KR19980050629A - Method and device for measuring surface temperature of object in furnace - Google Patents

Method and device for measuring surface temperature of object in furnace Download PDF

Info

Publication number
KR19980050629A
KR19980050629A KR1019960069466A KR19960069466A KR19980050629A KR 19980050629 A KR19980050629 A KR 19980050629A KR 1019960069466 A KR1019960069466 A KR 1019960069466A KR 19960069466 A KR19960069466 A KR 19960069466A KR 19980050629 A KR19980050629 A KR 19980050629A
Authority
KR
South Korea
Prior art keywords
heated
cavity
temperature
surface temperature
furnace
Prior art date
Application number
KR1019960069466A
Other languages
Korean (ko)
Other versions
KR100301991B1 (en
Inventor
박문진
이승주
만도로코히데히코
나가마쯔타케하루
Original Assignee
김종진
포항종합제철 주식회사
오타케시키오
도카이카본 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사, 오타케시키오, 도카이카본 가부시끼가이샤 filed Critical 김종진
Priority to KR1019960069466A priority Critical patent/KR100301991B1/en
Publication of KR19980050629A publication Critical patent/KR19980050629A/en
Application granted granted Critical
Publication of KR100301991B1 publication Critical patent/KR100301991B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/065Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding

Abstract

본 발명은 가열로내의 피가열물체, 특히 강재 표면온도를 방사온도계로 정확하개 측정하는 방법 및 장치를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for accurately measuring a heated object, especially a steel surface temperature, in a furnace using a radiation thermometer.

상기 목적달성을 위한 본 발명은 가열로내 피가열물체 표면에 대향하여 설치한 캐비티상의 차폐부재 및 차폐부재 후면에 붙인 단열재에 연결되어 설치된 관통개구부를 통해서 피가열물체로부터의 방사에너지를 단열재부 후방에 설치한 방사온도계로 검출하여 피가열물체 표면온도를 측정하는 것을 그 기술적 요지로 한다. 이때, 캐비티상의 차폐부재와 단열부재와의 사이의 핀부재를 삽입설치하는 것이 최적이다.The present invention for achieving the above object is to radiate the radiated energy from the object to be heated through the through-opening part connected to the shield member on the cavity installed opposite to the surface of the object to be heated in the furnace and the insulation attached to the back of the shield member. The technical gist of this method is to measure the surface temperature of the object to be heated by detecting it with a radiation thermometer installed in the chamber. At this time, it is optimal to insert and install a pin member between the cavity-shaped shield member and the heat insulating member.

Description

가열로내 물체의 표면온도 측정방법 및 장치Method and device for measuring surface temperature of object in furnace

본 발명은 가열로내 피가열물체, 특히 강재 슬라브(slab), 강판 형강 등의 피가열재의 표면온도를 측정하는 방법 및 장치에 관한 것이다.The present invention relates to a method and an apparatus for measuring the surface temperature of a heated object in a furnace, in particular a heated material such as steel slab, steel sheet steel and the like.

통상 강판의 제조공정에서의 가열로내에서 가열된 슬라브, 강판 등 강재 표면온도는 방사온도계로 측정되고 있지만, 방사온도계에는 강재로부터의 방사에너지외에, 주위 가열버너(burner), 로벅 등의 배광잡음원으로부터의 광이 입사하고, 또 이들 광이 피가열강재 표면에서 반사되어 입사하여 들어옴에 따라 정확한 온도측정을 할 수 없다.In general, the surface temperature of steel materials such as slabs and steel sheets heated in a heating furnace in the manufacturing process of steel sheets is measured by a radiation thermometer. In addition to radiation energy from steel materials, radiation temperature sources such as ambient heating burners and low buckles are used for radiation thermometers. As the light from the light enters and these light are reflected from the surface of the steel to be heated and enter the light, accurate temperature measurement cannot be performed.

배광잡음은 측정환경에 따라 다르지만 불가피하게 존재하는 것으로, 배광잡음의 세기 또는 보상을 하지 않으면 고정도 방사온도계를 준비하여도 신뢰성이 높은 온도측정은 실현할 수 없다.Light distribution noise varies depending on the measurement environment, but exists inevitably. Highly reliable temperature measurement cannot be realized even if a high precision radiation thermometer is prepared without the intensity or compensation of light distribution noise.

종래, 강재 표면온도 측정은, 2대의 방사온도계를 이용하여, 1대로 피가열강재 온도를 측정하고, 다른 1대로 로벽 온도를 측정하여, 양 방사온도계로 얻은 신호를 기준으로, 측정오차의 원인으로 되는 로내 반사광을 제거하는 방법이 관용되고 있다. 하지만, 이 방법으로는 피가열강재의 방사율 보정이 되지 않으므로, 측정오차를 해소하는 것은 어렵다.Conventionally, the measurement of steel surface temperature is performed by measuring the temperature of the steel material to be heated by one radiator using two radiation thermometers, and by measuring the furnace wall temperature by the other one, based on the signals obtained by both radiation thermometers. The method of removing the internal furnace reflected light is common. However, this method does not correct the emissivity of the steel to be heated, so it is difficult to eliminate the measurement error.

배광잡음대책으로는 차폐판을 이용하여 배광잡음을 차폐하는 방법이 있다. 예를들면, 로내 피가열강재 표면에 대항하여 차폐판을 배치하고, 차폐판 중앙 개구부를 통해 입사하는 피가열강재로부터의 방사에너지를 방사온도계로 측정하는 경우 차폐판에 의해 로내 벽방향에서 방사온도계로의 방사잡음을 차단하고, 방사온도계에 의해 얻어진 지시로 부터 차폐판에 의한 배광잡음을 감소시킴으로, 피가열강재 표면온도를 얻는 방법이 제안되어 있다(일 특공소62-22089호공보). 하지만, 이 방법으로는, 차폐판이 외란광의 영향을 받아서 피가열물체 온도를 변경시킨다라는 단점이 있다.As a countermeasure against light distribution noise, a shielding plate is used to shield the light distribution noise. For example, when the shielding plate is placed against the surface of the furnace heated steel, and the radiation energy from the heated steel entering through the center opening of the shielding is measured with a radiation thermometer, the radiation thermometer in the direction of the wall of the furnace by the shielding plate. A method of obtaining the surface temperature of the steel to be heated is proposed by cutting off the radiation noise of the furnace and reducing the light distribution noise by the shielding plate from the instruction obtained by the radiation thermometer (Japanese Patent Publication No. 62-22089). However, this method has a disadvantage in that the shielding plate changes the temperature of the object to be heated under the influence of disturbance light.

차폐판 자신의 온도를 낮게하여 차폐판으로부터의 방사를 적게하기 위해서, 수냉차폐판도 사용하고 있지만, 수냉차폐판이 대향하는 피가열물체를 냉각하여 정확한 온도측정에 지장을 초래한다라는 문제가 있으며, 누수가 있으면 중대한 사고로 발전할 염려가 있어서 바람직하지 않다.In order to lower the temperature of the shield itself and to reduce radiation from the shield, a water-cooled shield is also used, but there is a problem that the water-cooled shield cools the object to be opposed and causes trouble in accurate temperature measurement. It is not desirable to have a serious accident, if any.

다른 배광잡음 대책으로 피가열물체 표면 근방에 근사적으로 흑체공동(黑體空洞)을 형성하고, 피가열물체 표면으로부터의 방사에너지를 검출함과 동시에 공동내벽으로부터의 방사에너지를 검출하여 이들 검출치로 부터 피가열물체 표면온도를 측정하는 방법이 있다. 예를들면, 로내 피가열물체 방사에너지를 방사온도계로 검출하는 경우 방사온도계의 피가열물체로의 광로를 차폐통으로 둘러싸, 차폐통 중간부에 관통공(貫通孔)이 있는 차폐판을 장착하여, 차폐판 상부와 하부에 흑체공동을구성하고, 방사온도계로 관통공을 통하여 피가열물체의 표면으로 부터의 방사에너지를 검출함과 동시에, 관통공 주위 차폐판부로 부터의 방사에너지를 검출하여. 이들 검출치로부터 피가열물체 표면온도를 연산하는 것도 제안되어 있다(일 특공소61-60634호 공 보 )As a countermeasure against light distribution noise, a black body cavity is formed near the surface of the object to be heated, the radiation energy from the surface of the object to be detected is detected, and the radiation energy from the inner wall of the cavity is detected to detect the radiation energy from these detected values. There is a method of measuring the surface temperature of the object to be heated. For example, in the case of detecting the radiated energy of a heated object in a furnace with a radiation thermometer, a shielding tube is formed in the middle of the shielded cylinder by surrounding the optical path of the radiation thermometer to the heated object. A black body cavity is formed in the upper and lower parts of the shielding plate, and the radiation energy from the surface of the object to be heated is detected through the through hole with a radiation thermometer, and the radiation energy from the shield plate around the through hole is detected. It is also proposed to calculate the surface temperature of the object to be heated from these detected values (Japanese Patent Application No. 61-60634).

또, 방사온도계의 피가열물체로의 광로를 차폐통으로 둘러싼 후 차폐통 중간부에 관통공이 있는 차폐판을 장착하고, 차폐판 하부의 원통형공동(흑체공동) 내벽부에는 히터(heater)를 설치한 다음, 방사온도계로 관통공을 통해서 피가열물체 표면 온도를 측정하고, 히터에 흐르는 전류를 제어하여 이 측정온도와 열전대로 측정된 공통내벽부 온도가 같게 되도록 하고, 방사온도계의 지시값과 공동내벽부 온도차 및 피가열물체 방사율로부터 정해지는 보정치를 방사온도계 지시값으로 가산하여 피가열물체 표면온도를 측정하는 방법도 제안되어 있다(일 특공소57-50628호공보)In addition, after enclosing the optical path of the radiation thermometer to the object to be heated with a shielding tube, a shielding plate with a through hole is mounted in the middle of the shielding tube, and a heater is installed in the inner wall of the cylindrical cavity (black body cavity) under the shielding plate. Next, the surface temperature of the object to be heated is measured through the through-hole with a radiation thermometer, and the current flowing through the heater is controlled so that the measured internal temperature is the same as the temperature measured by the thermocouple. A method of measuring the surface temperature of a heated object by adding a correction value determined from a negative temperature difference and an emissivity of a heated object to a radiation thermometer indication value has also been proposed (Japanese Patent Application No. 57-50628).

하지만, 이들 방법으로는 연소화염, 로벽으로 부터의 방사열, 로내 반사열을받아서 공동내 온도가 변동하기 때문에 흑체공동은 완전한 흑체로 되지않아 온도보정에 한계가 생긴다. 피가열물체 표면온도와 공동내벽부 온도를 일치시키는 것도 용이하지 않다. 가열로내에 히터를 설치한 원통형공동을 설치하는 것도 구조를 복잡하게 하는 원인으로 된다.However, these methods are subject to combustion flames, radiant heat from the furnace walls and reflected heat in the furnace, so the temperature inside the cavity fluctuates, so the blackbody cavity does not become a complete blackbody, which limits the temperature compensation. It is not easy to match the temperature of the object to be heated with the temperature of the cavity inner wall. The installation of a cylindrical cavity provided with a heater in the furnace also causes a complicated structure.

본 발명은 가열로내 피가열물체 표면은도 측정에 있어 종래 상기 문제점을해소하기 위한 것으로, 그 목적은 로내 반사광 입사를 방지할 수 있고, 피가열물체의 방사율이 변화하여도 그 영향을 잘 받지 않는 구조를 만들어 열전대 등에 의한 집적온도측정에 준한 보정을 필요로 하지 않고, 방사온도계만으로 피가열물체, 특히 피가열강재의 표면 온도측정을 가능하게 한 가열로내 물체의 표면온도계측방법및 장치를 제공하는 것이다.The present invention is to solve the above-mentioned problems in the measurement of the surface of the object to be heated in the furnace, the purpose is to prevent the incident light reflected in the furnace, even if the emissivity of the object to be heated is not affected. A method and apparatus for measuring the surface temperature of an object in a furnace that enables measurement of the surface temperature of an object to be heated, in particular of a heated steel, using only a radiation thermometer, without requiring a correction according to the integrated temperature measurement by a thermocouple or the like. To provide.

도1은 본발명의 측정방법의 개념을 나타내는 단면도이다.1 is a cross-sectional view showing the concept of a measuring method of the present invention.

도2는 본 발명의 장치의 하나의 실예를 나타내는 단면도이다.2 is a cross-sectional view showing one example of the apparatus of the present invention.

도3은 본 발명의 다른 실시예를 나타내는 단면도이다.3 is a cross-sectional view showing another embodiment of the present invention.

도4은 온도오차와 H/R과의 관계의 일예를 나타내는 그래프이다.4 is a graph showing an example of the relationship between temperature error and H / R.

도5는 온도와차와 H/R과의 관계의 다른예를 나타내는 그래프이다.5 is a graph showing another example of the relationship between temperature and difference and H / R.

도6은 보정식의 정수 c를 구하기 위한 그래프이다.Fig. 6 is a graph for obtaining the constant c of the correction equation.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 캐비티형상의 차폐부재1: Cavity shield member

2 : 핀부재2: pin member

3 : 단열부재3: insulation member

4 : 방사온도계4: radiation thermometer

5 : 수냉관5: water cooling tube

6 : 집광부6: condenser

7 : 광파이버7: optical fiber

8 : 관통개구8: through opening

9 : 관9: tube

10:고정간10: fixed time

상기 목적을 달성하기 위한 본 발명에 의한 가열로내 물체의 표면온도측정방법은, 가열로내 피가열물체의 표면온도를 방사온도계로 측정하는 방법에 있어서, 피가열 물체 표면에 대향하여 배치된 캐비티형상의 차폐부재 및 상기 차폐부재의 후면에 붙인 단열부재에 연결된 관통개구부를 통해서 상기 피가열물체로부터의 방사에너지를 단열부재 후방에 설치된 방사온도계로 검출하여 피가열물체의 표면온도를 측정하는 것을 제1의 특징으로 한다.In the method for measuring the surface temperature of the object in the furnace according to the present invention for achieving the above object, in the method for measuring the surface temperature of the object to be heated in the furnace with a radiation thermometer, the cavity disposed facing the surface of the object to be heated Measuring the surface temperature of the object to be heated by detecting radiation energy from the object to be heated with a radiation thermometer installed at the rear of the insulation member through a shielding member having a shape and a through opening connected to a heat insulating member attached to the rear surface of the shielding member. It is characterized by 1.

또, 본 발명은 피가열물체의 표면에 대항하여 설치된 캐비티상의 차폐부재 및 상기 차폐부재 후면에 배설된 핀부재와 단열부재에 연설된 관통개구부를 통해서 상기 피가열물체로부터의 방사에너지를 상기 단열부재 후방에 설치한 방사온도계로검출하여 피가열물체의 표면온도를 측정하는 것 및 차폐부재의 캐비티가 원통형상, 원추형상 및 반구상이며, 그 반경 R에 대한 캐비티와 피가열물체의 표면과의 간격H의 비, 즉 H/R이 2이하인 것을 제2 및 제3의 특징으로 한다.In addition, the present invention is the heat insulating member through the radiation member from the object to be heated through the through-opening portion of the shield member on the cavity provided against the surface of the object to be heated and the pin member and the heat insulating member disposed on the rear of the shield member Measuring the surface temperature of the object to be heated by detecting with a radiation thermometer installed at the rear, and the cavity of the shielding member is cylindrical, conical and hemispherical, and the gap between the cavity of the radius R and the surface of the object to be heated A second and third feature is that the ratio of H, i.e., H / R is 2 or less.

본 발명의 가열로내 피가열물체의 표면온도측정방법의 제4의 특징은, 차단부재의 캐비티를 피가열물체 표면에 H/R≤2(R:캐비티의 반경, H:캐비티와 피가열물체표면과의 간격)를 만족하는 간격 H로 배치하여 휘도온도 Ta-l을 측정하고, 이어서 차폐부재 캐비티를 피가열물체의 표면에서 H/R 2를 만족하는 간격 H에 배치하여 다시 방사휘도온도 Ta-1를 측정하고, 방사온도계에 입사하는 방사에너지와 피가열물체의 수직방향으로의 방사에너지와 배광잡음에 의한 방사에너지와의 관계로부터 얻어지는 방사온도계에 의한 휘도온도 Ta, 피가열물체의 표면온도 Ts, 로온 Tf의 관계식 Ts= Ta-c(Tf- Ta)에 있어서, Ts로서 Ta-1또는 피가열물체 표면온도 실측치, 로온 Tf의 값으로 차폐부재에 가장 근접한 핀의 온도 T1을 대입하여 관계식으로 부터 c를 계산한 후, 휘도온도의 값 Ta-2를 계산된 c 값 및 실측된 T1의 값을 이용하여 보정하므로써 피가열물체의 표면온도를 구하는 것이며, 제5의 특징은 피가열물체가 강재인 것에 있다.The fourth feature of the method for measuring the surface temperature of the object to be heated in the heating furnace of the present invention is that the cavity of the blocking member is placed on the surface of the object to be heated H / R ≦ 2 (R: radius of the cavity, H: cavity and the object to be heated). The luminance temperature T al is measured by arranging at an interval H that satisfies the surface), and then the shielding member cavity is placed at an interval H that satisfies H / R 2 at the surface of the object to be heated, and again the radiance temperature T a. -1 is measured and the luminance temperature T a by the radiation thermometer obtained from the relationship between the radiation energy incident on the radiation thermometer and the radiation energy in the vertical direction of the object to be heated and the light emission noise, and the surface of the object to be heated. in - (T a T f) in, T s as a T-1 or the surface of the object to be heated a temperature measured value, roon T f of the shield member to the temperature value T s, T f roon the relationship T s = T a -c the closest substituting the temperature T 1 of the pin by calculating from the equation c , By corrected using the value of the luminance value of the temperature T 2 a-c the value of the measured T 1 and the calculation will obtain a surface temperature of the heated object, features of claim 5 is that the heating object gangjaein.

본 발명에 의한 가열로내 물체의 표면온도측정장치는, 피가열물체 표면에 대향하여 배치된 캐비티상의 차폐부재와, 차폐부재 후면에 붙여진 핀부재 및 단열부재와, 단열부재후방에 배치한 방사온도계가 마련되고, 상기 차폐부재, 핀부재 및단열부재에 관통개구를 연설(連設)하여 상기 관통개구부를 통해 피가열물체로부터의 방사에너지를 방사온도계로 검출하고, 피가열물체 표면온도를 측정하도록 한 것, 단열부재 후면부에 수냉관을 설치하여 그 수냉관내에 방사온도계의 집광부를배치한 것, 및 방사온도계가 본체와 집광부를 광 파이버로 접속한 광파이버식 방사온도계인 것을, 각각 구성상의 제1, 제2 및 제3의 특징으로 한다.An apparatus for measuring the surface temperature of an object in a furnace according to the present invention includes a cavity-like shielding member disposed opposite to a surface to be heated, a fin member and a heat insulating member attached to a rear surface of the shielding member, and a radiation thermometer disposed behind the heat insulating member. And a through opening is opened to the shielding member, the fin member and the insulating member to detect radiation energy from the object to be heated by the radiation thermometer through the through opening, and to measure the surface temperature of the object to be heated. The water cooling tube is provided on the rear surface of the heat insulating member, and the light collecting tube of the radiation thermometer is disposed in the water cooling tube, and the radiation thermometer is an optical fiber radiation thermometer in which the main body and the light collecting unit are connected by optical fibers. It is a 1st, 2nd, and 3rd characteristic.

본 발명에 있어서는, 캐비티상의 차폐부재를 피가열물체 표면근방에 설치하는것을 제1특징으로 하고, 캐비티상의 차폐물체 후면에 단열부재를 배열하는 것을 제2특징으로 한다. 캐비티상 차폐부재는, 피가열강재 등, 피가열물체의 방사열만으로 가열되고, 보조적인 가열장치를 설치하는 것없이 캐비티온도를 피가열물체 온도와 일치시킬 수 있다. 강재 등의 피가열물체 크기는 캐비티 크기보다 훨씬 크므로 캐비티와 피가열물체 표면과의 거리가 떨어져 있어도 캐비티로부터 피가열물체를 본 입체각은 약 2π로 일정하게 된다.In the present invention, the first feature is to provide the cavity-like shielding member near the surface of the heated object, and the second feature is to arrange the heat insulation member on the rear surface of the cavity-like shielding object. The cavity shielding member is heated only by the radiant heat of the object to be heated, such as the steel to be heated, and can match the cavity temperature with the temperature of the object to be heated without providing an auxiliary heating device. Since the size of the object to be heated, such as steel, is much larger than the size of the cavity, the solid angle of the object to be viewed from the cavity is approximately 2π even when the cavity and the surface of the object to be heated are separated from each other.

따라서, 캐비티 후면을 완전하게 단열하면 캐비티 온도는 피가열물체 온도와 일치한다. 캐비티 온도가 항상 피가열물체 온도에 가까워지면 캐비티 직하에는 근사적으로 흑체공간이 형성된다. 이와 같은 조건에서는 로내 반사광은 차단되어 피가열물체의 실효적 방사사율은 1.0 에 가깝게 된다. 상기 흑체 캐비티를 선단(先端)에 붙인 방사온도계로 강재 등의 피가열물체 표면온도를 측정하면 강재 종류나 강재표면의 스케일(scale) 형상이 변화하여 방사율이 변화하거나 로온이 변화하여도 피가열물체 표면온도가 정확하게 측정할 수 있다.Therefore, if the cavity rear surface is completely insulated, the cavity temperature matches the object temperature to be heated. When the cavity temperature is always close to the temperature of the object to be heated, a black body space is formed directly below the cavity. Under these conditions, reflected light in the furnace is blocked so that the effective emissivity of the object to be heated is close to 1.0. When the surface temperature of the object to be heated, such as steel, is measured with a radiation thermometer attached to the tip of the black body cavity, the type of steel or the scale of the surface of the steel is changed to change the emissivity or the temperature of the heated object. Surface temperature can be measured accurately.

이하, 피가열물체를 강재로 하여 본 발명의 실시형태를 설명한다.Hereinafter, embodiment of this invention is described using a object to be heated as steel.

본 발명의 바람직한 장치구성은, 제1도와 같이, 가열로(F) 내에서 가열된 강재(S)의 표면에 대향하여 원통캐비티상의 차폐부재(1)을 배치하고, 차폐부재(1)의 후면에 핀부재(2) 및 단열부재(3)을 붙인다. 단열부재(3)의 후면에 수냉관(5)를 붙이고, 수냉관(5)내에 방사온도계(4)와 집광부(6)을 배설한다. 7은 방사온도계(4)와 집광부(6)을 접속하는 광파이버이다. 차폐부재(1), 핀부재(2) 및 단열부재(3)에는 관동개구(8)을 연결하여 설치하고, 관통개구(8)을 통하여 피가열강재(S)로부터의 방사에너지를 방사온도계(4)로 수광하도록 한다. 수냉관(5)내에 방사온도계(4)를수납하도록 하여도 좋고, 수냉관(5)내에 방사온도계 또는 그 집광부를 수납함으로써, 그것의 온도상승을 방지하여 보다 정확한 온도측정을 할 수 있다.In the preferred device configuration of the present invention, as shown in FIG. 1, the shield member 1 on the cylindrical cavity is disposed opposite the surface of the steel S heated in the heating furnace F, and the rear surface of the shield member 1 is disposed. The pin member 2 and the heat insulating member 3 are attached thereto. The water cooling tube 5 is attached to the rear surface of the heat insulating member 3, and the radiation thermometer 4 and the light collecting part 6 are disposed in the water cooling tube 5. 7 is an optical fiber which connects the radiation thermometer 4 and the condensing part 6. The shield member 1, the fin member 2, and the heat insulating member 3 are installed by connecting a Kanto opening 8, and through the through opening 8, radiated energy from the steel to be heated S is measured by a radiation thermometer ( 4) to receive light. The radiation thermometer 4 may be stored in the water cooling tube 5, and the temperature rise thereof can be prevented from rising by storing the radiation thermometer or its condenser in the water cooling tube 5, whereby more accurate temperature measurement can be performed.

핀부재(2)는, 캐비티상 차폐부재(1)의 캐비티(C)의 가열원으로서 작용함과 동시에, 본 발명과 같이 고온 분위기에서의 가열로, 각 부재간의 전열이 주로 방사전열에 지배되는 전열환경하에서는 양호한 열차폐효과도 있다. 캐비티상의 차폐부재(1)과 단열부재(3)과의 사이에는 핀부재(2)를 설치하지 않고, 캐비티상의 차폐부재(1)의 후면에 직접단열부재(3)을 붙이는 경우에도, 본 발명의 효과는 달성할 수있지만, 핀부재(2)의 상기 효과를 얻을 수 없기 때문에, 캐비티(C)의 온도가 강재(S)의 표면온도로 되기 어려운 경우가 있다.The fin member 2 acts as a heating source of the cavity C of the cavity-like shielding member 1, and in the heating in a high temperature atmosphere as in the present invention, the heat transfer between the members is mainly controlled by the radiant heat transfer. There is also a good heat shielding effect in the heat transfer environment. The present invention does not require a fin member 2 between the cavity-shaped shielding member 1 and the heat insulating member 3, and the present invention also applies the direct insulation member 3 to the rear surface of the cavity-shaped shielding member 1. Although the effect of can be achieved, since the said effect of the pin member 2 is not acquired, the temperature of the cavity C may become difficult to become the surface temperature of the steel material S in some cases.

캐비티 형상에 대해서는, 원통형상으로 한정되는 것 없이, 반구상, 원추상의 것도 좋다. 캐비티를 형성하는 캐비티상의 차폐부재(1)의 재질로서는, 스테인레스강, 그외 내열금속재료, 흑연, 탄화규소(SiC), 알루미늄 등의 내열성 무기재료를 적용할 수 있다. 스테인레스강을 사용하는 경우에는, 캐비티 내면이 가열에 의해 흑색으로 되므로 흑체캐비티형성에 좋은 조건이다. 단열부재로서는 알루미나질, 마그네시아질, 질르코티아질 등 공지의 내화단열재를 적용할 수 있다.The cavity shape is not limited to a cylindrical shape, but may be hemispherical or conical. As a material of the cavity-like shielding member 1 which forms a cavity, heat resistant inorganic materials, such as stainless steel, another heat-resistant metal material, graphite, silicon carbide (SiC), aluminum, can be used. In the case of using stainless steel, the inner surface of the cavity becomes black by heating, which is a good condition for forming a black body cavity. As a heat insulating member, a well-known fireproof heat insulating material, such as alumina, magnesia, and zirconia, can be used.

강재(S)의 표면온도를 Ts, 르내 온도를 Tf, 캐비티(C)의 온도를 Tc, 핀부재(2)의 각 핀(2-1),(2-2),···(2-k)의 온도를 Ti(i= 1,2,...., k)로 하고, 캐비티(C)의 내경을 2R, 캐비티(C)와 강재(S)의 표면과의 간격을 H로 하면, 방사전열 하에서는 캐비티 및 핀의 온도는, 인접한 부재의 온도로 결정되게 되어, 하기의 관계식이 성립된다.The surface temperature of the steel (S) is T s , the internal temperature is T f , the temperature of the cavity (C) is T c , and each pin (2-1), (2-2) of the pin member (2), ... The temperature of (2-k) is T i (i = 1,2, ..., k), and the inner diameter of the cavity C is 2R, the gap between the cavity C and the surface of the steel material S. When H is set, the temperature of the cavity and the fin is determined by the temperature of the adjacent member under the heat transfer, and the following relational expression is established.

Ti 4≒ (1/2)(Ti-1 4+ Ti+l 4) ..........................(1)T i 4 ≒ (1/2) (T i-1 4 + T i + l 4 ) ........... (1 )

Tc= ((1/k)((k-1)Ts 4+ Tf 4))1/4...............(2)T c = ((1 / k) ((k-1) T s 4 + T f 4 )) 1/4 ............... (2)

식 (2)식에서 알 수 있듯이, 핀 매수가 증가하면 로온에 관계없이 흑체 캐비티(C)의 온도는 강재 표면온도와 일치하게 된다. 식 (2)에 있어서 핀 매수가 증가한 경우의 Ts와 Tc의 관계를 표 1에 나타낸다. 표 1에 의하면 핀 매수가 증가해 가면, 캐비티 온도가 강재 표면온도에 가깝게 되어가는 것을 확인할 수 있다.As can be seen from Equation (2), as the number of pins increases, the temperature of the blackbody cavity (C) coincides with the steel surface temperature regardless of the low temperature. Table 1 shows the relationship between T s and T c when the number of pins in formula (2) increases. According to Table 1, as the number of pins increases, the cavity temperature approaches the steel surface temperature.

본 발명에 있어 핀부재를 개재(介在)함으로써, 흑체캐비티(C)는 후면측이 한층 단열되어 있어 항상 강재표면과 대향하고 있는 캐비티 내면은 강재표면과의 간격이 크게 되어도 강재표면은 충분히 넓기 때문에 항상 강재표면에만 나오는 열을 수열하게 된다. 따라서,(2)식에서도 알 수 있듯이, 캐비티 내경 2R, 캐비티와 강재표면과의 간격 H 등에 영향받는 것 없이, 간격 H가 크게 되어도 캐비티 온도는강재 표면온도로 유지되고 있는 것으로 된다.In the present invention, through the pin member, the black body cavity (C) is further insulated from the rear side, and the cavity inner surface which always faces the steel surface is sufficiently wide even if the distance from the steel surface is large. It always sequences the heat only on the steel surface. Therefore, as can be seen from Equation (2), the cavity temperature is maintained at the steel surface temperature even if the interval H is increased without being affected by the cavity inner diameter 2R, the gap H between the cavity and the steel surface.

또한, 캐비티상의 차단부재에 핀부재 및 단열부재를 붙이기 위한 구체적인 방법으로는, 예를들면, 제2도와 같이, 내열금속재료로 되는 관(9)를 캐비티상의 차페부재(1), 핀부재(2) 및 단열부재(3)의 중앙부에 집어 넣어 고정하는 방법, 도 3과 같이, 이들 부재에 고정간(10)을 집어 넣어 고정하는 방식 등이 있다.In addition, as a specific method for attaching the fin member and the heat insulating member to the blocking member on the cavity, for example, as shown in FIG. 2, the tube 9 made of a heat-resistant metal material may be used as the shielding member 1 on the cavity and the fin member ( 2) and a method of inserting and fixing the central portion of the heat insulating member 3, and a method of inserting and fixing the fixing rod 10 to these members as shown in FIG.

도 1 의 장치구성에 있어서, 강재 표면온도를 측정하는 경우, 방사온도계에 입사하는 피가열물체로부터의 방사에너지는 다음식과 같이 표현된다.In the apparatus configuration of FIG. 1, when the steel surface temperature is measured, the radiant energy from the heated object incident on the radiation thermometer is expressed as follows.

N(Ta) = εnN(Ts) + (1-εn){FeN(TC) + FfN(Tf)} .......(3)N (T a ) = ε n N (T s ) + (1-ε n ) {F e N (T C ) + F f N (T f )} ....... (3)

Fe=2πJ o Rrρ(θ)(H2/r2+H2))dr....................................(4)F e = 2πJ o R rρ (θ) (H 2 / r 2 + H 2 )) ... ....(4)

Fr=2π o HR2ρ(θ)(h/R2+ h2))dh ................................(5)Fr = 2π o H R 2 ρ (θ) (h / R 2 + h 2 )) dh ............................... (5)

상기 (3)-(5)식에 있어서, Ta는 방사온도계의 휘도온도, Tc는 캐비티의 온도, Tf는 로온 εn은 강재표면부터 수직방향의 방사율, θ는 방사 입사각, Fe는 방사온도계의 측정점과 흑체 캐비티사이의 형태계수, Ff는 측정점과 가열로간의 형태계수이며, r은 캐비티 반경방향의 변수, h는 캐비티 높이 방향의 면수이다.In the above formulas (3)-(5), T a is the luminance temperature of the radiation thermometer, T c is the temperature of the cavity, T f is the low temperature ε n is the emissivity in the vertical direction from the steel surface, θ is the radiation incident angle, F e Is the form factor between the measuring point of the radiation thermometer and the blackbody cavity, F f is the form factor between the measuring point and the heating furnace, r is the variable in the cavity radial direction, and h is the number of planes in the cavity height direction.

(3)식과 같이, 방사온도계에 입사하는 방사에너지는, 우변 제1항의 강재로부터의 직접방사광, 제2 및 제3항의 흑체캐비티 및 로내로부터의 반사광이 중첩한 량으로 되어 있다. ρ(θ)는 반사 각도 특성으로 다음식으로 근사된다.As shown in Equation (3), the radiation energy incident on the radiation thermometer is an amount in which the direct radiation light from the steel of the right side claim 1, the black body cavity of the second and third terms, and the reflected light from the furnace overlap. ρ (θ) is a reflection angle characteristic and is approximated by the following equation.

ρ(θ)=C0Snθ ..........................................(6)ρ (θ) = C0S n θ ......................................... (6)

(6)식의 지수 n은 강재의 반사율 각도 특성을 나타내는 파라메터이다. n이 작으면 확산반사특성이 강조되는 것으로 되고, n이 크면 경면반사특성이 강조되는것이다.The index n of the formula (6) is a parameter representing the reflectance angle characteristic of the steel. If n is small, diffuse reflection characteristic is emphasized. If n is large, specular reflection characteristic is emphasized.

상기 식에 준하여 온도오차(Ta- Ts)와 H/R의 관계를 구하고 그림을 그리면 도 4 및 도 5와 같다. 도 4는 경면반사특성이 강한 강재에 대한 예이고, 도5는 확산반사특성이 강한 예이다. 도면에 나타낸 그래프의 상부는 로온이 강재 표면온도보다 높은 경우 (로온 : 1,300℃, 강재 표면온도 : 1,200℃), 하부는 로온이 강재 표면온도보다 낮은 경우 (로온 : 1,100℃, 강재 표면온도 : 1,200℃)이며, 방사율을 0.6, 0.8, 1.0으로 변화시켜 계산하였다.Based on the above equation, the relationship between the temperature error (T a -T s ) and H / R is obtained and shown in FIGS. 4 and 5. 4 is an example of a steel with strong mirror reflection characteristics, and FIG. 5 is an example of strong diffusion reflection characteristics. The upper part of the graph shown in the drawing shows that the low temperature is higher than the steel surface temperature (Roon: 1,300 ℃, the steel surface temperature: 1,200 ℃), and the lower part is low temperature of the steel surface (lower temperature: 1,100 ℃, the steel surface temperature: 1,200). ° C) and calculated by changing the emissivity to 0.6, 0.8, 1.0.

가열로내 강재는 표면이 두꺼운 스케일(scale)로 덮혀 있고, 방사율은 0.7-0.8정도이다. 방사율이 1.0에 근접하면 방사에너지가 적어져 오차가 대폭적으로 감소한다.반사각도특성에 관한 파라메터는 경면반사가 강한 재료로서 n=20, 확산반사가 강한 재료로서 n=4의 예를 표시한다. 경면반사가 강한 강재는 확산반사가 강한 강재보다 H 변화에 대한 온도오차는 작지만, 반사특성에 관계없이, H/R≤2 이면 온도오차가 ±10℃ 정도의 오차범위로 들어간다. 실제 가열로에서 가열한 강재의 표면온도를 제1도의 본 발명의 장치를 이용하여 H/R 값을 변화하여 측정한 결과, 도4와 도5에 나타낸 관계와 잘 일치하는 것을 확인할 수 있다.The steel in the furnace is covered with a thick scale and the emissivity is around 0.7-0.8. When the emissivity approaches 1.0, the radiation energy decreases and the error is drastically reduced. The parameters related to the reflection angle characteristics show an example of n = 4 as a material with strong specular reflection and n = 4 as a material with strong diffuse reflection. The steel with strong specular reflection has a smaller temperature error for H change than the steel with strong diffuse reflection, but regardless of the reflection characteristic, if H / R≤2, the temperature error is within ± 10 ° C. As a result of measuring the surface temperature of the steel material heated in the actual furnace by changing the H / R value by using the apparatus of the present invention of FIG. 1, it can be confirmed that the relationship with the relationship shown in FIGS.

상기와 같이, H/R≤2의 범위에서는 온도오차가 작지만, H/R 2로 되면 도4와 도5에서도 알 수 있듯이, 로내반사광의 영향을 무시할 수 없게 되지만, 본 발명에 의하면, H가 증가하여도 캐비티 온도는 강재 표면온도에 근접한 온도로 확보되어 흑체 조건이 유지되므로 휘도온도와 강재 표면온도와의 차는 극단적으로 크게확대되지 않는다. 따라서, 방사온도계로 측정한 휘도온도를 로온으로 보정하므로써 강재의 표면온도를 양호한 정도로 측정할 수 있다.As described above, the temperature error is small in the range of H / R ≤ 2, but when H / R 2, as shown in Figures 4 and 5, the effect of the furnace reflection light can not be ignored, according to the present invention, H is Even if it increases, the cavity temperature is secured to a temperature close to the steel surface temperature and the black body condition is maintained, so the difference between the luminance temperature and the steel surface temperature is not extremely enlarged. Therefore, the surface temperature of the steel can be measured to a good degree by correcting the luminance temperature measured by the radiation thermometer to low temperature.

로온 Tf이고, 흑체캐비티에 가장 가까운 핀(2-1)의 온도 T1을 사용하는 것으로 하면 상기식에서, 하기와 같은 보정식을 유도할 수 있다.If the temperature T 1 of the pin 2-1 closest to the black body cavity is used as the low temperature T f , the following correction equation can be derived.

Ts(보정된 강재의 표면온도)=Ta-c(T1- Ta) ............(7)T s (surface temperature of calibrated steel) = T ac (T 1 -T a ) ...... (7)

단, TfTs, c는 정수이다. 이 보정식을 이용하면 온도오차(Ta-Ts)는, 특히1.0 H/R 4.0 범위에서 측정오차 (ta- ts)는 ±5.0℃ 이내로 들어오므로 H를 보다 크게 설정할 수 있게 된다.Provided that T f T s and c are integers. Using this correction equation, the temperature error (T a -T s ) can be set to H, especially since the measurement error (t a -t s ) falls within ± 5.0 ° C, especially in the 1.0 H / R 4.0 range. .

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

제2도의 장치구성으로 가열로내에서 가열된 강재(Slab) 표면온도를 측정하였다. 또한, 핀매수는 5매로 하고, H=150mm(H/R=2.0)로 하였다. 강재 표면온도는 강재표면에 열전대를 용접하여 실측하고, 로온과 캐비티온도도 실측하였다. 이들 실측치를 방사온도계로 측정한 휘도온도와 함께 표2에 나타내었다.In the apparatus configuration of FIG. 2, the surface temperature of slab heated in the furnace was measured. In addition, the number of pins was set to five sheets, and it was set as H = 150mm (H / R = 2.0). The steel surface temperature was measured by welding a thermocouple to the steel surface, and the temperature of the furnace and the cavity was also measured. These measured values are shown in Table 2 together with the luminance temperature measured by the radiation thermometer.

표 2와 같이, H/R=2로 되도록 캐비티를 강재표면에 근접시켰을 경우는 실측된 강재표면온도와 방사온도계로 측정된 휘도온도와의 차(온도오차)가 적고, 우수한 측정오차를 나타내고 있다.As shown in Table 2, when the cavity is approached to the steel surface so that H / R = 2, the difference (temperature error) between the measured steel surface temperature and the luminance temperature measured by the radiation thermometer is small and shows excellent measurement error. .

[실시예 2]Example 2

실시예 1에 있어서, H=300mm(H/R=4.0) 로 하고, 실시예 1과 동일하게 측정하였다. 결과를 표3에 나타내었다.In Example 1, it was set as H = 300mm (H / R = 4.0) and it measured similarly to Example 1. The results are shown in Table 3.

상기(7)의 보정식을 변형하면 Ta-Ts=c(Tl-Ta)로 된다. 이식에 표3의 수식을대입하고, 거기에다가 실측한 핀온도 T1을 대입하여 표4와 같이, (Ta-Ts) 및 (Tl-Ta)의 값을 계산하고, 도 6에 나타낸 그래프에 따라 c의 값을 구하면 c=0.494로 된다· 이 c값을 기준하여 상기식 (7)로 휘도온도를 보정하고, 강재표면 온도의 보정치(Ta-c(T1-Ta))를 계산하면 표 4와 같이 되며, 측정온차는 극히 적어진다.By modifying the correction equation (7), T a -T s = c (T 1 -T a ). Substituting the formula shown in Table 3 into the transplant and substituting the measured pin temperature T 1 therein, the values of (T a -T s ) and (T l -T a ) are calculated as shown in Table 4, According to the graph shown, the value of c becomes c = 0.494. Based on this c value, the luminance temperature is corrected by the above equation (7), and the correction value of the steel surface temperature (T a -c (T 1 -T a )). ) Is shown in Table 4, and the measured temperature difference is extremely small.

(주) Tf≥Ts의 경우는 보정유, TfTs의 경우는 보정무(Note) T f s ≥T For the case of the correction U, T f T s are non-corrected

본 실시예에 있어서는 강재표면온도로서 실측치를 사용하였지만, 실측치를 사용하는 대신에 우선 캐비티를 강재표면에서 H/R≤2를 만족하는 간격 H로 배치하여 휘도온도 Ta-1을 실측하고, 이어서 캐비티를 강재 표면에서 H/R 2를 만족하는 간격 H로 배치하여 다시 휘도온도 Ta-2를 측정하여, Ta-1를 강재 표면온도로서 사용하여보정치를 구하는 것도 가능하다.In this embodiment, the measured value is used as the steel surface temperature, but instead of using the measured value, the cavity is first disposed at an interval H satisfying H / R ≦ 2 on the steel surface, and then the luminance temperature T a-1 is measured. It is also possible to arrange | position a cavity at the space | interval H which satisfy | fills H / R2 on a steel surface, and to measure luminance temperature Ta -2 again, and to obtain a correction value using Ta -1 as steel surface temperature.

본 발명에 의하면, 가열로내에서 가열된 피가열물체, 특히 피가열강재의 표면은도를 강재종류나 방사율이 변동한 경우에도 정확하게 측정하는 것을 가능하게하는 가열로내 물체의 표면온도 측정방법 및 장치가 제공된다. 본 발명에 의하면 가열로내에서 정지하고 있는 피가열물체 뿐만아니고, 연속소둔로내를 주행하면서소둔처리되는 강판과 같이, 가열로내에서 이동하고 있는 피가열물체의 표면온도의 정확한 측정도 가능하다.According to the present invention, a method for measuring the surface temperature of an object in a furnace that enables the surface of a heated object, particularly a heated steel, heated in a furnace to accurately measure the degree even when the steel type or the emissivity varies. An apparatus is provided. According to the present invention, the surface temperature of the object to be moved in the furnace can be accurately measured, as well as the object to be stopped in the furnace, as well as the steel sheet being annealed while traveling in the continuous annealing furnace. .

Claims (11)

가열로내 피가열물체의 표면온도를 방사은도계로 측정하는 방법에 있어서, 피가열물체의 표면에 대향하여 설치된 캐비티(cavity)형상의 차폐부재 및 상기 차폐부재의 후면에 붙인 단열부재로 연결된 관통개구부를 통해서 상기 피가열물체로부터의 방사에너지를 단열부재 후방에 설치된 방사온도계로 검출하여 피가열물체의 표면온도를 측정하는 것을 특징으로 하는 가열로내 물체의 표면온도측정방법.In the method of measuring the surface temperature of the object to be heated in the furnace by a radiometer, the through opening connected to the cavity-shaped shield member provided to face the surface of the object to be heated and the heat insulating member attached to the rear surface of the shield member Method for measuring the surface temperature of the object to be heated by detecting the radiation energy from the object to be heated by the radiation thermometer installed behind the heat insulating member through the. 제1항에 있어서, 상기 차폐부재의 캐비티는 원통형상, 원추형상 및 반구상이며, 그 하단부 반경 R에 대한 캐비티와 피가열물체의 표면과의 간격 H의 비, H/R이2이하인 것을 특징으로 하는 가열로내 물체의 표면온도측정방법.The cavity of the shielding member is cylindrical, conical and hemispherical, and the ratio of the interval H between the cavity and the surface of the object to be heated, H / R, is 2 or less with respect to the radius R of the lower end. Method for measuring the surface temperature of an object in a furnace. 제1항에 있어서, 상기 차폐부재의 캐비티가 원통형상, 원추형상 및 반구상이며, 우선 차단부재의 캐비티를 피가열물체 표면에서 H/R≤2(R : 캐비티 반경, H : 캐비티와 피가열물체의 표면과의 간격)를 만족하는 간격 H로 배치하여 휘도온도 Ta-1을측정하고, 이어서 차폐부재의 캐비티를 피가열물체의 표면에서 H/R 2를 만족하는간격 H에 배치하여 다시 방사휘도온도 Ta-2를 측정하고, 방사온도계에 입사하는 방사에너지와 피가열물체 수직방향으로의 방사에너지와 배광잡음에 의한 방사에너지와의 관계로부터 얻어지는 방사온도계에 의한 휘도온도 Ta, 피가열물체의 표면온도Ts, 로온 Tf는 관계식 Ts= Ta - c(Tf- Ta)을 표현되고, 그리고 상기 Ts로서 Ta-l또는 피가열물체의 표면온도 실측치, 로온 Tf의 값으로 차폐부재에 가장 근접한 핀의 온도 Tl을 대입하여 상기 관계식으로 부터 c 를 계산한 후, 상기 휘도온도의 값Ta-2를 상기 계산된 c값 및 실측된 T1의 값을 이용하여 보정함으로서 피가열물체의표면온도를 구하는 것을 특징으로 하는 가열로내 물체의 표면온도 측정방법.The cavity of claim 1, wherein the cavity of the shield member is cylindrical, conical and hemispherical, and first the cavity of the barrier member is placed on the surface of the object to be heated H / R≤2 (R: cavity radius, H: cavity and heated). The luminance temperature T a-1 is measured by arranging at an interval H that satisfies the surface of the object), and then the cavity of the shielding member is placed at an interval H that satisfies H / R 2 on the surface of the object to be heated again. The luminance temperature T a -2 is measured and the luminance temperature T a , p obtained by the relationship between the radiation energy incident on the radiation thermometer and the radiation energy in the vertical direction of the object to be heated and the radiation energy due to light distribution noise is measured. the surface temperature T s, roon of the heating body T f is the relation T s = T a - c ( T f - T a) to be expressed, and the surface temperature measured value, roon T f of T al, or heating an object as the above T s to the value of the shield member to a temperature T l of the closest pin Characterized in that the mouth to the equation calculates a c from a, to obtain a surface temperature of a heated object by the correction using the value of the calculated c value and the measured T 1 to the value of the brightness temperature T a-2 Method for measuring the surface temperature of the object in the furnace. 제1항 내지 제3항중 어느 한 항에 있어서, 상기 피가열물체는 강재인 것을특징으로 하는 가열로내 물체의 표면온도측정방법.The method of measuring the surface temperature of an object in a furnace according to any one of claims 1 to 3, wherein the object to be heated is a steel material. 가열로내 피가열물체의 표면온도를 방사온도계로 측정하는 방법에 있어서,피가열물체의 포면에 대향하여 설치된 캐비티상의 차폐부재 및 상기 차폐부재의 후면에 배설된 핀(fin)부재와 단열부재에 연결된 관통개구부를 통해서 상기 피가열물체로부터의 방사에너지를 단열부재 후방에 설치된 방사온도계로 검출하여 피가열물체의 표면온도를 측정하는 것을 특징으로 하는 가열로내 물체의 표면온도 측정방법.In the method for measuring the surface temperature of the object to be heated in the furnace by a radiation thermometer, the shielding member on the cavity provided to face the surface of the object to be heated and the fin member and the heat insulating member disposed on the rear surface of the shielding member Method for measuring the surface temperature of the object to be heated by detecting the radiation energy from the object to be heated by the radiation thermometer installed in the rear of the insulating member through the connected through opening. 제5항에 있어서, 상기 차폐부재의 캐비티는 원통형상, 원추형상 및 반구상이며, 그 하단부 반경 R에 대한 캐비티와 피가열물체외 표면과의 간격 H의 비, H/R이2이하인 것을 특징으로 하는 가열로내 물체의 표면온도측정방법.6. The cavity of the shielding member is cylindrical, conical and hemispherical, and the ratio of the interval H between the cavity and the extracorporeal surface to be heated to the radius R of the lower end, H / R is 2 or less. Method for measuring the surface temperature of an object in a furnace. 제5항에 있어서, 상기 차폐부재의 캐비티가 원통형상, 원추형상 및 반구상이며, 우선 차단부재의 캐비티를 피가열물체 표면에서 H/R≤2(R : 캐비티 반경, H : 캐비티와 피가열물체의 표면과의 간격)를 만족하는 간격 H로 배치하여 휘도온도 Ta-1을측정하고, 이어서 차폐부재의 캐비티를 피가열물체의 표면에서 H/R 2를 만족하는간격 H에 배치하여 다시 방사휘도온도 Ta-2를 측정하고, 방사온도계에 입사하는 방사에너지와 피가열물체 수직방향으로의 방사에너지와 배광잡음에 의한 방사에너지와의 관계로부터 얻어지는 방사온도계에 의한 휘도온도 Ta, 피가열물체의 표면온도 Ts, 로온 Tf는 관계식 Ts= Ta - c(Tf- Ta)으로 표현되고, 그리고 상기 Ts로서 Ta-1또는 피가열물체의 표면온도 실측치, 로온 Tf의 값으로 차폐부재에 가장 근접한 핀의 온도 T1을 대입하여 상기 관계식으로 부터 c 를 계산한 후, 상기 휘도온도의 값 Ta-2를 상기 계산된 c값 및 실측된 T1의 값을 이용하여 보정함으로서 피가열물체의 표면온도를 구하는 것을 특징으로 하는 가열로내 물체의 표면온도 측정방법.6. The cavity of claim 5, wherein the cavity of the shielding member is cylindrical, conical and hemispherical. First, the cavity of the blocking member is removed from the surface of the object to be heated by H / R≤2 (R: cavity radius, H: cavity and heated). The luminance temperature T a-1 is measured by arranging at an interval H that satisfies the surface of the object), and then the cavity of the shielding member is placed at an interval H that satisfies H / R 2 on the surface of the object to be heated again. The luminance temperature T a -2 is measured and the luminance temperature T a , p obtained by the relationship between the radiation energy incident on the radiation thermometer and the radiation energy in the vertical direction of the object to be heated and the radiation energy due to light distribution noise is measured. the surface temperature T s, roon T f of the heating object is a relation T s = T a - c ( T f - T a) to be expressed, and the surface temperature measured value, roon of T a-1 or a heating object as said T s T f temperature of the best available pin on the shield member of the value T 1 Characterized in that the assignment to the equation calculates a c from a, to obtain a surface temperature of a heated object by the correction using the value of the calculated c value and the measured T 1 values T a-2 of the brightness temperature Method for measuring the surface temperature of the object in the furnace. 제5항 내지 제7항중 어느 한 항에 있어서, 상기 피가열물체는 강재인 것을 특징으로 하는 가열로내 물체의 표면온도측정방법.The method for measuring the surface temperature of an object in a furnace according to any one of claims 5 to 7, wherein the object to be heated is a steel material. 가열로내 피가열물체의 표면온도를 방사온도계로 측정하는 장치에 있어서, 피가열물체 표면에 대향하여 배치된 캐비티상의 차폐부재와, 차폐부재 후면에 붙여진 핀부재 및 단열부재와, 상기 단열부재후방에 배치된 방사온도계가 마련되고, 상기 차폐부재, 핀부재 및 단열부재에 관통개구를 연설(連設)하여 상기 관통개구부를통해 피가열물체로부터의 방사에너지를 방사온도계로 검출하고, 피가열물체 표면온도를 측정하도록 한 것을 특징으로 하는 가열로내 물체의 표면온도측정장치.An apparatus for measuring the surface temperature of an object to be heated in a furnace with a radiation thermometer, comprising: a cavity-like shielding member disposed opposite to the surface of the object to be heated, a fin member and an insulation member attached to the rear of the shielding member, and the rear of the insulation member A radiation thermometer disposed in the chamber is provided, and the through opening is extended to the shielding member, the fin member and the heat insulating member, and the radiation energy from the object to be heated is detected by the radiation thermometer through the through opening. Surface temperature measuring apparatus of the object in the furnace, characterized in that for measuring the surface temperature. 제9항에 있어서, 상기 단열부재는 그 후면부에 수냉관이 설치되고, 상기 수냉관내에는 방사온도계의 집광부가 배치되는 것을 특징으로 하는 가열로내 물체의 표면온도측정장치.10. The apparatus of claim 9, wherein the heat insulating member is provided with a water cooling tube at a rear surface thereof, and a light collecting portion of a radiation thermometer is disposed in the water cooling tube. 제9항에 있어서, 상기 방사온도계는 그 본체와 집광부가 광파이버로 접속되는 광파이버식 방사은도계인 것을 특징으로 하는 가열로내 물체의 표면온도 측정장치.The surface temperature measuring apparatus of an object in a furnace according to claim 9, wherein said radiation thermometer is an optical fiber type radiation meter in which a main body and a light collecting part are connected by an optical fiber.
KR1019960069466A 1996-12-21 1996-12-21 Method and device for measuring surface temperature of objectives in heating furnace KR100301991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960069466A KR100301991B1 (en) 1996-12-21 1996-12-21 Method and device for measuring surface temperature of objectives in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069466A KR100301991B1 (en) 1996-12-21 1996-12-21 Method and device for measuring surface temperature of objectives in heating furnace

Publications (2)

Publication Number Publication Date
KR19980050629A true KR19980050629A (en) 1998-09-15
KR100301991B1 KR100301991B1 (en) 2002-04-24

Family

ID=37529219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069466A KR100301991B1 (en) 1996-12-21 1996-12-21 Method and device for measuring surface temperature of objectives in heating furnace

Country Status (1)

Country Link
KR (1) KR100301991B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681693B1 (en) * 2005-10-21 2007-02-09 재단법인 포항산업과학연구원 Error source radiance optical filtering method and system in infrared radiation thermometer
KR100691519B1 (en) * 2004-12-22 2007-03-09 재단법인 포항산업과학연구원 Apparatus for Measuring Slab Surface Temperature by using Thermocouple
CN114216568A (en) * 2021-08-27 2022-03-22 北京强度环境研究所 Anti-interference device for point thermometer test in strong radiation environment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326173A (en) * 1993-01-11 1994-07-05 Alcan International Limited Apparatus and method for remote temperature measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691519B1 (en) * 2004-12-22 2007-03-09 재단법인 포항산업과학연구원 Apparatus for Measuring Slab Surface Temperature by using Thermocouple
KR100681693B1 (en) * 2005-10-21 2007-02-09 재단법인 포항산업과학연구원 Error source radiance optical filtering method and system in infrared radiation thermometer
CN114216568A (en) * 2021-08-27 2022-03-22 北京强度环境研究所 Anti-interference device for point thermometer test in strong radiation environment

Also Published As

Publication number Publication date
KR100301991B1 (en) 2002-04-24

Similar Documents

Publication Publication Date Title
JP4077080B2 (en) Optical pyrometer for gas turbine
CA1084725A (en) Radiation measurement of a product temperature in a furnace
GB2082767A (en) Surface temperature measuring apparatus for object within furnace
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JP2020046309A (en) Black body furnace
KR19980050629A (en) Method and device for measuring surface temperature of object in furnace
Che et al. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation
JP3552861B2 (en) Surface temperature measurement method for objects in heating furnace
US7445384B2 (en) Pyrometer
CN209910832U (en) Temperature measuring device applied to graphite high-temperature sintering furnace
JPH07174634A (en) Method for measuring temperature of object in furnace
JPS6059511B2 (en) Surface temperature measuring device for objects inside the furnace
KR100411282B1 (en) Method and apparatus for measuring temperature of body in heating furnace
JPH0458569B2 (en)
CN220537979U (en) Growth furnace
JPS6160364B2 (en)
JPH05507356A (en) Object temperature measurement method and device and heating method
EP0083100B1 (en) Method of measuring pipe temperature
KR102239028B1 (en) Temperature sensor assembly for high temperature gas having improved durability and responsiveness
Qian et al. Nanorod-cladding sapphire fiber for continuous temperature measurement in molten steel
Cielo et al. Conical-cavity fiber optic sensor for temperature measurement in a steel furnace
JPS61182539A (en) Detecting part of radiation temperature
JP2585394Y2 (en) Backlight shielding device for radiation thermometer
Zhukov et al. Innovative Technologies for Continuous Thermal Control of TPPs Boilers
KR100398415B1 (en) Method and apparatus for measuring temperature of heating body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150629

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee