KR19980021368A - Manufacturing method of optical waveguide device - Google Patents

Manufacturing method of optical waveguide device Download PDF

Info

Publication number
KR19980021368A
KR19980021368A KR1019960040186A KR19960040186A KR19980021368A KR 19980021368 A KR19980021368 A KR 19980021368A KR 1019960040186 A KR1019960040186 A KR 1019960040186A KR 19960040186 A KR19960040186 A KR 19960040186A KR 19980021368 A KR19980021368 A KR 19980021368A
Authority
KR
South Korea
Prior art keywords
optical waveguide
waveguide device
wafer
pattern
optical
Prior art date
Application number
KR1019960040186A
Other languages
Korean (ko)
Other versions
KR100263195B1 (en
Inventor
이태형
유병권
Original Assignee
김광호
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자 주식회사 filed Critical 김광호
Priority to KR1019960040186A priority Critical patent/KR100263195B1/en
Priority to GB9718024A priority patent/GB2317244B/en
Priority to RU97115321A priority patent/RU2129722C1/en
Priority to DE19740727A priority patent/DE19740727A1/en
Priority to FR9711484A priority patent/FR2753541A1/en
Priority to JP9250404A priority patent/JPH10104452A/en
Publication of KR19980021368A publication Critical patent/KR19980021368A/en
Application granted granted Critical
Publication of KR100263195B1 publication Critical patent/KR100263195B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

가. 청구범위에 기재된 발명이 속한 기술분야.end. The technical field to which the invention described in the claims belongs.

본 발명은 사진식각 공정으로 웨이퍼상에 광도파로소자 패턴을 제작하는 방법에 관한 것이다.The present invention relates to a method for fabricating an optical waveguide device pattern on a wafer by a photolithography process.

나. 발명이 해결하려고 하는 기술적 과제.I. The technical problem that the invention is trying to solve.

본 발명은 광도파로소자 패턴을 웨이퍼상에 일정한 각도로 경사지게 형성하므로 광도파로의 단면을 연마하는 공정을 삭제할 수 있는 광도파로 소자의 제작 방법을 제공하는데 있다.The present invention provides an optical waveguide device manufacturing method which can eliminate the process of polishing the end surface of the optical waveguide because the optical waveguide device pattern is formed to be inclined at a predetermined angle on the wafer.

다. 발명의 해결방법의 요지.All. Summary of the Solution of the Invention.

본 발명은 사진식각 공정으로 웨이퍼상에 광도파로소자 패턴을 제작하는 방법에 있어서, 상기 광도파로소자 패턴은 각각의 광도파로가 광섬유와의 접속시 반사 손실을 향상시키기 위해 상기 웨이퍼상의 광도파로소자 패턴을 절단하는 수직,수평 스크라이브-라인과 일정한 각도(θ)로 경사지게 형성되어 절단되어진다.The present invention relates to a method for fabricating an optical waveguide device pattern on a wafer by a photolithography process, wherein the optical waveguide device pattern includes an optical waveguide device pattern on the wafer to improve reflection loss when each optical waveguide is connected to an optical fiber. It is cut and formed to be inclined at a predetermined angle (θ) with a vertical and horizontal scribe-line for cutting.

라. 발명의 중요한 용도.la. Important use of the invention.

본 발명은 광도파로의 연마에 의한 광도파로 소자의 수율 감소를 방지할 수 있으며, 또한 상기 광도파로 소자의 원가를 획기적으로 감소시킬 수 있다.The present invention can prevent a decrease in the yield of the optical waveguide device due to the polishing of the optical waveguide, and can significantly reduce the cost of the optical waveguide device.

Description

광도파로 소자의 제작 방법.Method of manufacturing an optical waveguide device.

본 발명은 사진식각 공정으로 웨이퍼(wafer)상에 광도파로소자 패턴을 제작하는 방법에 관한 것으로서, 특히 웨이퍼의 수직,수평 스크라이브-라인과 일정한 각도로 광도파로소자 패턴을 형성하여 광도파로소자의 단면을 연마할 필요가 없는 광도파로 소자의 제작 방법에 관한 것이다.The present invention relates to a method for fabricating an optical waveguide device pattern on a wafer by a photolithography process. In particular, a cross-section of an optical waveguide device is formed by forming an optical waveguide device pattern at a predetermined angle with a vertical and horizontal scribe-line of a wafer. The present invention relates to a method for manufacturing an optical waveguide device which does not need to be polished.

통상적으로, 광도파로 소자와 광섬유 간을 접속시킬 때 문제가 되는 요소로는 접속시에 발생하는 프레넬 반사 손실과 정렬의 어긋남으로 인해 생기는 정렬 손실 그리고 상기 광도파로 소자와 광섬유 간의 접속으로 인한 빛의 반사에 의해서 광도파로 소자의 성능이 저하되는 영향 등을 들 수 있다.In general, a problem in connecting the optical waveguide element and the optical fiber includes a fresnel reflection loss occurring at the time of connection and misalignment caused by misalignment, and light due to the connection between the optical waveguide element and the optical fiber. The influence which the performance of an optical waveguide element falls by reflection is mentioned.

이러한 결과로서, 현재의 기술은 정렬이나 프레넬 반사에 의한 접속 손실은 거의 해결하였으나, 반사 손실의 경우에는 광도파로와 광섬유를 맞부딧힘 접속을 하였을 때 약 30dB의 수치를 나타낸다. 이 반사 손실의 영향은 상기 광도파로 소자에 의해 다시 경로가 바뀐 빛에 의한 크로스 토크 등을 유발시켜서 전체적인 시스템의 안정성에 직접 영향을 끼치는 요인이 된다. 이런한 영향을 없애기 위하여, 상기 광도파로의 단면과 광섬유 어레이의 단면을 약 7도∼8도 정도로 경사지게 단면을 연마한 후 서로 접속시켰다.As a result of this, the current technology has almost solved the splice loss due to alignment and Fresnel reflection, but the reflection loss shows a value of about 30 dB when the optical waveguide and the optical fiber are intertwined. The influence of this return loss causes crosstalk due to light redirected again by the optical waveguide element, which directly affects the stability of the overall system. In order to eliminate this effect, the end face of the optical waveguide and the end face of the optical fiber array were polished at an angle of about 7 to 8 degrees and then connected to each other.

따라서, 상기 광섬유와 접속되는 광도파로 소자를 제작하기 위한 종래 기술의 제작 방법은 도 1에 도시된 바와 같다.Therefore, the manufacturing method of the prior art for manufacturing the optical waveguide device connected to the optical fiber is as shown in FIG.

즉, 도 1과 도 2에 도시된 바와 같이 실리콘(Si) 재질의 웨이퍼(10)와 포토-마스크(photo mask)을 수직으로 정렬한 후, 사진식각(photo lithgoraphy) 공정을 통해 상기 웨이퍼(wafer)(10)상에 다수개의 광도파로소자 패턴(30)을 형성시킨다. 그후, 각각의 광도파로소자 패턴(30)은 수직 스크라이브-라인(scribe line)(18)과 수평 스크라이브-라인(16)에 의해 절단되어진다.That is, as shown in FIGS. 1 and 2, the wafer 10 made of silicon (Si) and the photo-mask are vertically aligned, and then the wafer is processed through a photo lithgoraphy process. A plurality of optical waveguide device patterns 30 are formed on the (10). Thereafter, each optical waveguide element pattern 30 is cut by a vertical scribe line 18 and a horizontal scribe line 16.

이때, 상기 수직,수평 스크라이브-라인(16)(18)은 항상 서로 직각 방향으로 절단하며, 또한 상기 광도파로소자 패턴(30)이 상기 웨이퍼(10)상에서 각각으로 떨어져 나가면 다수개의 광도파로(32)가 형성된 광도파로 소자가 된다.In this case, the vertical and horizontal scribe-lines 16 and 18 are always cut at right angles to each other, and when the optical waveguide element patterns 30 are separated from each other on the wafer 10, a plurality of optical waveguides 32 are used. ) Is formed an optical waveguide device.

그후, 상기 다수개의 광도파로(32)가 형성된 광도파로 소자의 끝단면을 약 8도 정도로 경사지게 연마하므로서 광섬유와 접속되는 상기 광도파로(32)의 접촉면(34)은 8도의 각도로 연마되어진다.Thereafter, the end face of the optical waveguide element on which the plurality of optical waveguides 32 are formed is inclined at about 8 degrees so that the contact surface 34 of the optical waveguide 32 connected to the optical fiber is polished at an angle of 8 degrees.

위와 같은 방법으로 제작되어지는 광도파로 소자는 광도파로소자 패턴을 웨이퍼상에 직각으로 형성하여 수직ㆍ수평 스크라이브-라인으로 절단한 후, 다시 각각의 광도파로 소자들을 지그를 이용하여 단면을 약 8도 정도로 경사지게 연마해야 하기 때문에 이러한 공정의 추가로 인해 조립 공수의 증가로 생산성이 감소되며, 또한 상기 광도파로 소자의 원가가 상승하는 문제점이 있었다.The optical waveguide device manufactured by the above method is formed by forming the optical waveguide device pattern at right angles on the wafer, cutting it into vertical and horizontal scribe-lines, and then using the jig for each optical waveguide device to cross the cross section about 8 degrees. Since the grinding process should be inclined to an extent, productivity is reduced due to the increase in the number of assembly operations due to the addition of such a process, and the cost of the optical waveguide device is increased.

상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 광도파로소자 패턴을 웨이퍼상에 일정한 각도로 경사지게 형성하므로 광도파로의 단면을 연마하는 공정을 삭제할 수 있는 광도파로 소자의 제작 방법을 제공하는데 있다.SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide an optical waveguide device manufacturing method capable of eliminating the process of polishing the end surface of the optical waveguide because the optical waveguide device pattern is formed to be inclined at a predetermined angle on the wafer.

본 발명의 다른 목적은 광도파로의 단면을 연마하는 공정의 삭제로 조립 공수의 감소 및 생산성을 향상시킬 수 있는 광도파로 소자의 제작 방법을 제공하는데 있다.It is another object of the present invention to provide a method for manufacturing an optical waveguide device which can reduce the number of assembly operations and improve productivity by eliminating the process of polishing the cross section of the optical waveguide.

본 발명의 또 다른 목적은 광도파로 소자의 원가를 감소시킬 수 있는 광도파로 소자의 제작 방법을 제공하는데 있다.Still another object of the present invention is to provide a method of manufacturing an optical waveguide device which can reduce the cost of the optical waveguide device.

상기와 같은 목적을 달성하기 위하여 본 발명은 사진식각 공정으로 웨이퍼상에 광도파로소자 패턴을 제작하는 방법에 있어서, 상기 광도파로소자 패턴은 각각의 광도파로가 광섬유와의 접속시 반사 손실을 향상시키기 위해 상기 웨이퍼상의 광도파로소자 패턴을 절단하는 수직,수평 스크라이브-라인과 일정한 각도(θ)로 경사지게 형성되어 절단됨을 특징으로 한다.In order to achieve the above object, the present invention provides a method of manufacturing an optical waveguide device pattern on a wafer by a photolithography process, the optical waveguide device pattern is to improve the reflection loss when each optical waveguide is connected to the optical fiber In order to cut the optical waveguide device pattern on the wafer to be inclined at a predetermined angle (θ) and vertical, horizontal scribe-line is characterized in that it is cut.

도 1은 종래 기술의 일실시예에 따른 웨이퍼(wafer)상에 광도파로소자 패턴(pattern)이 직각으로 형성된 상태를 나타낸 평면도.1 is a plan view showing a state in which an optical waveguide element pattern is formed at right angles on a wafer according to one embodiment of the prior art;

도 2는 도 1에서 A 부분의 확대도.FIG. 2 is an enlarged view of a portion A in FIG. 1. FIG.

도 3은 본 발명의 바람직한 일실시예에 따른 웨이퍼(wafer)상에 광도파로소자 패턴(pattern)이 경사지게 형성된 상태를 나타낸 평면도.3 is a plan view showing a state in which an optical waveguide element pattern is formed obliquely on a wafer according to an exemplary embodiment of the present invention.

도 4는 본 발명의 바람직한 일실시예에 따른 웨이퍼상에서 스크라이브-라인(scribe line)과 일정한 각도(θ)로 경사지게 형성된 광도파로소자 패턴을 나타낸 개략도.4 is a schematic view showing an optical waveguide device pattern formed to be inclined at a predetermined angle (θ) with a scribe line on a wafer according to a preferred embodiment of the present invention.

도 5는 도 4에서 B 부분의 확대도.5 is an enlarged view of a portion B in FIG. 4.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

10: 웨이퍼12: 광도파로소자 패턴10: wafer 12: optical waveguide element pattern

14: 광도파로16: 수평 스크라이브-라인14: optical waveguide 16: horizontal scribe-line

18: 수직 스크라이브-라인20: 접촉면18: vertical scribe-line 20: contact surface

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 우선, 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 동일한 부호가 사용되고 있음에 유의해야 한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used for the same components, even if displayed on different drawings. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

도 3은 본 발명의 바람직한 일실시예에 따른 웨이퍼(wafer)상에 광도파로소자 패턴(pattern)이 경사지게 형성된 상태를 나타낸 평면도이다. 도 4는 본 발명의 바람직한 일실시예에 따른 웨이퍼상에서 스크라이브-라인(scribe line)과 일정한 각도(θ)로 경사지게 형성된 광도파로소자 패턴을 나타낸 개략도이며, 도 5는 도 4에서 B 부분의 확대도이다.3 is a plan view illustrating a state in which an optical waveguide device pattern is formed obliquely on a wafer according to an exemplary embodiment of the present invention. 4 is a schematic view illustrating an optical waveguide device pattern formed to be inclined at a predetermined angle (θ) with a scribe line on a wafer according to an exemplary embodiment of the present invention, and FIG. 5 is an enlarged view of a portion B of FIG. 4. to be.

도 3과 도 4에 도시된 바와 같이, 광도파로 소자의 제작 방법은 먼저 실리콘(Si) 재질의 웨이퍼(10)와 포토-마스크(photo mask)을 일정한 각도로 정렬한 후, 사진식각(photo lithgoraphy) 공정을 통해 상기 웨이퍼(wafer)(10)상에 다수개의 광도파로소자 패턴(12)을 형성시킨다. 이때, 상기 웨이퍼(10)는 갈륨비소(GaAs) 웨이퍼 또는 리튬리븀옥사이드(LiNbO3) 웨이퍼 또는 석영 웨이퍼 등이 사용될 수 있다. 또한, 상기 광도파로소자 패턴(12)은 실리카 도파로 소자 또는 폴리머 도파로 소자 또는 레이저 다이오드 또는 포토 디텍터 소자 등으로 사용될 수 있다.As shown in FIGS. 3 and 4, a method of fabricating an optical waveguide device may be performed by first arranging a wafer 10 made of silicon (Si) and a photo-mask at a predetermined angle, followed by photolithgoraphy. A plurality of optical waveguide device patterns 12 are formed on the wafer 10 through a) process. In this case, the wafer 10 may be a gallium arsenide (GaAs) wafer, a lithium lithium metal oxide (LiNbO 3) wafer or a quartz wafer. In addition, the optical waveguide device pattern 12 may be used as a silica waveguide device, a polymer waveguide device, a laser diode, or a photo detector device.

또한, 상기 광도파로소자 패턴(12)은 도 4에 도시된 바와 같이, 상기 웨이퍼(10)상의 수직,수평 스크라이브-라인(16)(18)과 일정한 각도(θ)로 경사지게 형성되어진다. 그리고, 상기 각도(θ)는 광섬유와 광도파로 소자와의 접속시에 반사 손실을 향상시키기 위해 상기 광도파로 소자(12)에 형성된 광도파로(14) 및 광섬유가 지니는 개구수(NA: numerical apeture) 이상으로 형성되며, 좀더 상세하게는 약 1도∼20도 정도를 유지하게 된다.In addition, as shown in FIG. 4, the optical waveguide device pattern 12 is formed to be inclined at a predetermined angle θ with the vertical and horizontal scribe-lines 16 and 18 on the wafer 10. The angle θ is a numerical aperture (NA) of the optical waveguide 14 formed in the optical waveguide element 12 and the optical fiber to improve reflection loss when the optical fiber is connected to the optical waveguide element. It is formed as described above, and more specifically, about 1 to 20 degrees.

그후, 각각의 광도파로소자 패턴(30)은 일정한 각도를 유지하면서 수직 스크라이브-라인(scribe line)(18)과 수평 스크라이브-라인(16)에 의해 절단되어진다. 이때, 상기 광도파로소자 패턴(30)이 상기 웨이퍼(10)상에서 각각으로 떨어져 나가면 다수개의 광도파로(32)가 형성된 광도파로 소자가 된다. 그후, 광섬유와 접속되는 광도파로(14)의 접촉면(20)은 도 5에 도시된 바와 같이 약 7도∼8도의 각도로 연마되어진다.Each optical waveguide element pattern 30 is then cut by a vertical scribe line 18 and a horizontal scribe-line 16 while maintaining a constant angle. At this time, when the optical waveguide element pattern 30 is separated from each other on the wafer 10, the optical waveguide element having a plurality of optical waveguides 32 is formed. Thereafter, the contact surface 20 of the optical waveguide 14 connected with the optical fiber is polished at an angle of about 7 to 8 degrees as shown in FIG.

상술한 바와 같이 본 발명의 실시예에 따른 광도파로 소자의 제작 방법은 광도파로와 광섬유의 접속시에 반사 손실을 향상시키기 위해 상기 광도파로의 단면을 일정한 각도로 연마하는 공정을 삭제하므로서, 즉 상기 광도파로 소자를 제작하기 위한 패턴을 웨이퍼상에 직접 일정한 각도로 경사지게 형성하므로서 상기 광도파로의 연마에 의한 광도파로 소자의 수율 감소를 방지할 수 있으며, 또한 연마 고정을 삭제하기 때문에 조립 공수의 감소로 생산성을 향상시킬 수 있으며, 또한 상기 광도파로 소자의 원가를 획기적으로 감소시킬 수 있는 효과가 있다.As described above, the manufacturing method of the optical waveguide device according to the embodiment of the present invention eliminates the step of polishing the end face of the optical waveguide at a constant angle in order to improve the reflection loss when the optical waveguide and the optical fiber are connected. Since the pattern for fabricating the optical waveguide device is formed to be inclined at a predetermined angle directly on the wafer, it is possible to prevent a decrease in the yield of the optical waveguide device due to the polishing of the optical waveguide. Productivity can be improved, and the cost of the optical waveguide device can be drastically reduced.

Claims (6)

사진식각 공정으로 웨이퍼상에 광도파로소자 패턴을 제작하는 방법에 있어서,In the method for producing an optical waveguide device pattern on a wafer by a photolithography process, 상기 광도파로소자 패턴(12)은 각각의 광도파로(14)가 광섬유와의 접속시 반사 손실을 향상시키기 위해 상기 웨이퍼(10)상의 광도파로소자 패턴(12)을 절단하는 수직,수평 스크라이브-라인(16)(18)과 일정한 각도(θ)로 경사지게 형성되어 절단됨을 특징으로 하는 광도파로 소자의 제작 방법.The optical waveguide element pattern 12 includes vertical and horizontal scribe-lines in which each optical waveguide 14 cuts the optical waveguide element pattern 12 on the wafer 10 to improve reflection loss when the optical waveguide 14 is connected to the optical fiber. (16) (18) A manufacturing method of an optical waveguide device, characterized in that formed inclined at a predetermined angle (θ) and cut. 제1항에 있어서, 상기 광도파로소자 패턴(12)이 웨이퍼(10)상에서 상기 수직,수평 스크라이브-라인(16)(18)에 의해 절단될 때 상기 광섬유와 접속하는 광도파로(14)의 단면이 상기 도파로(14) 방향에 경사지게 절단됨을 특징으로 하는 광도파로 소자의 제작 방법.The cross section of the optical waveguide 14, wherein the optical waveguide device pattern 12 is connected to the optical fiber when the optical waveguide device pattern 12 is cut by the vertical and horizontal scribe-lines 16 and 18 on the wafer 10. Method for producing an optical waveguide device, characterized in that the cutting is inclined in the direction of the waveguide (14). 제1항에 있어서, 상기 수직,수평 스크라이브-라인(16)(18)에 의해 절단되는 상기 광도파로소자 패턴(12)의 절단면의 각도(θ)는 상기 광도파로(14) 및 광섬유가 지니는 개구수(NA) 이상임을 특징으로 하는 광도파로 소자의 제작 방법.According to claim 1, wherein the angle (θ) of the cut surface of the optical waveguide element pattern 12 cut by the vertical, horizontal scribe-line (16, 18) is an opening that the optical waveguide 14 and the optical fiber has A method of manufacturing an optical waveguide device, characterized in that the number (NA) or more. 제3항에 있어서, 상기 광도파로소자 패턴(12)의 절단면의 각도(θ)는 1도∼20도 임을 특징으로 하는 광도파로 소자의 제작 방법.4. The method of manufacturing the optical waveguide device according to claim 3, wherein the angle [theta] of the cut surface of the optical waveguide device pattern (12) is 1 degree to 20 degrees. 제1항에 있어서, 상기 광도파로소자 패턴(12)은 실리카 도파로 소자 또는 폴리머 도파로 소자 또는 레이저 다이오드 또는 포토 디텍터 소자 등으로 사용됨을 특징으로 하는 광도파로 소자의 제작 방법.The method of claim 1, wherein the optical waveguide device pattern (12) is used as a silica waveguide device, a polymer waveguide device, a laser diode or a photo detector device. 제1항에 있어서, 상기 웨이퍼(10)는 실리콘(Si) 웨이퍼 또는 갈륨비소(GaAs) 웨이퍼 또는 리튬리븀옥사이드(LiNbO3) 웨이퍼 또는 석영 웨이퍼 중 어느 하나가 사용됨을 특징으로 하는 광도파로 소자의 제작 방법.The method of claim 1, wherein the wafer 10 is made of any one of a silicon (Si) wafer, a gallium arsenide (GaAs) wafer, a lithium-libium oxide (LiNbO3) wafer, or a quartz wafer. .
KR1019960040186A 1996-09-16 1996-09-16 Method fabricating optical waveguide components KR100263195B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019960040186A KR100263195B1 (en) 1996-09-16 1996-09-16 Method fabricating optical waveguide components
GB9718024A GB2317244B (en) 1996-09-16 1997-08-27 Method of fabricating optical waveguide components
RU97115321A RU2129722C1 (en) 1996-09-16 1997-09-16 Method for manufacturing of waveguide elements
DE19740727A DE19740727A1 (en) 1996-09-16 1997-09-16 Process for the production of optical waveguide components
FR9711484A FR2753541A1 (en) 1996-09-16 1997-09-16 METHOD FOR MANUFACTURING OPTICAL WAVEGUIDE COMPONENTS
JP9250404A JPH10104452A (en) 1996-09-16 1997-09-16 Production of optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960040186A KR100263195B1 (en) 1996-09-16 1996-09-16 Method fabricating optical waveguide components

Publications (2)

Publication Number Publication Date
KR19980021368A true KR19980021368A (en) 1998-06-25
KR100263195B1 KR100263195B1 (en) 2000-08-01

Family

ID=19473928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960040186A KR100263195B1 (en) 1996-09-16 1996-09-16 Method fabricating optical waveguide components

Country Status (6)

Country Link
JP (1) JPH10104452A (en)
KR (1) KR100263195B1 (en)
DE (1) DE19740727A1 (en)
FR (1) FR2753541A1 (en)
GB (1) GB2317244B (en)
RU (1) RU2129722C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713498B1 (en) * 2002-07-02 2007-05-02 오므론 가부시키가이샤 Optical Waveguide Device and Manufacturing Method Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855274B1 (en) * 2003-05-19 2005-08-19 Teem Photonics INTEGRATED PHOTONIC CIRCUIT EQUIPPED WITH MEANS FOR INTERCONNECTING WITH REPLACED OPTOELECTRONIC COMPONENTS

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186713A (en) * 1984-10-05 1986-05-02 Matsushita Electric Ind Co Ltd Optical coupling parts
US5046808A (en) * 1989-12-18 1991-09-10 Litton Systems, Inc. Integrated optics chip and method of connecting optical fiber thereto
US5393371A (en) * 1989-12-18 1995-02-28 Litton Systems, Inc. Integrated optics chips and laser ablation methods for attachment of optical fibers thereto for LiNbO3 substrates
DE4006863A1 (en) * 1990-03-05 1991-09-12 Standard Elektrik Lorenz Ag OPTICAL WAVE GUIDE COMPONENT AND METHOD FOR PRODUCING AN OPTICAL WAVE GUIDE COMPONENT
JPH04243216A (en) * 1991-01-17 1992-08-31 Nec Corp Production of optical waveguide and optical integrated element and production thereof
DE4208278A1 (en) * 1992-03-13 1993-09-16 Bosch Gmbh Robert Integrated optical component eg modulator or switch - provides polymer optical conductor running on polymer material filling positioning slanted trench at connection with glass fibre
DE4240266A1 (en) * 1992-12-01 1994-06-09 Bosch Gmbh Robert Process for the production of optical polymer components with integrated vertical coupling structures
EP0641053A1 (en) * 1993-08-30 1995-03-01 AT&T Corp. Method and apparatus for control of lasing wavelength in distributed feedback lasers
US5462700A (en) * 1993-11-08 1995-10-31 Alliedsignal Inc. Process for making an array of tapered photopolymerized waveguides
DE4432410B4 (en) * 1994-08-31 2007-06-21 ADC Telecommunications, Inc., Eden Prairie Optoelectronic multi-wavelength device
US5576146A (en) * 1995-01-17 1996-11-19 Imation Corp. Photosensitive polymer-containing systems with increased shelf-lives
GB9509932D0 (en) * 1995-05-17 1995-07-12 Northern Telecom Ltd Bragg gratings in waveguides
DE19520819A1 (en) * 1995-05-30 1996-12-05 Deutsche Telekom Ag Process for using disc-shaped starting material in the production of optoelectronic components with gratings of variable grating period

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713498B1 (en) * 2002-07-02 2007-05-02 오므론 가부시키가이샤 Optical Waveguide Device and Manufacturing Method Thereof
KR100766686B1 (en) * 2002-07-02 2007-10-15 오므론 가부시키가이샤 Optical Waveguide Device, Manufacturing Method Thereof, and Optical Communication Apparatus

Also Published As

Publication number Publication date
GB9718024D0 (en) 1997-10-29
GB2317244A (en) 1998-03-18
FR2753541A1 (en) 1998-03-20
GB2317244B (en) 1998-12-09
KR100263195B1 (en) 2000-08-01
JPH10104452A (en) 1998-04-24
RU2129722C1 (en) 1999-04-27
DE19740727A1 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US5361382A (en) Method of connecting optical waveguide and optical fiber
KR100277356B1 (en) Pigtailing method between optical waveguide device and optical fiber module
JP2773990B2 (en) Method for manufacturing combined body of optical waveguide substrate and optical fiber alignment substrate
CA2217688C (en) Coupling of light into a monolithic waveguide device
US5535295A (en) Coupling structure for waveguide connection and process of forming the same
KR910005948B1 (en) Device including a component in alignement with a substrate supported waveguide
US5640477A (en) Electro-optical component alignment technique
JPH07128531A (en) Optical integrated circuit and its production
KR100263195B1 (en) Method fabricating optical waveguide components
US20020041739A1 (en) Waveguide having light barrier that serves as alignment groove
JPH10268158A (en) Optical branching filter and optical coupling part
JPH0255304A (en) Optical integrated circuit
JPH01261604A (en) Optical coupler
JPH01126608A (en) Light input/output device
US20020048433A1 (en) Optical component having a protected ridge
US5432338A (en) Silicon opto-electronic integrated circuit for fiber optic gyros or communication
JPH05249340A (en) Coupling device for optical parts
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
JP3303637B2 (en) Light switch
KR100403742B1 (en) Optical fiber block photo mask for loss reduction
JPH03179306A (en) Coupling structure between optical waveguide and photodetector
KR19990018425A (en) Fiber array module with input / output fiber array on the same plane board
KR0183119B1 (en) Optical alignment method of optical elements
US20030118287A1 (en) Method for designing polarization maintaining couplers
US20020041748A1 (en) Component having a reduced thermal sensitivity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 19990626

Effective date: 20000321

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080404

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee