KR19990008863A - Deposition Method of Titanium Dioxide Using Titanium Butyrate - Google Patents

Deposition Method of Titanium Dioxide Using Titanium Butyrate Download PDF

Info

Publication number
KR19990008863A
KR19990008863A KR1019970031003A KR19970031003A KR19990008863A KR 19990008863 A KR19990008863 A KR 19990008863A KR 1019970031003 A KR1019970031003 A KR 1019970031003A KR 19970031003 A KR19970031003 A KR 19970031003A KR 19990008863 A KR19990008863 A KR 19990008863A
Authority
KR
South Korea
Prior art keywords
titanium
titanium dioxide
butyrate
substrate
film
Prior art date
Application number
KR1019970031003A
Other languages
Korean (ko)
Other versions
KR100250598B1 (en
Inventor
김윤수
고원용
구수진
Original Assignee
이서봉
재단법인 한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이서봉, 재단법인 한국화학연구소 filed Critical 이서봉
Priority to KR1019970031003A priority Critical patent/KR100250598B1/en
Publication of KR19990008863A publication Critical patent/KR19990008863A/en
Application granted granted Critical
Publication of KR100250598B1 publication Critical patent/KR100250598B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 티-부틸산티탄을 사용하여 이산화티탄을 화학증착시키는 방법에 관한 것이다. 본 발명의 방법으로 제조된 이산화티탄 막은 탄소함량이 낮고, 400℃ 정도의 낮은 온도에서도 루틸 상 구조를 형성할 수 있다.The present invention relates to a method for chemically depositing titanium dioxide using titanium-butyrate. The titanium dioxide film prepared by the method of the present invention has a low carbon content and can form a rutile phase structure even at a low temperature of about 400 ° C.

Description

티-부틸산티탄을 이용한 이산화티탄의 증착 방법Deposition Method of Titanium Dioxide Using Titanium Butyrate

본 발명은 티-부틸산티탄(tert-부틸산티탄)을 이용하여 이산화티탄을 기질 상에 증착시키는 방법에 관한 것이다.The present invention relates to a method for depositing titanium dioxide onto a substrate using titanium thi-butyl acid ( tert -butyl acid).

이산화티탄은 굴절률이 높아 이산화티탄 막은 다층 간섭 필터, 무반사 코팅, 광 도파기 등에 광학 재료로 사용된다. 유전율도 높기 때문에 박막 축전기에도 쓰일 수 있다. 또한, 광촉매 효과를 이용하여 공기와 물을 정화하거나 코팅 표면의 오염 물질을 제거하는 데도 이용된다 [A. Heller and J. R. Brock, Materials and methods for photocatalyzing oxidation of organic compounds on water, 미합중국 특허 제 5,256,616 호; 및 T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto and A. Fujishima, Photocatalytic activity of TiO2thin film under room light,Photocatalytic Purification and Treatment of Water and Air, D. F. Ollis and H. Al-Ekabi eds., Elsevier (1993) pp747-751 참조].Titanium dioxide has a high refractive index, and titanium dioxide films are used as optical materials for multilayer interference filters, antireflective coatings, optical waveguides, and the like. Its high dielectric constant can also be used in thin film capacitors. It is also used to purify air and water using photocatalytic effects or to remove contaminants from coating surfaces [A. Heller and JR Brock, Materials and methods for photocatalyzing oxidation of organic compounds on water, US Patent No. 5,256,616; And T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto and A. Fujishima, Photocatalytic activity of TiO 2 thin film under room light, Photocatalytic Purification and Treatment of Water and Air , DF Ollis and H. Al-Ekabi eds., Elsevier (1993) pp 747-751].

염화티탄이나 이소프로필산티탄 또는 에틸산티탄을 티탄의 원료로 써서 이산화티탄을 화학 증착하는 방법은 잘 알려져 있다 [H. O. Pierson,Handbook of Chemical Vapor Deposition (CVD), Noyes Publications (Park Ridge, New Jersey, USA, 1992), pp 236-237 참조]. 그러나 염화티탄은 수분에 극히 민감하여 분말을 형성하기 때문에 다루기 어렵고 산소 원료를 반드시 함께 사용하여야 하는 문제점이 있다. 에틸산티탄은 상온에서 고체이므로 화학 증착에 이용하기 불편하다. 이소프로필산티탄은 상온 상압에서 액체이고 알려진 알킬산티탄 화합물 중 증기압이 가장 높으나 이소프로필산티탄을 원료로 써서 화학 증착한 이산화티탄 막에는 다량의 탄소가 포함되는 경향이 있다. 이소프로필산티탄의 끓는점은 5 mmHg에서 91.3oC이고 티-부틸산티탄의 끓는점은 5 mmHg에서 93.8oC이다 [D. C. Bradley, R. C. Mehrotra, and P. D. Gaur,Metal Alkoxides, Academic Press, (London, 1978)]. 따라서tert-부틸산티탄도 상온에서 쉽게 기화시켜 화학 증착에 이용할 수 있으나tert-부틸산티탄을 원료로 써서 이산화티탄을 합성한 예는 보고된 적이 없다.Chemical vapor deposition of titanium dioxide using titanium chloride, titanium isopropyl acid or ethyl acetate as a raw material of titanium is well known [HO Pierson, Handbook of Chemical Vapor Deposition (CVD) , Noyes Publications (Park Ridge, New Jersey, USA, 1992), pp 236-237. However, since titanium chloride is extremely sensitive to moisture to form a powder, it is difficult to handle and there is a problem in that an oxygen source must be used together. Titanium ethylate is inconvenient to use for chemical vapor deposition because it is a solid at room temperature. Titanium isopropyl acid is a liquid at room temperature and atmospheric pressure and has the highest vapor pressure among known titanium alkylate compounds, but a large amount of carbon tends to be contained in the titanium dioxide film chemically deposited using titanium isopropyl acid as a raw material. The boiling point of titanium isopropyl acid is 91.3 o C at 5 mmHg and the boiling point of titanium titanyl titanate is 93.8 o C at 5 mmHg [DC Bradley, RC Mehrotra, and PD Gaur, Metal Alkoxides , Academic Press, (London, 1978 )]. Therefore, tert -butyrate is also easily vaporized at room temperature and can be used for chemical vapor deposition. However, there have been no reports of synthesizing titanium dioxide using tert -butyrate as a raw material.

본 발명자들은 티-부틸산티탄을 이용하여 화학 증착한 이산화티탄 막에는 같은 조건에서 이소프로필산티탄을 원료로 사용하여 화학 증착한 이산화티탄 막보다 탄소가 훨씬 더 적게 포함된다는 것을 발견하였다.The inventors have found that the titanium dioxide film chemically deposited using titanium-butyl butylate contains much less carbon than the titanium dioxide film chemically deposited using titanium isopropyl acid as a raw material under the same conditions.

이산화티탄 막을 기질에 입힐 경우 일반적으로 낮은 온도에서는 비정질 상이나 아나타스(anatase) 상이 생기고 높은 온도에서는 루틸(rutile) 상이 형성된다. 이 중에서 루틸 상은 밀도가 4.26g/㎤으로 3.84g/㎤인 아나타스 상에 비해 굴절율이 커서 광학재료로 사용하기에 유리하고, 유전율도 아나타스 상 보다 높아 유전재료로 사용하기에도 더욱 적합한 장점이 있다.When the titanium dioxide film is coated on a substrate, an amorphous phase or ananatase phase is generally formed at low temperatures, and a rutile phase is formed at high temperatures. Among these, the rutile phase has a higher refractive index than the anatas phase having a density of 4.26 g / cm 3 and 3.84 g / cm 3, which is advantageous for use as an optical material. have.

이소프로필산티탄을 원료로 사용한 화학 증착의 경우 기질의 온도가 600oC 이하일 경우 아나타스 상만 나타나고, 플라즈마 도움 화학 증착법의 경우 아나타스 상과 루틸 상의 섞여서 나타나며 대부분이 루틸 상인 막을 얻으려면 기질을 600oC 이상으로 가열해야 한다고 알려져 있다[H. L. M. Chang, T. J. Zhang, H. Zhang, J. Guo, H. K. Kim, and D. J. Lam, Epitaxy, microstructure, and processing-structure relationships of TiO2thin films grown on sapphire (0001) by MOCVD,Journal of Material Research,8, 2634 (1993); H.-Y. Lee and H.-G. Kim, The role of gas-phase nucleation in the preparation of TiO2films by chemical vapor deposition,Thin Solid Films,229, 187 (1993); G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, Influence of substrate on structural properties of TiO2thin films obtained via MOCVD,Thin Solid Films,239, 186 (1994); Y. H. Lee, K. K. Chan, and M. J. Brady, Plasma enhanced chemical vapor deposition of TiO2in microwave-radio frequency hybrid plasma reactor,Journal of VacuumScience and Technology A,13, 596 (1995); 및 J. Yan, D. C. Gilmer, S. A. Campbell, W. L. Gladfelter, and P. G. Schmid, Structural and electrical characterization of TiO2grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,Journal of Vacuum Science and Technology B,14, 1706 (1996)]. 그러나 본 발명자들은tert-부틸산티탄을 원료로 사용한 경우 기질의 온도가 400oC인 경우에도 루틸 상의 이산화티탄 막을 화학 증착할 수 있었다.In the case of chemical vapor deposition using titanium isopropyl acid as a raw material, only the Anatha phase appears when the temperature of the substrate is less than 600 o C. In the case of plasma assisted chemical vapor deposition, the anatase phase and the rutile phase appear to be mixed. o It is known to heat above C [HLM Chang, TJ Zhang, H. Zhang, J. Guo, HK Kim, and DJ Lam, Epitaxy, microstructure, and processing-structure relationships of TiO 2 thin films grown on sapphire (0001 ) by MOCVD, Journal of Material Research , 8 , 2634 (1993); H.-Y. Lee and H.-G. Kim, The role of gas-phase nucleation in the preparation of TiO 2 films by chemical vapor deposition, Thin Solid Films , 229 , 187 (1993); GA Battiston, R. Gerbasi, M. Porchia, and A. Marigo, Influence of substrate on structural properties of TiO 2 thin films obtained via MOCVD, Thin Solid Films , 239 , 186 (1994); YH Lee, KK Chan, and MJ Brady, Plasma enhanced chemical vapor deposition of TiO 2 in microwave-radio frequency hybrid plasma reactor, Journal of Vacuum Science and Technology A, 13 , 596 (1995); And J. Yan, DC Gilmer, SA Campbell, WL Gladfelter, and PG Schmid, Structural and electrical characterization of TiO 2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP / H 2 O ambients, Journal of Vacuum Science and Technology B , 14 , 1706 (1996). However, the present inventors were able to chemically deposit a titanium dioxide film on rutile even when the substrate temperature was 400 ° C. when tert -titanium butylate was used as a raw material.

본 발명은 티-부틸산티탄을 사용하여 이산화티탄을 증착하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for depositing titanium dioxide using titanium thi-butylate.

도 1은 본 발명의 실시예 및 비교예에서 얻은 이산화티탄 막의 X-선 회절 스펙트럼이다(a: 실시예 1; b: 실시예 2; c: 비교예 1; 및 d: 비교예 2).1 is an X-ray diffraction spectrum of a titanium dioxide film obtained in Examples and Comparative Examples of the present invention (a: Example 1; b: Example 2; c: Comparative Example 1; and d: Comparative Example 2).

상기 목적을 달성하기 위하여, 본 발명에서는 티-부틸산티탄을 기화시켜 기질 상에 이산화티탄막을 화학증착시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a method of chemically depositing a titanium dioxide film on a substrate by vaporizing titanium thi-butyl acid.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 이산화티탄막을 증착시키는데 사용되는 기질은 규소 단결정, 유리 등이 있으나, 이들에 한정되는 것은 아니다.Substrates used for depositing the titanium dioxide film of the present invention include, but are not limited to, silicon single crystal, glass, and the like.

본 발명에 사용되는 티-부틸산티탄은 하기 반응식에서와 같이 헥산 또는 에틸 에테르에서 염화티탄을 티-부틸산칼륨 4 당량과 반응시킨 후 감압 증류하여 얻을 수 있다. 또한, 상업적으로 구입할 수도 있다.Titanium butyrate used in the present invention can be obtained by reacting titanium chloride with 4 equivalents of potassium thi-butylate in hexane or ethyl ether and distillation under reduced pressure as in the following scheme. It can also be purchased commercially.

TiCl4+ 4KOBut→ Ti(OBut)4+ 4KClTiCl 4 + 4KOBu t → Ti (OBu t ) 4 + 4KCl

티-부틸산티탄을 이용하여 기질 상에 이산화 티탄을 증착시키는 방법은 다음과 같다.The method of depositing titanium dioxide on a substrate using titanium-butyrate is as follows.

티-부틸산티탄을 상온에서 기화시켜 운반 기체를 사용하지 않고 250∼400 ℃로 가열한 기질 위에 이산화티탄 막을 증착시킨다. 기화한 티-부틸산티탄이 통과하는 곳의 온도는 상온으로 유지시킨다. 티-부틸산티탄을 기화시키기 전의 반응기 내부의 압력은 수십mbar인데, 티-부틸산티탄을 반응기 안에 도입하여 화학 증착을 시작하면 압력이 수 배 내지 10 배 증가한다.Titanium butyrate is vaporized at room temperature to deposit a titanium dioxide film on a substrate heated to 250-400 ° C. without using a carrier gas. The temperature where the vaporized titanium-butyrate passes is maintained at room temperature. The pressure inside the reactor before vaporizing the titanium titanium butyrate is several tens of mbar. The pressure increases several times to ten times when titanium thibutylate is introduced into the reactor to start chemical vapor deposition.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니다. 본 발명의 실시예 및 비교예에서 제조된 이산화티탄 막의 원소 조성 및 상 구조는 각각 오제(Auger) 스펙트럼 및 X-선 회절 무늬로부터 알 수 있다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited only to the following examples. The elemental composition and phase structure of the titanium dioxide films prepared in Examples and Comparative Examples of the present invention can be known from Auger spectrum and X-ray diffraction pattern, respectively.

실시예 1Example 1

티-부틸산티탄을 상온에서 기화시켜 운반기체 없이 250 ℃로 가열한 Si(100) 기질 상에 2 시간 동안 화학증착을 실시하였다. 증착이 계속되는 동안 투명한 산화물 박막에 의한 간섭 색이 차례로 기질 표면에 나타났다. 증착된 이산화티탄 막의 표면을 Ar+이온으로 60 초 동안 스퍼터한 뒤 얻은 오제(Auger) 스펙트럼의 신호로부터 계산한 막의 원소 조성은 티탄 : 산소 : 탄소 = 0.34 : 0.61 : 0.05 이었다. 도 1(a)에서 알 수 있는 바와 같이, 이산화티탄 막에서 얻은 X선 회절 무늬에는 2θ= 25.3, 38.6o에 각각 아나타스 상의 (101), (112) 결정면에 의한 회절 봉우리가 나타났다.Titanium butyrate was vaporized at room temperature and subjected to chemical vapor deposition on a Si (100) substrate heated to 250 ° C. without carrier gas for 2 hours. While the deposition continued, interference colors by the transparent oxide thin film appeared in turn on the substrate surface. The elemental composition of the film calculated from the signal of the Auger spectrum obtained after sputtering the surface of the deposited titanium dioxide film with Ar + ions for 60 seconds was titanium: oxygen: carbon = 0.34: 0.61: 0.05. As can be seen in 1 (a), X-ray diffraction pattern, the 2θ = 25.3, it showed diffraction peaks corresponding to 38.6, respectively Ana o Tasman on the (101), (112) crystal plane in the obtained titanium dioxide film.

실시예 2Example 2

티-부틸산티탄을 상온에서 기화시켜 운반기체 없이 400 ℃로 가열한 Si(100) 기질 상에 2 시간 동안 화학증착을 실시하였다. 증착이 계속되는 동안 투명한 산화물 박막에 의한 간섭 색이 차례로 기질 표면에 나타났다. 증착된 막의 표면을 Ar+ 이온으로 60 초 동안 스퍼터한 뒤 얻은 오제 스펙트럼의 신호로부터 계산한 막의 원소 조성은 티탄 : 산소 : 탄소 = 0.33 : 0.56 : 0.11 이었다. 도 1(b)에서 알 수 있는 바와 같이, 이산화티탄 막에서 얻은 X선 회절 무늬에는 2θ= 27.5, 36.1, 54.3, 62.7o에 각각 루틸 상의 (110), (101), (211), (002) 결정면에 의한 회절 봉우리와 함께 2θ= 25.3o에 아나타스 상의 (101) 결정면에 의한 작은 회절 봉우리가 나타났다.Titanium butyrate was vaporized at room temperature and subjected to chemical vapor deposition on a Si (100) substrate heated to 400 ° C. without a carrier gas for 2 hours. While the deposition continued, interference colors by the transparent oxide thin film appeared in turn on the substrate surface. The elemental composition of the film calculated from the signal of Auger spectrum obtained after sputtering the surface of the deposited film with Ar + ions for 60 seconds was titanium: oxygen: carbon = 0.33: 0.56: 0.11. As can be seen in FIG. 1 (b), the X-ray diffraction pattern obtained from the titanium dioxide film includes (110), (101), (211), and (002) at 2θ = 27.5, 36.1, 54.3, and 62.7 o , respectively. A small diffraction peak due to the (101) crystal plane of the anatas phase was observed at 2θ = 25.3 o along with the diffraction peak due to the crystal plane).

비교예 1Comparative Example 1

이소프로필산티탄을 상온에서 기화시켜 운반기체 없이 250 ℃로 가열한 Si(100) 기질 상에 2 시간 동안 화학증착을 실시하였다. 증착이 계속되는 동안 투명한 산화물 박막에 의한 간섭 색이 차례로 기질 표면에 나타났다. 증착된 막의 표면을 Ar+이온으로 60 초 동안 스퍼터한 뒤 얻은 오제 스펙트럼의 신호로부터 계산한 막의 원소 조성은 티탄 : 산소 : 탄소 = 0.32 : 0.58 : 0.10 이었다. 도 1(c)에서 알 수 있는 바와 같이, 이산화티탄 막에서 얻은 X선 회절 무늬에는 2θ= 25.3, 38.6, 55.1, 95.2o에 각각 아나타스 상의 (101), (112), (211), (321) 결정면에 의한 회절 봉우리가 나타났다.Titanium isopropyl acid was vaporized at room temperature and subjected to chemical vapor deposition on a Si (100) substrate heated to 250 ° C. without carrier gas for 2 hours. While the deposition continued, interference colors by the transparent oxide thin film appeared in turn on the substrate surface. The elemental composition of the film calculated from the signals of Auger spectrum obtained after sputtering the surface of the deposited film with Ar + ions for 60 seconds was titanium: oxygen: carbon = 0.32: 0.58: 0.10. As can be seen in FIG. 1 (c), the X-ray diffraction pattern obtained from the titanium dioxide film includes 2101 = 25.3, 38.6, 55.1, and 95.2 o at (101), (112), (211), ( 321) Diffraction peaks due to the crystal plane appeared.

비교예 2Comparative Example 2

이소프로필산티탄을 상온에서 기화시켜 운반기체 없이 400 ℃로 가열한 Si(100) 기질 상에 2 시간 동안 화학증착을 실시하였다. 증착이 계속되는 동안 투명한 산화물 박막에 의한 간섭 색이 차례로 기질 표면에 나타났다. 증착을 끝낸 후 기질 위에 형성된 막은 검은빛을 띠었다. 증착된 막의 표면을 Ar+이온으로 60 초 동안 스퍼터한 뒤 얻은 오제 스펙트럼의 신호로부터 계산한 막의 원소 조성은 티탄 : 산소 : 탄소 = 0.30 : 0.54 : 0.16 이었다. 도 1(d)에서 알 수 있는 바와 같이, 이산화티탄 막에서 얻은 X선 회절 무늬에는 2θ= 38.6, 82.7o에 각각 아나타스 상의 (101), (224) 결정면에 의한 큰 회절 봉우리가 나타났다.Titanium isopropyl acid was vaporized at room temperature and subjected to chemical vapor deposition on a Si (100) substrate heated to 400 ° C. without a carrier gas for 2 hours. While the deposition continued, interference colors by the transparent oxide thin film appeared in turn on the substrate surface. After the deposition was completed, the film formed on the substrate was black in color. The elemental composition of the film calculated from the signal of Auger spectrum obtained after sputtering the surface of the deposited film with Ar + ions for 60 seconds was titanium: oxygen: carbon = 0.30: 0.54: 0.16. As can be seen from Fig. 1 (d), the X-ray diffraction pattern obtained from the titanium dioxide film showed large diffraction peaks due to (101) and (224) crystal planes on the anatase phase at 2θ = 38.6 and 82.7 o , respectively.

이산화티탄의 원료로 티-부틸산티탄을 사용하는 본 발명의 방법은 이소프로필산티탄을 원료로 쓰는 종래의 방법보다 탄소가 더 적게 포함된 이산화티탄막을 얻을 수 있을 뿐 아니라 400 ℃ 정도의 낮은 온도에서도 루틸 상을 얻을 수 있다는 장점이 있다.The method of the present invention using titanium-butyrate as a raw material of titanium dioxide can not only obtain a titanium dioxide film containing less carbon than the conventional method using titanium isopropyl acid as a raw material, but also a low temperature of about 400 ° C. Also has the advantage that the rutile phase can be obtained.

Claims (4)

티-부틸산티탄을 기화시켜 화학 증착에 의해 기질 상에 이산화티탄 막을 형성하는 방법.A method of vaporizing titanium thi-butyl carbonate to form a titanium dioxide film on a substrate by chemical vapor deposition. 제 1 항에 있어서,The method of claim 1, 상기 기질의 온도가 250 내지 400 ℃의 범위임을 특징으로 하는 방법.Characterized in that the temperature of the substrate is in the range of 250 to 400 ℃. 제 1 항에 있어서,The method of claim 1, 상기 기질의 온도가 400 ℃에서 루틸상의 이산화티탄 막을 형성하는 것을 특징으로 하는 방법.And wherein said substrate forms a rutile titanium dioxide film at < RTI ID = 0.0 > 400 C. < / RTI > 제 1 항에 있어서,The method of claim 1, 상기 기질이 규소 단결정임을 특징으로 하는 방법.The substrate is silicon single crystal.
KR1019970031003A 1997-07-04 1997-07-04 Deposition of carbontitanium using ti-butylacidictitanium KR100250598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970031003A KR100250598B1 (en) 1997-07-04 1997-07-04 Deposition of carbontitanium using ti-butylacidictitanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970031003A KR100250598B1 (en) 1997-07-04 1997-07-04 Deposition of carbontitanium using ti-butylacidictitanium

Publications (2)

Publication Number Publication Date
KR19990008863A true KR19990008863A (en) 1999-02-05
KR100250598B1 KR100250598B1 (en) 2000-04-01

Family

ID=19513385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970031003A KR100250598B1 (en) 1997-07-04 1997-07-04 Deposition of carbontitanium using ti-butylacidictitanium

Country Status (1)

Country Link
KR (1) KR100250598B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193676B2 (en) 2015-11-16 2021-12-07 Samsung Electronics Co., Ltd. Cooking apparatus, control method therefor and double plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069372A (en) * 2001-03-15 2001-07-25 정상철 The manufacturing method of titanium oxide photocatalyst by CVD

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340422A (en) * 1991-09-17 1994-12-13 Ishihara Sangyo Kaisha Ltd Production of thin titanium oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193676B2 (en) 2015-11-16 2021-12-07 Samsung Electronics Co., Ltd. Cooking apparatus, control method therefor and double plate

Also Published As

Publication number Publication date
KR100250598B1 (en) 2000-04-01

Similar Documents

Publication Publication Date Title
US5266355A (en) Chemical vapor deposition of metal oxide films
KR100577698B1 (en) Ruthenium thin film
US5389401A (en) Chemical vapor deposition of metal oxides
US20030097013A1 (en) Nitrogen analogs of copper II beta-diketonates as source reagents for semiconductor processing
KR19990076990A (en) Sputtering Targets and Methods for Making the Same
JP4903773B2 (en) Chemical vapor deposition precursor
KR20140041734A (en) Process for manufacturing glazing comprising a porous layer
US5258204A (en) Chemical vapor deposition of metal oxide films from reaction product precursors
GB2208874A (en) Method of forming coating film of titanium containing oxide by using alkoxide solution
EP1356132B1 (en) Volatile organometallic complexes of lowered reactivity suitable for use in chemical vapor deposition of metal oxide films
CA2153019A1 (en) Single source volatile precursor for sio2 tio2 powders and films
US9126193B2 (en) Photocatalytic film, method for forming photocatalytic film and photocatalytic film coated product
KR100250598B1 (en) Deposition of carbontitanium using ti-butylacidictitanium
JP3516186B2 (en) Window glass
Riaz Low-temperature atmospheric-pressure chemical vapor deposition of tungsten oxide thin films
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
Medina-Valtierra et al. Chemical vapor deposition of 6CuO· Cu2O films on fiberglass
JP3191975B2 (en) Raw materials for forming dielectric films of titanium-containing composite oxides by chemical vapor deposition
EP0365645B1 (en) A method of manufacturing perovskite lead scandium tantalate
JP3931683B2 (en) Method for producing PZT thin film by chemical vapor deposition
Chen et al. Preparation of Zinc Titanate Thin Films by Low‐Pressure Metalorganic Chemical Vapor Deposition
Desu et al. Low temperature CVD of SiO2 films using novel precursors
EP0836654B1 (en) Process for the preparation of magnesium oxide films using organomagnesium compounds
JP4120321B2 (en) Titanium complex for chemical vapor deposition and method for producing PZT thin film using the same
JP2551860B2 (en) Metal complex for thin film formation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060102

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee