KR970010807B1 - Austenite stainless steel of excellent corrosion resistance & hot-working characteristic - Google Patents

Austenite stainless steel of excellent corrosion resistance & hot-working characteristic Download PDF

Info

Publication number
KR970010807B1
KR970010807B1 KR1019940032271A KR19940032271A KR970010807B1 KR 970010807 B1 KR970010807 B1 KR 970010807B1 KR 1019940032271 A KR1019940032271 A KR 1019940032271A KR 19940032271 A KR19940032271 A KR 19940032271A KR 970010807 B1 KR970010807 B1 KR 970010807B1
Authority
KR
South Korea
Prior art keywords
less
steel
hot
corrosion resistance
stainless steel
Prior art date
Application number
KR1019940032271A
Other languages
Korean (ko)
Other versions
KR960017886A (en
Inventor
유도열
Original Assignee
포항종합제철 주식회사
김만제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 김만제 filed Critical 포항종합제철 주식회사
Priority to KR1019940032271A priority Critical patent/KR970010807B1/en
Publication of KR960017886A publication Critical patent/KR960017886A/en
Application granted granted Critical
Publication of KR970010807B1 publication Critical patent/KR970010807B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

An austenitic stainless steel and a manufacturing process therefor are disclosed, in which, instead of the expensive Ni, there are added Cu as an austenite stabilizing element, and tin amounts of ti as a ferrite forming element and B for improvement of high temperature hot workability, so that the optimum austenite stabilizing temperature(Md30) and the optimum delta-ferrite can be controlled. The austenite stainless steel consists, by weight, of up to 0.05% of C, up to 1.0% of Si, up to 2.0% of Mn, 16-18% of Cr, 6-8% of Ni, up to 0.005% of Al, up to 0.5% of P, up to 0.005% of S, up to 0.03% of Ti, up to 0.003% of B, up to 3% of Cu, up to 1% of Mo, up to 0.045% of N and the balance being Fe and inevitable impurities.

Description

프레스 성형성, 내시효 균열성, 내식성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강Austenitic stainless steel with excellent press formability, age cracking resistance, corrosion resistance, hot workability and high temperature oxidation resistance

제1도는 고온 인장강도 변화에 따른 단면감소율을 나타낸 그래프.1 is a graph showing the cross-sectional reduction rate according to the change in high temperature tensile strength.

제2는 1270℃에서 가열시간 변화에 따른 고온산화에 의한 무게중량을 나타낸 그래프이다.The second is a graph showing the weight by the high temperature oxidation according to the change in heating time at 1270 ℃.

본발명은 프레스 성형성, 내시효균설성, 내식성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강에 관한 것이다.The present invention relates to an austenitic stainless steel having excellent press formability, age-resistant balance, corrosion resistance, hot workability and high temperature oxidation resistance.

일반적으로 18%Cr-8%Ni(STS304)강으로 대표되는 오스테나이트계 스테인레스강은 페라이트계 스테인레스강에 비해 성형성, 내식성 및 용접특성이 우수하기 때문에 각종 성형용으로 사용범위가 매우 광범위하다.Generally, austenitic stainless steels, represented by 18% Cr-8% Ni (STS304) steels, have superior moldability, corrosion resistance, and welding characteristics compared to ferritic stainless steels, and thus have a wide range of use for various molding applications.

그러나 고가인 Ni원소를 다량첨가하기 때문에 제조원가가 상승하는 결점이 있다.However, since a large amount of expensive Ni element is added, manufacturing cost increases.

따라서 고가인 Ni 첨가량을 줄이고도 성형성이 우수한 스테인레스 강을 제조하기 위한 시도들이 행해지고 있다.Therefore, attempts have been made to produce stainless steel having excellent moldability even though the amount of expensive Ni added is reduced.

이 경우 Ni 원소 대신에 Ni보다 저가인 Cu을 2%첨가하여 성형성을 개선한 STS304JI강(한국 특허출원번호 193년 제16607호)이 개발되었지만 Cr함량이 낮아 내식성이 기존의 STS 304강에 비해 저하되는 문제가 있어 용도에 제한을 받고 있다. 또한 성형성 및 내식성을 동시에 개선하고자 하는 시도중의 하나로 고가인 Ni대신에 2% Cu와 Mn함량을 높이고, 내식성을 개선하고자 Mo을 첨가한 기술이 일본특허 공개(소)52-119414호, 일본특허공개 84-033633호, 일본특허공보 75-005646호 및 일본특허공보 83-056746호에 공개되어 있다. 그러나 상기 기술들은 강중의 C함량 및 질소 함량이 높은 경우 내시효균열성이 저하하는 문제점이 있고, C함량이 낮은 경우라도 Mn첨가량이 많기 때문에 고온내산화성 및 열간가공성 저하로 슬라브 열간압연시 표면결함 발생 가능성이 매우 높다. 또한 광휘소둔판의 제조를 위해 행하는 광휘소둔시 블루 칼라(bule color)의 발생 우려가 높은 결점들이 있다.In this case, STS304JI steel (Korean Patent Application No. 1166, No. 16,071) was developed, which improved the formability by adding 2% less expensive Cu than Ni instead of Ni element, but the corrosion resistance was lower than that of the existing STS 304 steel. There is a problem of deterioration and the use is restricted. In addition, as one of attempts to improve moldability and corrosion resistance at the same time, a technique of increasing 2% Cu and Mn content instead of expensive Ni and adding Mo to improve corrosion resistance is disclosed in Japanese Patent Application Laid-Open No. 52-119414, Japan Japanese Patent Laid-Open No. 84-033633, Japanese Patent No. 75-005646 and Japanese Patent Laid-Open No. 83-056746. However, the above technologies have a problem that the aging crack resistance is lowered when the C content and the nitrogen content in the steel are high, and even when the C content is low, the surface defects during hot rolling of the slab due to the high temperature oxidation resistance and the hot workability decrease. It is very likely to occur. In addition, there are drawbacks in that there is a high risk of occurrence of a blue color during bright annealing performed for manufacturing the bright annealing plate.

또다시 시도로서 0.1%이하, C, 2%이하 Mn에 Cu와 Mo를 첨가한 일본특허공개 81-01412호가 있지만 이 경우 열간가공성이 나쁜 Mo 및 Cu 첨가로 열간가공성 저하에 의한 표면결함 발생이 높은 문제점이 있다.As another attempt, there is Japanese Patent Application Publication No. 81-01412 in which Cu and Mo are added to 0.1% or less of C and 2% or less of Mn. However, in this case, high surface defects are caused by deterioration of hot workability by addition of Mo and Cu, which are poor in hot workability. There is a problem.

또다른 시도로서 일본 특허공개 평1-92342호에 Cu가 함유된 강에 Ti, B을 미량 첨가하고 산소를 50ppm이하, CaO, 0.06%이하 첨가하여 개재물 생성 억제에 의한 열간가공성 및 성형성을 개선시킨 강이 제시되고 있다. 그러나 이 경우 고가인 Ni함량이 8%이상으로 높기 때문에 기존의 STS304강 및 STS304JI강에 비해 제조원가가 높아 비경제적인 단점이 있다.As another attempt, Japanese Patent Publication No. Hei 1-92342 adds a small amount of Ti and B to Cu-containing steel and adds 50 ppm or less of oxygen and CaO or 0.06% or less to improve hot workability and formability by suppressing inclusion formation. The river that has been made is presented. However, in this case, the expensive Ni content is higher than 8%, and thus, the manufacturing cost is high compared to the existing STS304 steel and STS304JI steel, which has an uneconomical disadvantage.

이에 본발명자는 종래기술들의 제반 문제점을 개선하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 고가인 Ni대신에 Ni과 같은 오스테나이트(r)안정화 원소인 Cu와 내식성 개선을 위하여 Mo를 첨가한 강에서 Ti 및 B를 동시에 첨가하여 적정 Md30온도와 슬라브내 델타-페라이트 함량을 제어함으로서 성형성, 내시효균열성, 내식성을 개선하고, 동시에 제조시 문제가 되는 열간가공성 및 고온 내산화성을 개선함과 동시에 Ni첨가량을 줄여 제조원가 절감효과와 열간압연시 표면결함 발생을 저감시킨 오스태나이트계 스테인레스강을 제공하고자 하는데 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to improve all the problems of the prior art, and based on the results, the present invention proposes the present invention. Instead of expensive Ni, an austenite stabilizing element such as Ni is used. In order to improve phosphorus Cu and corrosion resistance, Ti and B were added simultaneously to control the proper M d30 temperature and delta-ferrite content in slab to improve moldability, aging crack resistance and corrosion resistance. The purpose of the present invention is to provide an austenitic stainless steel which reduces the production cost and reduces the occurrence of surface defects during hot rolling by improving the hot workability and high temperature oxidation resistance which are problematic.

이하 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described.

본발명은 중량 %로 C : 0.05%이하, Si : 1.0%이하, Mn : 2.0%이하, Cr : 16-18%, Ni : 6-8%, Al : 0.005%o하, P : 0.5%이하, S : 0.005%이하, Ti : 0.03%이하, B : 0.003%이하, Cu : 3%이하, Mo : 1%이하, N : 0.045%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 프레스 성형성, 내시효균열성, 내식성, 열간가공성 및 고온내산화성이 우수한 요스테나이트계 스테인레스강에 관한 것이다.The present invention is in weight% C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 16-18%, Ni: 6-8%, Al: 0.005% o or less, P: 0.5% or less , S: 0.005% or less, Ti: 0.03% or less, B: 0.003% or less, Cu: 3% or less, Mo: 1% or less, N: 0.045% or less, press formability composed of residual Fe and other unavoidable impurities, The present invention relates to an austenitic stainless steel having excellent anti-aging cracking resistance, corrosion resistance, hot workability and high temperature oxidation resistance.

또한 상기와 같이 조성되는 본발명의 오스테나이트계 스테인레스강에 있엇, [Md30(℃)=551-462(C%+N% )-9.2(Si%)-8.1(Mn%)-29(Ni%+Cu%)-13.7(Cr% )-18.5(Mo%)-1.42(결정입도번호-8.0)]으로 정의되는 오스테나이트 안정화온도[Md30(℃)]를-25∼+10℃로 제한하고, 『델타-페라이트 함량(%)=[{Cr%+Mo%+1.5Si%+18}]/(Ni%+0,52Cu%+30C%+30N%+0.5Mn%+36)}+0.262×161-161』로 정의되는 슬라브내 델타-페라이트 함량을 8.0Vol%이하로 제한하는 것을 특징으로 한다.Also in the austenitic stainless steel of the present invention, which is formulated as described above, [M d30 (° C.) = 551-462 (C% + N%)-9.2 (Si%)-8.1 (Mn%)-29 (Ni % + Cu%)-13.7 (Cr%)-18.5 (Mo%)-1.42 (crystal grain size-8.0)] to limit the austenite stabilization temperature [M d30 (° C)] to -25 ° C to + 10 ° C. Delta-ferrite content (%) = [{Cr% + Mo% + 1.5Si% + 18}] / (Ni% + 0,52Cu% + 30C% + 30N% + 0.5Mn% + 36)} + It is characterized by limiting the delta-ferrite content in the slab, which is defined as 0.262 × 161-161 ″, to 8.0 Vol% or less.

본 발명에서 제시된 성분범위의 한정이유에 대하여 설명한다.The reason for limitation of the range of components presented in the present invention will be described.

상기 C는 강력한 오스테나이트상의 안정화원소로서 슬라브- 주조시 델타-페라이트상의 함량을 저하시켜 열간가공성을 개선시키고고가인 Ni의 첨가량을 줄이는 효과를 갖고, 또한 적층결함에너지를 높여 성형성을 개선시키는 성분으로서 그 함량이 너무 많으면 딥 드로잉후 성형품에 성형시 생성된 가 공유기 마르텐사이트상의 강도를 증가시키고 잔류응력이 높아져 내시효균열성이 저하하며, 소둔처리시 탄화물 석출에 의한 내식성 저하가 우려되므로 상기 C함량은 0.05%이하로 제한하는 것이 바람직하다.C is a strong austenite phase stabilizing element that reduces the content of the delta-ferrite phase during slab-casting to improve hot workability and to reduce the amount of expensive Ni added, and also to increase the layer defect energy to improve moldability. If the content is too high, the strength of the temporary covalent martensite phase formed during molding on the molded article after deep drawing increases, and the residual stress is increased, thereby reducing the age cracking resistance, and the corrosion resistance by the precipitation of carbides during annealing is feared. The content is preferably limited to 0.05% or less.

상기 Si는 고온내산화성에 유리하지만, 그 첨가량이 너무 많은 경우에는 델타-폐라이트 함량이 증가하여 열간가공성이 저하하고, Si개재물 증가에 의해 개재물성 선상결함(sliver)생성이 우려되므로, 상기 Si의 함량은 1.0%이하로 한정되는 것이 바람직하다.The Si is advantageous for high temperature oxidation resistance, but when the addition amount is too high, the delta-flight content is increased to decrease the hot workability, and the inclusion of linear inclusion defects is increased due to the increase of Si inclusions. The content of is preferably limited to 1.0% or less.

상기 Mn은 첨가량이 너무 많은 경우에는 내식성 및 고온 내산화성이 저하하고, 특히 광휘소둔시 블루칼라 발생에 의한 광택도 불량이 발생될 우려가 있으므로, 그 첨가량은 2.0%이하로 제한하는 것이 바람직하다.When Mn is added too much, the corrosion resistance and high temperature oxidation resistance may be lowered, and in particular, the glossiness defect may be generated due to the generation of blue color during light annealing. Therefore, the amount of Mn is preferably limited to 2.0% or less.

상기 Cr은 첨가량이 너무 적으면 내식성 및 고온내산화성이 저하하고, 그 첨가량이 너무 많으면 델타-페라이트 함량이 증가하여 열간가공성 및 성형성이 저하되므로 STS 304강과 동등한 수준의 내식성 및 내고온산화성을 얻기 위하여 상기 Cr의 첨가량은 16-18%로 제한하는 것이 바람직하다.When the Cr content is too small, the corrosion resistance and high temperature oxidation resistance are lowered. If the Cr content is too large, the delta-ferrite content is increased so that the hot workability and moldability are deteriorated. For this reason, the amount of Cr added is preferably limited to 16-18%.

상기 Ni은 오스테나이트상의 인정도 및 성형성, 내시효균 열성 및 제조원가를 고려하여 그 첨가량이 조절되는데 그 첨가량이 너무 많은 경우에는 Md30온도가 낮아 장출성형성 등 성형성이 저하하고, 또한 제조원가가 상승하게 되며, 너무 적은 경우에는 성형시 가공유기 마르텐사이트상의 생성량이 증가하여 내시효균열성을 저하시키므로, 상기 Ni 첨가량은 6-8%로 제한하는 것이 바람직하다.The amount of Ni is controlled in consideration of the degree of recognition and moldability of the austenite phase, the aging resistance, and the manufacturing cost. If the amount is too high, the M d30 temperature is low, so that moldability such as elongation property is lowered and manufacturing cost is also reduced. In the case of too small an increase in the amount of the processed organic martensite phase during molding, which lowers the aging crack resistance, it is preferable to limit the amount of Ni added to 6-8%.

상기 Al은 고온내산화성을 개선시키는 성분으로서 그 첨가량이 증가할 수 록 제강시 Al산화물에 의한 게재물이 증가하여 표면 결함 및 성형성을 저하시키므로 그 첨가량은 0.005%이하로 제한하는 것이 바람직하다.The Al is a component that improves high temperature oxidation resistance, and as the amount of addition increases, the amount of inclusions by Al oxide increases during steelmaking to decrease surface defects and formability, so the amount of addition is preferably limited to 0.005% or less.

상기 Cu는 재료를 연질화하고, 적층결함에너지를 높이며, 또한 오스테나이트상의 안정도를 높이기 때문에 Ni원소 대용 사용으로 사용가능한 성분으로서, 그 첨가량이 3%이상인 경우에는 성형성 저하 및 슬라브 주조시결정입계에 융점의 Cu편석 발생으로 열간 압연시 균열발생이 우려되기 때문에, 그 첨가량은 3%이하로 제한하는 것이 바람직하다.Cu is a component that can be used as a substitute for Ni element because it softens the material, increases the lamination defect energy, and increases the stability of the austenite phase. When the added amount is 3% or more, the moldability decreases and the grain boundary when slab casting is used. Since the occurrence of cracking during hot rolling due to the occurrence of Cu segregation at the melting point, the addition amount is preferably limited to 3% or less.

상기 P는 그 함량이 많은 경우에는 성형성 및 내식성이 저하하므로, 그 첨가량은 0.05%이하로 제한하는 것이 바람직하다.When the P content is large, moldability and corrosion resistance are lowered, and therefore the amount of P is preferably limited to 0.05% or less.

상기 S는 열간가공성을 저하시키고, 특히 응고시에는 오스테나이트상의 입계에 편석하여 열간압연시선상 결함발생의 원인이 되므로, 그 함량은 0.005%이하로 제한하는 것이 바람직하다.S is deteriorated in hot workability, and in particular, when solidified, segregates at the grain boundaries of the austenite phase and causes defects in the hot rolling line. Therefore, the content thereof is preferably limited to 0.005% or less.

상기 Ti는 열간압연을 위해 슬라브 고온 가열시 고온 산화방지로 열간압연시에 표면 결합을 방지해주는 역할과 결정립 미세화로 성형시 오랜지 필(Orange peel)생성을 억제하며, 동일 Md30온도에서 페라이트 안정화 성분인 Ti가 미량 첨가된 강은 미첨가에 비해 성형시 가공유기 마르텐사이트상의 생성량이 증가하여 파단강도 및 고변형영역의 가공경화지수 n값을 증가시키므로 성형성을 개선한다. 그 첨가량이 너무 많으면 Ti산화물에 의한 표면결함을 유발하기 때문에, 그 첨가량은 0.03%이하로 제한하는 것이 바람직하다.The Ti serves to prevent surface bonding during hot rolling by preventing high temperature oxidation during slab high temperature heating for hot rolling and to suppress orange peel formation during molding by grain refinement, and to stabilize ferrite at the same M d30 temperature. Steels containing a small amount of phosphorus Ti improve the formability because the amount of formation of the processed organic martensite phase during molding increases, thereby increasing the breaking strength and the work hardening index n value of the high deformation region. If the amount is too large, surface defects are caused by Ti oxide, so the amount is preferably limited to 0.03% or less.

상기 B은 고온 열간가공성 개선효과가 있기 때문에 열간압연시 생성되는 표면결함방지에 유효하지만, 그 첨가량이 너무 많은 경우에는 B공정화합물을 형성하여 융점을 현저하게 낮추어 열간가공성을 저하시키크로 상기 B의 첨가량은 0.003%이하로 제한하는 것이 바람직하다.The B is effective for preventing surface defects generated during hot rolling because it has an effect of improving hot workability at high temperatures, but when the amount is too large, the B process compound is formed to significantly lower the melting point to lower the hot workability. The amount of addition is preferably limited to 0.003% or less.

상기 N은 그 함유량이 증가하면 델타-페라이트 감소에는 유익하지만 재료의 항복강도를 C의 2배로 상승시키는 효과가 있어 성형성이 저하하고, 경도 및 강도 상승효과로 내시효균열성이 저하하므로, 상기 N의 함유량은 0.045%이하로 제한하는 것이 바람직하다.The content of N is good for reducing delta-ferrite, but it has the effect of increasing the yield strength of the material to twice the C, and thus the moldability is lowered. It is preferable to limit the content of N to 0.045% or less.

상기 Mo은 함유량이 많으면 내식성 개선에는 유효하지만, 그 첨가량이 너무 많은 경우에는 제조원가상승 및 델타-페라이트 함량이 증가하며, 열간압연시 재결정을 억제하므로 열간가공성이 저하하여 표면결함을 유발하고, Md30온도 및 가공경화도롤 현저하게 상승시켜 성형성 및 내시효균열성을 저하시키므로, 그 첨가량은 1.0%이하로 제한하는 것이 바람직하다.The Mo content is effective to improve the corrosion resistance, but if the addition amount is too high, the increase in manufacturing cost and delta-ferrite content, and recrystallization during hot rolling suppresses the hot workability, causing surface defects, M d30 Since the temperature and the work hardening roll are significantly increased to lower the moldability and the aging crack resistance, the addition amount is preferably limited to 1.0% or less.

이하, 야금학적 인자의 오스테나이트상의 안정화 온도(Md30, ℃)및 델타-페라이트 함량의 범위설정 이유에 대하여 설명한다.The reason for scouring of the stabilization temperature (M d30 , ° C) and delta-ferrite content of the austenite phase of the metallurgical factor is explained below.

오스테나이트상의 안정도를 나타내는 Md30(℃)온도 [30% 연신후 50% 가공유기 마르텐사이트(α')상을 생성시키는 온도]가 높을 수록 성형시에 가공유기 마르텐사이트상 생성이 많이 일어나기 때문에 성형성 개선을 위해서는 적정 Md30온도 제어가 중요하다.The higher the M d30 (° C) temperature (the temperature at which 50% processed organic martensite (α ') phase is formed after 30% stretching), which indicates the stability of the austenite phase, the higher the amount of processed organic martensite phase is produced during molding. Proper M d30 temperature control is important for improved performance.

Cu첨가강에서 Md30온도가 낮으면 내시효균열성은 개선되지만 고가인 Ni 첨가량을 높여야 함으로 제조원가가 상승되는 문제점이 있고, 특히 Md30온도가 -25℃이하로 너무 낮으면 장출성 등 성형성이 저하한다. 또한 Md30온도가 +10℃ 이상으로 너무 높아지면 성형성도 저하하지만 특히 내시효균열성이 저하되어 성형후 성형품에서 시효균열이 발생되는 문제점이 있다.In the Cu-added steel, when the M d30 temperature is low, the aging cracking resistance is improved, but there is a problem in that the manufacturing cost is increased by increasing the amount of expensive Ni added. Particularly, when the M d30 temperature is too low below -25 ° C, moldability such as elongation property is increased. Lowers. In addition, if the M d30 temperature is too high above + 10 ° C, the moldability is lowered, but there is a problem in that aging cracking occurs in the molded article after molding, in particular, the aging crack resistance is lowered.

따라서 Mo를 함유한 본발명강의 경우보다 우수한 성형성 및 내시효균열성을 얻기 위하여 Md30온도가 -25∼+10(℃)범위로 제한하는 것이 바람직하다.Therefore, in order to obtain better moldability and age cracking resistance than the present invention steel containing Mo, it is preferable to limit the M d30 temperature in the range of -25 to +10 (° C).

한편, 슬라브내 델타-페라이트 함량이 증가하면, 열간가공성이 저하하여 열연판 제조시 측면 크랙 및 표면결함을 유발하고, 냉연소둔판에서도 델타-페라이트 함량이 높아지면 항복강도를 상승시켜 성형성을 저하시키기 때문에 적정 델타-페라이트 함량 조정이 중요하다. 따라서 열간가공성 및 성형성을 고려하여 본발명의 경우 델타-페라이트 함량은 8.0vol%이하로 제한하는 것이 바람직하다.On the other hand, when the delta-ferrite content in the slab is increased, hot workability decreases, causing side cracks and surface defects during the production of hot rolled plates. It is important to adjust the titration delta-ferrite content. Therefore, in consideration of hot workability and formability, in the present invention, the delta-ferrite content is preferably limited to 8.0 vol% or less.

이하 실시예를 통하여 본발명을 상세히 설명한다.The present invention will be described in detail through the following examples.

실시예 1Example 1

하기표 1과 같이 조성되는 오스테나이트계 스테인레스강을 30kg급 진공유도 용해로에서 용해하여 잉코트(ingot)를 제조한후, 1270℃에서 2시간 가열후 열간압연하여 2.5mm열간압연판을 제조하고 1100℃에서 소둔처리한 다음 이열연판을 냉간압연하여 0.7mm두께의 냉연간판을 제조하고, 1100℃에서 냉연소둔을 실시하여 결정도입을 7로 일정하게 만든다음, 산세 및 조질압연을 실시하여 냉연소둔판을 제조한 후 성형성 평가 시험, 인장시험 및 경도시험을 행하고, 그 결과를 하기 표2에 나타내었다.To prepare an ingot (ingot) by dissolving austenitic stainless steel composition as shown in Table 1 in a 30kg vacuum induction melting furnace, and heated at 1270 ℃ for 2 hours and hot rolled to prepare a 2.5mm hot rolled sheet 1100 After annealing at ℃, the hot rolled sheet was cold rolled to produce a cold rolled sheet having a thickness of 0.7mm, cold-rolled at 1100 ℃ to make crystal introduction 7, then pickling and temper rolling to cold rolled sheet After the preparation, a moldability evaluation test, a tensile test, and a hardness test were performed, and the results are shown in Table 2 below.

[표 1] TABLE 1

[표 2] TABLE 2

상기 표 2에 나타난 바와 같이, 본발명에 따라 0.5Mo, Ti 및 B이 첨가된 발명강(1-3)은 0.5Mo에 Ti 및 B이 첨가되지 않은 비교강(A) 및 STS 304 인종래강(F, G)와 비교하여 딥드로잉성(한계 성형비 : LDR), 장출성형성(에릭선) 및 내시효 균열성이 우수하고, 내식성 개선을 위해 성형성 및 내시효 균열성을 저하시키는 Mo성분을 0.5%함유한 발명강(1-3)은 Mo성분을 소량함유한 비교강(B-E)과 비교하여 동등수준의 성형성 및 내시효균열성 특성을 보여주고 있다.As shown in Table 2, according to the present invention, the inventive steel (1-3) to which 0.5Mo, Ti, and B were added was compared with the comparative steel (A) and STS 304 raceway steel (without Ti and B added to 0.5Mo) Compared with F, G), Mo drawing shows excellent deep drawing resistance (limit forming ratio: LDR), elongation resistance formation (Eric wire) and aging cracking resistance, and deteriorates moldability and aging cracking resistance to improve corrosion resistance. Inventive steel (1-3) containing 0.5% exhibits the same level of moldability and anti-aging cracking properties compared to comparative steel (BE) containing a small amount of Mo.

이와 같이 2%Cu첨가강에서 미량의 Ti첨가시 성형성 및 내시효균열성이 개선되는 이유는 Ti에 의한 결정입 미세화 효과와 페라이트 안정화원소인 Ti이 첨가되면 동일 Md30온도에서 Ti미첨가강에 비해 가공시 가공유기 마르텐사이트 생성량이 증가하여 고변형영역의 가공경화지수 n값을 증가시켜 국부 넥킹(necking)을 방지하고, 파단강도를 상승시키기 때문에 성형성 및 내시효균열성이 개선되는 것으로 여겨진다.The reason why the moldability and aging crack resistance is improved when a small amount of Ti is added in the 2% Cu-added steel is that the Ti is not added at the same M d30 temperature when the grain refinement effect by Ti and the ferrite stabilizing element Ti are added. Compared to that, the amount of processing organic martensite is increased during processing, thereby increasing the processing hardening index n value of the high deformation region to prevent local necking and to increase the breaking strength, thereby improving moldability and aging crack resistance. Is considered.

그리고 0.5%Mo 첨가강과 미첨가강을 비교하면 Mo첨가강은 Mo의 고용강화효과로 가공경화도가 상승되기 때문에 Mo미첨가강 보다 Md30온도를 더욱 낮게 조정하여 가공경화도를 저하시킨 결과 성형성이 Mo미첨가강과 동동한 수준이 되는 것을 알 수 있다.Compared with 0.5% Mo added steel and non-added steel, Mo-added steel has higher work hardening effect due to the solid solution effect of Mo. Therefore, Md30 temperature is lowered than Mo-added steel to reduce work hardening. It can be seen that it is at the same level as Mo unadded steel.

실시예 2Example 2

하기표 3과 같이 조서오디는 오스테나이트계 스테인레스강을 30kg급 진공유도 용해로에서 용해하여 잉코트를 제조한 후, 1270℃에서 2시간 가열후 열간압연하여 2.5mm열간압연판을 제조하고 1100℃에서 소둔처리한 다음, 이 열연판을 냉간압연하여 0.7mm두께의 냉연판을 제조하고, 1100℃에서 냉연소둔을 실시하여 결정입도를 7로 일정하게 만든 다음, 산세 및 조절압연을 실시하여 냉연소둔판을 제조한 후 Noj.#600샌드페이퍼(sand paper)로 표면을 연마한 후 각강종별 공식전위를 측정하기 위하여 1000ppm Cl-용액, 30℃로 유지하여 전류 10μA에서의 표텐쇼스타트(potentiostat, EG G.Model 273)를 이용하여 공식전위를 측정하고, 그 결과를 하기표 4에 나타내었다.As shown in Table 3, Joseo Audi dissolves austenitic stainless steel in a 30kg vacuum induction melting furnace to produce an ingot, and then heats it at 1270 ° C. for 2 hours to hot roll it to produce a 2.5 mm hot rolled plate, and then at 1100 ° C. After annealing, the hot rolled sheet was cold rolled to produce a cold rolled sheet having a thickness of 0.7 mm, cold rolled at 1100 ° C. to have a constant grain size of 7, and then subjected to pickling and controlled rolling to perform cold rolled annealing. After the preparation, the surface was polished with Noj. # 600 sand paper, and then measured at 1000 ppm Cl solution, 30 ° C., in order to measure the official potential of each steel type, and potentiostat (EG G. Formula potential was measured using Model 273), and the results are shown in Table 4 below.

[표 3] TABLE 3

[표 4] TABLE 4

상기 표 4에 나타난 바와 같이, 본발명에 따라 C1-기용액에서 공식전위를 개선시키는 Mo가 0.5%첨가된 발명강(1-3)의 공식전위는 Mo가 첨가되지 않은 비교강(C, D)인 STS304JI강에 비해 매우 높아져 내식성이 향상되었다. Cr함량이 18%이상으로 발명강보다 많이 첨가된 종래강(F, G)인 STS304강과 거의 동등한 공식전위를 나타낸다.As shown in Table 4, according to the present invention, the official potential of the inventive steel (1-3) added 0.5% of Mo, which improves the official potential in the C1 - based solution, was compared with the comparative steel (C, D) without adding Mo. It is much higher than STS304JI steel, which improves corrosion resistance. It has a formula potential almost equal to that of STS304 steel, which is a conventional steel (F, G), in which Cr content is more than 18% and added more than the invention steel.

실시예 3Example 3

하기표 5와 같이 조성되는 오스테나이트계 스테인레스강을 30kg급 진공유도 용해로에서 용해하여 잉고트를 제조한후, 1270℃에서 2시간 가열후 열간압연하여 2.5mm열간압연판을 제조하고 1100℃에서 소둔처리한 다음, 이 열연판을 냉간압연하여 0.7mm두께의 냉연판을 제조하고, 1100℃에서 냉연소둔을 실시하여 결정입도를 7로 일정하게 만든다음, 산세 및 조절압연을 실시하여 냉연소둔판을 제조한 후 No.#660샌드 페이퍼로 표면을 연마한 후 각 강종을 각 용액에 침작하여 공식부식, 전면부식시험 및 입계부식 시험한 겨로가를 하기표 6에 나타내었다. 그 결과 C1-기 용액에서 공식전위를 개선시키는 Mo가 0.5%첨가된 발명강(1-3)의 4%NaCl+2%H2SO4용액내의 공식부식도 및 IN H2SO4용액내의 전면부식 속도는 비교강(C, D)인 STS 304JI강과 Cr함량이 18%이상으로 많이 첨가된 종래강(F, G)인 STS 304강보다 부식속도가 느려 내식성이 개선된 것을 알 수 있다.Ingot prepared by dissolving austenitic stainless steels as shown in Table 5 in a 30kg vacuum induction melting furnace, heated at 1270 ° C. for 2 hours, and hot rolled to prepare a 2.5 mm hot rolled plate, followed by annealing at 1100 ° C. Then, the hot rolled sheet was cold rolled to prepare a cold rolled sheet having a thickness of 0.7 mm, cold-rolled annealing at 1100 ° C. to make the grain size constant to 7, and then pickling and controlled rolling to prepare a cold-rolled annealing sheet. After polishing the surface with No. # 660 sand paper, each steel grade was immersed in each solution, and the official corrosion, frontal corrosion test and grain boundary corrosion test were shown in Table 6 below. As a result, formal corrosion in 4% NaCl + 2% H 2 SO 4 solution of Inventive Steel (1-3) with 0.5% Mo improved the formula potential in C1 - group solution and the front surface in IN H 2 SO 4 solution The corrosion rate is lower than that of the comparative steels (C, D) STS 304JI steel and the conventional steels (F, G) STS 304 steel, which has a large Cr content of 18% or more.

그리고 0.5mol H2SO4+0.0lmol KSCN 용액에서 Double EPR 시험법으로 입계부식성을 평가한 결과에서도 발명강 및 종래강과 비교하여 동등한 내입계부식성을 나타내고 있다.In addition, the grain boundary corrosion resistance was evaluated by the Double EPR test in 0.5 mol H 2 SO 4 +0.01 mol KSCN solution, which shows equivalent intergranular corrosion resistance compared to the invention steel and the conventional steel.

[표 5] TABLE 5

[표 6]TABLE 6

실시예 4Example 4

하기표 7과 같이 조정되는 오스테나이트계 스테인레스강을 30kg급 진공유도 용해로서 용해하여 잉코트를 제조한후 1270℃에서 2시간 가열후 열간압연하여 15mm열간압연하여 직경 10(mm)인 글리블(gleeble)시편을 가공하여 글리블 시험기를 사용하여 열간가공성을 평가하고 그 결과를 제1도에 나타내었다. 이때 글리블 시험에 의한 열간가공성 평가시험을 실시하고, 파단된 각 시편 파단면의 직경을 측정하여 단면감소율을 계산하여 나타내었다.Ingot was prepared by dissolving austenitic stainless steel, adjusted as shown in Table 7, as a 30 kg vacuum induction melting solution, heated at 1270 ° C. for 2 hours, and then hot rolled to 15 mm hot rolled to obtain a diameter of 10 (mm). gleeble) specimens were processed and evaluated for hot workability using a gleeble tester and the results are shown in FIG. At this time, the hot workability test by the gleeble test was carried out, and the diameter of each fractured fractured surface was measured to calculate the cross-sectional reduction rate.

이 결과 열간가공성을 저하시키는 Cu 및 Mo를 함유한 강에서 열간가공성으 개선하고자 Ti, B를 미량첨가한 발명강(1)은 Cu, Mo를 첨가하지 않은 STS 304강인 종래강(F)에 비해서 저온에서 열간가공성이 나쁘지만, Cu 및 Mo 성분을 함유하면서 Ti, B미첨가강인 비교강(A)에 비해서는 저온에서 열간가공성이 매우 개선된 것을 알 수 있다. 이와 같이 발명강(1)과 같이 저융점 성분인 Cu가 첨가되면 1차 잉코트 가열 온도인 1270℃고온가열시에 결정입계 결합력이 저하하여 열간가공성이 저하하지만, 미량의 Ti첨가시 고온에서 결정립도 미세화 효과와 또한 입계산화도 망지하며, 용강중의 질소와 결합하여 열간가공성을 저하시키는 강중의 질소함량을 저하시키는 효과때문에 Ti첨가시 열간가공성이 개선된다. B은 Ti와 함께 첨가되어 열간압연시 B이 결정입계에 편석하여 입계의 케비테이션(cavitation)을 억제하고 또한 결정립계의 디코히죤(decohesion)을 지연시키는 효과와 고용상태에서 B과 공공(vancancy)의 상호작용에 의해 열간가공성이 개선되는 것으로 여겨진다.As a result, invented steel (1) containing a small amount of Ti and B in order to improve hot workability in steels containing Cu and Mo deteriorating hot workability, was compared with conventional steel (F), which is an STS 304 steel without addition of Cu and Mo. Although hot workability is bad at low temperature, compared with the comparative steel (A) which contains Cu and Mo components, and is not a Ti and B additive steel, it turns out that hot workability is improved at low temperature. As described above, when Cu, which is a low melting point component, is added as in the invention steel 1, the grain boundary bonding force decreases at the time of 1270 ° C. high temperature heating, which is the primary incoat heating temperature, and thus the hot workability is lowered. The effect of reducing the nitrogen content in the steel, which combines with the nitrogen in the molten steel and decreases the hot workability, is also deteriorated. B is added together with Ti to prevent the segregation of grain boundaries at the time of hot rolling, thereby suppressing the cavitation of grain boundaries and delaying decohesion of grain boundaries, and the interaction between B and vancancy in solid solution. It is believed that the hot workability is improved by the action.

[표 7] TABLE 7

실시예 5Example 5

하기표 8과 같이 조성되는 오스테나이트계 스테인레스강을 30kg급 진공유도 용해로서 용해하여 잉코트를 제조한 후, 1270℃에서 2시간 가열후 열간압연하여 2.5mm열간압연 판에서 고온산화 시험(T.G.P. : Thermo-Gravimetric-Analysis)용 시편을 가공하여 고온산화 시험을 행한 과를 제2도에 나타내었다.Ingot was prepared by dissolving austenitic stainless steels prepared as shown in Table 8 as 30 kg vacuum induction melting, heating at 1270 ° C. for 2 hours, hot rolling, and high temperature oxidation test on a 2.5 mm hot rolled plate (TGP: Fig. 2 shows the process of processing the specimen for thermo-gravimetric-analysis and subjecting it to high temperature oxidation.

고온산화 시험에 있어 고온산화시험 분위기 : 혼합가스(C.O.G+B.F.G) 과잉산호 체적비 : 3%, 및 산화시험온도 1270℃이다.At high temperature oxidation test, high temperature oxidation test atmosphere: mixed gas (C.O.G + B.F.G) excess coral volume ratio: 3%, and oxidation test temperature is 1270 ℃.

[표 8]TABLE 8

제2도에 나타난 바와 같이, 발명강(1)이 비교강(A)에 비하여 고온내산화성에 있어 우수함을 알 수있는데, 이는 Ti이 스케일내에 농축됨으로써 내산화특성을 부여하는 것이 아니라 기지금속내와 입계에 존재하는 산소가 기지 금속내로 이동하는 것을 저지하기 때문으로 여겨진다.As shown in FIG. 2, it can be seen that the inventive steel (1) is superior in high temperature oxidation resistance compared to the comparative steel (A), which does not impart oxidation resistance by concentrating Ti in the scale, but rather in the base metal. It is considered that oxygen at the grain boundary prevents the migration of metal into the matrix metal.

Claims (1)

중량 %로 C : 0.05%이하, Si : 1.0%이하, Mn : 2.0%이하, Cr : 16-18%, Ni : 6-8%, Al : 0.005%이하, P : 0.5%이하, S : 0.005%이하, Ti : 0.03%이하, B : 0.003%이하, Cu : 3%이하, Mo : 1%이하, N : 0.045%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성됨을 특징으로 하는 프레스 성형성, 내시효균열성, 내식성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강.By weight% C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 16-18%, Ni: 6-8%, Al: 0.005% or less, P: 0.5% or less, S: 0.005 Press-molding, characterized in that it is composed of% or less, Ti: 0.03% or less, B: 0.003% or less, Cu: 3% or less, Mo: 1% or less, N: 0.045% or less, balance Fe and other unavoidable impurities Austenitic stainless steel with excellent ageing cracking resistance, corrosion resistance, hot workability and high temperature oxidation resistance.
KR1019940032271A 1994-11-30 1994-11-30 Austenite stainless steel of excellent corrosion resistance & hot-working characteristic KR970010807B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940032271A KR970010807B1 (en) 1994-11-30 1994-11-30 Austenite stainless steel of excellent corrosion resistance & hot-working characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940032271A KR970010807B1 (en) 1994-11-30 1994-11-30 Austenite stainless steel of excellent corrosion resistance & hot-working characteristic

Publications (2)

Publication Number Publication Date
KR960017886A KR960017886A (en) 1996-06-17
KR970010807B1 true KR970010807B1 (en) 1997-07-01

Family

ID=19399905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940032271A KR970010807B1 (en) 1994-11-30 1994-11-30 Austenite stainless steel of excellent corrosion resistance & hot-working characteristic

Country Status (1)

Country Link
KR (1) KR970010807B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039715A1 (en) * 2017-08-21 2019-02-28 주식회사 포스코 Austenitic stainless steel having excellent workability and anti-aging crack resistance and drawing product using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411286B1 (en) * 1996-12-24 2004-04-03 주식회사 포스코 High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039715A1 (en) * 2017-08-21 2019-02-28 주식회사 포스코 Austenitic stainless steel having excellent workability and anti-aging crack resistance and drawing product using same

Also Published As

Publication number Publication date
KR960017886A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
KR950009223B1 (en) Austenite stainless steel
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
EP4159886A1 (en) Ultrahigh-strength dual-phase steel and manufacturing method therefor
KR970008164B1 (en) Steel sheets for porcelain enameling and method of producing the same
KR20040075981A (en) Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
KR20190071750A (en) Martensitic stainless steel plate
KR101903174B1 (en) Low alloy steel sheet with excellent strength and ductility
KR102379443B1 (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
EP3674434A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
US20230250522A1 (en) Austenite stainless steel material, method for producing same, and plate spring
KR101718757B1 (en) Ferritic stainless steel sheet with excellent formability
KR20120049622A (en) Ultra high strength cold rolled steel sheet, galvanized steel sheet and method for manufacturing thereof
EP3674435A1 (en) Low-alloy steel sheet having excellent strength and ductility and manufacturing method therefor
KR101808445B1 (en) High tensile hot-dip plated steel sheet and method for manufacturing the same
KR101767762B1 (en) High strength cold-rolled steel sheet having excellent bendability and method for manufacturing the same
KR101844573B1 (en) Duplex stainless steel having excellent hot workability and method of manufacturing the same
KR970010807B1 (en) Austenite stainless steel of excellent corrosion resistance & hot-working characteristic
KR102160735B1 (en) Austenitic stainless steel with improved strength
KR20180018908A (en) Duplex stainless steel having low content of ni and method of manufacturing the same
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR970001327B1 (en) Austenite stainless steel
JPH08260106A (en) Chromium steel sheet excellent in formability
JP3068677B2 (en) Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
KR970010806B1 (en) Austenite free cutling stainless steel of excellent hot-rolling, drilling cold-foring characteristic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121012

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20131011

Year of fee payment: 17

EXPY Expiration of term