KR20220079456A - Method for Preparing Lithium Sulfide - Google Patents

Method for Preparing Lithium Sulfide Download PDF

Info

Publication number
KR20220079456A
KR20220079456A KR1020210169796A KR20210169796A KR20220079456A KR 20220079456 A KR20220079456 A KR 20220079456A KR 1020210169796 A KR1020210169796 A KR 1020210169796A KR 20210169796 A KR20210169796 A KR 20210169796A KR 20220079456 A KR20220079456 A KR 20220079456A
Authority
KR
South Korea
Prior art keywords
ammonia
aprotic solvent
lithium metal
lithium sulfide
dry ice
Prior art date
Application number
KR1020210169796A
Other languages
Korean (ko)
Inventor
정성훈
안영주
이경은
임명용
백성윤
나용환
Original Assignee
주식회사 레이크머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이크머티리얼즈 filed Critical 주식회사 레이크머티리얼즈
Publication of KR20220079456A publication Critical patent/KR20220079456A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 금속과 황을 암모니아 및 비양성자성 용매 중에서 반응시키는 단계를 포함하는 황화리튬(Li2S)의 제조방법을 제공한다. 본 발명의 제조방법에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 고순도의 황화리튬(Li2S)을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조할 수 있다.The present invention provides a method for producing lithium sulfide (Li 2 S) comprising the step of reacting lithium metal and sulfur in ammonia and an aprotic solvent. According to the production method of the present invention, high-purity lithium sulfide (Li 2 S) can be economically produced in a short time under mild reaction conditions by using an aprotic solvent together with ammonia.

Description

황화리튬의 제조방법 {Method for Preparing Lithium Sulfide}Manufacturing method of lithium sulfide {Method for Preparing Lithium Sulfide}

본 발명은 황화리튬(Li2S)의 제조방법에 관한 것으로, 보다 상세하게는 황화리튬(Li2S)을 간단한 공정을 통해 경제적으로 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing lithium sulfide (Li 2 S), and more particularly, to a method for economically manufacturing lithium sulfide (Li 2 S) through a simple process.

리튬 이온 전지는 충전시에는 양극으로부터 리튬이 이온으로서 용출하여 음극으로 이동하여 흡장되고, 방전시에는 반대로 음극으로부터 양극으로 리튬 이온이 돌아가는 구조의 이차 전지이며, 에너지밀도가 높고 단위면적당 용량이 크고 수명이 긴 특징을 갖고 있기 때문에, 자동차, 전력저장시스템 등의 대형기기에서부터 휴대폰, 캠코더, 노트북 등의 소형기기까지 널리 사용되고 있다.Lithium ion batteries are secondary batteries with a structure in which lithium ions are eluted from the positive electrode as ions and moved to the negative electrode during charging, and lithium ions return from the negative electrode to the positive electrode when discharging. Because of this long feature, it is widely used from large devices such as automobiles and power storage systems to small devices such as mobile phones, camcorders, and notebook computers.

이러한 리튬 이온 전지는 양극, 음극, 및 이온 전도층으로 구성되고, 이온 전도층에는 폴리에틸렌, 폴리프로필렌 등의 다공질 필름으로 이루어지는 세퍼레이터에 비수계의 전해액을 채운 것이 일반적으로 사용되고 있다.Such lithium ion batteries are composed of a positive electrode, a negative electrode, and an ion conductive layer, and a separator made of a porous film such as polyethylene or polypropylene filled with a non-aqueous electrolyte is generally used for the ion conductive layer.

그러나 전해액으로서 가연성의 유기용매 등의 액체 전해질이 사용되고 있기 때문에, 전해질의 누액 및 이에 따른 화재의 위험성 등의 안전성 문제가 끊임없이 제기되어 왔다.However, since a liquid electrolyte such as a flammable organic solvent is used as the electrolyte, safety issues such as leakage of the electrolyte and the risk of fire have been constantly raised.

이에 따라 최근에는 안전성을 높이기 위해 전해질로 유기 액체 전해질이 아니라 황화리튬(Li2S) 등을 원료로서 사용한 불연 또는 난연의 성질을 가지는 전고체 전지에 대한 관심이 높아지고 있다.Accordingly, in recent years, interest in all-solid-state batteries having nonflammable or flame retardant properties using lithium sulfide (Li 2 S) or the like as a raw material rather than an organic liquid electrolyte as an electrolyte to increase safety has been increasing.

전고체 전해질의 재료로 적합한 황화리튬(Li2S)은 천연 광물로서는 산출되지 않기 때문에 합성할 필요가 있다.Lithium sulfide (Li 2 S), which is suitable as a material for an all-solid electrolyte, is not produced as a natural mineral and therefore needs to be synthesized.

황화리튬(Li2S)의 제조방법으로서는 액체 암모니아에서 리튬 금속과 황을 반응시키는 방법이 알려져 있으나, 암모니아를 액화시키기 위해 저온 냉각 또는 고압으로 가압을 하여야 하고 반응에 장시간이 소요되어 생산성이 낮아지는 문제점이 있었다.As a method of manufacturing lithium sulfide (Li 2 S), a method of reacting lithium metal and sulfur in liquid ammonia is known, but in order to liquefy ammonia, low temperature cooling or pressurization is required, and the reaction takes a long time, resulting in lower productivity. There was a problem.

이에 대한민국 공개특허 제10-2014-0053034호에는 황화 수소와 리튬-함유 강 염을 반응시켜 황화리튬을 제조하는 방법이 개시되어 있다. 그러나, 상기 제조방법은 취급이 어렵고 고가인 n-부틸리튬과 같은 강염기를 사용하여야 하는 문제점이 있었다. Accordingly, Korean Patent Laid-Open No. 10-2014-0053034 discloses a method for preparing lithium sulfide by reacting hydrogen sulfide with a lithium-containing strong salt. However, the manufacturing method has a problem in that a strong base such as n-butyllithium, which is difficult to handle and expensive, must be used.

따라서, 취급이 용이하고 저가인 출발물질을 이용하면서 온화한 반응조건에서 단시간 내에 황화리튬을 대량생산할 수 있는 방법의 개발이 절실히 요구되어 왔다.Therefore, it has been urgently required to develop a method capable of mass-producing lithium sulfide in a short time under mild reaction conditions while using an easy-to-handle and inexpensive starting material.

대한민국 공개특허 제10-2014-0053034호Republic of Korea Patent Publication No. 10-2014-0053034

본 발명의 한 목적은 황화리튬을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조하는 방법을 제공하는 것이다.One object of the present invention is to provide a method for economically producing lithium sulfide in a short time under mild reaction conditions.

본 발명의 일 실시형태는 리튬 금속과 황을 암모니아 및 비양성자성 용매 중에서 반응시키는 단계를 포함하는 황화리튬(Li2S)의 제조방법에 관한 것이다.One embodiment of the present invention relates to a method for producing lithium sulfide (Li 2 S) comprising the step of reacting lithium metal and sulfur in ammonia and an aprotic solvent.

본 발명의 일 실시형태에 따른 황화리튬(Li2S)의 제조방법은 리튬 금속을 암모니아 및 비양성자성 용매 중에 용해시키고, 황 분말을 투입하여 반응시키는 단계를 포함한다. A method for producing lithium sulfide (Li 2 S) according to an embodiment of the present invention includes dissolving lithium metal in ammonia and an aprotic solvent, and reacting by adding sulfur powder.

본 발명의 일 실시형태에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 적은 양의 액화 암모니아를 사용하고도 용해도를 상승시켜 황화리튬의 제조 시간을 단축시킬 수 있다. According to one embodiment of the present invention, by using an aprotic solvent together with ammonia to increase solubility even with a small amount of liquefied ammonia, it is possible to shorten the production time of lithium sulfide.

상기 비양성자성 용매로는, 예를 들어, 카보네이트계, 에스테르계, 에테르계, 케톤계, 아민계, 포스핀계 용매 등이 사용될 수 있다.As the aprotic solvent, for example, a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an amine-based solvent, or a phosphine-based solvent may be used.

상기 에테르계 용매는 비환형 에테르(acyclic ether) 및 환형 에테르(cyclic ether)를 포함한다.The ether-based solvent includes an acyclic ether and a cyclic ether.

상기 비환형 에테르의 구체예는 1,2-디메톡시에탄(1,2-dimethoxyethane), 1,2-디에톡시에탄(1,2-diethoxyethane), 1,2-디부톡시에탄(1,2-dibuthoxyethane), 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether), 디에틸렌 글리콜 디에틸 에테르(diethylene glycol diethyl ether), 트리에틸렌 글리콜 디메틸 에테르(triethylene glycol dimethyl ether), 트리에틸렌 글리콜 디에틸 에테르(triethylene glycol diethyl ether), 테트라에틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether), 테트라에틸렌 글리콜 디에틸 에테르(tetraethylene glycol diethyl ether) 등을 포함하나, 이에 제한되는 것은 아니다. Specific examples of the acyclic ether include 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane (1,2- dibutoxyethane), diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether ether), tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, and the like, but is not limited thereto.

또한, 상기 환형 에테르의 구체예는 1,3-디옥소란(1,3-dioxolane), 4,5-디메틸-디옥소란(4,5-dimethyl-dioxolane), 4,5-디에틸-디옥소란(4,5-diethyl-dioxolane), 4-메틸-1,3-디옥소란(4-methyl-1,3-dioxolane), 4-에틸-1,3-디옥소란(4-ethyl-1,3-dioxolane), 테트라하이드로퓨란(tetrahydrofuran), 2-메틸 테트라하이드로퓨란(2-methyl tetrahydrofuran), 2,5-디메틸 테트라하이드로퓨란(2,5-dimethyl tetrahydrofuran), 2,5-디메톡시 테트라하이드로퓨란(2,5-dimethoxy tetrahydrofuran), 2-에톡시 테트라하이드로퓨란(2-ethoxy tetrahydrofuran), 테트라하이드로파이란(tetrahydropyran), 1,4-디옥산(1,4-dioxane) 등을 포함하나, 이에 제한되는 것은 아니다. In addition, specific examples of the cyclic ether include 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl- Dioxolane (4,5-diethyl-dioxolane), 4-methyl-1,3-dioxolane (4-methyl-1,3-dioxolane), 4-ethyl-1,3-dioxolane (4- ethyl-1,3-dioxolane), tetrahydrofuran, 2-methyl tetrahydrofuran, 2,5-dimethyl tetrahydrofuran, 2,5- Dimethoxy tetrahydrofuran (2,5-dimethoxy tetrahydrofuran), 2-ethoxy tetrahydrofuran (2-ethoxy tetrahydrofuran), tetrahydropyran (tetrahydropyran), 1,4-dioxane (1,4-dioxane), etc. Including, but not limited to.

본 발명의 일 실시형태에서, 상기 비양성자성 용매는 환형 에테르, 특히 테트라하이드로퓨란(tetrahydrofuran)일 수 있다.In one embodiment of the present invention, the aprotic solvent may be a cyclic ether, in particular tetrahydrofuran.

본 발명의 일 실시형태에서, 상기 암모니아 및 비양성자성 용매의 혼합비는 부피비로 4:6 내지 7:3, 바람직하게는 5:5 내지 7:3이다. 상기 혼합비가 상기 범위를 벗어나는 경우 반응시간이 증가될 수 있다. In one embodiment of the present invention, the mixing ratio of the ammonia and the aprotic solvent is 4:6 to 7:3 by volume, preferably 5:5 to 7:3 by volume. When the mixing ratio is out of the above range, the reaction time may be increased.

상기 반응온도는 -50℃내지 50℃, 바람직하게는 -32℃ 내지 -28℃이다.The reaction temperature is -50 °C to 50 °C, preferably -32 °C to -28 °C.

또한, 상기 반응은 불활성 분위기 하에서 수행하는 것이 바람직하다. 상기 "불활성 분위기 하"는 공기와 대기 습기를 배제하기 위해서 보호 가스 하에서 작동되는 것을 의미하며, 아르곤 또는 질소 분위기 하에서 수행되는 것을 포함한다. In addition, the reaction is preferably performed under an inert atmosphere. The term "under an inert atmosphere" means operating under a protective gas to exclude air and atmospheric moisture, and includes those performed under an argon or nitrogen atmosphere.

본 발명의 제조방법에 따르면, 암모니아와 함께 비양성자성 용매를 사용하여 고순도의 황화리튬(Li2S)을 온화한 반응조건 하에서 단시간 내에 경제적으로 제조할 수 있다.According to the production method of the present invention, high-purity lithium sulfide (Li 2 S) can be economically produced in a short time under mild reaction conditions by using an aprotic solvent together with ammonia.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail by way of Examples. These examples are only for illustrating the present invention, and it is apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예Example 1: 암모니아/ 1: Ammonia/ 테트라하이드로퓨란을tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 Produce

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In the Argon glove box, lithium metal (2g, 288mmol) was subdivided into a 250ml cedar flask, and sulfur powder (4.65g, 145mmol) was subdivided into a 100ml flask, and then moved to a fume hood with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and a dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after argon purging for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 30ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 70ml를 15분간 포집하면서 500rpm 속도로 교반하였다.30ml of tetrahydrofuran (THF) is put into a lithium metal flask, and a mixed gas of ammonia (NH 3 )/argon (Ar) (1:1) is injected at -40°C (dry ice/acetonitrile) to the dry ice condenser. 70ml was stirred at 500rpm while collecting for 15 minutes.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -32 ~ -30℃를 유지하면서 3.5시간 동안 교반하였다. The sulfur powder (4.65 g, 145 mmol) prepared when the lithium metal was completely dissolved was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 3.5 hours while maintaining -32 to -30°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF) to quantitatively obtain 6.65 g of lithium sulfide.

실시예Example 2: 암모니아/ 2: Ammonia/ 테트라하이드로퓨란을tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 Produce

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In the Argon glove box, lithium metal (2g, 288mmol) was subdivided into a 250ml cedar flask, and sulfur powder (4.65g, 145mmol) was subdivided into a 100ml flask, and then moved to a fume hood with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78-℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and a dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after argon purging for 30 minutes, the condenser was cooled to -78-°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 50ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 50ml를 10분간 포집하면서 500rpm 속도로 교반하였다.Put 50 ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) to the dry ice condenser. 50ml was stirred at 500rpm while collecting for 10 minutes.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -30 ~ -28℃를 유지하면서 2시간 동안 교반하였다. When the lithium metal is completely melted, the prepared sulfur powder (4.65 g, 145 mmol) is added for 10 minutes, the cooling bath is removed, and the temperature is maintained at -30 ~ -28℃ for 2 hours. stirred.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF) to quantitatively obtain 6.65 g of lithium sulfide.

비교예comparative example 1: 암모니아/ 1: Ammonia/ 테트라하이드로퓨란을tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 Produce

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In the Argon glove box, lithium metal (2g, 288mmol) was subdivided into a 250ml cedar flask, and sulfur powder (4.65g, 145mmol) was subdivided into a 100ml flask, and then moved to a fume hood with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and a dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after argon purging for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 70ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 30ml를 5분간 포집하면서 500rpm 속도로 교반하였다.Put 70 ml of tetrahydrofuran (THF) into a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas at -40°C (dry ice/acetonitrile) to the dry ice condenser while the reaction flask 30ml was stirred at 500rpm while collecting for 5 minutes.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -28 ~ -26℃를 유지하면서 6시간 동안 교반하였다. The sulfur powder (4.65 g, 145 mmol) prepared when the lithium metal was completely dissolved was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 6 hours while maintaining -28 to -26°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아, 테트라하이드로퓨란(THF)를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia and tetrahydrofuran (THF) to quantitatively obtain 6.65 g of lithium sulfide.

비교예comparative example 2: 암모니아/ 2: Ammonia/ 테트라하이드로퓨란을tetrahydrofuran 이용한 used LiLi 22 S의S's 제조 Produce

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황 분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In the Argon glove box, lithium metal (2g, 288mmol) was subdivided into a 250ml cedar flask, and sulfur powder (4.65g, 145mmol) was subdivided into a 100ml flask, and then moved to a fume hood with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and a dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after argon purging for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크에 테트라하이드로퓨란(THF) 90ml을 투입하고 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 10ml를 2분간 포집하면서 500rpm 속도로 교반하였다.Put 90ml of tetrahydrofuran (THF) in a lithium metal flask and inject ammonia (NH 3 )/argon (Ar) (1:1) mixed gas to the dry ice condenser at -40°C (dry ice/acetonitrile) to the reaction flask 10ml was stirred at 500rpm while collecting for 2 minutes.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -28~ -10℃를 유지하면서 12시간 동안 교반하였다. The sulfur powder (4.65 g, 145 mmol) prepared when the lithium metal was completely melted was added for 10 minutes, the cooling bath was removed, and the mixture was stirred for 12 hours while maintaining -28 to -10°C.

반응 완결이 되지 않아 황화리튬을 수득할 수 없었다.Since the reaction was not completed, lithium sulfide could not be obtained.

비교예comparative example 3: 암모니아를 이용한 3: using ammonia LiLi 22 S의S's 제조 Produce

알곤 글러브박스 안에서 리튬 메탈(2g, 288mmol)을 250ml 삼목플라스크에 소분하고, 황분말(4.65g, 145mmol)을 100ml 플라스크에 소분한 후, 슈렝크라인이 있는 흄후드로 이동하였다.In the Argon glove box, lithium metal (2g, 288mmol) was subdivided into a 250ml cedar flask, and sulfur powder (4.65g, 145mmol) was subdivided into a 100ml flask, and then moved to a fume hood with a Schlenk line.

리튬 메탈 플라스크에 암모니아(NH3), 알곤(Ar), 드라이아이스콘덴서(dry ice/acetone)를 연결하고 30분간 알곤 퍼지 후 콘덴서를 -78℃로 냉각하였다. Ammonia (NH 3 ), argon (Ar), and a dry ice condenser (dry ice/acetone) were connected to the lithium metal flask, and after argon purging for 30 minutes, the condenser was cooled to -78°C.

리튬 메탈 플라스크를 -40℃(dry ice/acetonitrile)에서 암모니아(NH3)/알곤(Ar)(1:1) 혼합가스를 드라이아이스콘덴서쪽으로 주입하면서 반응플라스크에 100ml를 20분간 포집하면서 500rpm 속도로 교반하였다. At -40°C (dry ice/acetonitrile), ammonia (NH 3 )/argon (Ar) (1:1) mixed gas was injected into the lithium metal flask toward the dry ice condenser while collecting 100ml in the reaction flask for 20 minutes at a speed of 500rpm stirred.

리튬 메탈이 완전히 녹았을 때 준비한 황 분말(4.65g, 145mmol)을 10분간 투입 후, 쿨링베스를 제거하고 -34 ~ -31℃를 유지하면서 6시간 동안 교반하였다. After the sulfur powder (4.65 g, 145 mmol) prepared when the lithium metal was completely melted was added for 10 minutes, the cooling bath was removed and the mixture was stirred for 6 hours while maintaining -34 to -31°C.

반응 완료 후 드라이아이스콘덴서를 승온하여 암모니아를 제거하여 황화리튬 6.65g을 정량적으로 수득하였다.After completion of the reaction, the temperature of the dry ice condenser was raised to remove ammonia to quantitatively obtain 6.65 g of lithium sulfide.

Claims (9)

리튬 금속과 황을 암모니아 및 비양성자성 용매 중에서 반응시키는 단계를 포함하는 황화리튬(Li2S)의 제조방법.A method for producing lithium sulfide (Li 2 S), comprising the step of reacting lithium metal and sulfur in ammonia and an aprotic solvent. 제1항에 있어서, 상기 리튬 금속을 암모니아 및 비양성자성 용매 중에 용해시키고, 황 분말을 투입하여 반응시키는 제조방법.The method according to claim 1, wherein the lithium metal is dissolved in ammonia and an aprotic solvent, and sulfur powder is added to react. 제1항에 있어서, 상기 비양성자성 용매는 환형 에테르인 제조방법.The method according to claim 1, wherein the aprotic solvent is a cyclic ether. 제1항에 있어서, 상기 비양성자성 용매는 테트라하이드로퓨란인 제조방법.The method according to claim 1, wherein the aprotic solvent is tetrahydrofuran. 제1항에 있어서, 상기 암모니아 및 비양성자성 용매의 혼합비는 부피비로 4:6 내지 7:3인 제조방법.The method of claim 1, wherein the mixing ratio of the ammonia and the aprotic solvent is 4:6 to 7:3 by volume. 제1항에 있어서, 상기 암모니아 및 비양성자성 용매의 혼합비는 부피비로 5:5 내지 7:3인 제조방법.The method according to claim 1, wherein the mixing ratio of the ammonia and the aprotic solvent is 5:5 to 7:3 by volume. 제1항에 있어서, 상기 반응 온도는 -32℃ 내지 -28℃인 제조방법.The method according to claim 1, wherein the reaction temperature is -32 °C to -28 °C. 제1항에 있어서, 상기 반응은 불활성 분위기 하에서 수행되는 제조방법.The method according to claim 1, wherein the reaction is performed under an inert atmosphere. 제1항에 있어서, 상기 반응은 아르곤 분위기 하에서 수행되는 제조방법.The method according to claim 1, wherein the reaction is performed under an argon atmosphere.
KR1020210169796A 2020-12-04 2021-12-01 Method for Preparing Lithium Sulfide KR20220079456A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200168494 2020-12-04
KR1020200168494 2020-12-04

Publications (1)

Publication Number Publication Date
KR20220079456A true KR20220079456A (en) 2022-06-13

Family

ID=81984204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210169796A KR20220079456A (en) 2020-12-04 2021-12-01 Method for Preparing Lithium Sulfide

Country Status (1)

Country Link
KR (1) KR20220079456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562588B1 (en) * 2023-01-19 2023-08-02 주식회사 정석케미칼 Manufacturing method of high purity lithium sulfide using mixed organic solvent
KR102562589B1 (en) * 2023-01-20 2023-08-02 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry circulation processes
KR20240056103A (en) 2022-10-21 2024-04-30 주식회사 천보 method for modified lithium sulfide and modified lithium sulfide manufactured with this

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053034A (en) 2011-05-27 2014-05-07 록우드 리튬 게엠베하 Process for preparing lithium sulfide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053034A (en) 2011-05-27 2014-05-07 록우드 리튬 게엠베하 Process for preparing lithium sulfide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240056103A (en) 2022-10-21 2024-04-30 주식회사 천보 method for modified lithium sulfide and modified lithium sulfide manufactured with this
KR102562588B1 (en) * 2023-01-19 2023-08-02 주식회사 정석케미칼 Manufacturing method of high purity lithium sulfide using mixed organic solvent
KR102562589B1 (en) * 2023-01-20 2023-08-02 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry circulation processes

Similar Documents

Publication Publication Date Title
KR20220079456A (en) Method for Preparing Lithium Sulfide
Feng et al. Challenges and advances in wide-temperature rechargeable lithium batteries
CN112768747B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100997349B1 (en) System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid
Wang et al. Structural regulation chemistry of lithium ion solvation for lithium batteries
CN108140891B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP2019513717A (en) Phosphorus-containing modified ionic liquid
EP3561937B1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using the same
CN104445133B (en) A kind of preparation method of difluorophosphate and non-aqueous electrolyte for lithium ion cell thereof
CN107720717B (en) Preparation method of lithium difluorophosphate
US20150129810A1 (en) Method for manufacturing a polyacrylonitrile-sulfur composite material
CN103493277B (en) Nonaqueous electrolytic solution, the electric energy storage device employing this nonaqueous electrolytic solution and trifluoromethylbenzene compound
KR20150114460A (en) Non-aqueous electrolytic solutions and electrochemical cells comprising same
CN101682088A (en) Additives for non-aqueous electrolyte and secondary battery using the same
WO2018011062A2 (en) Nonaqueous electrolyte compositions
CN104852102A (en) Method and device for recycling and harmlessly treating waste lithium ion battery electrolyte
CN110845539B (en) Preparation method and application of battery-grade lithium difluorobis (oxalato) phosphate solid
CN117613381A (en) Electrolyte containing six-membered cyclic sulfate
US20240009719A1 (en) Method for opening an electrochemical generator
US20220263146A1 (en) Process for crushing an electrochemical generator
CN114634170A (en) Preparation method of lithium difluorophosphate
CN113273011A (en) Electrolyte solution, electrochemical device, and electronic device
Li et al. Recent progress in electrolyte design for advanced lithium metal batteries
CN103539168B (en) The purification process of lithium hexafluoro phosphate
KR101435486B1 (en) Method for producing electrolyte solution for lithium ion battery

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal