KR19980052517A - High strength austenitic stainless steel with excellent corrosion resistance and weather resistance and steel sheet manufacturing method using the same - Google Patents

High strength austenitic stainless steel with excellent corrosion resistance and weather resistance and steel sheet manufacturing method using the same Download PDF

Info

Publication number
KR19980052517A
KR19980052517A KR1019960071524A KR19960071524A KR19980052517A KR 19980052517 A KR19980052517 A KR 19980052517A KR 1019960071524 A KR1019960071524 A KR 1019960071524A KR 19960071524 A KR19960071524 A KR 19960071524A KR 19980052517 A KR19980052517 A KR 19980052517A
Authority
KR
South Korea
Prior art keywords
less
austenitic stainless
stainless steel
steel
corrosion resistance
Prior art date
Application number
KR1019960071524A
Other languages
Korean (ko)
Other versions
KR100411286B1 (en
Inventor
김응주
Original Assignee
김종진
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사 filed Critical 김종진
Priority to KR1019960071524A priority Critical patent/KR100411286B1/en
Publication of KR19980052517A publication Critical patent/KR19980052517A/en
Application granted granted Critical
Publication of KR100411286B1 publication Critical patent/KR100411286B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

본 발명은 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강 및 이를 이용한 오스테나이트계 스테인레스강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to provide a high-strength austenitic stainless steel excellent in corrosion resistance and weather resistance and a method for producing an austenitic stainless steel sheet using the same.

상기 목적을 달성하기 위한 본 발명은 중량%로 C:0.07%이하, Si:1.0%이하, Mn:2.0%이하, Cr:18-20%, Ni:7-10%, Al:0.005%이하, P:0.05%이하, S:0.01%이하, Ti:0.03%이하, B:0.003%이하, N:0.1-0.25%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강에 관한 것을 그 요지로 하며, 또한, 본 발명은 상기 강을 슬라브로하고, 이 강슬라브를 1230-1300℃ 온도범위에서 200-240분간 가열한 후 열간압연하여 열간압연 강대를 제조하는 단계; 상기 열간압연 강대를 1130-1170℃의 분위기온도에서 열연소둔하는 단계; 냉간압연하여 냉간압연강대를 제조하고, 1130-1170℃의 분위기 온도에서 냉연소둔한 다음, 산세 및 조질압연을 행하는 단계를 포함하여 구성되는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강판의 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight% C: 0.07% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 18-20%, Ni: 7-10%, Al: 0.005% or less, P: 0.05% or less, S: 0.01% or less, Ti: 0.03% or less, B: 0.003% or less, N: 0.1-0.25%, high-strength austenitic stainless steel with excellent corrosion resistance and weather resistance composed of residual Fe and other unavoidable impurities The present invention relates to a steel slab, and the present invention provides a hot-rolled steel sheet by heating the steel slab at a temperature range of 1230-1300 ° C. for 200-240 minutes and then hot rolling the steel slab; Hot-rolling the hot rolled steel strip at an ambient temperature of 1130-1170 ° C .; In the manufacturing method of high strength austenitic stainless steel sheet having excellent corrosion resistance and weather resistance comprising the step of cold rolling to prepare a cold rolled steel strip, cold-rolled annealing at an ambient temperature of 1130-1170 ℃, and then pickling and temper rolling. Let that point be about that.

Description

내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강 및 이를 이용한 강판제조방법High strength austenitic stainless steel with excellent corrosion resistance and weather resistance and steel sheet manufacturing method using the same

본 발명은 고강도 구조용 소재 및 내석성 요구부품 등에 상용되는 오스테나이트계 스테인레스강 및 이를 이용한 강판 제조방법에 관한 것으로, 보다 상세하게는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강 및 이를 이용한 강판 제조방법에 관한 것이다.The present invention relates to austenitic stainless steel and steel sheet manufacturing method using the same, which is commonly used for high-strength structural materials and stone-resistant parts, and more particularly, high-strength austenitic stainless steel excellent in corrosion resistance and weather resistance, and a steel sheet manufacturing method using the same It is about.

일반적으로 18Cr-8Ni(STS304)강으로 대표되는 오스테나이트계 스테인레스강은 페라이트계에 비해 성형성, 내식성 및 용접특성이 우수하기 때문에 각종 선형품 및 건자재, 강관 용도 등의 다양한 용도로 사용되고 있다.In general, austenitic stainless steels represented by 18Cr-8Ni (STS304) steel have excellent moldability, corrosion resistance, and welding characteristics, compared to ferritic, and thus are used in various linear products, construction materials, and steel pipes.

그러나, 상기 오스테나이트계 스테인레스강은 보다 나은 내식성과 고강도 특성이 요구될 때, 기존의 경우는 고가의 Cr, Mo 성분의 첨가된 강종을 적용하거나, 소재의 두께를 상향 적용하여 강도를 보상하는 방법을 강구하여 제조원가가 상승하는 결점이 있었다. 또한, 오스테나이트계 스테인레스강은 표면에 형성되는 부동태 피막에 의해 뛰어난 내식성을 가지나 부식환경이나 소재의 조건에 따라서 국부부식이 발생될 수 있다. 특히, 수도수 또는 매설토양에 의한 부식분위기에서 공기(Pitting)의 발생과 성장은 수도관 누수사고의 중요한 요인으로 지적되고 있다.However, when the austenitic stainless steel is required for better corrosion resistance and high strength properties, in the conventional case, a method of compensating the strength by applying an added steel grade of expensive Cr and Mo components or by applying a material thickness upward There was a drawback that the manufacturing cost rises. In addition, the austenitic stainless steel has excellent corrosion resistance due to the passivation film formed on the surface, but may cause local corrosion depending on the corrosion environment and material conditions. In particular, the generation and growth of pitting in the corrosion atmosphere of tap water or buried soil is pointed out as an important factor of water pipe leakage accident.

이러한 스테인레스강의 공식은 소재 인자 및 환경인자에 의해 부동태 피막이 국부적으로 파괴된 부위에서 발생한다. 이중 소재인자로서는 합금표면에 노출된 황산염(Sulfide) 개재물이 중요한 공식생성인자로 작용한다. 황산염 개재물의 경우는 개재물이 소지금속에 비해 쉽게 용해됨에 따라 개재물과 소지금 속의 계면에는 보호피막이 형성되지 않은 금속부위가 부식환경에 노출되고 이 부위에서 집중적인 용해가 일어나 공식의 기점으로 작용하는 것이다. 따라서, 이와 같은 공식의 발생을 억제하기 위해서는 공식의 기점으로 작용하는 개재물을 저감시키거나 개재물의 용해저항을 높임과 동시에 피트(Pit)의 성장을 억제하기 위해 소지금 속의 재부동태화능을 향상시키는 것이 필요하다.This stainless steel formula occurs at the site where the passivation film is locally destroyed by material and environmental factors. Among these factors, sulfate inclusions exposed on the alloy surface act as important formula generators. In the case of sulphate inclusions, since the inclusions dissolve more easily than the base metals, the metal part without the protective film is exposed to the corrosive environment at the interface between the inclusions and the soybeans, and intensive dissolution occurs at this site to act as a starting point of the formula. Therefore, in order to suppress the occurrence of such a formula, it is necessary to reduce the inclusions acting as a starting point of the formula or to increase the dissolution resistance of the inclusions and to improve the repassivation ability of the soja in order to suppress the growth of the pits. need.

본 발명은 상기 문제점을 해결하기 위해 제안된 것으로, 본 발명은 오스테나이트 스테인레스강에 있어보다 나은 고내식 및 고강도 특성의 요구에 부응하기 위해 증량되는 고가의 Cr, Mo 적용을 지양하고, N를 첨가함으로써, 저렴한 비용을 내식성 및 강도를 향상시키고, 또한, 부식의 기점이 되는 개재물을 저감시킴으로써, 강도가 보다 상승되는 오스테나이트계 스테인레스강을 제공하고자 하는데, 그 목적이 있다.The present invention has been proposed to solve the above problems, and the present invention avoids expensive Cr, Mo application that is increased in order to meet the demand of better corrosion resistance and high strength properties in austenitic stainless steel, and adds N It is therefore an object of the present invention to provide austenitic stainless steels whose strength is higher by improving the corrosion resistance and strength at a lower cost and by reducing the inclusions that are the starting point of corrosion.

또한, 본 발명은 상기 오스테나이트 스테인레스강을 강판으로 제조함에 있어, 그 열처리 온도를 제한함으로써, 내식성 및 내후성이 우수하고, 고강도인 오스테나이트계 스테인레스강판을 제조하는 방법을 제공하고자 하는데 그 목적이 있다.In addition, the present invention is to provide a method for producing austenitic stainless steel sheet having excellent corrosion resistance and weather resistance, high strength by limiting the heat treatment temperature in manufacturing the austenitic stainless steel as a steel sheet. .

제1도는 본 발명에 따른 발명강의 열간압연시 시편온도에 따른 단면감소율을 나타내는 그래프1 is a graph showing the cross-sectional reduction rate according to the specimen temperature during hot rolling of the invention steel according to the present invention

제2도는 열간압연을 위한 시편 가열시간에 따른 산화증량을 나타내는 그래프2 is a graph showing the oxidative increase according to the specimen heating time for hot rolling

제3도는 본 발명에 따른 발명강의 소둔온도에 따른 재결졍 거동을 나타내는 그래프3 is a graph showing the recombination behavior according to the annealing temperature of the invention steel according to the present invention

제4도는 냉간압하율에 따른 마르텐사이트 분율을 나타내는 그래프4 is a graph showing the martensite fraction according to the cold reduction rate

본 발명은 중량%로 C:0.07%이하, Si:1.0%이하, Mn:2.0%이하, Cr:18-20%, Ni:7-10%, Al:0.005%이하, P:0.05%이하, S:0.01%이하, Ti:0.03%이하, B:0.003%이하, N:0.1-0.25%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강에 관한 것이다.In the present invention, C: 0.07% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 18-20%, Ni: 7-10%, Al: 0.005% or less, P: 0.05% or less, S: 0.01% or less, Ti: 0.03% or less, B: 0.003% or less, N: 0.1-0.25%, and a high-strength austenitic stainless steel having excellent corrosion resistance and weather resistance composed of residual Fe and other unavoidable impurities.

또한, 본 발명은 오스테나이트계 스테인레스강판을 제조하는 방법에 있어서, 중량%로 C:0.07%이하, Si:1.0%이하, Mn:2.0%이하, Cr:18-20%, Ni:7-10%, Al:0.005%이하, P:0.05%이하, S:0.01%이하, Ti:0.03%이하, B:0.003%이하, N:0.1-0.25%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 강스라브를 1230-1300℃ 온도범위에서 200-240분간 가열한 후 열간압연하여 열간압연 강대를 제조하는 단계; 상기 열간압연 강대를 1130-1170℃의 분위기 온도에서 열연소둔하는 단계; 냉간압연하여 냉간압연 강대를 제조하고, 1130-1170℃의 분위기 온도에서 냉연소둔한 다음, 산세 및 조질압연을 행하는 단계를 포함하여 구성되는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강판의 제조방법에 관한 것이다.In addition, the present invention is a method for producing austenitic stainless steel sheet, by weight% C: 0.07% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 18-20%, Ni: 7-10 %, Al: 0.005% or less, P: 0.05% or less, S: 0.01% or less, Ti: 0.03% or less, B: 0.003% or less, N: 0.1-0.25%, steel slabs composed of residual Fe and other unavoidable impurities Manufacturing a hot rolled steel strip by heating and then hot rolling in a temperature range of 1230-1300 ° C. for 200-240 minutes; Hot-rolling the hot rolled steel strip at an ambient temperature of 1130-1170 ° C; Cold rolling to produce a cold rolled steel strip, cold-rolled annealing at an ambient temperature of 1130-1170 ℃, followed by pickling and temper rolling to produce a high-strength austenitic stainless steel sheet having excellent corrosion resistance and weather resistance It is about.

이하, 본 발명의 강성분 한정이유 및 그 첨가이유를 설명한다.Hereinafter, the reason for limiting the steel component of the present invention and the reason for addition thereof will be described.

상기 C은 강력한 오스테나이트상의 안정화 원소로서 슬라브 주조시 델타-페라이트상의 함량을 저하시켜 열간가공성을 개선시키고 Ni의 첨가량을 줄이는 효과를 가지는 성분으로서 그 함량이 너무 많으면, 소둔처리 및 용접 시공시 탄화물 석출에 의한 내식성 저하가 우려된다. 따라서 본 발명에서는 C의 함량을 0.07%이하로 제한하는 것이다.The C is a strong austenite phase stabilizing element, which has the effect of reducing the content of delta-ferrite phase during slab casting to improve hot workability and reducing the amount of Ni added, and if the content is too large, carbide precipitation during annealing and welding construction It is feared that the corrosion resistance by Therefore, the present invention is to limit the content of C to 0.07% or less.

상기 Si는 내고온산화성에 유리하지만, 그 첨가량이 너무 많은 경우에는 델타-페라트 함량이 증가하여 열간가공성이 저하하고, Si 개재물 증가에 의항 개재물성 선상결함(Sliver) 생성이 우려된다. 따라서, 본 발명에서는 Si의 함량을 1.0% 이하로 한정하는 것이다.The Si is advantageous for high temperature oxidation resistance, but when the addition amount is too large, the delta-ferat content is increased, the hot workability is decreased, and the formation of interpositional defects due to the increase of Si inclusions is feared. Therefore, in the present invention, the content of Si is limited to 1.0% or less.

상기 Mn 및 S은 Mn의 첨가량이 너무 많은 경우에는 고온 내산화성이 저하하고, 강중의 S와 친화력이 큰 원소로서 MnS형태의 개재물로 존재시 부식의 기점으로 작용하며, 또한, S는 열간가공성을 저하시키고, 특히 응고시에 오스테나이트상의 입계에 편석하여 열간압연시 선상 결합(Sliver) 발생의 원인이 된다. 따라서, 본 발명에서는 Mn의 경우는 2.0%이하로, S의 경우는 0.010% 이하로 제한하는 것이다.When Mn and S are added in a large amount of Mn, high-temperature oxidation resistance is lowered, and a high affinity with S in steel acts as a starting point of corrosion in the presence of MnS-type inclusions, and S is hot-workable. It lowers and, in particular, segregates at the grain boundaries of the austenite phase during solidification, causing the occurrence of linear bonds during hot rolling. Therefore, in the present invention, Mn is limited to 2.0% or less, and S is limited to 0.010% or less.

