KR102680727B1 - Method for Preparing Lithium Sulfide - Google Patents

Method for Preparing Lithium Sulfide Download PDF

Info

Publication number
KR102680727B1
KR102680727B1 KR1020210169796A KR20210169796A KR102680727B1 KR 102680727 B1 KR102680727 B1 KR 102680727B1 KR 1020210169796 A KR1020210169796 A KR 1020210169796A KR 20210169796 A KR20210169796 A KR 20210169796A KR 102680727 B1 KR102680727 B1 KR 102680727B1
Authority
KR
South Korea
Prior art keywords
ammonia
lithium sulfide
tetrahydrofuran
dry ice
lithium metal
Prior art date
Application number
KR1020210169796A
Other languages
Korean (ko)
Other versions
KR20220079456A (en
Inventor
정성훈
안영주
이경은
임명용
백성윤
나용환
Original Assignee
주식회사 레이크테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이크테크놀로지 filed Critical 주식회사 레이크테크놀로지
Publication of KR20220079456A publication Critical patent/KR20220079456A/en
Application granted granted Critical
Publication of KR102680727B1 publication Critical patent/KR102680727B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 금속과 황을 암모니아 및 비양성자성 용매 중에서 반응시키는 단계를 포함하는 황화리튬(Li2S)의 제조방법을 제공한다. 본 발명의 제조방법에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 고순도의 황화리튬(Li2S)을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조할 수 있다.The present invention provides a method for producing lithium sulfide (Li 2 S) comprising reacting lithium metal and sulfur in ammonia and an aprotic solvent. According to the production method of the present invention, high purity lithium sulfide (Li 2 S) can be economically produced in a short time under mild reaction conditions using an aprotic solvent along with ammonia.

Description

황화리튬의 제조방법 {Method for Preparing Lithium Sulfide}Method for producing lithium sulfide {Method for Preparing Lithium Sulfide}

본 발명은 황화리튬(Li2S)의 제조방법에 관한 것으로, 보다 상세하게는 황화리튬(Li2S)을 간단한 공정을 통해 경제적으로 제조하는 방법에 관한 것이다. The present invention relates to a method for producing lithium sulfide (Li 2 S), and more specifically, to a method for economically producing lithium sulfide (Li 2 S) through a simple process.

리튬 이온 전지는 충전시에는 양극으로부터 리튬이 이온으로서 용출하여 음극으로 이동하여 흡장되고, 방전시에는 반대로 음극으로부터 양극으로 리튬 이온이 돌아가는 구조의 이차 전지이며, 에너지밀도가 높고 단위면적당 용량이 크고 수명이 긴 특징을 갖고 있기 때문에, 자동차, 전력저장시스템 등의 대형기기에서부터 휴대폰, 캠코더, 노트북 등의 소형기기까지 널리 사용되고 있다.A lithium-ion battery is a secondary battery with a structure in which lithium ions elute from the positive electrode as ions and move to the negative electrode and are stored during charging, and when discharging, lithium ions return from the negative electrode to the positive electrode. It has a high energy density, large capacity per unit area, and long service life. Because it has these long characteristics, it is widely used in everything from large devices such as automobiles and power storage systems to small devices such as mobile phones, camcorders, and laptops.

이러한 리튬 이온 전지는 양극, 음극, 및 이온 전도층으로 구성되고, 이온 전도층에는 폴리에틸렌, 폴리프로필렌 등의 다공질 필름으로 이루어지는 세퍼레이터에 비수계의 전해액을 채운 것이 일반적으로 사용되고 있다.Such a lithium ion battery is composed of an anode, a cathode, and an ion conductive layer, and a separator made of a porous film such as polyethylene or polypropylene filled with a non-aqueous electrolyte solution is generally used for the ion conductive layer.

그러나 전해액으로서 가연성의 유기용매 등의 액체 전해질이 사용되고 있기 때문에, 전해질의 누액 및 이에 따른 화재의 위험성 등의 안전성 문제가 끊임없이 제기되어 왔다.However, since liquid electrolytes such as flammable organic solvents are used as electrolytes, safety issues such as electrolyte leakage and the resulting risk of fire have been constantly raised.

이에 따라 최근에는 안전성을 높이기 위해 전해질로 유기 액체 전해질이 아니라 황화리튬(Li2S) 등을 원료로서 사용한 불연 또는 난연의 성질을 가지는 전고체 전지에 대한 관심이 높아지고 있다.Accordingly, recently, in order to increase safety, interest in all-solid-state batteries with non-flammable or flame-retardant properties that use lithium sulfide (Li 2 S) as a raw material rather than an organic liquid electrolyte as an electrolyte is increasing.

전고체 전해질의 재료로 적합한 황화리튬(Li2S)은 천연 광물로서는 산출되지 않기 때문에 합성할 필요가 있다.Lithium sulfide (Li 2 S), which is suitable as a material for an all-solid electrolyte, must be synthesized because it cannot be found as a natural mineral.

황화리튬(Li2S)의 제조방법으로서는 액체 암모니아에서 리튬 금속과 황을 반응시키는 방법이 알려져 있으나, 암모니아를 액화시키기 위해 저온 냉각 또는 고압으로 가압을 하여야 하고 반응에 장시간이 소요되어 생산성이 낮아지는 문제점이 있었다.As a method of producing lithium sulfide (Li 2 S), a method of reacting lithium metal and sulfur in liquid ammonia is known, but to liquefy ammonia, it must be cooled to low temperature or pressurized to high pressure, and the reaction takes a long time, which reduces productivity. There was a problem.

이에 대한민국 공개특허 제10-2014-0053034호에는 황화 수소와 리튬-함유 강 염을 반응시켜 황화리튬을 제조하는 방법이 개시되어 있다. 그러나, 상기 제조방법은 취급이 어렵고 고가인 n-부틸리튬과 같은 강염기를 사용하여야 하는 문제점이 있었다. Accordingly, Korean Patent Publication No. 10-2014-0053034 discloses a method of producing lithium sulfide by reacting hydrogen sulfide with lithium-containing steel salt. However, the above manufacturing method had the problem of having to use a strong base such as n-butyllithium, which is difficult to handle and expensive.

따라서, 취급이 용이하고 저가인 출발물질을 이용하면서 온화한 반응조건에서 단시간 내에 황화리튬을 대량생산할 수 있는 방법의 개발이 절실히 요구되어 왔다.Therefore, there has been an urgent need to develop a method that can mass-produce lithium sulfide in a short time under mild reaction conditions while using easy-to-handle and inexpensive starting materials.

대한민국 공개특허 제10-2014-0053034호Republic of Korea Patent Publication No. 10-2014-0053034

본 발명의 한 목적은 황화리튬을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조하는 방법을 제공하는 것이다.One object of the present invention is to provide a method for economically producing lithium sulfide in a short time under mild reaction conditions.

본 발명의 일 실시형태는 리튬 금속과 황을 암모니아 및 비양성자성 용매 중에서 반응시키는 단계를 포함하는 황화리튬(Li2S)의 제조방법에 관한 것이다.One embodiment of the present invention relates to a method for producing lithium sulfide (Li 2 S) comprising reacting lithium metal and sulfur in ammonia and an aprotic solvent.

본 발명의 일 실시형태에 따른 황화리튬(Li2S)의 제조방법은 리튬 금속을 암모니아 및 비양성자성 용매 중에 용해시키고, 황 분말을 투입하여 반응시키는 단계를 포함한다. A method for producing lithium sulfide (Li 2 S) according to an embodiment of the present invention includes dissolving lithium metal in ammonia and an aprotic solvent, and adding sulfur powder to react.

본 발명의 일 실시형태에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 적은 양의 액화 암모니아를 사용하고도 용해도를 상승시켜 황화리튬의 제조 시간을 단축시킬 수 있다. According to one embodiment of the present invention, the production time of lithium sulfide can be shortened by using an aprotic solvent together with ammonia to increase solubility even when using a small amount of liquefied ammonia.

상기 비양성자성 용매로는, 예를 들어, 카보네이트계, 에스테르계, 에테르계, 케톤계, 아민계, 포스핀계 용매 등이 사용될 수 있다.As the aprotic solvent, for example, carbonate-based, ester-based, ether-based, ketone-based, amine-based, phosphine-based solvents, etc. may be used.

상기 에테르계 용매는 비환형 에테르(acyclic ether) 및 환형 에테르(cyclic ether)를 포함한다.The ether-based solvent includes acyclic ether and cyclic ether.

상기 비환형 에테르의 구체예는 1,2-디메톡시에탄(1,2-dimethoxyethane), 1,2-디에톡시에탄(1,2-diethoxyethane), 1,2-디부톡시에탄(1,2-dibuthoxyethane), 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether), 디에틸렌 글리콜 디에틸 에테르(diethylene glycol diethyl ether), 트리에틸렌 글리콜 디메틸 에테르(triethylene glycol dimethyl ether), 트리에틸렌 글리콜 디에틸 에테르(triethylene glycol diethyl ether), 테트라에틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether), 테트라에틸렌 글리콜 디에틸 에테르(tetraethylene glycol diethyl ether) 등을 포함하나, 이에 제한되는 것은 아니다. Specific examples of the acyclic ether include 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane (1,2-dimethoxyethane). dibuthoxyethane), diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether), tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, etc., but is not limited thereto.

또한, 상기 환형 에테르의 구체예는 1,3-디옥소란(1,3-dioxolane), 4,5-디메틸-디옥소란(4,5-dimethyl-dioxolane), 4,5-디에틸-디옥소란(4,5-diethyl-dioxolane), 4-메틸-1,3-디옥소란(4-methyl-1,3-dioxolane), 4-에틸-1,3-디옥소란(4-ethyl-1,3-dioxolane), 테트라하이드로퓨란(tetrahydrofuran), 2-메틸 테트라하이드로퓨란(2-methyl tetrahydrofuran), 2,5-디메틸 테트라하이드로퓨란(2,5-dimethyl tetrahydrofuran), 2,5-디메톡시 테트라하이드로퓨란(2,5-dimethoxy tetrahydrofuran), 2-에톡시 테트라하이드로퓨란(2-ethoxy tetrahydrofuran), 테트라하이드로파이란(tetrahydropyran), 1,4-디옥산(1,4-dioxane) 등을 포함하나, 이에 제한되는 것은 아니다. In addition, specific examples of the cyclic ether include 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl- Dioxolane (4,5-diethyl-dioxolane), 4-methyl-1,3-dioxolane, 4-ethyl-1,3-dioxolane (4- ethyl-1,3-dioxolane), tetrahydrofuran, 2-methyl tetrahydrofuran, 2,5-dimethyl tetrahydrofuran (2,5-dimethyl tetrahydrofuran), 2,5- Dimethoxy tetrahydrofuran (2,5-dimethoxy tetrahydrofuran), 2-ethoxy tetrahydrofuran, tetrahydropyran, 1,4-dioxane, etc. Including, but not limited to this.

본 발명의 일 실시형태에서, 상기 비양성자성 용매는 환형 에테르, 특히 테트라하이드로퓨란(tetrahydrofuran)일 수 있다.In one embodiment of the present invention, the aprotic solvent may be a cyclic ether, especially tetrahydrofuran.

본 발명의 일 실시형태에서, 상기 암모니아 및 비양성자성 용매의 혼합비는 부피비로 4:6 내지 7:3, 바람직하게는 5:5 내지 7:3이다. 상기 혼합비가 상기 범위를 벗어나는 경우 반응시간이 증가될 수 있다. In one embodiment of the present invention, the mixing ratio of the ammonia and the aprotic solvent is 4:6 to 7:3 by volume, preferably 5:5 to 7:3. If the mixing ratio is outside the above range, the reaction time may increase.

상기 반응온도는 -50℃내지 50℃, 바람직하게는 -32℃ 내지 -28℃이다.The reaction temperature is -50°C to 50°C, preferably -32°C to -28°C.

또한, 상기 반응은 불활성 분위기 하에서 수행하는 것이 바람직하다. 상기 "불활성 분위기 하"는 공기와 대기 습기를 배제하기 위해서 보호 가스 하에서 작동되는 것을 의미하며, 아르곤 또는 질소 분위기 하에서 수행되는 것을 포함한다. Additionally, the reaction is preferably performed under an inert atmosphere. The term “under an inert atmosphere” means operating under a shielding gas to exclude air and atmospheric moisture, and includes operating under an argon or nitrogen atmosphere.

본 발명의 제조방법에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 고순도의 황화리튬(Li2S)을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조할 수 있다.According to the production method of the present invention, high purity lithium sulfide (Li 2 S) can be economically produced in a short time under mild reaction conditions using an aprotic solvent along with ammonia.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it is obvious to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예Example 1: 암모니아/ 1: Ammonia/ 테트라하이드로퓨란을Tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 manufacturing

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In an argon glove box, lithium metal (2 g, 288 mmol) was distributed into 250 ml cedar flasks, and sulfur powder (4.65 g, 145 mmol) was distributed into 100 ml flasks, and then transferred to a fume hood equipped with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after purging with argon for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 30ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 70ml를 15분간 포집하면서 500rpm 속도로 교반하였다.Inject 30 ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) toward the dry ice condenser while injecting the reaction flask. 70 ml was collected for 15 minutes and stirred at 500 rpm.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -32 ~ -30℃를 유지하면서 3.5시간 동안 교반하였다. When the lithium metal was completely dissolved, the prepared sulfur powder (4.65 g, 145 mmol) was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 3.5 hours while maintaining -32 to -30°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF), and 6.65 g of lithium sulfide was quantitatively obtained.

실시예Example 2: 암모니아/ 2: Ammonia/ 테트라하이드로퓨란을Tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 manufacturing

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In an argon glove box, lithium metal (2 g, 288 mmol) was distributed into 250 ml cedar flasks, and sulfur powder (4.65 g, 145 mmol) was distributed into 100 ml flasks, and then transferred to a fume hood equipped with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78-℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after purging with argon for 30 minutes, the condenser was cooled to -78-℃.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 50ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 50ml를 10분간 포집하면서 500rpm 속도로 교반하였다.Inject 50 ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) toward the dry ice condenser while injecting the reaction flask. 50 ml was collected for 10 minutes and stirred at 500 rpm.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -30 ~ -28℃를 유지하면서 2시간 동안 교반하였다. When the lithium metal is completely melted, add the prepared sulfur powder (4.65g, 145mmol) for 10 minutes, then remove the cooling bath and keep it at -30 to -28℃ for 2 hours. It was stirred.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF), and 6.65 g of lithium sulfide was quantitatively obtained.

비교예Comparative example 1: 암모니아/ 1: Ammonia/ 테트라하이드로퓨란을Tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 manufacturing

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In an argon glove box, lithium metal (2 g, 288 mmol) was distributed into 250 ml cedar flasks, and sulfur powder (4.65 g, 145 mmol) was distributed into 100 ml flasks, and then transferred to a fume hood equipped with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after purging with argon for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 70ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 30ml를 5분간 포집하면서 500rpm 속도로 교반하였다.Inject 70ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) toward the dry ice condenser while injecting the reaction flask. 30ml was collected for 5 minutes and stirred at 500rpm.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -28 ~ -26℃를 유지하면서 6시간 동안 교반하였다. When the lithium metal was completely dissolved, the prepared sulfur powder (4.65 g, 145 mmol) was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 6 hours while maintaining -28 to -26°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF), and 6.65 g of lithium sulfide was quantitatively obtained.

비교예Comparative example 2: 암모니아/ 2: Ammonia/ 테트라하이드로퓨란을Tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 manufacturing

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In an argon glove box, lithium metal (2 g, 288 mmol) was distributed into 250 ml cedar flasks, and sulfur powder (4.65 g, 145 mmol) was distributed into 100 ml flasks, and then transferred to a fume hood equipped with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after purging with argon for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 90ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 10ml를 2분간 포집하면서 500rpm 속도로 교반하였다.Inject 90 ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) toward the dry ice condenser while injecting the reaction flask. 10 ml was collected for 2 minutes and stirred at 500 rpm.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -28~ -10℃를 유지하면서 12시간 동안 교반하였다. When the lithium metal was completely dissolved, the prepared sulfur powder (4.65 g, 145 mmol) was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 12 hours while maintaining -28 to -10°C.

반응 완결이 되지 않아 황화리튬을 수득할 수 없었다.Because the reaction was not completed, lithium sulfide could not be obtained.

비교예Comparative example 3: 암모니아를 이용한 3: Using ammonia LiLi 22 S의S's 제조 manufacturing

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In an argon glove box, lithium metal (2 g, 288 mmol) was distributed into 250 ml cedar flasks, and sulfur powder (4.65 g, 145 mmol) was distributed into 100 ml flasks, and then transferred to a fume hood equipped with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after purging with argon for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크를 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 100ml를 20분간 포집하면서 500rpm 속도로 교반하였다. At -40℃ (dry ice/acetonitrile), inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas into the lithium metal flask toward the dry ice condenser and collect 100 ml in the reaction flask for 20 minutes at a speed of 500 rpm. It was stirred.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -34 ~ -31℃를 유지하면서 6시간 동안 교반하였다. When the lithium metal was completely dissolved, the prepared sulfur powder (4.65 g, 145 mmol) was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 6 hours while maintaining -34 to -31°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia, and 6.65 g of lithium sulfide was quantitatively obtained.

Claims (9)

a) 리튬 금속을 암모니아(NH3) 및 테트라하이드로퓨란(THF) 내에 용해시킨 후, 황 분말을 투입하고, -32℃ 내지 -28℃ 온도 범위 내에서 2 내지 3.5 시간 동안 교반하여 황화리튬 생성 반응을 진행시키는 단계; 및
b) 상기 a 단계의 반응이 완결된 후, 승온하여 암모니아 및 테트라하이드로퓨란(THF)을 제거하는 단계; 를 포함하는, 황화리튬(Li2S)의 제조방법.
a) After dissolving lithium metal in ammonia (NH 3 ) and tetrahydrofuran (THF), sulfur powder is added and stirred for 2 to 3.5 hours within the temperature range of -32°C to -28°C to produce lithium sulfide. proceeding with; and
b) after the reaction in step a is completed, increasing the temperature to remove ammonia and tetrahydrofuran (THF); Method for producing lithium sulfide (Li 2 S), including.
삭제delete 삭제delete 삭제delete 제 1 항에 있어서,
상기 암모니아(NH3) 및 테트라하이드로퓨란(THF)의 혼합비는 부피비로 4 : 6 내지 7 : 3인, 황화리튬(Li2S)의 제조방법.
According to claim 1,
A method for producing lithium sulfide (Li 2 S), wherein the mixing ratio of ammonia (NH 3 ) and tetrahydrofuran (THF) is 4:6 to 7:3 in volume ratio.
제 1 항에 있어서,
상기 암모니아(NH3) 및 테트라하이드로퓨란(THF)의 혼합비는 부피비로 5 : 5 내지 7 : 3인, 황화리튬(Li2S)의 제조방법.
According to claim 1,
A method for producing lithium sulfide (Li 2 S), wherein the mixing ratio of ammonia (NH 3 ) and tetrahydrofuran (THF) is 5:5 to 7:3 in volume ratio.
삭제delete 제 1 항에 있어서,
상기 a 단계의 황화리튬 생성 반응은 불활성 분위기 하에서 수행되는, 황화리튬(Li2S)의 제조방법.
According to claim 1,
A method for producing lithium sulfide (Li 2 S), wherein the lithium sulfide production reaction in step a is performed under an inert atmosphere.
제 1 항에 있어서,
상기 a 단계의 황화리튬 생성 반응은 아르곤 분위기 하에서 수행되는, 황화리튬(Li2S)의 제조방법.
According to claim 1,
A method for producing lithium sulfide (Li 2 S), wherein the lithium sulfide production reaction in step a is performed under an argon atmosphere.
KR1020210169796A 2020-12-04 2021-12-01 Method for Preparing Lithium Sulfide KR102680727B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200168494 2020-12-04
KR20200168494 2020-12-04

Publications (2)

Publication Number Publication Date
KR20220079456A KR20220079456A (en) 2022-06-13
KR102680727B1 true KR102680727B1 (en) 2024-07-02

Family

ID=81984204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210169796A KR102680727B1 (en) 2020-12-04 2021-12-01 Method for Preparing Lithium Sulfide

Country Status (1)

Country Link
KR (1) KR102680727B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102698058B1 (en) * 2021-10-12 2024-08-23 한국세라믹기술원 Manufacturing method of lithium sulfide
KR20240056103A (en) 2022-10-21 2024-04-30 주식회사 천보 method for modified lithium sulfide and modified lithium sulfide manufactured with this
KR102562588B1 (en) * 2023-01-19 2023-08-02 주식회사 정석케미칼 Manufacturing method of high purity lithium sulfide using mixed organic solvent
KR102562589B1 (en) * 2023-01-20 2023-08-02 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry circulation processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180016144A1 (en) 2016-01-19 2018-01-18 Colorado School Of Mines Production of Alkali Sulfide Cathode Material and Methods for Processing Hydrogen Sulfide
CN108190845A (en) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 A kind of method for preparing lithium sulfide
CN111517288A (en) 2020-05-07 2020-08-11 天目湖先进储能技术研究院有限公司 Method for synthesizing lithium sulfide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017582B2 (en) 2011-05-27 2015-04-28 Chemetall Gmbh Process for preparing lithium sulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180016144A1 (en) 2016-01-19 2018-01-18 Colorado School Of Mines Production of Alkali Sulfide Cathode Material and Methods for Processing Hydrogen Sulfide
CN108190845A (en) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 A kind of method for preparing lithium sulfide
CN111517288A (en) 2020-05-07 2020-08-11 天目湖先进储能技术研究院有限公司 Method for synthesizing lithium sulfide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. Dubois et al., Inorganic Chemistry, Vol. 27, No. 1, 1988, pages 73-80*

Also Published As

Publication number Publication date
KR20220079456A (en) 2022-06-13

Similar Documents

Publication Publication Date Title
KR102680727B1 (en) Method for Preparing Lithium Sulfide
Feng et al. Challenges and advances in wide-temperature rechargeable lithium batteries
CN112768747B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN109476688B (en) Modified ionic liquids comprising phosphorus
CN101682088B (en) Additives for non-aqueous electrolyte and secondary battery using the same
Wang et al. Structural regulation chemistry of lithium ion solvation for lithium batteries
KR101201804B1 (en) Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101264435B1 (en) Electrolyte for improving storage performance at high temperature and secondary battery comprising the same
CN117438649A (en) Nonaqueous electrolyte composition
JP5484078B2 (en) Nonaqueous electrolyte containing fluorine-containing phosphoric ester amide
US20150129810A1 (en) Method for manufacturing a polyacrylonitrile-sulfur composite material
JPWO2011016212A1 (en) Asymmetric and / or low symmetric fluorine-containing phosphates for non-aqueous electrolytes
CN104852102A (en) Method and device for recycling and harmlessly treating waste lithium ion battery electrolyte
KR20150076146A (en) Electrochemical cells
US20240009719A1 (en) Method for opening an electrochemical generator
KR20170133405A (en) Organic sulfur material and method for its production
JP4345658B2 (en) Secondary battery
US20220263146A1 (en) Process for crushing an electrochemical generator
CN112687952A (en) Electrolyte solution, electrochemical device, and electronic device
CN113273011A (en) Electrolyte solution, electrochemical device, and electronic device
Li et al. Recent progress in electrolyte design for advanced lithium metal batteries
CN111834673B (en) Alkaline earth metal hexafluorophosphate electrolyte and preparation method of electrolyte
KR20190060453A (en) Fluorosulfonyl imide alkali metal salt and preparing method thereof
JP5609283B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
CN115321490A (en) Lithium sulfide-based composite positive electrode material, preparation method thereof and lithium-sulfur battery

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal