KR102688867B1 - Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor - Google Patents

Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor Download PDF

Info

Publication number
KR102688867B1
KR102688867B1 KR1020190062989A KR20190062989A KR102688867B1 KR 102688867 B1 KR102688867 B1 KR 102688867B1 KR 1020190062989 A KR1020190062989 A KR 1020190062989A KR 20190062989 A KR20190062989 A KR 20190062989A KR 102688867 B1 KR102688867 B1 KR 102688867B1
Authority
KR
South Korea
Prior art keywords
formula
compound
lithium
salt
water
Prior art date
Application number
KR1020190062989A
Other languages
Korean (ko)
Other versions
KR20200137147A (en
Inventor
이남규
김대환
이동훈
Original Assignee
(주)켐트로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)켐트로스 filed Critical (주)켐트로스
Priority to KR1020190062989A priority Critical patent/KR102688867B1/en
Publication of KR20200137147A publication Critical patent/KR20200137147A/en
Application granted granted Critical
Publication of KR102688867B1 publication Critical patent/KR102688867B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 리튬 이미다졸레이트염의 제조방법 및 그에 사용되는 중간체에 관한 것이다. 본 발명의 제조방법에 따르면, 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조할 수 있다.The present invention relates to a method for producing lithium imidazolate salt and intermediates used therein. According to the production method of the present invention, high purity lithium imidazolate salt can be produced efficiently and economically.

Description

리튬 이미다졸레이트염의 제조방법 및 그를 위한 중간체 {Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor}Method for producing lithium imidazolate salt and intermediate therefor {Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor}

본 발명은 리튬 이미다졸레이트염의 제조방법 및 그를 위한 중간체에 관한 것으로, 보다 상세하게는 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조하는 방법 및 그에 사용되는 중간체에 관한 것이다.The present invention relates to a method for producing lithium imidazolate salt and an intermediate therefor, and more specifically, to a method for efficiently and economically producing high purity lithium imidazolate salt and an intermediate used therefor.

이차전지의 시장 수요는 최근 급격하게 증가하고 있으며, 특히 휴대 전화, 노트북, PC 등 휴대형 전자 기기가 급속히 보급됨에 따라 이들을 구동하는 경량 및 고성능의 전지 수요가 계속 증가하고 있다. 또한, 소형 용도 이외에 자동차용 이차전지로의 활용도 기대되고 있으며, 그 중 리튬 이차전지는 이러한 시장의 요구를 충족하는 고성능 전지로서 주목을 받고 있다.Market demand for secondary batteries has been rapidly increasing recently, and in particular, as portable electronic devices such as mobile phones, laptops, and PCs are rapidly spreading, demand for lightweight and high-performance batteries that power them continues to increase. In addition, in addition to small-sized applications, it is expected to be used as a secondary battery for automobiles, and among these, lithium secondary batteries are attracting attention as high-performance batteries that meet the needs of this market.

이차전지는 양극재, 음극재, 분리막 및 전해질로 구성된다. 이 중 전해질은 충전 시 양극에서 음극으로, 방전 시에는 음극에서 양극으로 금속 이온을 빠르게 이동시키는 이동 매체로서 작용한다.A secondary battery consists of a positive electrode material, a negative electrode material, a separator, and an electrolyte. Among these, the electrolyte acts as a moving medium that quickly moves metal ions from the anode to the cathode during charging and from the cathode to the anode during discharging.

전해질로는 리튬 헥사플루오로포스페이트(LiPF6)가 통상적으로 사용된다. 하지만, 리튬 헥사플루오로포스페이트(LiPF6)는 미량의 수분과 반응하여 플루오르화수소 기체의 형태로 분해되며 낮은 열안정성을 나타내는 문제점이 있다. 이에, 리튬 헥사플루오로포스페이트(LiPF6)를 대체하기 위한 리튬염으로서, 수분에 매우 안정적이며 다양한 전극에서 믿을만한 성능을 보이는 리튬 2-트리플루오로메틸-4,5-디시아노이미다졸(LiTDI) 및 리튬 2-펜타플루오로에틸-4,5-디시아노이미다졸(LiPDI)과 같은 리튬 이미다졸레이트염이 개발된 바 있다.Lithium hexafluorophosphate (LiPF 6 ) is commonly used as an electrolyte. However, lithium hexafluorophosphate (LiPF 6 ) reacts with a trace amount of moisture and decomposes into hydrogen fluoride gas, which has the problem of low thermal stability. Accordingly, as a lithium salt to replace lithium hexafluorophosphate (LiPF 6 ), lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) is very stable in moisture and shows reliable performance in various electrodes. and lithium imidazolate salts such as lithium 2-pentafluoroethyl-4,5-dicyanoimidazole (LiPDI) have been developed.

이들 리튬 이미다졸레이트염은 리튬 헥사플루오로포스페이트보다 적은 불소 원자를 함유하며 리튬 헥사플루오로포스페이트의 약한 인-불소 결합 대신에 강한 탄소-불소 결합을 포함하는 장점을 가진다. 또한, 이들 염은 매우 양호한 전도성(약 6 mS/cm)을 가지고, 이미다졸레이트 음이온과 리튬 양이온 사이의 결합이 매우 안정적이어서 분해가 잘 일어나지 않는다. 또한, 상기 리튬 이미다졸레이트염은 전해질의 수분을 제거하기 위한 첨가제로서 사용되어 전해질 수명 향상에 탁월한 성능을 보일 수 있다.These lithium imidazolate salts contain fewer fluorine atoms than lithium hexafluorophosphate and have the advantage of containing a strong carbon-fluorine bond instead of the weak phosphorus-fluorine bond of lithium hexafluorophosphate. Additionally, these salts have very good conductivity (about 6 mS/cm), and the bond between the imidazolate anion and the lithium cation is very stable, so decomposition does not occur easily. In addition, the lithium imidazolate salt can be used as an additive to remove moisture from the electrolyte, showing excellent performance in improving the lifespan of the electrolyte.

대한민국 공개특허 제10-2014-0081868호에는 디아미노말레오니트릴과 트리플루오로아세트산 무수물을 디옥산 중에서 환류 하에 반응시킨 후, 과량의 물을 첨가하고, 수득된 수성 상을 에틸 아세테이트로 추출한 다음, 유기 상을 리튬 카보네이트 수용액으로 추출하여 수성 상을 분리한 후, 이를 활성 차콜로 처리하여 정제하는 과정을 거쳐 LiTDI를 제조하는 방법이 개시되어 있다. 그러나, 상기 제조방법은 LiTDI의 순도가 떨어져 LiTDI가 형성된 이후 많은 정제단계를 필요로 하는 문제점이 있었다.In Korean Patent Publication No. 10-2014-0081868, diaminomaleonitrile and trifluoroacetic anhydride were reacted in dioxane under reflux, then excess water was added, and the obtained aqueous phase was extracted with ethyl acetate, A method of producing LiTDI is disclosed by extracting the organic phase with an aqueous lithium carbonate solution, separating the aqueous phase, and purifying it by treating it with activated charcoal. However, the above manufacturing method had a problem in that the purity of LiTDI was low and many purification steps were required after LiTDI was formed.

따라서, 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조하는 방법에 대한 개발이 절실히 요구되고 있다.Therefore, there is an urgent need for the development of a method for efficiently and economically producing high-purity lithium imidazolate salt.

대한민국 공개특허 제10-2014-0081868호Republic of Korea Patent Publication No. 10-2014-0081868

본 발명자들은 리튬 이미다졸레이트염의 제조에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 디아미노말레오니트릴과 안하이드라이드(anhydride) 유도체를 반응시켜 1H-이미다졸-4,5-디카르보니트릴 유도체를 형성시킨 후, 상기 1H-이미다졸-4,5-디카르보니트릴 유도체에 소량의 물을 부가하여 1H-이미다졸-4,5-디카르보니트릴 유도체 수화물을 결정 형태로 수득하고, 이를 간단하고 용이하게 정제함으로써 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조할 수 있음을 알아내고, 본 발명을 완성하게 되었다.The present inventors conducted extensive research to solve the above-mentioned problems in the production of lithium imidazolate salt, and as a result, 1H-imidazole-4,5-dicarbohydrate was obtained by reacting diaminomaleonitrile with an anhydride derivative. After forming the nitrile derivative, a small amount of water was added to the 1H-imidazole-4,5-dicarbonitrile derivative to obtain 1H-imidazole-4,5-dicarbonitrile derivative hydrate in crystal form, which was It was discovered that high-purity lithium imidazolate salt could be produced efficiently and economically through simple and easy purification, and the present invention was completed.

따라서, 본 발명의 목적은 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조하는 방법을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a method for efficiently and economically producing high purity lithium imidazolate salt.

본 발명의 다른 목적은 상기 제조방법에 사용되는 중간체를 제공하는 것이다.Another object of the present invention is to provide an intermediate used in the above production method.

본 발명의 일 실시형태는 하기 화학식 1의 리튬 이미다졸레이트염의 제조방법에 관한 것으로, 본 발명의 제조방법은 One embodiment of the present invention relates to a method for producing lithium imidazolate salt of the following formula (1), and the production method of the present invention is

(i) 하기 화학식 2의 화합물과 하기 화학식 3의 화합물을 반응시켜 하기 화학식 4의 화합물을 수득하는 단계; (i) reacting a compound of Formula 2 below with a compound of Formula 3 below to obtain a compound of Formula 4 below;

(ii) 하기 화학식 4의 화합물에 물을 부가하여 하기 화학식 5의 화합물을 고체로서 수득하는 단계; 및 (ii) adding water to the compound of formula 4 below to obtain a compound of formula 5 as a solid; and

(iii) 하기 화학식 5의 화합물을 리튬 염기와 반응시키는 단계를 포함한다.(iii) reacting the compound of formula 5 below with lithium base.

[화학식 1][Formula 1]

Figure 112019055067029-pat00001
Figure 112019055067029-pat00001

[화학식 2][Formula 2]

Figure 112019055067029-pat00002
Figure 112019055067029-pat00002

[화학식 3][Formula 3]

Figure 112019055067029-pat00003
Figure 112019055067029-pat00003

[화학식 4][Formula 4]

Figure 112019055067029-pat00004
Figure 112019055067029-pat00004

[화학식 5][Formula 5]

Figure 112019055067029-pat00005
Figure 112019055067029-pat00005

상기 식에서, In the above equation,

R은 C1-C4의 플루오로알콕시기로 치환되거나 치환되지 않은 C1-C5의 플루오로알킬기이고, R is a C 1 -C 5 fluoroalkyl group substituted or unsubstituted with a C 1 -C 4 fluoroalkoxy group,

n은 1 내지 2의 정수이다.n is an integer from 1 to 2.

본 명세서에서 사용되는 C1-C4의 플루오로알콕시기는 하나 이상의 불소로 치환된 탄소수 1 내지 4로 구성된 직쇄형 또는 분지형 알콕시기를 의미하며, 트리플로오로메톡시, 트리플로오로에톡시 등이 포함되나 이에 한정되는 것은 아니다.The fluoroalkoxy group of C 1 -C 4 used herein refers to a straight-chain or branched alkoxy group consisting of 1 to 4 carbon atoms substituted with one or more fluorines, and includes trifluoromethoxy, trifluoroethoxy, etc. Included but not limited to this.

본 명세서에서 사용되는 C1-C5의 플루오로알킬기는 하나 이상의 불소로 치환된 탄소수 1 내지 5의 직쇄형 또는 분지형 탄화수소를 의미하며, 예를 들어 모노플루오로메틸, 디플루오로메틸, 트리플로오로메틸, 모노플루오로에틸, 디플루오로에틸, 트리플루오로에틸, 테트라플루오로에틸, 펜타플루오로에틸, 모노플루오로프로필, 디플루오로프로필, 트리플루오로프로필, 테트라플루오로프로필, 펜타플루오로프로필, 헵타플루오로프로필, 모노플루오로부틸, 디플루오로부틸, 트리플루오로부틸, 테트라플루오로부틸, 펜타플루오로부틸, 헥사플루오로부틸, 헵타플루오로부틸, 옥타플루오로부틸, 노나플루오로부틸, 모노플루오로펜틸, 디플루오로펜틸, 트리플루오로펜틸, 테트라플루오로펜틸, 펜타플루오로펜틸, 헥사플루오로펜틸, 헵타플루오로펜틸, 옥타플루오로펜틸, 노나플루오로펜틸, 데카플루오로펜틸, 언데카플루오로펜틸 등이 포함되나 이에 한정되는 것은 아니다.As used herein, the fluoroalkyl group of C 1 -C 5 refers to a straight-chain or branched hydrocarbon having 1 to 5 carbon atoms substituted with one or more fluorines, for example, monofluoromethyl, difluoromethyl, triple Fluoromethyl, monofluoroethyl, difluoroethyl, trifluoroethyl, tetrafluoroethyl, pentafluoroethyl, monofluoropropyl, difluoropropyl, trifluoropropyl, tetrafluoropropyl, penta Fluoropropyl, heptafluoropropyl, monofluorobutyl, difluorobutyl, trifluorobutyl, tetrafluorobutyl, pentafluorobutyl, hexafluorobutyl, heptafluorobutyl, octafluorobutyl, nona Fluorobutyl, monofluoropentyl, difluoropentyl, trifluoropentyl, tetrafluoropentyl, pentafluoropentyl, hexafluoropentyl, heptafluoropentyl, octafluoropentyl, nonafluoropentyl, deca It includes, but is not limited to, fluoropentyl, undecafluoropentyl, etc.

본 발명의 일 실시형태에서, R은 모노플루오로메틸, 디플루오로메틸, 트리플로오로메틸, 디플루오로에틸, 트리플루오로에틸, 테트라플루오로에틸, 펜타플루오로에틸, 트리플루오로프로필, 펜타플루오로프로필, 헵타플루오로프로필, 펜타플루오로부틸, 헵타플루오로부틸, 노나플루오로부틸, 언데카플루오로펜틸, 트리플로오로메톡시디플루오로메틸, 트리플로오로메톡시디플루오로에틸, 트리플로오로메톡시테트라플루오로에틸 또는 트리플로오로메톡시헥사플루오로프로필이고, n은 2일 수 있다.In one embodiment of the invention, R is monofluoromethyl, difluoromethyl, trifluoromethyl, difluoroethyl, trifluoroethyl, tetrafluoroethyl, pentafluoroethyl, trifluoropropyl, Pentafluoropropyl, heptafluoropropyl, pentafluorobutyl, heptafluorobutyl, nonafluorobutyl, undecafluoropentyl, trifluoromethoxydifluoromethyl, trifluoromethoxydifluoroethyl, triple looromethoxytetrafluoroethyl or trifluoromethoxyhexafluoropropyl, and n may be 2.

이하, 본 발명의 제조방법을 하기 반응식 1을 참조로 보다 상세히 설명한다. 하기 반응식 1에 기재된 방법은 대표적으로 사용된 방법을 예시한 것일 뿐 반응시약, 반응조건 등은 경우에 따라 얼마든지 변경될 수 있다.Hereinafter, the production method of the present invention will be described in more detail with reference to Scheme 1 below. The method described in Scheme 1 below is only an example of a typically used method, and reaction reagents, reaction conditions, etc. may be changed depending on the case.

[반응식 1][Scheme 1]

Figure 112019055067029-pat00006
Figure 112019055067029-pat00006

제1단계: 화학식 4의 화합물의 합성Step 1: Synthesis of compound of formula 4

화학식 4의 화합물은 화학식 2의 화합물과 화학식 3의 화합물을 반응시켜 제조할 수 있다.The compound of Formula 4 can be prepared by reacting the compound of Formula 2 with the compound of Formula 3.

상기 반응은 환류 하에 수행되는 것이 바람직하다.The reaction is preferably carried out under reflux.

반응용매로는 디옥산, 테트라하이드로퓨란, 디에틸렌글리콜 등이 사용될 수 있고, 특히 디옥산이 바람직하다.Dioxane, tetrahydrofuran, diethylene glycol, etc. may be used as the reaction solvent, and dioxane is particularly preferred.

반응시간은 6 시간 이상, 예컨대 약 6 내지 10시간이 적합하다.A suitable reaction time is 6 hours or more, for example about 6 to 10 hours.

제2단계: 화학식 5의 화합물의 합성Step 2: Synthesis of compound of formula 5

화학식 5의 화합물은 화학식 4의 화합물에 물을 부가하여 수득할 수 있다.The compound of formula 5 can be obtained by adding water to the compound of formula 4.

구체적으로, 화학식 5의 화합물은 화학식 4의 화합물에 화학식 2의 화합물에 대하여 중량 기준으로 1 내지 4배의 물을 적가하고 교반하여 수득할 수 있다.Specifically, the compound of Formula 5 can be obtained by adding 1 to 4 times the weight of water to the compound of Formula 4 dropwise and stirring the compound of Formula 2.

상기 부가되는 물의 양이 화학식 2의 화합물에 대하여 중량 기준으로 1배보다 적으면 수화물이 형성되기 어려울 수 있고, 4배보다 많으면 화학식 4의 화합물이 물에 용해될 수 있다. If the amount of water added is less than 1 times the weight of the compound of Formula 2, it may be difficult to form a hydrate, and if it is more than 4 times the amount of water added, the compound of Formula 4 may be dissolved in water.

교반시간은 12시간 이상, 예컨대 약 12 내지 24시간이 바람직하다.The stirring time is preferably 12 hours or more, for example, about 12 to 24 hours.

상기 단계에서 수득한 화학식 5의 화합물은 결정성 고체로서 화학식 1의 리튬 이미다졸레이트염의 제조에 사용되기 전에 여과되고 물로 세척될 수 있다.The compound of formula 5 obtained in the above step is a crystalline solid that can be filtered and washed with water before being used in the preparation of the lithium imidazolate salt of formula 1.

상기 세척된 화학식 5의 화합물은 활성탄을 이용하여 정제될 수 있다.The washed compound of Formula 5 can be purified using activated carbon.

구체적으로, 세척된 화학식 5의 화합물을 메탄올과 물의 혼합 용매에 용해시킨 후, 활성탄을 넣고 교반한 다음 여과하여 정제할 수 있다.Specifically, the washed compound of Formula 5 can be purified by dissolving it in a mixed solvent of methanol and water, adding activated carbon, stirring, and then filtering.

상기 단계 (ii)에서 수득한 화학식 5의 화합물은 순도가 99% 이상이다.The compound of Formula 5 obtained in step (ii) has a purity of 99% or more.

상기 화학식 5의 화합물은 X-선 회절분석에서 I/I0 (I: 각 회절각에서의 피크의 강도, I0: 가장 큰 피크의 강도)가 10% 이상인 회절각(2θ)의 값이 12.5±0.2, 14.2±0.2, 17.7±0.2, 20.2±0.2, 25.2±0.2, 26.1±0.2, 27.6±0.2, 28.2±0.2, 28.6±0.2 및 30.7±0.2인 것을 특징으로 하는 결정성 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물이다. In an ±0.2, 14.2±0.2, 17.7±0.2, 20.2±0.2, 25.2±0.2, 26.1±0.2, 27.6±0.2, 28.2±0.2, 28.6±0.2 and 30.7±0.2. Romethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate.

상기 화학식 5의 화합물은 상기 X선 회절피크 이외에 약한 강도로, 16.3±0.2, 29.4±0.2 및 32.7±0.2의 회절각(2θ)에서 X선 회절피크를 추가로 가질 수 있다. 이때, "약한 강도"란 I/I0 (상대강도)가 10% 미만인 피크를 나타낸다.In addition to the X-ray diffraction peak, the compound of Formula 5 may additionally have weak intensity X-ray diffraction peaks at diffraction angles (2θ) of 16.3 ± 0.2, 29.4 ± 0.2, and 32.7 ± 0.2. At this time, “weak intensity” refers to a peak whose I/I 0 (relative intensity) is less than 10%.

제3단계: 화학식 1의 리튬 Step 3: Lithium of Formula 1 이미다졸레이트염의of imidazolate salt 제조 manufacturing

화학식 1의 리튬 이미다졸레이트염은 화학식 5의 화합물을 리튬 염기와 반응시켜 제조할 수 있다.The lithium imidazolate salt of Formula 1 can be prepared by reacting the compound of Formula 5 with lithium base.

상기 리튬 염기는 리튬카보네이트, 리튬하이드록사이드 등이 사용될 수 있고, 특히 리튬카보네이트가 바람직하다.The lithium base may be lithium carbonate, lithium hydroxide, etc., and lithium carbonate is particularly preferred.

반응용매는 테트라하이드로퓨란(THF), 에탄올, 메탄올, 물, 아세토니트릴 등이 사용될 수 있고, 특히 테트라하이드로퓨란(THF)이 바람직하다.The reaction solvent may be tetrahydrofuran (THF), ethanol, methanol, water, acetonitrile, etc., and tetrahydrofuran (THF) is particularly preferable.

상기 반응이 종료된 후, 반응물에 메틸 t-부틸 에테르(MTBE)를 넣고 농축시켜 화학식 1의 화합물을 석출시킬 수 있다.After the reaction is completed, methyl t-butyl ether (MTBE) is added to the reactant and concentrated to precipitate the compound of Formula 1.

본 발명의 일 실시형태는 리튬 이미다졸레이트염의 제조 중간체인 하기 화학식 5의 화합물에 관한 것이다.One embodiment of the present invention relates to a compound of formula 5 below, which is an intermediate for the production of lithium imidazolate salt.

[화학식 5][Formula 5]

Figure 112019055067029-pat00007
Figure 112019055067029-pat00007

상기 식에서, In the above equation,

R은 C1-C4의 플루오로알콕시기로 치환되거나 치환되지 않은 C1-C5의 플루오로알킬기이고, R is a C 1 -C 5 fluoroalkyl group substituted or unsubstituted with a C 1 -C 4 fluoroalkoxy group,

n은 1 내지 2의 정수이다.n is an integer from 1 to 2.

상기 화학식 5의 화합물에 대한 상세한 설명은 리튬 이미다졸레이트염의 제조방법과 관련하여 상술한 설명과 동일하므로, 중복을 피하기 위해 구체적인 설명을 생략한다.Since the detailed description of the compound of Formula 5 is the same as the above-mentioned description regarding the preparation method of lithium imidazolate salt, detailed description is omitted to avoid duplication.

본 발명의 일 실시형태는 리튬 이미다졸레이트염의 제조 중간체인 화학식 5의 화합물의 제조방법에 관한 것으로, 본 발명의 일 실시형태에 따른 제조방법은 One embodiment of the present invention relates to a method for producing a compound of formula 5, which is an intermediate for the production of lithium imidazolate salt. The production method according to an embodiment of the present invention includes:

(i) 하기 화학식 2의 화합물과 하기 화학식 3의 화합물을 반응시켜 하기 화학식 4의 화합물을 수득하는 단계; 및 (i) reacting a compound of Formula 2 below with a compound of Formula 3 below to obtain a compound of Formula 4 below; and

(ii) 하기 화학식 4의 화합물에 물을 부가하여 하기 화학식 5의 화합물을 고체로서 수득하는 단계를 포함한다.(ii) adding water to the compound of formula 4 below to obtain the compound of formula 5 below as a solid.

[화학식 5][Formula 5]

Figure 112019055067029-pat00008
Figure 112019055067029-pat00008

[화학식 2][Formula 2]

Figure 112019055067029-pat00009
Figure 112019055067029-pat00009

[화학식 3][Formula 3]

Figure 112019055067029-pat00010
Figure 112019055067029-pat00010

[화학식 4][Formula 4]

Figure 112019055067029-pat00011
Figure 112019055067029-pat00011

상기 식에서, In the above equation,

R은 C1-C4의 플루오로알콕시기로 치환되거나 치환되지 않은 C1-C5의 플루오로알킬기이고, R is a C 1 -C 5 fluoroalkyl group substituted or unsubstituted with a C 1 -C 4 fluoroalkoxy group,

n은 1 내지 2의 정수이다.n is an integer from 1 to 2.

상기 화학식 5의 화합물의 제조방법에 대한 상세한 설명은 리튬 이미다졸레이트염의 제조방법과 관련하여 상술한 제1단계 내지 제2단계와 동일하므로, 중복을 피하기 위해 구체적인 설명을 생략한다.Since the detailed description of the method for producing the compound of Formula 5 is the same as the first to second steps described above with respect to the method for producing the lithium imidazolate salt, detailed description is omitted to avoid duplication.

본 발명의 일 실시형태는 리튬 이미다졸레이트염의 제조 중간체인 화학식 5의 화합물을 이용한 화학식 1의 리튬 이미다졸레이트염의 제조방법에 관한 것으로, 본 발명의 일 실시형태에 따른 제조방법은 An embodiment of the present invention relates to a method for producing a lithium imidazolate salt of Formula 1 using a compound of Formula 5, which is an intermediate for the production of lithium imidazolate salt. The production method according to an embodiment of the present invention includes:

(iii) 하기 화학식 5의 화합물을 리튬 염기와 반응시키는 단계를 포함한다.(iii) reacting the compound of formula 5 below with lithium base.

[화학식 5][Formula 5]

Figure 112019055067029-pat00012
Figure 112019055067029-pat00012

[화학식 1][Formula 1]

Figure 112019055067029-pat00013
Figure 112019055067029-pat00013

상기 식에서, In the above equation,

R은 C1-C4의 플루오로알콕시기로 치환되거나 치환되지 않은 C1-C5의 플루오로알킬기이고, R is a C 1 -C 5 fluoroalkyl group substituted or unsubstituted with a C 1 -C 4 fluoroalkoxy group,

n은 1 내지 2의 정수이다.n is an integer from 1 to 2.

상기 화학식 1의 리튬 이미다졸레이트염의 제조방법에 대한 상세한 설명은 리튬 이미다졸레이트염의 제조방법과 관련하여 상술한 제3단계와 동일하므로, 중복을 피하기 위해 구체적인 설명을 생략한다.Since the detailed description of the method for producing the lithium imidazolate salt of Formula 1 is the same as the third step described above in relation to the method for producing the lithium imidazolate salt, detailed description is omitted to avoid duplication.

본 발명의 제조방법에 따르면, 결정성 고체인 1H-이미다졸-4,5-디카르보니트릴 유도체 수화물을 이용함으로써 복잡한 정제 과정 없이 고순도의 리튬 이미다졸레이트염을 효율적이고 경제적으로 제조할 수 있다.According to the production method of the present invention, high purity lithium imidazolate salt can be efficiently and economically produced without a complicated purification process by using 1H-imidazole-4,5-dicarbonitrile derivative hydrate, which is a crystalline solid.

도 1은 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물의 1H NMR 분석 결과이다.
도 2는 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물의 19F NMR 분석 결과이다.
도 3은 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물의 X선 회절도이다.
도 4는 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물의 열중량 분석(TGA) 그래프이다.
Figure 1 shows the results of 1 H NMR analysis of 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1.
Figure 2 shows the results of 19 F NMR analysis of 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1.
Figure 3 is an X-ray diffraction diagram of 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1.
Figure 4 is a thermogravimetric analysis (TGA) graph of 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 발명을 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.Hereinafter, the present invention will be described in more detail through examples. It is obvious to those skilled in the art that these examples are only for illustrating the invention and that the scope of the present invention is not limited to these examples.

실시예Example 1: 2-( 1: 2-( 트리플루오로메틸trifluoromethyl )-1H-)-1H- 이미다졸Imidazole -4,5--4,5- 디카보니트릴Dicarbonitrile 이수화물(TDI·2 Dihydrate (TDI·2 HH 22 OO )의 제조)Manufacture of

플라스크에 트리플루오로아세틱 안하이드라이드(trifluoroacetic anhydride) 42mL(300 mmol), 디아미노말레오니트릴(diaminomaleonitrile) 27g(250 mmol) 및 디옥산(dioxane) 260 mL를 넣고 6시간 이상 환류 교반하였다. 반응의 종결 시점은 얇은막크로마토그래피(thin layer chromatography)로 확인하였다. 반응용액의 디옥산을 농축기에서 농축한 후, 고진공으로 잔류 트리플루오로아세틱 안하이드라이드를 제거하였다. 반응 생성물에 물 80mL를 적가하고, 12시간 이상 교반하였다. 옅은 노란색의 고체가 석출되었다. 상기 고체를 여과하고, 50 mL의 물로 세척하여 백색 고체로서 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물을 수득하였다(수율 80%).42 mL (300 mmol) of trifluoroacetic anhydride, 27 g (250 mmol) of diaminomaleonitrile, and 260 mL of dioxane were added to the flask and refluxed and stirred for more than 6 hours. The end point of the reaction was confirmed by thin layer chromatography. After concentrating the dioxane in the reaction solution in a concentrator, residual trifluoroacetic anhydride was removed under high vacuum. 80 mL of water was added dropwise to the reaction product and stirred for more than 12 hours. A pale yellow solid precipitated out. The solid was filtered and washed with 50 mL of water to obtain 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate as a white solid (yield 80%).

수득한 이수화물의 1H NMR, 19F NMR 및 X선 회절 분석을 수행하여, 그 결과를 각각 도 1, 도 2 및 도 3에 나타내었으며, 이로부터 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물이 결정형임을 확인하였다. 1 H NMR, 19 F NMR and It was confirmed that dazole-4,5-dicarbonitrile dihydrate was in crystalline form.

도 3의 X선 회절도에 나타난 특징적인 피크(peak)를 하기 표 1에 나타내었으며, 여기서 '2θ'는 회절각을, 'I/I0'는 피크(peak)의 상대강도를 의미한다. 회절각은 ±0.2°편차 범위를 갖는다.The characteristic peaks shown in the The diffraction angle has a deviation range of ±0.2°.

순도: 99.7%Purity: 99.7%

No.No. I/I0 (%)I/I 0 (%) No.No. I/I0 (%)I/I 0 (%) 1One 12.52112.521 40.240.2 88 27.56027.560 10.110.1 22 14.17914.179 100.0100.0 99 28.20228.202 13.013.0 33 16.29816.298 5.45.4 1010 28.61928.619 10.510.5 44 17.66117.661 14.914.9 1111 29.39929.399 5.55.5 55 20.17820.178 10.910.9 1212 30.66530.665 13.113.1 66 25.21825.218 12.512.5 1313 32.68232.682 6.06.0 77 26.10126.101 63.063.0 1414

실시예Example 2: 2-( 2: 2-( 트리플루오로메틸trifluoromethyl )-1H-)-1H- 이미다졸Imidazole -4,5--4,5- 디카보니트릴Dicarbonitrile 이수화물(TDI·2 Dihydrate (TDI·2 HH 22 OO )의 정제) tablets

상기 실시예 1에서 얻은 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물을 메탄올 100 mL와 물 100 mL의 혼합 용매에 넣고 용해시킨 후, 활성탄 10 g을 넣고, 50℃에서 2시간 동안 교반하였다. 상온으로 온도를 내린 후, 필터를 통해서 활성탄을 제거한 후, 농축시켜 백색의 고체로서 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물을 수득하였다.The 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1 was dissolved in a mixed solvent of 100 mL of methanol and 100 mL of water, and then 10 g of activated carbon was added. Added and stirred at 50°C for 2 hours. After lowering the temperature to room temperature, activated carbon was removed through a filter, and then concentrated to obtain 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate as a white solid.

순도 (HPLC 분석): 99.9%Purity (HPLC analysis): 99.9%

실시예Example 3: 리튬 2- 3: Lithium 2- 트리플루오로메틸trifluoromethyl -4,5--4,5- 디시아노이미다졸(LiTDI)의of dicyanoimidazole (LiTDI) 제조 manufacturing

상기 실시예 1 에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물 50 g을 THF 500 mL에 녹인 후, 리튬카보네이트(Li2CO3) 11 g(0.5 eq)을 넣고 12시간 동안 교반하였다. 반응 종료 후, 미반응 Li2CO3를 셀라이트 필터로 제거하고 농축시켰다. 농축액에 150 mL의 MTBE(methyl tertiary butyl ether)를 넣고, 농축하여 석출된 흰색 고체를 여과하였다. 이 후, 진공 건조하여 흰색 고체의 목적 화합물을 얻었다(43.3g, 수율 84%).After dissolving 50 g of 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1 in 500 mL of THF, 11 g of lithium carbonate (Li 2 CO 3 ) was added. (0.5 eq) was added and stirred for 12 hours. After completion of the reaction, unreacted Li 2 CO 3 was removed through a Celite filter and concentrated. 150 mL of MTBE (methyl tertiary butyl ether) was added to the concentrate, concentrated, and the precipitated white solid was filtered. Afterwards, it was vacuum dried to obtain the target compound as a white solid (43.3 g, yield 84%).

순도: 99.9%Purity: 99.9%

비교예Comparative example 1: 리튬 2- 1: Lithium 2- 트리플루오로메틸trifluoromethyl -4,5--4,5- 디시아노이미다졸(LiTDI)의of dicyanoimidazole (LiTDI) 제조 manufacturing

플라스크에 트리플루오로아세틱 안하이드라이드 1.6 mL, 디아미노말레오니트릴 1.25 g 및 1,4-디옥산 45 mL를 넣고 2 시간 동안 25℃에서 교반한 다음, 2 시간 동안 환류 교반하였다.1.6 mL of trifluoroacetic anhydride, 1.25 g of diaminomaleonitrile, and 45 mL of 1,4-dioxane were added to the flask, stirred at 25°C for 2 hours, and then refluxed and stirred for 2 hours.

반응 종료 후, 반응 용매를 증발시키고, 물 60 mL를 첨가하고, 수득된 수성 상을 에틸 아세테이트(2 × 50 mL)로 추출하였다. 이어서, 유기 상들을 합하고 리튬 카보네이트 수용액(60 mL의 물 중 0.5 g의 Li2CO3)으로 추출하였다. 검붉은 색의 수득된 수성 상에 활성탄을 넣고 하룻밤 동안 교반한 다음, 45℃로 2시간 동안 가열하여 수성 상을 탈색시켰다. 이후, 활성탄을 제거하고 수성 상을 증발시켜 옅은 노란색의 고체로서 LiTDI를 제조하였다(2.01g, 수율: 50% 미만).After completion of the reaction, the reaction solvent was evaporated, 60 mL of water was added, and the obtained aqueous phase was extracted with ethyl acetate (2 x 50 mL). The organic phases were then combined and extracted with an aqueous lithium carbonate solution (0.5 g Li 2 CO 3 in 60 mL water). Activated carbon was added to the obtained dark red aqueous phase, stirred overnight, and then heated to 45°C for 2 hours to decolorize the aqueous phase. Then, the activated carbon was removed and the aqueous phase was evaporated to prepare LiTDI as a pale yellow solid (2.01 g, yield: less than 50%).

순도: 95%Purity: 95%

실험예Experiment example 1: One: 칼피셔Karl Fischer 분석 analyze

상기 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물에 대해 칼-피셔(Karl-Fischer) 분석을 수행하였다.Karl-Fischer analysis was performed on 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1.

구체적으로, 상기 이수화물을 2주 동안 상온의 공기 중에서 건조시킨 후, 내포된 수분 함량을 자동 수분 측정 장치(870 KF Titrino plus)를 이용하여 측정하였다.Specifically, the dihydrate was dried in air at room temperature for 2 weeks, and then the contained moisture content was measured using an automatic moisture measuring device (870 KF Titrino plus).

그 결과, 수분 함량이 16.2%인 것으로 나타나 실시예 1에서 이수화물이 형성된 것을 알 수 있었다.As a result, the moisture content was found to be 16.2%, indicating that dihydrate was formed in Example 1.

실험예Experiment example 2: 2: 열중량thermogravity 분석( analyze( TGATGA ))

상기 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물에 대해 TGA Q50을 이용하여 열중량 분석(TGA)을 수행하였다.Thermogravimetric analysis (TGA) was performed on 2-(trifluoromethyl)-1H-imidazole-4,5-dicarbonitrile dihydrate obtained in Example 1 using TGA Q50.

그 결과를 도 4에 나타내었다.The results are shown in Figure 4.

도 4에서, 물이 제거되는 두 곳의 변곡점이 70℃(8.1 중량%의 무게 감소) 및 140℃(16.2 중량%의 무게 감소)에서 나타나 실시예 1에서 이수화물이 형성된 것을 알 수 있었다.In Figure 4, two inflection points where water is removed appear at 70°C (weight loss of 8.1% by weight) and 140°C (weight loss of 16.2% by weight), indicating that dihydrate was formed in Example 1.

실험예Experiment example 3: 적외선 분광(IR) 분석 3: Infrared spectroscopy (IR) analysis

실시예 1에서 결합된 물질이 물 분자인지를 확인하기 위하여, 상기 실시예 1에서 수득한 2-(트리플루오로메틸)-1H-이미다졸-4,5-디카보니트릴 이수화물에 대하여 FTIR-PERKIN ELMER SPECTRUM TWO를 사용하여 적외선 분광(IR) 분석을 실시하였다.In order to confirm whether the substance bound in Example 1 was a water molecule, FTIR- Infrared spectroscopy (IR) analysis was performed using a PERKIN ELMER SPECTRUM TWO.

그 결과, 물 분자의 벤딩 시그널(bending signal)이 1635 cm-1 근처에서 나타났다.As a result, the bending signal of water molecules appeared near 1635 cm -1 .

Claims (12)

(i) 하기 화학식 2의 화합물과 하기 화학식 3의 화합물을 반응시켜 하기 화학식 4의 화합물을 수득하는 단계;
(ii) 하기 화학식 4의 화합물에 물을 화학식 2의 화합물에 대하여 중량 기준으로 1 내지 4배로 부가하여 하기 화학식 5의 화합물을 고체로서 수득하는 단계; 및
(iii) 하기 화학식 5의 화합물을 리튬 염기와 반응시키는 단계를 포함하는 하기 화학식 1의 리튬 이미다졸레이트염의 제조방법:
[화학식 2]
Figure 112023118127313-pat00014

[화학식 3]
Figure 112023118127313-pat00015

[화학식 4]
Figure 112023118127313-pat00016

[화학식 5]
Figure 112023118127313-pat00017

[화학식 1]
Figure 112023118127313-pat00018

상기 식에서,
R은 C1-C4의 플루오로알콕시기로 치환되거나 치환되지 않은 C1-C5의 플루오로알킬기이고,
n은 1 내지 2의 정수이다.
(i) reacting a compound of Formula 2 below with a compound of Formula 3 below to obtain a compound of Formula 4 below;
(ii) adding water to the compound of Formula 4 in the amount of 1 to 4 times the weight of the compound of Formula 2 to obtain the compound of Formula 5 as a solid; and
(iii) A method for producing a lithium imidazolate salt of Formula 1, comprising the step of reacting a compound of Formula 5 below with a lithium base:
[Formula 2]
Figure 112023118127313-pat00014

[Formula 3]
Figure 112023118127313-pat00015

[Formula 4]
Figure 112023118127313-pat00016

[Formula 5]
Figure 112023118127313-pat00017

[Formula 1]
Figure 112023118127313-pat00018

In the above equation,
R is a C 1 -C 5 fluoroalkyl group substituted or unsubstituted with a C 1 -C 4 fluoroalkoxy group,
n is an integer from 1 to 2.
제1항에 있어서, R은 모노플루오로메틸, 디플루오로메틸, 트리플로오로메틸, 디플루오로에틸, 트리플루오로에틸, 테트라플루오로에틸, 펜타플루오로에틸, 트리플루오로프로필, 펜타플루오로프로필, 헵타플루오로프로필, 펜타플루오로부틸, 헵타플루오로부틸, 노나플루오로부틸, 언데카플루오로펜틸, 트리플로오로메톡시디플루오로메틸, 트리플로오로메톡시디플루오로에틸, 트리플로오로메톡시테트라플루오로에틸 또는 트리플로오로메톡시헥사플루오로프로필이고, n은 2인 제조방법.The method of claim 1, wherein R is monofluoromethyl, difluoromethyl, trifluoromethyl, difluoroethyl, trifluoroethyl, tetrafluoroethyl, pentafluoroethyl, trifluoropropyl, pentafluoromethyl, Propropyl, heptafluoropropyl, pentafluorobutyl, heptafluorobutyl, nonafluorobutyl, undecafluoropentyl, trifluoromethoxydifluoromethyl, trifluoromethoxydifluoroethyl, trifluoro A production method wherein methoxytetrafluoroethyl or trifluoromethoxyhexafluoropropyl, and n is 2. 제1항에 있어서, 상기 단계 (ii)에서 화학식 4의 화합물에 물을 적가하고 교반하여 화학식 5의 화합물을 수득하는 제조방법.The method of claim 1, wherein in step (ii), water is added dropwise to the compound of Formula 4 and stirred to obtain the compound of Formula 5. 제1항에 있어서, 화학식 5의 화합물은 순도가 99% 이상인 제조방법.The method of claim 1, wherein the compound of Formula 5 has a purity of 99% or more. 제1항에 있어서, 화학식 5의 화합물은 결정 형태인 제조방법.The method of claim 1, wherein the compound of Formula 5 is in crystalline form. 제5항에 있어서, 화학식 5의 화합물은 X-선 회절분석에서 I/I0 (I: 각 회절각에서의 피크의 강도, I0: 가장 큰 피크의 강도)가 10% 이상인 회절각(2θ)의 값이 12.5±0.2, 14.2±0.2, 17.7±0.2, 20.2±0.2, 25.2±0.2, 26.1±0.2, 27.6±0.2, 28.2±0.2, 28.6±0.2 및 30.7±0.2인 것인 제조방법.The method of claim 5, wherein the compound of Formula 5 has a diffraction angle (2θ) with I/I 0 (I: intensity of the peak at each diffraction angle, I 0 : intensity of the largest peak) of 10% or more in X-ray diffraction analysis. ) A manufacturing method wherein the values are 12.5±0.2, 14.2±0.2, 17.7±0.2, 20.2±0.2, 25.2±0.2, 26.1±0.2, 27.6±0.2, 28.2±0.2, 28.6±0.2 and 30.7±0.2. 제1항에 있어서, 상기 단계 (iii)에서 리튬 염기는 리튬카보네이트인 제조방법.The method of claim 1, wherein the lithium base in step (iii) is lithium carbonate. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190062989A 2019-05-29 2019-05-29 Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor KR102688867B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190062989A KR102688867B1 (en) 2019-05-29 2019-05-29 Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062989A KR102688867B1 (en) 2019-05-29 2019-05-29 Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor

Publications (2)

Publication Number Publication Date
KR20200137147A KR20200137147A (en) 2020-12-09
KR102688867B1 true KR102688867B1 (en) 2024-07-26

Family

ID=73786973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062989A KR102688867B1 (en) 2019-05-29 2019-05-29 Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor

Country Status (1)

Country Link
KR (1) KR102688867B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354587B (en) * 2021-05-19 2022-07-05 江苏理文化工有限公司 Drying method of imidazolyl fluorine-containing lithium salt
CN113277982B (en) * 2021-05-19 2022-07-05 江苏理文化工有限公司 Method and reaction device for continuously preparing 2-trifluoromethyl-4, 5-dicyanoimidazole lithium salt
KR102740005B1 (en) * 2022-04-06 2024-12-06 이피캠텍 주식회사 Diphenyliodonium salts used as photoinitiator and producing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008262B (en) 2016-06-13 2018-05-08 武汉海斯普林科技发展有限公司 4,5- dicyano -2- trifluoromethyl imidazoles, its prepare the preparation method of intermediate and its salt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072085A1 (en) * 2005-09-26 2007-03-29 Zonghai Chen Overcharge protection for electrochemical cells
FR2982610B1 (en) 2011-11-14 2016-01-08 Arkema France PROCESS FOR PREPARING SALT OF PENTACYLIC ANION
US20140266075A1 (en) * 2013-03-15 2014-09-18 Esionic Es, Inc. Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom
KR20150085670A (en) * 2014-01-16 2015-07-24 삼성에스디아이 주식회사 Electrolyte additive for lithium battery, electrolyte including the same and lithium battery using the electrolyte
EP3528332B1 (en) * 2017-03-17 2021-06-02 LG Chem, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008262B (en) 2016-06-13 2018-05-08 武汉海斯普林科技发展有限公司 4,5- dicyano -2- trifluoromethyl imidazoles, its prepare the preparation method of intermediate and its salt

Also Published As

Publication number Publication date
KR20200137147A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
KR102688867B1 (en) Process for Preparing Lithium Imidazolate Salt and Intermediate Therefor
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
CN103930405B (en) Prepare the method for five rings anion salt
CN111072000B (en) Alkali metal salt of fluorosulfonyl imide, method for producing same, and electrolyte
CN113227061A (en) Novel salts and polymorphs of bipedac acid
Kaplan et al. Synthesis, characterization, and structural investigations of 1‐amino‐3‐substituted‐1, 2, 3‐triazolium salts, and a new route to 1‐substituted‐1, 2, 3‐triazoles
US20100256384A1 (en) Method for producing purified ammonium salt of fluorinated bis-sulfonylimide
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
KR102275418B1 (en) method for preparing lithium bisfluorosulfonylimide
EP4007031A1 (en) Method for producing lithium ethyl sulfate
US20110266490A1 (en) Organosilicon Glycol-Based Electrolytes With A Hydroxy Terminus
KR102181108B1 (en) Lithium bis (fluorosulfonyl) imide and its manufacturing method
CN115925521B (en) Synthesis method of tris (trifluoroethoxy) methane
KR20230011200A (en) Preparation Method of bis(fluorosulfony)imide alkali metal salt in Dinitrile Solvent
CN105523970A (en) Method for preparing bis(fluorosulfonyl)lithium imine
CN114621116A (en) Preparation method of 1,3, 6-hexanetricarbonitrile
CN113502490A (en) Electrochemical oxidation reaction method for synthesizing tetrazene compound
KR20230055130A (en) Preparation Method of Bis(fluorosulfony)imide Alkali metal Salt in Ketone Solvent
JP5544892B2 (en) Process for producing 2-cyano-1,3-diketonate salt and ionic liquid
WO2003091222A1 (en) Process for producing n-alkyl-n'-alkylimidazolium salt
KR20230055702A (en) Preparation Method of bis(fluorosulfony)imide Alkali metal salt in Nirile-Ether Solvent
US11453687B2 (en) Production method of biarylphosphine
AU2020259813A1 (en) Process for the production of substituted 2-[2-(phenyl) ethylamino]alkaneamide derivatives
WO2018086379A1 (en) Cyanovinyl sulfonate and synthesis method thereof
Starodubtseva et al. Some aspects of MOF-74 (Zn 2 DOBDC) metal–organic framework formation using THF as the solvent

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190529

PN2301 Change of applicant

Patent event date: 20200928

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20220315

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20190529

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230828

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240527

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240723

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240723

End annual number: 3

Start annual number: 1

PG1601 Publication of registration