상기 Cr은 첨가량이 너무 적으면 내식성 및 고온 내산화성이 저하하고, 그 첨가량이 너무 많으면, 델타-페라이트 함량이 증가하여 열간가공성이 저하되므로 본 발명에서는 18-20%로 제한하는 것이다.If the amount of Cr is too small, the corrosion resistance and high temperature oxidation resistance are lowered. If the amount is too large, the delta-ferrite content is increased and the hot workability is lowered, so the present invention is limited to 18-20%.

상기 Ni은 오스테나이트 상의 안정도, 가공성, 내식성 및 제조원가를 고려하여 그 첨가량이 조절되는데, 본 발명에서는 7-10%로 제한한다.Ni is added in consideration of the stability, processability, corrosion resistance and manufacturing cost of the austenite phase, in the present invention is limited to 7-10%.

상기 Al은 고온내산화성을 개선시키는 성분으로서, 그 첨가량이 증가할수록 제강시 Al산화물에 의한 개재물이 증가하여 표면결함 발생의 원인이 된다. 따라서, 본 발명에서는 Al의 첨가량을 0.005% 이하로 제한하는 것이다.The Al is a component that improves the high temperature oxidation resistance, and as the addition amount thereof increases, inclusions due to Al oxide increase during steelmaking, causing surface defects. Therefore, in the present invention, the amount of Al added is limited to 0.005% or less.

상기 P의 함량이 많은 경우에는 가공성 및 내석성이 저하하므로, 본 발명에서는 그 함량을 0.05%이하로 제한한다.When the content of P is large, workability and stone resistance are lowered, so the content is limited to 0.05% or less.

상기 Ti는 열간압연을 위해 슬라브 고온가열시 고온산화방지로 열간압연시 표면결함을 방지해주는 역할과 결정립 미세화로 인장강도 측면에서도 유리하다. 그 첨가량이 너무 많은 경우에는 Ti 산화물에 의한 표면결함을 유발하기 때문에 본 발명에서는 그 첨가량을 0.03% 이하로 제한한다.The Ti is advantageous in terms of tensile strength by preventing the surface defects during hot rolling by preventing high temperature oxidation when the slab is heated at high temperature for hot rolling. If the amount is too large, surface defects are caused by Ti oxide. Therefore, the amount of the addition is limited to 0.03% or less.

상기 B는 고온 열간 가공성 개선효과가 있기 때문에 열간압연시 생성되는 표면결함방지에 유효하지만, 그 첨가량이 너무 많은 경우에는 B공정화합물을 형성하여 융점을 현저하게 낮추어 열간가공성을 저하시킨다. 따라서 본 발명에서는 B이 첨가량을 0.003%이하로 제한하는 것이다.The B is effective for preventing surface defects generated during hot rolling because it has an effect of improving high temperature hot workability, but when the amount is too large, B process compound is formed to significantly lower the melting point to lower the hot workability. Therefore, in the present invention, B limits the addition amount to 0.003% or less.

상기 N은 재료의 항복강도를 C의 2배 정도로 상승시키는 효과가 있으며 파괴인성의 저하없이 고강도 특성을 얻을 수 있으며, 오스테나이트계 스테인레스강에서 N의 고용도가 C에 비해 크기 때문에 Cr23C6석출의 지연효과로 내입계 부식특성의 향상을 도모할 수 있다. 또한, 내공식 저항성을 향상시키는 특성이 있으나, 그 첨가량이 많은 경우에는 높은 열간변형저항 및 열간가공성 저하로 열간압연의 부하를 줄 수 있다. 따라서, 본 발명에서는 N의 첨가량을 0.1-0.25%로 제한하는 것이다.The N has the effect of increasing the yield strength of the material to about twice the C and can obtain high strength properties without deterioration of fracture toughness, since the solid solution of N in austenitic stainless steel is larger than C Cr 23 C 6 The delay effect of precipitation can improve the intergranular corrosion characteristics. In addition, although there is a characteristic of improving the pitting resistance, in the case where the amount of addition is large, it is possible to give a load of hot rolling due to high hot deformation resistance and low hot workability. Therefore, in the present invention, the amount of N added is limited to 0.1-0.25%.

본 발명에 있어, 상기한 중량비의 N와 Mo 의 첨가는 부동태 피막의 특성 및 소지금속의 재부동태화능 개선을 통한 내공식성 향상을 위한 것으로서 오스테나이트계 스테인레스강의 내공식저항성에 미치는 N와 Mo의 영향은 하기식과 같은 내공식저항 지수(Pitting Resistance Number/PREN)로 표현된다.In the present invention, the addition of N and Mo in the above weight ratio is to improve the pitting resistance through the improvement of the passivation film properties and the repassivating ability of the base metal, and the effect of N and Mo on the pitting resistance of the austenitic stainless steel. The influence is expressed by a Pitting Resistance Number (PREN) such as

PREN=%Cr+3.3×%Mo+16×%NPREN =% Cr + 3.3 ×% Mo + 16 ×% N

내공식성을 향상시키는 합금원소 중 제조원가의 상승요인이 가장 작은 N은 오스테 나이트계 스테인레스강 내의 고용도가 비교적 크고, AOD(Argon-Oxygen Decarburization)와 같은 통상적인 제조공정에 의해 합금화가 가능하다. 또한 N첨가는 파괴인성의 저하없이 고강도 특성을 얻을 수 있으며, 오스테나이트계 스테인레스강에서 N의 고용도가 C에 비해 크기 때문에 Cr23C6석출의 지연효과로 내입계부식특성의 향상도 도모할 수 있다.Among the alloying elements that improve the corrosion resistance, N has the smallest increase in manufacturing cost, and has a high solid solubility in austenitic stainless steel, and can be alloyed by a conventional manufacturing process such as AOD (Argon-Oxygen Decarburization). In addition, N addition can obtain high strength characteristics without deterioration of fracture toughness. Since the solid solubility of N in austenitic stainless steel is larger than C, the intergranular corrosion resistance can be improved by delaying Cr 23 C 6 precipitation. Can be.

이하, 상기한 바와같은 성분을 갖는 강을 이용한 강판제조방법에 대해 각 단계별로 상세히 설명한다.Hereinafter, the steel sheet manufacturing method using the steel having the components as described above in detail for each step.

본 발명에서는 상기 조성의 강을 슬라브로 제조한 후, 상기 강 슬라브를 1230-1300℃ 온도범위에서 200-240분간 가열한 후, 열간압연하여 열간압연강대로 제조하는 단계를 거친다.In the present invention, after the steel of the composition is manufactured as a slab, the steel slab is heated in a temperature range of 1230-1300 ℃ for 200-240 minutes, followed by hot rolling to prepare a hot rolled steel strip.

열간압연 가열온도는 1300℃에서 단면 감소율이 급격히 저하하여 표면결함발생이 용이하며, 1230℃ 이하에서는 롤작업의 부하가 가중되므로 열간압연 작업성 및 표면결합 저감을 위해 본 발명에서는 1230-1300℃로 한정한다.The hot rolling temperature is 1300 ℃, the rate of cross-sectional reduction is rapidly lowered to facilitate the occurrence of surface defects, and the load of the roll operation is increased below 1230 ℃ in the present invention to 1230-1300 ℃ in order to reduce the hot rolling workability and surface bonding It is limited.

이때, 가열시간은 가열로내에서 충분한 가열을 행할 수 있으며, 스케일 과다 생성에 의해 표면품질 열화가 없는 220±20분으로 한정한다.At this time, the heating time can be sufficiently heated in the furnace, it is limited to 220 ± 20 minutes without deterioration of the surface quality by the excessive generation of scale.

또한, 본 발명에서는 열간압연 강대를 1130-1170℃ 분위기온도에서 열연소둔하는 단계를 거친다.In addition, in the present invention, the hot rolled steel strip is subjected to hot rolling annealing at an atmosphere temperature of 1130-1170 ° C.

본 발명에 의한 강은 열연소둔시 강판온도가 1135℃ 정도에서 재결정이 충분히 일어나기 때문에 본 발명에서는 소둔로의 분위기 온도를 1130-1170℃의 범위로 한정한다.In the steel according to the present invention, since the recrystallization occurs sufficiently at the steel sheet temperature of about 1135 ° C during hot-annealing, the atmosphere temperature of the annealing furnace is limited to the range of 1130-1170 ° C.

또한, 본 발명에서는 냉간압연하여 냉간압연 강대를 제조하고, 1130-1170℃의 분위기 온도에서 냉연소둔한 다음, 산세 및 조질압연을 행하는 단계를 거친다.Further, in the present invention, the cold rolled steel sheet is manufactured by cold rolling, cold-rolled and annealed at an ambient temperature of 1130-1170 ° C, and then subjected to pickling and temper rolling.

냉간압연한 후, 행하는 냉연소둔은 상기 열연소둔과 동일한 온도범위에서 행하며, 산세 및 조질압변은 통상의 방법으로 행하는 것이다.After cold rolling, cold rolling annealing is carried out at the same temperature range as the above hot rolling annealing, and pickling and temper rolling are performed in a conventional manner.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기표 1과 같은 발명강(A)(B)의 오스테나이트계 스테인레스강을 전기로에서 용해한 후, AOD 정련로에서 불순물 제거 및 성분을 조정한 후 연속주조설비에서 슬라브를 제조한 후 1250℃에서 220분간 가열한 후 열간압연하여 5.5mm 열간압연 강대를 제조하였다. 이어서, 1135℃(분위기온도 1150℃)에서 소둔처리한 다음 0.8, 1.0, 2.5mm 두께의 냉연강대를 제조하고 1135℃(분위기온도 1150℃)에서 냉연소둔, 산세 및 조질압연을 실시하여 냉연소둔 강대를 제조한 후 인장시험, 경도시험, 내식성, 내후성, 토양부식 특성을 시험을 여러번 시행하고, 그 결과를 하기표 2, 3에 나타내었다.After dissolving austenitic stainless steels of the inventive steels (A) and (B) as shown in Table 1 in an electric furnace, removing impurities and adjusting components in an AOD refining furnace, the slab was manufactured in a continuous casting facility, and then 220 at 1250 ° C. After heating for 5 minutes, hot rolling was performed to produce a 5.5 mm hot rolled steel strip. Subsequently, annealing was performed at 1135 ° C (atmosphere temperature 1150 ° C), and then cold rolled steel strips having a thickness of 0.8, 1.0, and 2.5 mm were prepared, and cold-rolled annealing, pickling and temper rolling were performed at 1135 ° C (atmosphere temperature 1150 ° C). After preparing the tensile test, hardness test, corrosion resistance, weather resistance, soil corrosion properties were tested several times, the results are shown in Tables 2 and 3.

또한, 통상의 방법으로 제조된 하기표 1과 같은 조성범위의 비교강(1)(STS304)과 비교강(2)(STS316)를 상기와 같은 시험을 여러번 실시하고, 그 결과를 하기표 2, 3에 나타내었다.In addition, the comparative steel (1) (STS304) and comparative steel (2) (STS316) of the composition range as shown in Table 1 prepared by a conventional method was subjected to the same test several times, the results are shown in Table 2, 3 is shown.

하기표 3에서 [ ]안의 숫자는 시험한 횟수이고, ( )안의 숫자범위는 평균치를 나타내는 것이다.In Table 3, the numbers in [] indicate the number of tests, and the number ranges in () indicate the average value.

[표 1]TABLE 1

[표 2]TABLE 2

[표 3]TABLE 3

상기표 2에 나타난 바와같이 발명강는 항복강도가 약 35kg/mm2정도로 비교강(1)(2) 대비 우수하였다.As shown in Table 2, the invention steel was superior to the comparative steel (1) (2) yielding strength of about 35kg / mm 2 .

또한, 상기 표 3에 나타난 바와같이, 발명강이 내식성, 내후성, 수도관모사시험(Simulation) 결과 전면부식은 비교강(1)(304) 대비 우수한 실적이나, 비교강(2)(316) 대비 열위한 수준이었으며, 내입계 부식특성은 질소첨가에 의해 비교강(1)(2) 대비 동등이상의 양호한 수준이었다.In addition, as shown in Table 3, the corrosion resistance, weather resistance, water pipe simulation (Simulation) results of the corrosion of the front surface compared to the comparative steel (1) 304, but compared to the comparative steel (2) (316) heat The intergranular corrosion characteristics were better than the comparable steels (1) and (2) by nitrogen addition.

그러나, 통상 스테인레스강의 경우 국부부식이 주요한 부식사례임을 감안하여, 국부부식 특성을 평가하는 염화제2철 시험 및 공식전위 시험결과에서 볼 때 비교강 대비 우수한 내식성을 보이고 있으며, 수도관 실사용분위기를 모사시험시에도 전혀 부식이 일어나지 않는 양호한 결과를 얻었다. 이상의 내식성 시험결과를 종합해 보면, 발명강이 비교강(1) 대비 우수한 내식성이 입증되었으며, 비교강(2) 대비 동등 수준 이상의 양호한 결과를 얻었다.However, in the case of stainless steel, since the local corrosion is the main corrosion case, it shows excellent corrosion resistance compared to the comparative steel in the results of the ferric chloride test and the official potential test to evaluate the local corrosion characteristics. Good results were obtained in which no corrosion occurred at all during the test. In summary, the corrosion resistance test results showed that the inventive steel had excellent corrosion resistance compared to that of the comparative steel (1), and obtained a good result equal to or higher than that of the comparative steel (2).

상기 발명강을 이용하여 열가압연 가열시 시편온도에 따른 단면 감소율을 측정하여, 그 결과를 제1도에 나타내었다. 이때, 단면감소율(%)은 다음과 같은 식에 의해 계산된 것이다.Using the inventive steel, the reduction rate of the cross section according to the specimen temperature during hot rolling is measured, and the results are shown in FIG. 1. At this time, the reduction ratio (%) is calculated by the following equation.

단면감소율(%)=파단시의 단면적÷원시편의 단면적×100Cross-sectional reduction rate (%) = cross-sectional area at break ÷ cross-sectional area of original specimen × 100

제1도에 나타난 바와같이, 1300℃에서 단면 감소율이 급격히 저하하였다. 따라서, 1300℃ 이상의 가열온도에서는 표면결함발생이 쉽다는 것을 알 수 있다.As shown in FIG. 1, the cross-sectional reduction rate drastically decreased at 1300 占 폚. Therefore, it can be seen that surface defects are easily generated at a heating temperature of 1300 ° C. or higher.

또한, 상기 발명강 및 비교강(STS 304)를 이용하여 열간압연 가열시간에 따른 산화증량을 측정하였다. 그 결과를 제2도에 나타내었다.In addition, the oxidation increase according to the hot rolling heating time was measured using the inventive steel and the comparative steel (STS 304). The results are shown in FIG.

제2도에 나타난 바와같이, 본 발명의 경우 220±20분 정도이면 스케일 과다 생성에 의한 표면품질 열화가 없다는 것을 알 수 있었다.As shown in Figure 2, in the case of the present invention it can be seen that there is no surface quality deterioration due to the over-scale generation in about 220 ± 20 minutes.

또한, 상기 발명강을 이용하여 소둔온도에 따른 가공경화지수를 구하여, 그 측정결과를 제3도에 나타내었다.In addition, the work hardening index according to the annealing temperature was obtained using the inventive steel, and the measurement results are shown in FIG.

제3도에 나타난 바와같이 소둔시 강판온도가 1135℃에서 재결정이 충분히 이루어짐을 알 수 있었다.As shown in FIG. 3, the recrystallization was sufficiently performed at the steel sheet temperature of 1135 ° C during annealing.

또한, 상기 발명강과 비교강(STS 304)를 이용하여 냉간압하율(%)에 따른 마르텐사이트의 분율(%)을 구하여 그 결과 제4도에 나타내었다.In addition, using the inventive steel and the comparative steel (STS 304) to calculate the fraction (%) of martensite according to the cold reduction rate (%) is shown in Figure 4 as a result.

제4도에 나타난 바와같이, 준안정 오스테나이트계 스테인레스강의 특징이 가공에 의한 유기 마르텐사이트 생성정도가 비교강(STS 304)에 비해 낮은 가공경화 특성을 보였다.As shown in FIG. 4, the metastable austenitic stainless steel exhibited a lower work hardening characteristic than that of the comparative steel (STS 304).

상술한 바와 같이, 본 발명에 의하면 기존의 STS 304 강중에 비해 가격상승없이 내식성, 내후성 및 고강도 특성을 가지는 오스테나이트계 스테인레스강이 제공되어, 토양매설 분위기에서의 내식성 요구재, 내후성 요구 외장 구조재 등의 용도에 적용시 경제성 측면에 유리한 효과를 기대할 수 있다.As described above, according to the present invention, austenitic stainless steel having corrosion resistance, weather resistance, and high strength characteristics is provided without increasing the price compared to existing STS 304 steel, so that corrosion resistance demanding material in soil embedding atmosphere, weather resistance required exterior structural material, etc. When applied to the application, the economic effect can be expected to be favorable.

Claims (2)

중량%로 C:0.07% 이하, Si:1.0% 이하, Mn:2.0% 이하, Cr:18-20%, Ni:7-10%, Al:0.005% 이하, P:0.05% 이하, S:0.01% 이하, Ti:0.03% 이하, B:0.003% 이하, N:0.1-0.25%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강.By weight% C: 0.07% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 18-20%, Ni: 7-10%, Al: 0.005% or less, P: 0.05% or less, S: 0.01 A high-strength austenitic stainless steel having excellent corrosion resistance and weather resistance, which is composed of% or less, Ti: 0.03% or less, B: 0.003% or less, N: 0.1-0.25%, residual Fe and other unavoidable impurities. 오스테나이트계 스테인레스강판을 제조하는 방법에 있어서,In the method of manufacturing an austenitic stainless steel sheet, 중량%로 C:0.07% 이하, Si:1.0% 이하, Mn:2.0% 이하, Cr:18-20%, Ni:7-10%, Al:0.005% 이하, P:0.05% 이하, S:0.01% 이하, Ti:0.03% 이하, B:0.003% 이하, N:0.1-0.25%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 강슬라브를 1230-1300℃ 온도범위에서 200-240분간 가열한 후 열간압연하여 열간압연 강대를 제조하는 단계;By weight% C: 0.07% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 18-20%, Ni: 7-10%, Al: 0.005% or less, P: 0.05% or less, S: 0.01 Steel slabs composed of% or less, Ti: 0.03% or less, B: 0.003% or less, N: 0.1-0.25%, residual Fe and other unavoidable impurities are heated in a temperature range of 1230-1300 ° C. for 200-240 minutes, followed by hot rolling. Manufacturing a hot rolled steel strip; 상기 열간압연 증대를 1130-1170℃의 분위기 온도에서 열연소둔하는 단계;Hot rolling annealing the hot rolling at an ambient temperature of 1130-1170 ° C .; 냉간압연하여 냉간압연 강대를 제조하고, 1130-1170℃의 분위기 온도에서 냉연소둔한 다음, 산세 및 조질압연을 행하는 단계를 포함하여 구성되는 것을 특징으로 하는 내식성 및 내후성이 우수한 고강도 오스테나이트계 스테인레스강판의 제조방법.Cold rolling to produce a cold rolled steel strip, cold-rolled annealing at an atmosphere temperature of 1130-1170 ℃, and then pickling and temper rolling, high strength austenitic stainless steel sheet excellent in corrosion resistance and weather resistance Manufacturing method.
KR1019960071524A 1996-12-24 1996-12-24 High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same KR100411286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071524A KR100411286B1 (en) 1996-12-24 1996-12-24 High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071524A KR100411286B1 (en) 1996-12-24 1996-12-24 High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same

Publications (2)

Publication Number Publication Date
KR19980052517A true KR19980052517A (en) 1998-09-25
KR100411286B1 KR100411286B1 (en) 2004-04-03

Family

ID=37422896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071524A KR100411286B1 (en) 1996-12-24 1996-12-24 High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same

Country Status (1)

Country Link
KR (1) KR100411286B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398386B1 (en) * 1998-12-18 2003-12-18 주식회사 포스코 Titanium-added austenitic stainless hot rolled steel
KR20210079818A (en) 2019-12-20 2021-06-30 주식회사 포스코 Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same
CN116393664A (en) * 2023-05-15 2023-07-07 广东神和新材料科技有限公司 Composite stainless steel wire and processing technology thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993238B (en) * 2014-06-13 2016-06-08 四川法拉特不锈钢铸造有限公司 A kind of low-nickel austenitic stainless steel
KR102448735B1 (en) * 2020-09-03 2022-09-30 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940901B2 (en) * 1981-03-24 1984-10-03 日本ステンレス株式会社 Corrosion-resistant austenitic stainless steel
JPS6059981B2 (en) * 1981-07-08 1985-12-27 日新製鋼株式会社 High-strength stainless steel with excellent intergranular corrosion cracking properties and workability
WO1987002388A1 (en) * 1985-10-15 1987-04-23 Aichi Steel Works Ltd. High strength stainless steel, and process for its production
KR970010807B1 (en) * 1994-11-30 1997-07-01 포항종합제철 주식회사 Austenite stainless steel of excellent corrosion resistance & hot-working characteristic
KR0143476B1 (en) * 1995-07-05 1998-08-17 김종진 Austenite stainless steel with excellent hot working

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398386B1 (en) * 1998-12-18 2003-12-18 주식회사 포스코 Titanium-added austenitic stainless hot rolled steel
KR20210079818A (en) 2019-12-20 2021-06-30 주식회사 포스코 Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same
CN116393664A (en) * 2023-05-15 2023-07-07 广东神和新材料科技有限公司 Composite stainless steel wire and processing technology thereof
CN116393664B (en) * 2023-05-15 2023-11-24 广东神和新材料科技有限公司 Composite stainless steel wire and processing technology thereof

Also Published As

Publication number Publication date
KR100411286B1 (en) 2004-04-03

Similar Documents

Publication Publication Date Title
US5733387A (en) Duplex stainless steel, and its manufacturing method
KR100957664B1 (en) Austenitic-ferritic stainless steel sheet
KR101463525B1 (en) High-corrosion resistantce cold rolled ferritic stainless steel sheet excellent in toughness and method for manufacturing the same
JP2015190010A (en) Thermal-refined high tensile strength thick steel plate and method for producing the same
JP2954922B1 (en) Heat treatment method for precipitation hardening high silicon steel products
EP3674434A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
JPWO2007029687A1 (en) Low alloy steel
KR100411286B1 (en) High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same
EP0735154A1 (en) Austenitic stainless steels for press forming
JP2017145487A (en) Ferrite austenite stainless steel sheet excellent in moldability and manufacturing method therefor
JPH0413406B2 (en)
CN115466902A (en) Niobium-containing economical high-plasticity duplex stainless steel with excellent intergranular corrosion resistance and manufacturing method thereof
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JPH0995731A (en) Production of building steel for low temperature use
KR102160735B1 (en) Austenitic stainless steel with improved strength
KR920008133B1 (en) Making process for steel materials for welding
JP3201081B2 (en) Stainless steel for oil well and production method thereof
KR0143481B1 (en) The making method and same product of duplex stainless steel plate
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP7462439B2 (en) Austenitic stainless steel and calculation method for upper limit of N
JPH0742550B2 (en) Stainless steel with excellent strength and ductility
JP3881465B2 (en) High-tensile hot-rolled steel sheet with good surface quality

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 12

EXPY Expiration of term