KR19980020428A - Manufacturing Method of Polyamide Composite Membrane - Google Patents

Manufacturing Method of Polyamide Composite Membrane Download PDF

Info

Publication number
KR19980020428A
KR19980020428A KR1019960038910A KR19960038910A KR19980020428A KR 19980020428 A KR19980020428 A KR 19980020428A KR 1019960038910 A KR1019960038910 A KR 1019960038910A KR 19960038910 A KR19960038910 A KR 19960038910A KR 19980020428 A KR19980020428 A KR 19980020428A
Authority
KR
South Korea
Prior art keywords
solvent
ether
acid halide
polyfunctional
polyamide
Prior art date
Application number
KR1019960038910A
Other languages
Korean (ko)
Inventor
임대우
김순식
김권일
한진
Original Assignee
한형수
제일합섬 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한형수, 제일합섬 주식회사 filed Critical 한형수
Priority to KR1019960038910A priority Critical patent/KR19980020428A/en
Publication of KR19980020428A publication Critical patent/KR19980020428A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/2183Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 미세다공기질 표면에 다관능성 아민용액과 다관능성 산할로겐화물 용액을 계면 중합시켜서 얻은 가교폴리아미드계 복합 삼두막을 제조함을 그 목적으로 하며, 다관능성 산할로겐화물 용액의 용매로써 탄소수가 8개 이상인 n-알칸과 탄소수가 8개인 포화 및 불포화 탄산수소의 구조 이성질체를 혼합하고 첨가제로 디메틸에테르와 부틸에테르를 첨가하는 것을 특징으로 하는 폴리아미드계 복합분리막의 제조방법에 관한 것이다.An object of the present invention is to prepare a crosslinked polyamide-based composite tritium membrane obtained by interfacial polymerization of a polyfunctional amine solution and a polyfunctional acid halide solution on a surface of a microporous substrate, and has a carbon number as a solvent of the polyfunctional acid halide solution. The present invention relates to a method for producing a polyamide composite separator comprising mixing structural isomers of 8 or more n-alkanes and saturated and unsaturated hydrogen carbonates having 8 carbon atoms and adding dimethyl ether and butyl ether as additives.

Description

폴리아미드계 복합분리막의 제조방법Manufacturing Method of Polyamide Composite Membrane

본 발명은 미세다공기질 표면에 다관능성 아민용액과 다관능성 산할로겐화물 용액을 계면 중합시켜서 얻은 가교폴리아미드계 복합 물리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a crosslinked polyamide-based composite physical film obtained by interfacial polymerization of a polyfunctional amine solution and a polyfunctional acid halide solution on a surface of a microporous substrate.

최근 산업의 발달과 인구의 도시집중으로 산업 폐수 및 생활하수에 의한 수질오염과 강수량 증감에 의한 용수부족등으로 용수원의 확보 및 양질의 순수 제조의 필요성은 심각하다. 따라서 수중 오염물 제거 목적으로 역삼투막법, 전기투석법, 증발법, 냉동법 및 이온교환법 등이 이용되고 있으나, 수자원 부족 및 수자원 오염시 에너지의 소비량이 적고 운전이 간편하여 자동화가 가능한 역삼투막법에 대한 연구가 활발하다.Recently, due to industrial development and urban concentration of the population, there is a serious need for securing a water source and producing high quality pure water due to water pollution caused by industrial wastewater and household sewage and lack of water due to increase and decrease of precipitation. Therefore, reverse osmosis membrane method, electrodialysis method, evaporation method, freezing method and ion exchange method are used for the removal of pollutants in the water.However, research on reverse osmosis membrane method that can be automated due to low energy consumption and easy operation in case of lack of water resources and pollution of water resources It is actively.

원수의 COD(Chemical Oxygen Demand)가 4~10ppm이고 TDS가 110ppm 이상에서는 역삼투막법과 이온교환법을 병행하여 순수를 생산하는 것이 경제성은 물론 양질의 고순수를 생산하는 것이 결정성은 물론 양질의 고순수를 생산할 수 있다. 특히 유기물 오염시 알킬벤젠 슬포네이트의 농도가 높고, 미생물 등이 번식하고 있을 때는 활성탄 및 이온교환 수지의 오염도가 심하므로 역삼투막법으로 처리한 후 이온교환법으로 고순수를 생산하는 것이 효과적이다.If the COD (Chemical Oxygen Demand) of raw water is 4 ~ 10ppm and TDS is more than 110ppm, it is economical as well as high quality pure water by producing reverse osmosis membrane method and ion exchange method. Can be. In particular, when the concentration of alkylbenzene sulfonate is high when organic matter is contaminated, and when microorganisms are breeding, the contamination of activated carbon and ion exchange resin is severe. Therefore, it is effective to produce high pure water by ion exchange method after treatment with reverse osmosis membrane method.

또한 역삼투막법을 이용할 경우 하천수, 지하수 및 상수도의 수질보다 수질이 양호하므로 순수제조의 효율향상은 물론 유기물 및 미생물이 거의 없는 순수를 생산할 수 있다. 역삼투막은 액-액 시스템에서 물에 대한 투과도는 높고 미생물, 콜로이드 입자, 물에 녹아있는 염 및 유기물을 투과시키지 않아 이들을 제거할 수 있을 뿐 아니라, 10Å 이내의 용질 분리에 적용되는 분리막으로 사용된다. 분리막에 의한 분리공정의 구동력은 정밀여과나 한외여과 같은 압력에 의한 것과 기체분리 및 투과증발과 같은 농도차에 의한 것으로 구분되나 역삼투는 압력차와 농도차가 구동력으로 함께 작용한다. 역삼투막은 정밀 여과막이나 한외 여과막으로 제거할 수 없는 1가 이온이나 혹은 염을 제거할 수 있는 분리막으로 신규 발전소와 해안 매립지에 건설되는 대단위 공단의 용수 공급, 산업 폐수처리, 반도체 세정용 초순수 제조 및 기타 공정(우유 농축, 특정물질 축출, 의약품 제조) 등에서 용수원 확보 및 공정상의 한 방법으로 고려할 수 있으며, 계속적인 용수의 수질악화 및 후속기 건설에 따른 용수의 부족시 역삼투 시스템을 적극 활용할 수 있다.In addition, when the reverse osmosis membrane method is used, the water quality is better than the quality of river water, ground water and tap water, and thus, pure water with little organic matter and microorganisms can be produced as well as the efficiency of pure water production. Reverse osmosis membranes have a high permeability to water in liquid-liquid systems and do not permeate microorganisms, colloidal particles, salts and organics dissolved in water, and can be removed, and are used as separation membranes applied to solute separation within 10 kPa. The driving force of the separation process by the membrane is classified by pressure such as microfiltration or ultrafiltration and by concentration difference such as gas separation and permeation evaporation. However, in reverse osmosis, pressure difference and concentration difference act as driving force. Reverse osmosis membranes are membranes that can remove monovalent ions or salts that cannot be removed by microfiltration or ultrafiltration membranes. Water supply for large industrial complexes in new power plants and coastal landfills, industrial wastewater treatment, ultrapure water production for semiconductor cleaning, and other It can be considered as a source of water in the process (milk enrichment, extraction of specific substances, manufacturing of pharmaceuticals), etc., and a reverse osmosis system can be actively used in case of water shortage due to continuous deterioration of water and construction of subsequent stages.

1960년대 초에 로브(Lobe)에 소리라잔(Sourirajan)에 의해 최초의 역삼투막인 비대칭형 셀룰로우즈 디아세테이트막이 개발되고, 이 셀룰로우즈 디아세테이트막은 가격이 저렴하다는 장점은 있으나, 미생물에 대해 취약하고 강염기 하에서 쉽게 가수분해되며 사용온도와 pH의 범위가 좁다는 단점이 있어 셀룰로우즈의 개질과 여러 셀룰로우즈의 합금을 통해 사용되고 있지만 이들 단점을 완전히 극복할 수는 없다. 그 후 셀룰로우즈막의 단점을 보와하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리슬폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되었다.In the early 1960s, the first reverse osmosis membrane, asymmetric cellulose diacetate membrane, was developed by Sourirajan in Lobe, and the cellulose diacetate membrane is inexpensive, but vulnerable to microorganisms. It is easily hydrolyzed under strong bases and has a narrow range of temperature and pH, which is used through the modification of cellulose and alloys of various celluloses, but these disadvantages cannot be completely overcome. Since then, studies have been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like, to compensate for the disadvantages of cellulose membranes.

현재 이들 중에서 방향족 폴리슬폰을 다공성 지지막으로 하고 방향족 폴리아미드를 활성층으로 하는 복합막이 개발되어 상업화가 이루어지고 있다. 즉 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있다. 복합막의 제조방법은 박층 분산법, 침지 코딩법, 기상 증착법, Langmuir-Blodgett법, 계면 중합법 등이 있으며 특히 역삼투막에서는 계면 중합법이 복합막의 제조에 주로 이용되고 있다. 개면 중합법에 의한 역삼투용 복합막은 다공성 폴리슬폰 지지체에 폴리에틸렌아민 수용액과 핵산중의 톨루엔 디아이소시아네이트를 반응시켜 제조하였다. 반응성 모노머를 사용하여 복합막을 개발한 미국의 필름테크사는 폴리슬폰계의 미소다공성 기질에 m-페닐렌디아민이나 p-페닐렌디아민 등의 다관능성 아민 수용액을 함침시키고, 그 기질상에 다관능성 산활로겐화물 용액을 도포하여 아민과 계면중합이 일어나게 된다. 이 가교폴리아미드계 복합막은 현재 알려진 역삼투용 복합막 중에서 가장 성능이 좋다.Currently, composite membranes having aromatic polysulfone as a porous support membrane and aromatic polyamide as active layers have been developed and commercialized. That is, the composite membrane is composed of a support layer for maintaining mechanical strength and an active layer having selective permeability. The method for producing a composite membrane includes a thin layer dispersion method, an immersion coding method, a vapor deposition method, a Langmuir-Blodgett method, and an interfacial polymerization method. In particular, in the reverse osmosis membrane, an interfacial polymerization method is mainly used for producing a composite membrane. The reverse osmosis composite membrane by the open polymerization method was prepared by reacting an aqueous polyethyleneamine solution with toluene diisocyanate in a nucleic acid. Film Tech Co., Ltd., which developed a composite membrane using a reactive monomer, impregnated a polysulfone-based microporous substrate with an aqueous polyfunctional amine solution such as m-phenylenediamine or p-phenylenediamine, and the polyfunctional acid on the substrate. Interfacial polymerization occurs with the amine by applying the bromide solution. This crosslinked polyamide composite membrane has the best performance among currently known composite membranes for reverse osmosis.

그러나 이 가교폴리아미드계 복합막은 그 제조공정에 큰 결점을 가지고 있다. 그것은 다관능성 산할로겐화물 용액의 가장 일반적 용매로써 핵산 또는 프레온이 사용된다는 것이다. 핵산은 인화점과 비점이 낮아서 폭발이나 화재에 대한 위험이 많아 안정상의 대책으로 인한 경제적인 관점에서 부적합하다. 반면에 프레온계의 용매는 안전성이 높고, 양호한 성능의 막을 제조하기 쉬우므로 가장 많이 사용되고 있으나, 최근 오존층 파괴로 인한 지구 환경 오염물질로 그 사용이 큰 문제화 되고있다. 프레온계는 불연성, 무독성이고 쉽게 기화 또는 액화할 수 있으며 적절한 친유성을 갖는 등 극히 특정적인 성질을 보유하고 있어서 세정제, 냉매, 발포제 등과 같은 다수의 용도로 사용되고 있다. 그러나 프레온계는 성층권의 오존층을 파괴하는 성질이 있어서 지구환경에 중대한 영향을 미친다고 지정되고 있다. 태양에서 방사된 전자 파중 파장이 300nm보다 짧은 자외선을 오존층에 흡수되어 지상에 도달하지 않는다. 이 자외선은 강한 에너지를 보유하고 있으므로 생물체에 매우 유해하다.However, this crosslinked polyamide composite membrane has a large drawback in its manufacturing process. It is that nucleic acids or freons are used as the most common solvents of polyfunctional acid halide solutions. Nucleic acid has a low flash point and boiling point, so there is a high risk of explosion or fire, which is inappropriate from an economic point of view due to safety measures. Freon-based solvents, on the other hand, are most commonly used because they are highly safe and easy to manufacture good performance membranes. However, their use has recently become a major environmental pollutant due to the destruction of the ozone layer. Freon is nonflammable, non-toxic, easily evaporated or liquefied, has very specific properties such as having proper lipophilic properties and is used in many applications such as detergents, refrigerants, foaming agents, and the like. However, the Freon system has been designated as having a serious impact on the global environment because of its destruction of the stratospheric ozone layer. Ultraviolet rays whose wavelengths are shorter than 300 nm emitted from the sun are absorbed by the ozone layer and do not reach the ground. This ultraviolet light contains strong energy and is very harmful to living organisms.

따라서 오존층 파괴는 지구상의 생명체에 심각한 문제가 된다. 이 때문에 UNEP(United Nations Environment Planning)가 호소하는 오존층 보호에 관한 비엔나 조약(1985년), 몬트리얼 의정서(1987년), 헬싱키 선언(1989년)이 선택 되었다. 따라서 프레온계의 사용은 전세계적인 규모로 제한되고 있으며 헬싱키 선언에서는 서기 2000년까지 공업용도에 사용되는 모든 종류의 프레온계의 생산과 소비를 금지한다고 선언하고 있다. 이러한 상황을 비추어 볼 때 복합막 제조에서도 프레온계의 대체물질 개발이 시급하다.Thus, ozone depletion is a serious problem for life on Earth. For this reason, the Vienna Convention on the Protection of Ozone Layers (1985), the Montreal Protocol (1987) and the Helsinki Declaration (1989), which are called by the United Nations Environment Planning (UNEP), were chosen. The use of freon systems is therefore limited on a global scale, and the Helsinki Declaration prohibits the production and consumption of all types of freon systems used for industrial use until AD 2000. In light of this situation, it is urgent to develop alternative materials for freon in composite membrane production.

복합삼투막의 제조방법에서 프레온계 사용의 구체예를 들면, 일본 특공소 63-36803호 공보에는 폴리슬폰 기질에 m-페닐렌디아민이나 p-페닐렌디아민을 트리메조일 클로라이드나 이소프탈로일 클로라이드를 사용하여 계면중합시키는 방법을 나타내고 있는데, 이때 산염화물의 용매로 트리클로로트리플루오로에탄이 사용되고 있다. 또 일본의 특개평1-130707호 공보에는 아민으로 피페라진을 사용하는데 여기에서도 반응 용매로 트리클로로트리플루오로에탄이 사용된다. 그러나 특개소62-49909호 공보에서는 폴리슬폰 미소다공성기질을 사용하여, 폴리비닐알코올과 피페라진 등의 아마노화합물을 트리메조일 클로라이드를 사용하여 동시에 가교한다. 이 방법에서는 트리메조일 클로라이드의 용매로 n-핵산, 시크로핵산 등이 사용되었다. 이러한 저비점 탄화수소의 사용은 기질상에서 계면중합에 의한 복합막 제조광정에서 다관능성 산할로겐화물 용액을 반응성 모노머 또는 폴리머와 접촉시킨 후, 용매를 증발시키는 과정이 있으므로 이와 같이 저비점 탄화수소를 사용하였으나, 저비점 또는 중비점의 용매는 일반적으로 인화점이 낮아 안전상에 문제가 있다. 특개소 59-179103, 특공소 63-36803에는 가교제의 용매로 트리클로로트리플루오로에탄, n-핵산 등의 저비점 용매외에 고비점 용매도 사용하고 있다.As a specific example of the use of a freon system in the method for producing a composite osmosis membrane, Japanese Unexamined Patent Publication No. 63-36803 discloses that m-phenylenediamine or p-phenylenediamine is substituted with trimesoyl chloride or isophthaloyl chloride on a polysulfone substrate. A method of interfacial polymerization is shown, wherein trichlorotrifluoroethane is used as a solvent of an acid chloride. Japanese Unexamined Patent Application Publication No. 1-30707 uses piperazine as an amine, but trichlorotrifluoroethane is also used as a reaction solvent. However, Japanese Patent Application Laid-Open No. 62-49909 uses polysulfone microporous substrate to simultaneously crosslink an amano compounds such as polyvinyl alcohol and piperazine using trimezoyl chloride. In this method, n-nucleic acid, cyclonucleic acid, and the like were used as a solvent of trimesoyl chloride. The use of such low-boiling hydrocarbons is a process of evaporating the solvent after contacting a polyfunctional acid halide solution with a reactive monomer or polymer in the composite membrane preparation surface by interfacial polymerization on a substrate. Medium boiling point solvents generally have a low flash point and thus have a safety problem. In Japanese Patent Application Laid-Open Nos. 59-179103 and 63-36803, a high boiling point solvent is used in addition to low boiling point solvents such as trichlorotrifluoroethane and n-nucleic acid as a solvent for the crosslinking agent.

본 발명의 목적은 오존층을 파괴하는 기존의 용매를 다른 용매로 대체하며, 고인화점을 가져 취급시 안전한 용매의 사용으로 높은 역삼투성능(염배제율 및 수투과량)을 갖는 복합분리막의 제조방법을 목적으로 한다. 본 발명의 목적에 적합한 용매의 물리적 성질로는 인화점이 10℃ 이상으로 용매의 취급이 용이하며, 비점이 200℃ 이하로 용매의 증발에 필요한 시간이 짧고 용매의 증발온도가 낮아 막의 성능에 나쁜 영향을 주지 않아야 한다.An object of the present invention is to replace the existing solvent that destroys the ozone layer with another solvent, and to have a high flash point, the use of a safe solvent to handle the high reverse osmosis performance (salt removal rate and water permeation) of the composite membrane production method The purpose. Physical properties of the solvent suitable for the purpose of the present invention is easy to handle the solvent with a flash point of 10 ℃ or more, the boiling point is 200 ℃ or less the time required for the evaporation of the solvent is short and the evaporation temperature of the solvent has a low effect on the membrane performance Should not be given.

이하, 본 발명을 자세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

미세 다공 기질표면에 다관능성 아민 용액과 다관능성 산할로겐화물 용액을 계면중합시켜서 얻은 가교폴리아미드계 복합삼투막을 제조함에 있어서, 다관능성 산할로겐화물 용액의 용매로써 탄소수가 8개 이상인 n-알칸(normal alkane)에 탄소수가 8개인 포화 및 불포화 탄화수소의 구조이성질체를 혼합한다. 탄화수소 용매의 바람직한 예로는 n-옥탄, n-노단, n-데칸, n-운데칸, n-도데칸 등에 2,2-디메틸핵산, 2,5-디메틸핵산, 헥사메틸에탄, 2-메틸헵탄, 4-메틸헵탄, 2,2,4-트리메틸펜탄, 2,3,4-트리메틸펜탄 등을 0.1~30.0중량% 혼합한 용매의 사용이 좋으며, 특히 0.1~15.0중량%의 사용이 바람직하다. 여기에 첨가제로 에틸메틸 에테르와 부틸에틸 에테르를 0.1~8.0중량% 첨가하여 보다 높은 수투과량을 얻을 수 있으며, 특히 3.0~6.0중량%의 혼합이 바람직하다. 이와 같은 범위에서 만들어진 용매로 제조된 막의 역삼투 성능은, 농도가 2,000ppm 식염(NaCl) 수용액을 25℃, 15kg/cm2의 압력하에서 염배제율과 수투과량을 측정하여 평가하였다. 염배제율은 다음의 식에 의하여 계산 되었다.In preparing a crosslinked polyamide-based composite osmosis membrane obtained by interfacial polymerization of a polyfunctional amine solution and a polyfunctional acid halide solution on a surface of a microporous substrate, n-alkane having 8 or more carbon atoms as a solvent of the polyfunctional acid halide solution ( In the normal alkane), structural isomers of saturated and unsaturated hydrocarbons having 8 carbon atoms are mixed. Preferred examples of the hydrocarbon solvent include 2,2-dimethylnucleic acid, 2,5-dimethylnucleic acid, hexamethylethane and 2-methylheptane in n-octane, n-nordan, n-decane, n-undecane, n-dodecane and the like. It is preferable to use a solvent in which 0.1 to 30.0% by weight of 4-methylheptane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane and the like are mixed, and particularly preferably 0.1 to 15.0% by weight. It is possible to obtain a higher water permeability by adding 0.1 to 8.0% by weight of ethylmethyl ether and butylethyl ether as additives, and particularly preferably a mixture of 3.0 to 6.0% by weight. The reverse osmosis performance of the membrane prepared with the solvent made in such a range was evaluated by measuring the salt excretion rate and water permeability of a 2,000 ppm saline (NaCl) aqueous solution at a pressure of 25 ° C. and 15 kg / cm 2 . The salt rejection rate was calculated by the following equation.

염배제율(%)=(1-CP/CF)×100Salt Exclusion Rate (%) = (1-C P / C F ) × 100

여기에서 CF는 공급수 중의 NaCl 농도이며, CP는 투과수 중의 NaCl 농도를 나타낸다. 본 발명으로 제조된 복합분리막은 기존의 방법으로 제조된 복합분리막과 비슷한 농도의 염배제율을 가지나 수투과량은 보다 높게 나타내었다.Where C F is the NaCl concentration in the feed water and C P is the NaCl concentration in the permeate. The composite separator prepared according to the present invention has a salt excretion rate similar to that of the composite separator prepared by the conventional method, but has a higher water permeation rate.

이하, 본 발명을 실시예와 비교예의 의거 더욱 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail based on an Example and a comparative example.

[실시예 1]Example 1

폴리에스터 부직포상에 디메틸포름아미드와 폴리슬폰 10중량% 용액을 두께가 약 100㎛로 캐스트하고, 즉시 이것을 30℃ 온도의 수욕중에 침지하여 고형화 시킨후 부직포 보강 폴리슬폰 미소다공성 기질을 충분히 수세하여 기질 중의 용매와 물을 치환한 후, 상온에서 건조 시켰다. 이렇게 얻은 폴리슬폰 미소다공성 기질을 농도가 4.0중량%인 m-페닐렌디아민 수용액에 20시간 침지 시킨후 1.0중량%의 트리메조일 클로라이드 용액(용매;n-옥탄:2-메틸헵탄:에틸메틸 에테르=85.0:10.0:5.0중량%)을 5분간 도포하였다. 이렇게 제조된 복합막을 상온에서 건조시켰다. 이와 같이 제조된 복합막의 염 배제율 및 수투과량은 각각 99.2%, 1145ℓ/m2·day의 결과를 나타내었다.Cast 10% by weight solution of dimethylformamide and polysulfone on a polyester nonwoven fabric to a thickness of about 100 μm, immediately immerse it in a water bath at 30 ° C. to solidify it, and then rinse the nonwoven reinforced polysulfone microporous substrate sufficiently with water. After substituting the solvent and water in, it was dried at room temperature. The polysulfone microporous substrate thus obtained was immersed in an aqueous solution of m-phenylenediamine having a concentration of 4.0% by weight for 20 hours, and then 1.0% by weight of trimezoyl chloride solution (solvent; n-octane: 2-methylheptane: ethylmethyl ether). = 85.0: 10.0: 5.0 wt%) was applied for 5 minutes. The composite membrane thus prepared was dried at room temperature. The salt rejection rate and water permeation rate of the thus prepared composite membrane showed 99.2% and 1145 L / m 2 · day, respectively.

[실시예 2]Example 2

트리메조일 클로라이드 용액의 용매로 n-노난:2,2디메틸핵산:부틸에틸 에테르=80.0:15.0:5.0중량%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스터 부직포 보강 복합막을 제조하였다. 이 복합막의 염배제율과 수투과량은 각각 99.3%, 1145ℓ/m2·day의 결과를 나타내었다.A polyester nonwoven fabric-reinforced composite membrane was manufactured in the same manner as in Example 1, except that n-nonane: 2,2dimethylnucleic acid: butylethyl ether = 80.0: 15.0: 5.0 wt% was used as a solvent of the trimesoyl chloride solution. . The salt rejection rate and water permeation rate of this composite membrane were 99.3% and 1145 L / m 2 · day, respectively.

[실시예 3]Example 3

트리메조일 클로라이드 용액의 용매로 n-데칸:2,5디메틸핵산:에틸메틸 에테르=80.0:14.0:6.0중량%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스터 부직포 보강 복합막을 제조하였다. 이 복합막의 염배제율과 수투과량은 각각 99.2%, 1160ℓ/m2·day의 결과를 나타내었다.A polyester nonwoven fabric-reinforced composite membrane was manufactured in the same manner as in Example 1, except that n-decane: 2,5dimethylnucleic acid: ethylmethyl ether = 80.0: 14.0: 6.0% by weight as a solvent of the trimesoyl chloride solution. . The salt rejection rate and water permeation rate of this composite membrane were 99.2% and 1160 L / m 2 · day, respectively.

[비교예 1]Comparative Example 1

트리메조일 클로라이드 용액의 용매로 n-옥탄만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스터 부직포 보강 복합막을 제조하였다. 이 복합막의 염배제율과 수투과량은 각각 99.3%, 910ℓ/m2·day의 결과를 나타내었다.A polyester nonwoven fabric-reinforced composite membrane was prepared in the same manner as in Example 1 except that only n-octane was used as a solvent of the trimesoyl chloride solution. The salt rejection rate and water permeation rate of this composite membrane were 99.3% and 910 L / m 2 · day, respectively.

[비교예 2]Comparative Example 2

트리메조일 클로라이드 용액의 용매로 프레온만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스터 부직포 보강 복합막을 제조하였다. 이 복합막의 염배제율과 수투과량은 각각 99.2%, 860ℓ/m2·day의 결과를 나타내었다.A polyester nonwoven fabric-reinforced composite membrane was manufactured in the same manner as in Example 1 except that only Freon was used as a solvent of the trimesoyl chloride solution. The salt rejection rate and water permeation rate of this composite membrane were 99.2% and 860 L / m 2 · day, respectively.

Claims (4)

미세다공 기질 표면에 다관능성 아민 용액과 다관능성 산할로겐화물 용액을 계면중합시켜서 얻은 가교폴리아미드계 복합삼투막을 제조하는 방법에 있어서, 다관능성 산할로겐화물 용액의 용매로써, 탄소수가 8개 이상인 n-알칸과 단소수가 8개인 포화 및 불포화 탄산 수소의 구조이성질체를 혼합하고 첨가제로 에틸메틸 에테르와 부틸에틸 에테르를 첨가하는 것을 특징으로 하는 폴리아미드계 복합분리막의 제조방법.In the method for producing a crosslinked polyamide-based composite osmosis membrane obtained by interfacial polymerization of a polyfunctional amine solution and a polyfunctional acid halide solution on a surface of a microporous substrate, n having a carbon number of 8 or more as a solvent of the polyfunctional acid halide solution -A method for producing a polyamide-based composite separator, characterized in that the alkanes and the structural isomers of saturated and unsaturated hydrogen carbonates having 8 minor atoms are mixed and ethylmethyl ether and butylethyl ether are added as additives. 제1항에 있어서, 다관능성 산할로겐화물 용액의 용매가 n-옥탄, 2-메틸헵탄 그리고 메틸에틸에테르의 혼합물이고 2-메틸헵탄의 중량%가 0.1~30.0이고 에틸메틸 에테르의 중량%가 0.1~8.0인 것을 특징으로 하는 폴리아미드계 복합분리막의 제조방법.The solvent of claim 1 wherein the solvent of the polyfunctional acid halide solution is a mixture of n-octane, 2-methylheptane and methylethyl ether, the weight percent of 2-methylheptane is 0.1-30.0 and the weight percent of ethylmethyl ether is 0.1 Method for producing a polyamide-based composite separator, characterized in that ~ 8.0. 제1항에 있어서, 다관능성 산할로겐화물 용액의 용매가 n-노난, 2,2-디메틸핵산 그리고 부틸에틸 에테르의 혼합물이며 2,2-디메틸핵산의 중량%가 0.1~30.0이고 부틸에틸 에테르의 중량%가 0.1~8.0인 것을 특징으로 하는 복합막의 제조방법.The solvent of claim 1 wherein the solvent of the polyfunctional acid halide solution is a mixture of n-nonane, 2,2-dimethylnucleic acid and butylethyl ether, the weight percent of 2,2-dimethylnucleic acid is 0.1-30.0 and Weight% is 0.1-8.0 The manufacturing method of the composite membrane characterized by the above-mentioned. 제1항에 있어서, 다관능성 산할로겐화물 용액의 용매가 n-데칸, 2,5디메틸핵산 그리고 메틸에틸 에테르의 혼합물이며 2,5-디메틸액산의 중량%가 0.1~30.0이고 에틸메틸 에테르의 중량%가 0.1~8.0인 것을 특징으로 하는 폴리아미드계 복합분리막의 제조방법.The solvent of claim 1 wherein the solvent of the polyfunctional acid halide solution is a mixture of n-decane, 2,5 dimethylnucleic acid and methylethyl ether, the weight percent of 2,5-dimethylliquid acid is 0.1-30.0 and the weight of ethylmethyl ether A method for producing a polyamide composite separator, characterized in that the% is 0.1 ~ 8.0.
KR1019960038910A 1996-09-09 1996-09-09 Manufacturing Method of Polyamide Composite Membrane KR19980020428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960038910A KR19980020428A (en) 1996-09-09 1996-09-09 Manufacturing Method of Polyamide Composite Membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960038910A KR19980020428A (en) 1996-09-09 1996-09-09 Manufacturing Method of Polyamide Composite Membrane

Publications (1)

Publication Number Publication Date
KR19980020428A true KR19980020428A (en) 1998-06-25

Family

ID=66322243

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960038910A KR19980020428A (en) 1996-09-09 1996-09-09 Manufacturing Method of Polyamide Composite Membrane

Country Status (1)

Country Link
KR (1) KR19980020428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070134A (en) * 1998-02-17 1999-09-15 한형수 Manufacturing Method of Polyamide Composite Membrane
KR100587815B1 (en) * 2004-12-10 2006-06-12 주식회사 새 한 Producing method of the polyamid membrane having high performance
WO2016052880A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
WO2019212707A1 (en) * 2018-04-30 2019-11-07 Entegris, Inc. Polyamide coated filter membrane, filters, and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070134A (en) * 1998-02-17 1999-09-15 한형수 Manufacturing Method of Polyamide Composite Membrane
KR100587815B1 (en) * 2004-12-10 2006-06-12 주식회사 새 한 Producing method of the polyamid membrane having high performance
WO2016052880A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
US10479864B2 (en) 2014-09-30 2019-11-19 Lg Chem, Ltd. Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
WO2019212707A1 (en) * 2018-04-30 2019-11-07 Entegris, Inc. Polyamide coated filter membrane, filters, and methods
US11413586B2 (en) 2018-04-30 2022-08-16 Entegris, Inc. Polyamide coated filter membrane, filters, and methods

Similar Documents

Publication Publication Date Title
US6024873A (en) Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
EP1488846B1 (en) Composite semipermeable membrane, and production process thereof
US5576057A (en) Method of producing high permeable composite reverse osmosis membrane
US6709590B1 (en) Composite reverse osmosis membrane and method for producing the same
US5674398A (en) Composite reverse osmosis membrane
AU2005297802B2 (en) Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and method for water treatment using the same
JP2560944B2 (en) Method for manufacturing composite semipermeable membrane
KR20140005885A (en) Composite semipermeable membrane
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
KR20180030267A (en) A method of improving the flow rate of a TFC membrane using an oxidizing agent and a reducing agent
KR19980020428A (en) Manufacturing Method of Polyamide Composite Membrane
US7658872B2 (en) Process for preparing semipermeable membranes having improved permeability
US11944940B2 (en) Method for preparation of water-treatment separation membrane and water-treatment separation membrane prepared thereby
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
KR0129701B1 (en) Polyamide composite membrane preparation process
KR0129697B1 (en) Polyamide composite membrane preparation method
KR0137381B1 (en) Preparation process of reverse osmosis composite membrane
KR0129698B1 (en) Polyamide composite membrane preparation process
JP2009220023A (en) Method for manufacturing composite semi-permeable membrane
JP2005046659A (en) Liquid separation membrane and liquid treatment method
JP2005152818A (en) Liquid separation membrane and its manufacturing method
JP3134423B2 (en) Method for producing composite reverse osmosis membrane
JPH11169689A (en) Method for evaluating performance of composite reverse osmosis membrane and treatment of liquid using same
JPH09276673A (en) Highly permeable composite reverse osmosis membrane

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid