; Maintaining the stirring, inert gas flow, oxygen / ozone mixture flow and precursor feed for a time sufficient to coat the phosphor particles. This method yields a fluorescent material having a half life of at least 3,100 hours and an effect of at least 6 lumens / watt (lm / w).

Description

장수명 전기발광 형광물질의 제조방법Method of manufacturing long life electroluminescent fluorescent material

본 발명은 코팅 입자, 좀더 상세하게는 등각 코팅을 갖는 입자에 관한 것이다. 좀더 상세하게는, 본 발명은 형광물질, 더욱 상세하게는 형광물질의 습기 흡수를 방지하고 수명과 효력을 대폭 증가시키는 코팅을 갖는 전기발광 형광물질에 관한 것이다.The present invention relates to coated particles, more particularly to particles having conformal coatings. More particularly, the present invention relates to electroluminescent phosphors having a coating which, in particular, prevents moisture absorption of the phosphor and significantly increases its lifetime and potency.

코팅 형광물질은 미국 특허 제4,585,673호, 제4,828,124호, 제5,080,928호, 제5,118,529호, 제5,156,885호, 제5,220,243호, 제5,244,750호, 및 제5,418,062호로부터 공지되어 있다. 코팅 전구체와 산소가 보호 코팅을 적용시키기 위해서 사용될 수 있음이 상기 특허 중 일부로부터 공지되어 있다. 예를 들면, 미국 특허 제5,244,750호 및 제4,585,673호를 참조한다. 이들 특허 중 여러 다른 것들의 코팅방법은 가수분해에 의한 보호 코팅을 적용하기 위해서 화학 증착을 사용한다. 물 또는 수증기의 부재하에 작업되는 코팅방법이 개발될 수 있다면 기술상의 진보가 될 것이다. 이러한 방법의 개발은 이러한 코팅된 형광물질의 효력 및 수명을 증가시킬 추가의 진보가 될 것이다.Coating phosphors are known from US Pat. Nos. 4,585,673, 4,828,124, 5,080,928, 5,118,529, 5,156,885, 5,220,243, 5,244,750, and 5,418,062. It is known from some of the above patents that coating precursors and oxygen can be used to apply the protective coating. See, for example, US Pat. Nos. 5,244,750 and 4,585,673. Coating methods of several of these patents use chemical vapor deposition to apply protective coatings by hydrolysis. Technological advances will be made if coating methods can be developed that work in the absence of water or water vapor. The development of this method will be a further advance to increase the potency and lifetime of these coated phosphors.

그러므로, 본 발명의 목적은 선행기술의 단점을 제거하는 것이다.It is therefore an object of the present invention to obviate the disadvantages of the prior art.

본 발명의 추가의 목적은 코팅된 형광물질의 작동을 증진하는 것이다.It is a further object of the present invention to enhance the operation of the coated phosphor.

본 발명의 추가의 목적은 물 또는 수증기를 사용하지 않는 형광물질 코팅방법의 제공이다.A further object of the present invention is to provide a method for coating a fluorescent substance without using water or water vapor.

이들 목적은 본 발명의 일양태에서, 불활성 기체를 반응용기로 도입하고; 형광물질 입자를 바람직하게는 교반하면서 반응용기로 충진하며; 반응용기를 반응온도로 가열하며; 코팅 전구체를 반응용기로 도입하며; 산소/오존 혼합물을 반응용기로 도입한 다음; 불활성 가스 유동, 산소/오존 혼합물 유동 및 전구체 공급을 형광물질 입자를 코팅하기에 충분한 시간 동안 유지하는 단계를 포함하는 형광물질 입자 코팅방법에 의해서 달성된다. 이러한 방법에 의해 실질적으로 습기 흡수를 제거하고 6 루멘/와트(lm/w) 이상의 효력을 보이면서 3100 시간 이상의 반감기를 갖는 형광물질을 제공하는 등각 코팅된 형광물질이 생성된다. 또한, 이 방법은 물 또는 수증기 부재하에 달성된다.These objects, in one aspect of the invention, introduce an inert gas into the reaction vessel; The phosphor particles are preferably filled into the reaction vessel with stirring; Heating the reaction vessel to the reaction temperature; Introducing a coating precursor into the reaction vessel; Introducing an oxygen / ozone mixture into the reaction vessel; It is achieved by a method for coating a phosphor particle comprising maintaining an inert gas flow, an oxygen / ozone mixture flow and a precursor feed for a time sufficient to coat the phosphor particles. This method produces conformal coated phosphors that substantially eliminate moisture absorption and provide phosphors having a half-life of at least 3100 hours with an effect of at least 6 lumens / watt (lm / w). This method is also accomplished in the absence of water or water vapor.

본 발명을 기타 및 추가의 목적, 장점, 및 이의 역량과 함께 더 잘 이해하기 위해서, 하기의 설명 및 특허청구범위를 참조한다.To better understand the present invention, along with other and further objects, advantages, and capabilities thereof, reference is made to the following description and claims.

실시예 1Example 1

불활성 기체, 바람직하게는 질소를 4.5 ℓ/분의 유동율로, 유동층 반응기로서 사용되는 속이 비어 있는 2 인치 직경 석영 반응용기 하단에 도입한다. 구리-도핑된 아연 설파이드 전기발광 형광물질 2.5 kg을 높이가 36 인치인 반응용기에 충진한다. 이어서, 진동 혼합기의 축을 분당 60 사이클의 속도로 작동시키고 반응용기를 이를 에워싸고 있는 전기로로 가열한다. 반응온도가 160℃에 도달했을 때, 4.6 ℓ/분의 유동율의 산소 기체를 오존 5 내지 6 중량%를 취하기에 충분한 속도로 오존 발생기를 통하여 통과시킨다. 오존/산소 혼합물을 중공 진동축의 개구를 통하여 반응용기 중으로 공급한다. 또한, 0.5 ℓ/분 유동율의 질소 기체를 실온에서 유지되는 코팅 전구체의 용기를 통하여 통과시킨다. 바람직한 코팅 전구체는 트리메틸알루미늄(TMA)이다. 희석 TMA 전구체 증기를 오존/산소 혼합물과 반응되도록 반응기 용기 하단으로부터 도입시켜 개개 형광물질 입자 표면에 보호성 등각 코팅을 형성시킨다. 코팅시간은 48시간이다. 반응용기를 160 ± 3 ℃에서 유지시키고 질소, 전구체 및 산소/오존 가스 유동율을 모두 일정하게 유지시킨다. 생성되는 코팅된 형광물질은 표 1에 로트 번호 188D로 나타낸 특성을 지닌다. 반감기 시험(표 1에서 Life Hrs으로 표시)을 72℉, 50%의 상대 습도에서 수행한다.Inert gas, preferably nitrogen, is introduced at the bottom of the hollow 2 inch diameter quartz reaction vessel used as the fluidized bed reactor at a flow rate of 4.5 l / min. 2.5 kg of copper-doped zinc sulfide electroluminescent phosphor is charged into a 36 inch high reaction vessel. The shaft of the vibrating mixer is then operated at a rate of 60 cycles per minute and the reaction vessel is heated with an electric furnace enclosing it. When the reaction temperature reaches 160 ° C., oxygen gas at a flow rate of 4.6 L / min is passed through the ozone generator at a rate sufficient to take 5 to 6 wt% ozone. The ozone / oxygen mixture is fed into the reaction vessel through the opening of the hollow vibrating shaft. In addition, nitrogen gas at a flow rate of 0.5 l / min is passed through a container of coating precursor maintained at room temperature. Preferred coating precursor is trimethylaluminum (TMA). Dilute TMA precursor vapor is introduced from the bottom of the reactor vessel to react with the ozone / oxygen mixture to form a protective conformal coating on the individual phosphor particle surfaces. Coating time is 48 hours. The reaction vessel is maintained at 160 ± 3 ° C and the nitrogen, precursor and oxygen / ozone gas flow rates are all kept constant. The resulting coated phosphor has the properties shown in lot number 188D in Table 1. Half-life tests (labeled Life Hrs in Table 1) are performed at 72 ° F., 50% relative humidity.

로트 번호Lot number 온도(℃)Temperature (℃) 시간(시)Hour TMA/N2(ℓ/분)TMA / N 2 (ℓ / min) O2O3(ℓ/분)O 2 O 3 (ℓ / min) N2(ℓ/분)N 2 (ℓ / min) BET(m2/gm)BET (m 2 / gm) 알루미늄(%)aluminum(%) 램프 성능Lamp performance 광출력Light output 수명(시간)Life time (hours) 효력(lm/w)Effect (lm / w) 24시간24 hours 100시간100 hours 188D188D 160160 4848 0.50.5 4.64.6 4.54.5 0.050.05 4.14.1 19.319.3 19.619.6 3,1563,156 6.76.7 189C189C 235235 4040 0.50.5 4.64.6 4.54.5 0.080.08 4.24.2 19.519.5 18.618.6 2,3022,302 7.67.6

실시예 2Example 2

온도를 235℃로 올리고 시간을 40 시간으로 제한하는 것을 제외하고는 실시예 1의 절차를 따른다. 생성되는 코팅 형광물질은 표 1에 로트 번호 189C로 나타낸 특성을 지닌다. 효력이 6.7 lm/w에서 7.6 lm/w로 증가하는 반면, 반감기는 약간의 감소를 보이지만, 2300 시간의 반감기는 여전히 쓸 수 있는 상품을 나타낸다.The procedure of Example 1 was followed except that the temperature was raised to 235 ° C. and the time was limited to 40 hours. The resulting coating phosphor has the properties shown in lot number 189C in Table 1. While the effect increases from 6.7 lm / w to 7.6 lm / w, the half-life shows a slight decrease, but the 2300-hour half-life still represents a usable commodity.

상이한 온도에서 빛을 낸 형광물질에서 발생하는 기타 변화는 색채 출력에서 반영된다. 160℃에서 코팅된 형광물질은 청록색 영역에서 방출하고 235℃에서 코팅된 형광물질은 황색쪽으로 이동한다.Other changes that occur in phosphors that glow at different temperatures are reflected in the color output. The fluorescent material coated at 160 ° C. emits in the cyan region and the fluorescent material coated at 235 ° C. moves toward yellow.

추가의 시험은 반응 시간을 약 70 시간까지 증가시키고, 청록색 방출 물질에 대한 온도를 약 180℃로 증가시킴으로써 결과가 더욱 개선됨을 보여준다. 표 1로부터 명백히 알게 되는 바와 같이, 두 최적 발화 온도가 존재하여 본 방법에 두 색채점 중의 하나와 장수명의 효율적인 형광물질을 제공한다.Further tests show that the results are further improved by increasing the reaction time to about 70 hours and increasing the temperature for the cyan emitting material to about 180 ° C. As will be clear from Table 1, there are two optimal firing temperatures to provide the method with one of two color points and a long lifetime of efficient phosphor.

더욱 긴 반응시간이 또한 더욱 효력이 있을 것으로 예상되지만, 물론 반응용기의 크기 및/또는 수량 및 실행가능한 적정가의 상품 제조에 요구되거나 필요한 처리량에 의존함에는 틀림이 없다.Longer reaction times are also expected to be more effective, but of course must depend on the size and / or quantity of the reaction vessel and the throughput required or required for the production of a viable titer.

현재 본 발명의 바람직한 양태로 생각되는 것이 예시되고 설명되었지만, 특허청구범위에 의해 정의된 바와 같이 본 발명의 범위를 벗어나지 않으면서 다양한 변화 및 변형이 본원에서 이루어질 수 있음이 당분야 전문가들에게 명백해질 것이다.While what is presently considered to be a preferred embodiment of the invention has been illustrated and described, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the claims. will be.

Claims (15)

형광물질 입자의 코팅방법에 있어서, 불활성 기체를 반응용기 중으로 도입하고; 형광물질 입자를 반응용기에 충진하며; 반응용기를 반응온도로 가열하며; 코팅 전구체를 반응용기 중으로 도입하며; 산소/오존 혼합물을 반응용기 중으로 도입한 다음; 불활성 가스 유동, 산소/오존 혼합물 유동 및 전구체 공급을 형광물질 입자를 코팅하기에 충분한 시간 동안 유지하는 단계를 포함하는 형광물질 입자의 코팅방법.A coating method of fluorescent substance particles, comprising: introducing an inert gas into a reaction vessel; Filling the reaction vessel with fluorescent particles; Heating the reaction vessel to the reaction temperature; Introducing a coating precursor into the reaction vessel; Introducing an oxygen / ozone mixture into the reaction vessel; Maintaining the inert gas flow, the oxygen / ozone mixture flow, and the precursor supply for a time sufficient to coat the phosphor particles. 제 1 항에 있어서, 전구체가 트리메틸알루미늄인 방법.The method of claim 1 wherein the precursor is trimethylaluminum. 제 1 항에 있어서, 산소/오존 혼합물이 약 5 내지 6 중량% 오존을 포함하는 방법.The method of claim 1 wherein the oxygen / ozone mixture comprises about 5 to 6 weight percent ozone. 제 1 항에 있어서, 불활성 기체가 질소인 방법.The method of claim 1 wherein the inert gas is nitrogen. 제 1 항에 있어서, 반응온도가 약 160℃인 방법.The method of claim 1 wherein the reaction temperature is about 160 ° C. 3. 제 1 항에 있어서, 반응온도가 160 내지 180℃인 방법.The process of claim 1 wherein the reaction temperature is 160 to 180 ° C. 제 1 항에 있어서, 반응온도가 약 235℃인 방법.The method of claim 1 wherein the reaction temperature is about 235 ° C. 3. 제 1 항에 있어서, 형광물질을 코팅하기에 충분한 시간이 약 40 내지 약 70 시간인 방법.The method of claim 1 wherein the time sufficient to coat the phosphor is from about 40 to about 70 hours. 등각의 습기 흡수 억제 코팅 및 2,000 시간 이상의 반감기를 갖는 전기발광 형광물질.An electroluminescent phosphor having a conformal moisture absorption inhibiting coating and a half life of at least 2,000 hours. 제 9 항에 있어서, 반감기가 3,000 시간 이상인 전기발광 형광물질.The electroluminescent phosphor of claim 9, wherein the half life is at least 3,000 hours. 제 1 항에 있어서, 형광물질 입자를 교반하면서 반응용기 중으로 충진하는 방법.The method of claim 1 wherein the phosphor particles are filled into the reaction vessel with stirring. 제 11 항에 있어서, 교반이 산소/오존 혼합물의 도입 동안 유지되는 방법.The method of claim 11, wherein stirring is maintained during the introduction of the oxygen / ozone mixture. 제 1 항의 방법에 따라서 생성된 코팅 형광물질.A coating phosphor produced according to the method of claim 1. 제 1 항의 방법에 따라서 생성된 코팅된 전기발광 형광물질.A coated electroluminescent phosphor produced according to the method of claim 1. 제 1 항의 방법에 따라서 생성된 코팅 입자.Coating particles produced according to the method of claim 1.
KR10-1998-0044814A 1997-10-27 1998-10-26 Phosphor coating method for electroluminescence and phosphors manufactured accordingly KR100366887B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6595097P 1997-10-27 1997-10-27
US60/065,950 1997-10-27

Publications (2)

Publication Number Publication Date
KR19990037377A true KR19990037377A (en) 1999-05-25
KR100366887B1 KR100366887B1 (en) 2003-03-26

Family

ID=22066246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0044814A KR100366887B1 (en) 1997-10-27 1998-10-26 Phosphor coating method for electroluminescence and phosphors manufactured accordingly

Country Status (2)

Country Link
KR (1) KR100366887B1 (en)
BE (1) BE1012135A3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455401B1 (en) * 2001-12-12 2004-11-06 유재수 Method for phosphor coating using fluidization
KR100819312B1 (en) * 2000-12-18 2008-04-02 오스람 실바니아 인코포레이티드 Method and apparatus for coating electroluminescent phosphors
KR101415268B1 (en) * 2014-05-12 2014-07-07 신동출 Piston relief damper for air duct system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177087A (en) * 1986-01-30 1987-08-03 Alps Electric Co Ltd Fluorescent composition
US4855189A (en) * 1987-11-24 1989-08-08 Lumel, Inc. Electroluminescent lamps and phosphors
US4999219A (en) * 1989-11-07 1991-03-12 Gte Laboratories Incorporated Method for coating phosphor particles using aluminum isopropoxide precursors and an isothermal fluidized bed
US5156885A (en) * 1990-04-25 1992-10-20 Minnesota Mining And Manufacturing Company Method for encapsulating electroluminescent phosphor particles
US5593782A (en) * 1992-07-13 1997-01-14 Minnesota Mining And Manufacturing Company Encapsulated electroluminescent phosphor and method for making same
US5080928A (en) * 1990-10-05 1992-01-14 Gte Laboratories Incorporated Method for making moisture insensitive zinc sulfide based luminescent materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819312B1 (en) * 2000-12-18 2008-04-02 오스람 실바니아 인코포레이티드 Method and apparatus for coating electroluminescent phosphors
KR100455401B1 (en) * 2001-12-12 2004-11-06 유재수 Method for phosphor coating using fluidization
KR101415268B1 (en) * 2014-05-12 2014-07-07 신동출 Piston relief damper for air duct system

Also Published As

Publication number Publication date
KR100366887B1 (en) 2003-03-26
BE1012135A3 (en) 2000-05-02

Similar Documents

Publication Publication Date Title
US6309700B1 (en) Method of making long life electroluminescent phosphor
KR100306356B1 (en) Moisture insensitive electroluminescent phosphors
KR100527021B1 (en) Compound Based on an Alkaline-Earth, Sulphur and Aluminium, Gallium or Indium, Method for Preparing Same and Use Thereof as Luminophore
CA2305033A1 (en) Moisture insensitive electroluminescent phosphor
KR100325968B1 (en) Method for making long-life electroluminescent phosphor
KR19990037377A (en) Method of manufacturing long life electroluminescent fluorescent material
JP3887226B2 (en) Method and apparatus for coating an electroluminescent phosphor
JP4443748B2 (en) Moisture-resistant electroluminescent phosphor
KR100541630B1 (en) Method for making high-efficacy and long life electroluminescent phosphor
US5049408A (en) Method for coating phosphor particles using aluminum isopropoxide precursors and an isothermal fluidized bed
KR100498686B1 (en) Encapsulated long life electroluminescent phosphor
US3468812A (en) Methods of preparing an alkaline earth halophosphate
US2844540A (en) Method of making an electroluminescent phosphor
EP0476207A2 (en) Improved lead-activated barium silicate phosphor and method of making same
JP5030077B2 (en) Precursor for synthesizing composite nitride or composite oxynitride ceramics and method for producing composite nitride or composite oxynitride ceramics using the same
JP2007063326A (en) Method for producing blue light-emitting fluorescent substance
JP3937622B2 (en) Phosphor production container
JPH09241632A (en) Production of phosphor
JPH04314782A (en) Partially covered phosphor and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111114

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee