KR19980048366A - Quantum disks and manufacturing method thereof - Google Patents
Quantum disks and manufacturing method thereof Download PDFInfo
- Publication number
- KR19980048366A KR19980048366A KR1019960066936A KR19960066936A KR19980048366A KR 19980048366 A KR19980048366 A KR 19980048366A KR 1019960066936 A KR1019960066936 A KR 1019960066936A KR 19960066936 A KR19960066936 A KR 19960066936A KR 19980048366 A KR19980048366 A KR 19980048366A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- island
- disk
- quantum
- manufacturing
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7379—Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
본 발명은 50 Gbit(기가 비트) 이상의 대용량의 정보를 저장할 수 있는 양자 디스크 및 그 제조 방법에 관한 것이다. 본 발명은 값싸게 대량생산이 가능한 초고용량 정보저장장치에 사용될수있는 디스크를 제조하는데 있어, E-beam에 의한 lithography 공정을 거치지 않고 삼차원적으로 아일런드 성장된 nm 단위(scale)의 미립자(particle)를 종자층(seed layer)으로 사용하고, 그 위에 Cr층과 자성층을형성한다는데 특징이 있다. 이와 같이 제조된 양자 디스크는 단일 자구(single domain) 즉 bit 의 크기를 증착 조건에 따라 조절할 수 있으므로 원하는대로 정보 저장 용량을 조절할 수 있다. 또한, 이렇게 제조된 자구(domain)들은 상호간의 결합(coupling)이 없어 S/N 비가 큰 것이 장점이다.The present invention relates to a quantum disk capable of storing a large amount of information of 50 Gbit (gigabit) or more and a manufacturing method thereof. The present invention is to produce a disk that can be used for a high-capacity, high-capacity information storage device that can be mass-produced inexpensively. ) Is used as a seed layer, and is characterized by forming a Cr layer and a magnetic layer thereon. Since the quantum disk manufactured as described above can adjust the size of a single domain, that is, bit, according to deposition conditions, the information storage capacity can be adjusted as desired. In addition, the domains thus prepared are advantageous in that the S / N ratio is large because there is no coupling between each other.
Description
본 발명은 대용량의 정보를 기록할 수 있는 디스크 및 그 제조 방법에 관한 것으로, 특히 50 Gbit(기가 비트) 이상의 정보를 저장할 수 있는 양자 디스크 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disk capable of recording a large amount of information and a method of manufacturing the same, and more particularly to a quantum disk capable of storing information of 50 Gbit (gigabit) or more and a method of manufacturing the same.
도 1은 종래의 디스크의 발췌 확대 단면도이다. 도시된 바와 같이, 종래의 디스크는 기판(1) 상에 Cr층(2) 및 자성층(3)이 순차로 적층된 구조로 되어 있다. 이러한 유사 구조의 디스크를 사용하고 있는 하드 디스크 드라이브(HDD; hard disk drive)를 포함하는 정보 저장 장치 들의 개발 추세를 보면, 20 세기 말에는 10 Gbit 용량의 정보 저장 장치의 개발이 예상되며, 21 세기중반 에는 Tbit(테라 비트)급 이상의 저장 용량이 필요하게 될 것이라는 것이 지난 30년간의 저장용량 증가추세로서 추측이 가능하다. 50 Gbit 이상의 초고용량 디스크는 bit 의 크기가 nm 단위(scale) 이기 때문에 종래의 디스크 구조와는 다른 구조가 요청되며, 따라서 종래의 제조법과 다른 새로운 제조법이 요구된다. 지금까지 시도된 새로운 방법으로는 전자빔 사진 식각 공정(E-beam lithography) 후 전기도금(electroplating) 혹은 리액티브 이온 에칭(RIE; reactive ion etching)을 통한 직경 35nm 의 기둥(pillar) 형태를 제조하여 이것을 단일 자구(single domain) 즉 1 bit 로 이용하는 방법이 제시되었다(J.Vac.Sci.Tech, B12,p3639,1994).1 is an enlarged cross-sectional view of a conventional disc. As shown in the drawing, the conventional disk has a structure in which a Cr layer 2 and a magnetic layer 3 are sequentially stacked on the substrate 1. Looking at the development trend of information storage devices including hard disk drives (HDD) using a disk of such a similar structure, the development of 10 Gbit information storage device is expected at the end of the 20th century, the 21st century It is speculated that storage capacity growth over the last 30 years will require more than Tbit (terabit) storage capacity in the middle. Ultra-high-capacity disks of 50 Gbit or more require a different structure from the conventional disk structure because the bit size is in nm scale, and thus a new manufacturing method different from the conventional manufacturing method is required. New methods have been tried so far to produce a 35 nm diameter pillar by electroplating or reactive ion etching (RIE) after E-beam lithography. A single domain, or 1 bit, has been proposed (J. Vac. Sci. Tech, B12, p3639, 1994).
그러나 이 방법은 현재의 기술 수준으로 보아 대량 생산이 불가능하며 특히 전자빔 사진식각술(E-beam lithography) 의 처리량(throughput)이 낮아 결국 디스크 제조상 생산성이 낮게된다. 따라서 대량 생산이 가능하고 처리량(throughput)을 크게 할 수 있는 새로운 제조법의 고안이 필요하다. Ⅲ-Ⅴ 족의 반도체를 포함한 Si 혹은 기타 기판들 위에 self assembling(self organizing, 3D island grdwth, stranski-krastanow growth)에 의한 양자 도트(quantum dot)를 제조하는 방법들이 현재까지 제시되었다(J.Vac.Sci.Tech,B14.p2195,1996).However, this method cannot be mass-produced at the present level of technology, and in particular, the throughput of E-beam lithography is low, resulting in low disk manufacturing productivity. Therefore, it is necessary to devise a new manufacturing method that can be mass-produced and increase throughput. Methods of producing quantum dots by self assembling (self organizing, 3D island grdwth, stranski-krastanow growth) on Si or other substrates including III-V semiconductors have been presented (J.Vac). Sci. Tech, B14.p2195,1996).
본 발명은 상기와 같은 문제점을 개선하고자 창안된 것으로, 제조 공정의 고속처리가 가능하여 대량 생산이 가능한 고밀도 양자 디스크 및 그 제조 방법을 제공하는데 그 목적이 있다.The present invention was devised to improve the above problems, and an object thereof is to provide a high-density quantum disk and a method of manufacturing the same, which can be mass-produced at a high speed of a manufacturing process.
도 1은 종래의 디스크의 발췌 확대 단면도,1 is an enlarged cross-sectional view of a conventional disc,
도 2는 본 발명에 양자 디스크의 발췌 확대 단면도,Figure 2 is an enlarged cross-sectional view of the quantum disk of the present invention,
도 3 내지 도 5는 도 2의 양자 디스크 제조 단계별 공정후의 발췌 확대 단면도이다.3 to 5 are enlarged cross-sectional views taken after the quantum disc manufacturing step in FIG. 2.
도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings
1. 기판 2. Cr 층1.substrate 2.Cr layer
3. 자성층3. Magnetic layer
11. 기판 12. 종자(seed)층11.substrate 12.seed layer
13. Cr 층 14. 자성층13. Cr layer 14. Magnetic layer
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 양자 디스크는, 기판; 상기 기판 상에 적층된 셀프 어셈블링 성장법에 의해 소정의 직경의 아일런드로 형성된 종자층; 상기 종자층 상에 소정의 두께로 적층된 Cr층; 및 상기 Cr층 상에 소정 직경의 아일런드로 형성된 자성층;을 구비하여 된 것을 특징으로 한다.In order to achieve the above object, a quantum disk according to the present invention includes a substrate; A seed layer formed of an island of a predetermined diameter by a self-assembly growth method stacked on the substrate; A Cr layer laminated on the seed layer to a predetermined thickness; And a magnetic layer formed of an island having a predetermined diameter on the Cr layer.
본 발명에 있어서, 상기 기판은 GaAs, Si, 유리, 석영, Al 합금 중 적어도 어느한 종으로 이루어지며, 상기 종자층은 InAs, SiGe를 포함한 3차원적으로 아일런드 성장이 가능한 재료들로 이루어지되 상기 종자층의 아일런드의 직경은 100 nm 이하이며, 상기 Cr층의 두께는 100 nm 이하이며, 상기 자성층은 X 및 Y를 천이 금속이라 할 때 Co-X-Y 혹은 Sm-Co를 포함하는 희토류 계통의 강자성체 물질들이 포함되되 상기 자성층의 아일런드 직경은 100 nm 이하인 것이 바람직하다.In the present invention, the substrate is made of at least one of GaAs, Si, glass, quartz, Al alloy, the seed layer is made of materials capable of three-dimensional island growth, including InAs, SiGe The diameter of the island of the seed layer is 100 nm or less, the thickness of the Cr layer is 100 nm or less, and the magnetic layer is a rare earth system containing Co-XY or Sm-Co when X and Y are transition metals. Ferromagnetic materials are included but the island diameter of the magnetic layer is preferably 100 nm or less.
또한, 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 양자 디스크의 제조 방법은, (가) 기판 상에 상에 셀프 어셈블링 성장법으로 소정 직경의 아일런드가 성장된 종자층을 형성하는 단계; (나) 상기 종자층 상에 소정 두께의 Cr층을 형성하는 단계; 및 (다) 상기 Cr층 상에 소정 직경의 아일런드가 성장된 자성층을 형성하는 단계;를 포함하는 것을 특징으로 한다.In addition, in order to achieve the above object, the manufacturing method of the quantum disk according to the present invention, (A) forming a seed layer on which the island of a predetermined diameter is grown on the substrate by a self-assembly growth method; (B) forming a Cr layer having a predetermined thickness on the seed layer; And (c) forming a magnetic layer in which an island of a predetermined diameter is grown on the Cr layer.
본 발명에 있어서, 상기 기판은 GaAs, Si, 유리, 석영, Al 합금 중 적어도 어느한 종으로 이루어지며, 상기 (가) 단계는 InAs, SiGe를 포함한 3차원적으로 아일런드 성장이 가능한 재료들이 MBE법 혹은 MOCVD법으로 증착되어 형성되되 상기 종자층의 아일런드의 직경은 100 nm 이하로 형성하며, 상기 (나) 단계에서 상기 Cr층의 두께는 100 nm 이하로 형성하며, 상기 (다) 단계에서 상기 자성층은 X 및 Y를 천이 금속이라 할 때 Co-X-Y 혹은 Sm-Co를 포함하는 희토류 계통의 강자성체 물질들이 포함되도록 형성하되, 상기 자성층의 아일런드 직경은 100 nm 이하로 형성하는 것이 바람직하다.In the present invention, the substrate is made of at least one of GaAs, Si, glass, quartz, Al alloy, the step (A) is a material capable of three-dimensional island growth, including InAs, SiGe MBE It is formed by the deposition method or MOCVD method, the diameter of the island of the seed layer is formed to 100 nm or less, in the step (b) the thickness of the Cr layer is formed to 100 nm or less, in the step (c) The magnetic layer is formed such that when X and Y are transition metals, ferromagnetic materials of rare earth-based ferromagnetic materials including Co-XY or Sm-Co are included, and the island diameter of the magnetic layer is preferably 100 nm or less.
이하 도면을 참조하면서 본 발명에 따른 양자 디스크 및 그 제조 방법을 설명한다.Hereinafter, a quantum disk and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
도 2는 본 발명에 양자 디스크의 발췌 확대 단면도이다. 도시된 바와 같이, 본 발명에 따른 양자 디스크는 기판(11), 종자층(12), Cr층(13) 및 자성층(14)이 순차로 적층된 구조로 되어 있다.2 is an enlarged cross-sectional view of an excerpt of a quantum disk according to the present invention. As shown, the quantum disk according to the present invention has a structure in which the substrate 11, the seed layer 12, the Cr layer 13, and the magnetic layer 14 are sequentially stacked.
여기서, 기판(11)으로는 Si, GaAs 등의 Ⅲ-Ⅴ 족의 반도체 기판 혹은 유리, 석영, Al 합금 등의 종으로 이루어진 기판이 사용된다. 종자층(12)으로는 InAs, SiGe를 포함한 3차원적으로 아일런드 성장이 가능한 재료들이 사용되며, 종자층(12) 아일런드의 직경은 100 nm 이하로 형성된다. Cr층(13)의 두께는 100 nm 이하로 형성된다. 그리고 자성층(14)으로는 Co-X-Y(X 및 Y는 천이금속) 혹은 Sm-Co를 포함하는 희토류 계통의 강자성체 물질들을 포함하는 재료들이 사용되며, 자성층(14)의 아일런드 직경은 100 nm 이하로 형성된다.Here, as the substrate 11, a semiconductor substrate of a III-V group such as Si, GaAs or the like, or a substrate made of glass, quartz, Al alloy or the like is used. As the seed layer 12, materials capable of three-dimensional island growth including InAs and SiGe are used, and the diameter of the seed layer 12 island is formed to be 100 nm or less. The thickness of the Cr layer 13 is formed to be 100 nm or less. As the magnetic layer 14, materials including rare earth-based ferromagnetic materials including Co-XY (X and Y are transition metals) or Sm-Co are used, and the island diameter of the magnetic layer 14 is 100 nm or less. Is formed.
이러한 구조의 양자 디스크의 제조 방법을 도 3 내지 도 5를 참조하여 상세하게 설명한다.The manufacturing method of the quantum disk of such a structure is demonstrated in detail with reference to FIGS.
먼저, 도 3에 도시된 바와 같이, GaAs, Si 등의 Ⅲ-Ⅴ족 반도체 기판(1) 혹은 유리(Glass), 석영(Quartz), Al 합금 등으로 이루어진 기판(1) 위에 셀프 어셈블링(self assembling; self organizing, 3D island grdwth, stranski-krastanow growth)법에 의한 양자 도트(quantum dot)를 제조하는 방법(J.Vac.Sci.Tech,B14.p2195,1996 참조)들을 이용하여 nm 단위(scale) 의 양자 도트(quantum dot(particle)) 즉 아일런드(island)로 이루어진 종자(seed)층(12)을 형성한다((가) 단계). 여기서, 종자층(12)은 InAs, SiGe를 포함한 3차원적으로 아일런드 성장이 가능한 재료들을 MBE법 혹은 MOCVD법으로 증착하여 형성하며, 종자층(12)의 아일런드의 직경은 100 nm 이하로 형성하는 것이 바람직하다.First, as shown in FIG. 3, self-assembly (self) on the III-V group semiconductor substrate 1, such as GaAs, Si, or the substrate 1 made of glass, quartz, Al alloy, etc. nm scale using methods of manufacturing quantum dots by self organizing, 3D island grdwth, stranski-krastanow growth (see J.Vac.Sci.Tech, B14.p2195,1996) A seed layer 12 composed of quantum dots (ie, islands) of () is formed (step (a)). Here, the seed layer 12 is formed by depositing materials capable of three-dimensional island growth including InAs and SiGe by MBE or MOCVD, and the diameter of the island of the seed layer 12 is 100 nm or less. It is preferable to form.
다음에, 도 4에 도시된 바와 같이, 종자층(12) 상에 두께 100nm 이하의 Cr층(13)을 형성한다((나) 단계).Next, as shown in FIG. 4, a Cr layer 13 having a thickness of 100 nm or less is formed on the seed layer 12 ((b) step).
다음에, 도 5에 도시된 바와 같이, Cr층(13) 상에 직경 100nm 이하의 아일런드가 성장된 자성층(14)을 형성하여 디스크를 완성한다((다) 단계). 여기서, 자성층(14)은 Co-X-Y(X 및 Y는 천이 금속) 혹은 Sm-Co를 포함하는 희토류 계통의 강자성체 물질들을 포함하는 재료로 형성한다.Next, as shown in Fig. 5, a magnetic layer 14 having an island of 100 nm or less in diameter is grown on the Cr layer 13 to complete the disk ((C) step). Herein, the magnetic layer 14 is formed of a material including Co-X-Y (X and Y are transition metals) or rare earth-based ferromagnetic materials including Sm-Co.
이와 같이, 본 발명의 양자 디스크 제조 방법에 따르면, 양자 디스크를 nm 단위(scale)의 양자 도트(quantum dot(particle))를 종자층(12)으로하여, 그 위에 Cr층(13) 및 자성층(13)의 증착을 거쳐 1 bit 에 해당하는 단일 자구(single domain)를 전자빔 리소그래피(E-beam lithography)와 후속 공정 처리없이 용이하게 제조할 수 있다. 따라서, 초고용량의 양자 디스크를 고속처리(high throughput)로 대량 생산할 수 있다. 더욱이, self assembling growth(self organizing growth, 3D island growth, stranki-krastanow growth)법에 의한 종자층(seed layer)을 사용함으로써, 50 Gbit 이상의 초고용량 양자 디스크를 제조할 수 있다. 이와 같이 제조된 디스크는 후처리를 거친후 HDD 용 디스크, VOD 용 디스크 등 대용량의 정보 저장이 요청되는 곳에서 사용된다.As described above, according to the quantum disc manufacturing method of the present invention, the quantum disc is formed by using a quantum dot (particle) of nm scale as the seed layer 12, and thereon a Cr layer 13 and a magnetic layer ( 13, a single domain corresponding to 1 bit can be easily manufactured without E-beam lithography and subsequent processing. Therefore, it is possible to mass produce an ultra high capacity quantum disk with high throughput. Furthermore, by using a seed layer by self assembling growth (self organizing growth, 3D island growth, stranki-krastanow growth) method, an ultra-high capacity quantum disk of 50 Gbit or more can be manufactured. The disk manufactured as described above is used in a place where a large amount of information storage is required such as a disk for HDD and a disk for VOD after the post-processing.
이상 설명한 바와 같이, 본 발명은 값싸게 대량생산이 가능한 초고용량 정보저장장치에 사용될수있는 디스크를 제조하는데 있어, E-beam에 의한 lithography 공정을 거치지 않고 삼차원적으로 아일런드 성장된 nm 단위(scale)의 미립자(particle)를 종자층(seed layer)으로 사용하고, 그 위에 Cr층과 자성층을형성한다는데 특징이 있다. 이와 같이 제조된 양자 디스크는 단일 자구(single domain) 즉 bit 의 크기를 증착 조건에 따라 조절할 수 있으므로 원하는대로 정보 저장 용량을 조절할 수 있다. 또한, 이렇게 제조된 자구(domain)들은 상호간의 결합(coupling)이 없어 S/N 비가 큰 것이 장점이다. 따라서 이렇게 제조된 양자 디스크는 수평 및 수직 자기기록용 디스크로 사용된다.As described above, the present invention provides a disk that can be used for an ultra-capacity information storage device which can be mass-produced inexpensively, in which a three-dimensional island-grown nm unit (e.g., an E-beam) does not undergo a lithography process. ) Particles are used as a seed layer, and a Cr layer and a magnetic layer are formed thereon. Since the quantum disk manufactured as described above can adjust the size of a single domain, that is, bit, according to deposition conditions, the information storage capacity can be adjusted as desired. In addition, the domains thus prepared are advantageous in that the S / N ratio is large because there is no coupling between each other. Therefore, the quantum disk thus manufactured is used as a disk for horizontal and vertical magnetic recording.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960066936A KR100438802B1 (en) | 1996-12-17 | 1996-12-17 | A quantum disk and a method for fabricating the same |
US09/127,731 US6180202B1 (en) | 1996-12-17 | 1998-08-03 | Large capacity disk and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960066936A KR100438802B1 (en) | 1996-12-17 | 1996-12-17 | A quantum disk and a method for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980048366A true KR19980048366A (en) | 1998-09-15 |
KR100438802B1 KR100438802B1 (en) | 2004-08-31 |
Family
ID=19488539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960066936A KR100438802B1 (en) | 1996-12-17 | 1996-12-17 | A quantum disk and a method for fabricating the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US6180202B1 (en) |
KR (1) | KR100438802B1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6667118B1 (en) | 2000-09-05 | 2003-12-23 | Seagate Technology Llc | Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media |
JP2002237026A (en) * | 2001-02-08 | 2002-08-23 | Fujitsu Ltd | Magnetic recording medium, manufacturing method for magnetic recording medium and magnetic recording device |
US20030206358A1 (en) * | 2002-05-03 | 2003-11-06 | Loh David Kok Leong | Head instability detection for a data storage device |
JP4707311B2 (en) * | 2003-08-08 | 2011-06-22 | 花王株式会社 | Magnetic disk substrate |
US20080056088A2 (en) * | 2005-10-20 | 2008-03-06 | Lanyo Technology Co., Ltd. | Multiple Recording Structures for Optical Recording |
US20080057256A2 (en) * | 2005-10-20 | 2008-03-06 | Lanyo Technology Co., Ltd. | Micro-Resonant Structure for Optical Recording |
US20070092681A1 (en) * | 2005-10-20 | 2007-04-26 | Shuy Geoffrey W | Generating optical contrast using thin layers |
US20080057257A2 (en) * | 2005-10-20 | 2008-03-06 | Lanyo Technology Co., Ltd. | Contrast Enhancement for Optical Recording |
US20080056089A2 (en) * | 2005-10-20 | 2008-03-06 | Lanyo Technology Co., Ltd. | Generating Optical Contrast Using Thin Layers |
US7776388B2 (en) * | 2007-09-05 | 2010-08-17 | Hitachi Global Storage Technologies Netherlands, B.V. | Fabricating magnetic recording media on patterned seed layers |
US9966096B2 (en) | 2014-11-18 | 2018-05-08 | Western Digital Technologies, Inc. | Self-assembled nanoparticles with polymeric and/or oligomeric ligands |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01319121A (en) * | 1988-06-20 | 1989-12-25 | Victor Co Of Japan Ltd | Thin film magnetic disk |
JP2738714B2 (en) * | 1988-10-07 | 1998-04-08 | 株式会社日立製作所 | Recording method of magneto-optical recording |
JPH0358336A (en) * | 1989-07-26 | 1991-03-13 | Sanyo Electric Co Ltd | Optical recording medium and its production |
DE69029024T2 (en) * | 1989-10-05 | 1997-04-30 | Ibm | Magnetic thin film memory and method for its production |
JPH04147428A (en) * | 1990-10-11 | 1992-05-20 | Matsushita Electric Ind Co Ltd | Magnetic disk |
JP2559941B2 (en) * | 1992-03-16 | 1996-12-04 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Magnetic recording medium, manufacturing method thereof, and magnetic recording device |
JP3018762B2 (en) * | 1992-08-06 | 2000-03-13 | 富士電機株式会社 | Magnetic recording medium and method of manufacturing the same |
US5421975A (en) * | 1992-10-13 | 1995-06-06 | Mahvan; Nader | Method for enhancing the magnetic and roughness properties of thin film magnetic recording media and the resulting enhanced media |
JP2834392B2 (en) * | 1993-06-23 | 1998-12-09 | ストアメディア インコーポレーテッド | Metal thin film type magnetic recording medium and method of manufacturing the same |
US5620574A (en) * | 1994-08-26 | 1997-04-15 | Stormedia, Inc. | Method of fabricating sputter induced, micro-texturing of thin film, magnetic disc media |
JPH08221733A (en) * | 1995-02-17 | 1996-08-30 | Hitachi Ltd | Magnetic disk medium |
JP2811167B2 (en) * | 1996-03-11 | 1998-10-15 | 日本板硝子株式会社 | Substrate for magnetic disk |
-
1996
- 1996-12-17 KR KR1019960066936A patent/KR100438802B1/en not_active IP Right Cessation
-
1998
- 1998-08-03 US US09/127,731 patent/US6180202B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6180202B1 (en) | 2001-01-30 |
KR100438802B1 (en) | 2004-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1217320C (en) | Magnetic recording medium and method for fabricating a magnetic recording medium | |
US7067207B2 (en) | Magnetic recording medium having a patterned soft magnetic layer | |
US6331364B1 (en) | Patterned magnetic recording media containing chemically-ordered FePt of CoPt | |
US7141317B2 (en) | Perpendicular magnetic recording medium | |
US6383597B1 (en) | Magnetic recording media with magnetic bit regions patterned by ion irradiation | |
US8003163B2 (en) | Magnetic recording medium and method of manufacturing the same | |
US20060153976A1 (en) | Magnetic recording medium and hard disk drive using the same, and manufacturing method thereof | |
US20030157373A1 (en) | Magnetic recording medium, method of manufacture thereof, and magnetic recorder | |
US6146755A (en) | High density magnetic recording medium utilizing selective growth of ferromagnetic material | |
KR100438802B1 (en) | A quantum disk and a method for fabricating the same | |
US6383598B1 (en) | Patterned magnetic recording media with regions rendered nonmagnetic by ion irradiation | |
JP2003151127A (en) | Method for manufacturing high-density magnetic data storage medium | |
KR20080020827A (en) | Method of manufacturing nano-template for the pattern media and storing media thereof | |
CN104821174A (en) | Perpendicular magnetic recording disk with template layer formed of a blend of nanoparticles | |
Terris et al. | Recording and reversal properties of nanofabricated magnetic islands | |
US20090117409A1 (en) | Perpendicular magnetic recording medium and method of manufacturing the same | |
US20050225900A1 (en) | Magnetic recording media and production thereof, and, magnetic recording apparatus and method | |
JP5245734B2 (en) | Magnetic recording medium and method for manufacturing the same | |
US6506508B1 (en) | Magnetic recording medium, method of production and magnetic storage apparatus | |
Matsunuma et al. | Co/Pd multilayer media with Pd inorganic granular seed layer for perpendicular recording | |
JP4878168B2 (en) | Nanohole structure and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof | |
JP2001202611A (en) | Magnetic recording medium, method for producing same and information reproducing devce | |
JP3045797B2 (en) | Perpendicular magnetic recording media | |
Gavrila et al. | Patterned magnetic recording media–Issues and challenges | |
Lambeth | Modern Hard Disk Media Issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120531 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20130531 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |