KR102673253B1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
KR102673253B1
KR102673253B1 KR1020220121173A KR20220121173A KR102673253B1 KR 102673253 B1 KR102673253 B1 KR 102673253B1 KR 1020220121173 A KR1020220121173 A KR 1020220121173A KR 20220121173 A KR20220121173 A KR 20220121173A KR 102673253 B1 KR102673253 B1 KR 102673253B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
battery
electrode active
plate
Prior art date
Application number
KR1020220121173A
Other languages
English (en)
Other versions
KR20230054267A (ko
Inventor
이병구
류덕현
이관희
이명안
김수진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220049184A external-priority patent/KR20230054244A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/965,619 priority Critical patent/US20230117276A1/en
Priority to JP2024518487A priority patent/JP2024534588A/ja
Priority to EP22881412.5A priority patent/EP4418400A1/en
Priority to CA3233003A priority patent/CA3233003A1/en
Priority to CN202280065721.3A priority patent/CN118020194A/zh
Priority to PCT/KR2022/015624 priority patent/WO2023063785A1/ko
Publication of KR20230054267A publication Critical patent/KR20230054267A/ko
Application granted granted Critical
Publication of KR102673253B1 publication Critical patent/KR102673253B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 이차 전지이며, 상기 양극판은 양극 활물질층을 포함하고, 상기 양극 활물질층은 평균 입경 D50이 5㎛ 이하인 단입자 및/또는 유사-단입자 양극 활물질을 포함하는 것인 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지{LITHIUM SECONDARY BATTERY}
본 발명은 리튬 이차 전지에 관한 것으로, 보다 구체적으로는 단입자 및/또는 유사-단입자 형태의 양극 활물질을 적용하여 부피가 증가하여도 우수한 열 안정성을 구현할 수 있는 리튬 이차 전지에 관한 것이다.
전기 자동차, 휴대용 전자 장치 등의 기술 발전에 따라 에너지원으로 리튬 이차 전지의 수요가 급격하게 증가하고 있다.
리튬 이차 전지는 전지 케이스 형태에 따라 원통형 또는 각형과 같은 캔형 전지와, 파우치형 전지로 분류될 수 있는데, 이 중 캔형 전지는 전지 캔에 시트 형상의 양극판, 분리막 및 음극판을 순차적으로 적층한 후 일 방향으로 권취하여 제조되는 젤리-롤형 전극 조립체를 수납한 후, 전지 캔 상부에 캡 플레이트를 덮어 밀봉한 형태로 이루어진다. 양극판과 음극판에는 각각 스트립 형태의 양극탭과 음극탭이 구비되며, 상기 양극탭과 음극탭이 전극 단자와 연결되어 외부 전원과 전기적으로 연결된다. 참고로 양극 전극 단자는 캡 플레이트이고, 음극 전극 단자는 전지 캔이다. 그러나, 이와 같은 구조를 갖는 종래의 캔형 전지의 경우, 스트립 형태의 전극 탭에 전류가 집중되어 저항이 크고, 열이 많이 발생하며, 집전 효율이 좋지 않다는 문제점이 있다.
한편, 최근 전기 자동차 기술의 발전에 따라 고용량 전지에 대한 요구가 증가함에 따라 부피가 큰 대형 전지 개발이 요구되고 있다. 종래에 일반적으로 사용되던 소형 원통형 전지, 즉, 1865이나 2170의 폼 팩터를 갖는 원통형 전지의 경우, 용량이 작기 때문에 저항이나 발열이 전지 성능에 심각한 영향을 미치지 않았다. 그러나, 종래의 소형 원통형 전지의 사양을 대형 전지에 그대로 적용할 경우, 전지 안전성에 심각한 문제가 발생할 수 있다.
전지의 크기가 커지면 전지 내부에서 발생하는 열과 가스의 양도 증가하게 되는데, 이러한 열과 가스로 인해 전지 내부의 온도 및 압력이 상승하여 전지가 발화하거나 폭발할 수 있기 때문이다. 이를 방지하기 위해서는 전지 내부의 열과 가스가 외부로 적절하게 배출되어야 하며, 이를 위해서는 전지 외부로 열을 배출하는 통로가 되는 전지의 단면적이 부피 증가에 맞게 증가하여야 한다. 그러나 통상 단면적의 증가분은 부피 증가분에 미치지 못하기 때문에 전지가 대형화될수록 전지 내부의 발열량이 증가하고 이로 인해 폭발 위험성이 커지고, 출력이 저하되는 등의 문제가 발생하게 된다. 또한, 고전압에서 급속 충전을 수행할 경우, 짧은 시간 동안 전극 탭 주변에서 많은 열이 발생하면서 전지가 발화되는 문제도 발생할 수 있다.
따라서, 고용량을 구현할 수 있도록 큰 부피를 가지면서도 높은 안전성을 갖는 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 양극 활물질로 단입자 및/또는 유사-단입자를 적용함으로써, 전지의 부피가 증가하여도 우수한 열 안정성을 구현할 수 있는 리튬 이차 전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 이차 전지이며, 상기 양극판은 양극 활물질층을 포함하고, 상기 양극 활물질층은 평균 입경 D50이 5㎛ 이하이고, 단입자, 유사-단입자 또는 이들의 조합으로 이루어지는 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다. 상기 단입자 및/또는 유사-단입자 형태의 양극 활물질은 상기 양극 활물질층에 포함된 전체 양극 활물질의 중량을 기준으로 95중량% 내지 100중량%, 바람직하게는 98중량% 내지 100중량%, 더 바람직하게는 99중량% 내지 100중량%의 양으로 포함될 수 있다.
상기 양극 활물질층은 체적 누적 입도 분포 그래프에서 단일 피크를 나타내는 유니모달 입도 분포를 갖는 양극 활물질을 포함할 수 있다.
또한, 상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함할 수 있으며, 예를 들면, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합이고, M2는 Zr, W, Ti, Mg, Ca, Sr, 및 Ba이며, 0.8≤a ≤1.2, 0.83≤b<1, 0<c<0.17, 0<d<0.17, 0≤e≤0.1임
또한, 상기 양극 활물질은 1차 입자 입경이 0.5㎛ 내지 5㎛일 수 있다.
한편, 상기 음극판은 실리콘계 음극 활물질을 포함할 수 있다.
또한, 상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함할 수 있으며, 이때, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함될 수 있다.
한편, 상기 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지일 수 있으며, 예를 들면, 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀일 수 있다.
또한, 본 발명에 따른 이차 전지는, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 상기 무지부의 양극판 또는 음극판의 적어도 일부가 전극 탭을 정의하는, 탭-리스(Tab-less) 구조의 전지일 수 있다.
상기 양극판 무지부 및 음극판 무지부는 각각 상기 전극 조립체의 권취 방향과 평행한 양극판 및 음극판의 일변 단부를 따라 위치하고, 상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 것일 수 있다.
한편, 상기 양극판 무지부 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있고, 상기 복수의 분절편 중 적어도 일부가 상기 전극 탭을 정의하고, 상기 전극 조립체의 권취 중심(C)을 향하여 절곡되어 있을 수 있다. 또한, 상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고, 상기 중첩된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있을 수 있다.
한편, 상기 양극판 상에는, 상기 권취 방향과 평행한 방향을 따라 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다.
다른 구현예에 따르면, 본 발명은 상기 본 발명에 따른 리튬 이차 전지를 포함하는 전지 팩과, 상기 전지 팩을 포함하는 자동차를 제공한다.
본 발명에 따른 리튬 이차 전지는, 양극 활물질로 단입자 및/또는 유사-단입자를 적용하여, 전극 제조 시의 입자 깨짐 및 충방전 시의 내부 크랙 발생으로 인한 가스 발생을 최소화할 수 있도록 함으로써, 부피가 증가된 대형 전지에서도 우수한 안전성을 구현할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, 평균 입경 D50이 5㎛ 이하로 작고, 유니모달 입도 분포를 갖는 단입자 및/또는 유사-단입자 양극 활물질을 사용하여 단입자 적용으로 인한 저항 증가를 최소화할 수 있도록 함으로써, 우수한 용량 특성 및 출력 특성을 구현할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, 음극 활물질로 용량이 큰 실리콘계 음극 활물질을 포함할 수 있으며, 이 경우, 더 높은 에너지 밀도를 구현할 수 있다.
또한, 본 발명에 따른 리튬 이차 전지는, 별도의 전극 탭을 형성하지 않고, 양극판 및 음극판의 무지부가 전극 탭의 역할을 수행하는 탭-리스(Tab-less) 구조를 가질 수 있다. 전극 탭이 형성된 종래의 전지의 경우, 충전 시에 전극 탭으로 많은 양의 전류가 집중됨에 따라 전극 탭 주변에서 많은 열이 발생된다. 특히, 급속 충전 시에는 이러한 현상이 심화되어 전지 발화나 폭발이 발생할 위험성이 있다. 이에 비해, 본 발명에 따른 탭-리스 구조의 리튬 이차 전지는, 양극판과 음극판의 단부에 활물질층이 형성되지 않은 무지부를 형성하고, 상기 무지부를 넓은 단면적을 갖는 집전 플레이트와 접합시키는 방법으로 전극 단자와 연결시킨 구조로 형성될 수 있다. 이러한 탭-리스 구조의 전지는, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
도 1은 본 발명에 따른 전극 조립체의 권취 전 적층 상태를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 전극 조립체의 전극판의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 5는 실시예 1 및 2의 리튬 이차 전지의 핫 박스 테스트 결과를 보여주는 도면이다.
도 6은 비교예 1의 리튬 이차 전지의 핫 박스 테스트 결과를 보여주는 도면이다.
도 7은 본 발명의 일 구현예에 따른 전극 조립체의 구조를 설명하기 위한 도면이다.
도 8은 본 발명의 일 구현예에 따른 배터리 팩을 설명하기 위한 도면이다.
도 9는 본 발명의 일 구현예에 따른 배터리 팩을 포함하는 자동차를 설명하기 위한 도면이다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명에서 "1차 입자"는 주사전자현미경 또는 후방산란전자 회절패턴분석기(Electron BackScatter Diffraction, EBSD)을 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
본 발명에서 "2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다. 본 발명에서는 1차 입자가 수십 ~ 수백 개 응집되어 형성되는 종래의 2차 입자와 구별하기 위해 1차 입자가 10개 이하로 응집된 2차 입자를 유사-단입자로 지칭하기로 한다.
본 발명에서 "평균 입경 D50"은 양극 활물질 분말의 체적누적 입도분포의 50% 기준에서의 입자 크기를 의미하는 것으로, 레이저 회절법(laser diffraction method)를 이용하여 측정될 수 있다. 예를 들면, 양극 활물질 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻은 후, 체적 누적량의 50%에 해당하는 입자 크기를 구함으로써 측정될 수 있다.
본 발명에서 “본질적으로 A로 이루어진다(consist essentially of A)”는, A 성분과 본 발명의 기본적이고 신규한 특징에 실질적으로 영향을 미치지 않는 언급되지 않은 임의의 성분들을 포함하는 것을 나타낸다. 본 발명의 기본적이고 신규한 특징은 전지 제조 시 입자 깨짐을 최소화하는 것, 이러한 입자 깨짐에 의해 발생하는 가스를 최소화하는 것 및 내부 크랙의 발생을 최소화하는 것 중 적어도 하나를 포함한다. 당해 기술 분야의 통상의 기술자라면 이러한 특성들의 물질적 영향을 인지할 수 있다.
본 발명의 일 구현예에 따르면, 상기 단입자, 유사-단입자 또는 이들의 조합은, 예를 들면, 양극 활물질층에 포함되는 양극 활물질 전체 중량을 기준으로 95중량% ~ 100중량%, 바람직하게는 98중량% ~ 100중량%, 더 바람직하게는 99중량% ~ 100%의 양으로 포함될 수 있다.
본 발명자들은 높은 용량을 구현하면서도 안전성이 우수한 대형 전지를 개발하기 위해 연구를 거듭한 결과, 양극 활물질로 1개의 1차 입자로 이루어진 단입자 및/또는 10개 이하의 1차 입자들의 응집체인 유사-단입자를사용함으로써, 대형 전지의 안전성을 획기적으로 향상시킬 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 리튬 이차 전지는, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체와, 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하되, 상기 양극판이 양극 활물질층을 포함하고, 상기 양극 활물질층이 평균 입경 D50이 5㎛ 이하인 단입자, 유사-단입자 또는 이들의 조합으로 이루어진 양극 활물질을 포함하는 것을 그 특징으로 한다.
전극 조립체
상기 전극 조립체는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 것으로, 예를 들면, 젤리-롤 타입의 전극 조립체일 수 있다.
도 1에는 본 발명에 따른 전극 조립체의 권취 전 적층 구조가 도시되어 있으며, 도 2에는 본 발명에 따른 전극판(양극판 또는 음극판)의 단면 구조가 도시되어 있다.
도 1 및 도 2를 참조하면, 본 발명의 전극 조립체는 분리막(12), 양극판(10), 분리막(12), 음극판(11)이 순차적으로 적어도 1회 적층하여 형성된 적층체를 일 방향(X)으로 권취시킴으로써 제조될 수 있다.
이때, 상기 양극판(10)과 음극판(11)은, 도 2에 도시된 바와 같이, 시트 형상의 집전체(20)에 활물질층(21)이 형성된 구조를 가지며, 집전체(20)의 일부 영역에 활물질층(21)이 형성되지 않은 무지부(22)를 포함할 수 있다.
상기와 같이 무지부(22)를 포함하는 양극판(10) 및 음극판(11)을 이용하면 별도의 전극 탭을 구비하지 않고, 양극판(10) 및 음극판(11)의 무지부의 적어도 일부가 전극 탭을 정의하는 탭-리스 구조의 전지를 구현할 수 있다.
구체적으로는, 상기 무지부(22)는 집전체(20)의 일변 단부에 권취 방향(X)을 따라 길게 형성될 수 있으며, 상기 양극판 무지부와 음극판 무지부 각각에 집전 플레이트를 결합하고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 구현할 수 있다.
예를 들면, 다음과 같은 방법을 통해 탭-리스 구조의 전지를 제조할 수 있다. 먼저, 양극판(10)과 음극판(11)의 무지부(22)가 서로 반대 방향에 위치하도록 분리막, 양극판, 분리막, 음극판을 순차적으로 적층한 다음 일 방향으로 권취하여 전극 조립체를 제조한다. 그런 다음, 양극판 및 음극판의 무지부(22)를 권취 중심(C) 방향으로 절곡시킨 후, 양극판의 무지부와 음극판의 무지부에 집전 플레이트를 각각 용접시켜 결합시키고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 제조할 수 있다. 한편, 상기 집전 플레이트는 스트립 타입의 전극 탭에 비해 큰 단면적을 가지며, 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문에, 이차 전지를 상기와 같은 구조로 형성할 경우, 셀 저항을 크게 낮출 수 있다.
한편, 상기 양극판 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있을 수 있으며, 상기 복수의 분절편 중 적어도 일부가 전극 조립체의 권취 중심(C)을 향해 절곡되어 있을 수 있다.
상기 분절편은 양극판 및 음극판의 집전체를 레이저 노칭, 초음파 커팅, 타발 등과 같은 금속박 커팅 공정을 통해 가공함으로써 형성될 수 있다.
양극판 및 음극판의 무지부가 복수의 분절편 형태로 가공되어 있을 경우, 절곡 시 무지부에 가해지는 응력 스트레스를 감소시켜 무지부 변형이나 손상을 방지할 수 있으며, 집전 플레이트와의 용접 특성을 개선할 수 있다.
집전 플레이트와 무지부는 일반적으로 용접에 의해 접합되는데, 용접 특성을 향상시키기 위해서는 무지부의 용접 영역에 강한 압력을 가하여 무지부를 최대한 평평하게 절곡시켜야 한다. 그러나 이러한 절곡 과정에서 무지부의 모양이 불규하게 일그러지면서 변형될 수 있으며, 변형된 부위가 반대 극성의 전극과 접촉하여 내부 단락을 일으키거나 무지부에 미세한 크랙을 유발할 수 있다. 그러나, 양극판 및 음극판의 무지부가 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있으면, 절곡 시에 무지부에 가해지는 응력 스트레스가 완화되어 무지부 변형 및 손상을 최소화할 수 있다.
또한, 무지부가 상기와 같이 분절편 형태로 가공되어 있을 경우, 절곡 시에 복수의 분절편들 간에 중첩이 발생하며, 이로 인해 집전 플레이트와의 용접 강도가 증가하고, 레이저 용접 등의 최신 기술을 사용할 경우에 레이저가 전극 조립체 내부로 침투하여 분리막이나 활물질을 융발시키는 문제를 방지할 수 있다. 바람직하게는, 상기 절곡된 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있을 수 있으며, 중첩된 복수의 분절편 상에 집전 플레이트가 결합될 수 있다.
한편, 본 발명에 따른 전극 조립체는, 도 7에 도시된 바와 같이, 양극판(10) 상에는 절연층(24)이 추가로 형성된 구조로 형성될 수 있다. 구체적으로는, 상기 절연층(24)은 전극 조립체의 권취 방향과 평행한 방향을 따라, 양극 활물질층(21c)의 일부와 무지부의 일부를 덮도록 형성될 수 있다.
양극판(10)의 무지부(22c)와 음극판(11)의 무지부(22a)를 전극 탭으로 사용하는 탭-리스 구조의 전지의 경우, 양극판(10)이 분리막(12) 상부로 돌출되고, 음극판(11)이 분리막(12) 하부로 돌출될 수 있도록 전극 조립체를 형성하고, 돌출된 양극판(10) 및/또는 음극판(11)을 절곡시킨 후 집전 플레이트와 결합시킨다. 그런데, 상기와 같이 양극판(10) 또는 음극판(11)을 절곡시킬 경우, 양극판(10) 또는 음극판(11)의 집전체가 분리막을 넘어 반대 극성의 전극과 근접하게 위치하게 되며, 이로 인해 양극판과 음극판이 전기적으로 접촉되어 내부 단락을 유발할 가능성이 있다. 그러나, 도 7에 도시된 바와 같이, 양극 활물질층과 무지부의 일부를 덮는 절연층(24)을 형성할 경우, 절연층(24)에 의해 양극판(10)과 음극판(11)이 전기적으로 접촉되는 것을 방지할 수 있어, 전지 내부에서 단락이 발생하는 것을 방지할 수 있다.
바람직하게는, 상기 절연층(24)은, 양극판(10) 집전체의 적어도 일면에 구비될 수 있으며, 바람직하게는, 양극판(10)의 양면에 구비될 수 있다.
또한, 상기 절연층(24)는 양극판(10)의 영역 중에서 음극판(11)의 활물질층(21a)와 대면할 가능성이 있는 영역에 형성될 수 있다. 예를 들면, 상기 양극판(10)의 무지부(22c) 중 절곡된 후에 음극판(11)과 대면하는 면에서는 절연층(24)이 무지부(22c)의 말단까지 연장되어 형성될 수 있다. 다만, 절곡된 후에 음극판(11)과 대면하는 면의 반대면의 경우, 절연층(24)이 무지부(22c)의 일부, 예를 들면, 무지부(22c)의 절곡 지점 전까지만 형성되는 것이 바람직하다. 음극판(11)과 대면하는 면의 반대면의 무지부 전체 영역에 절연층(24)이 형성될 경우, 집전 플레이트와의 전기적 접촉이 불가능하여 전극 탭으로 기능할 수 없기 때문이다.
한편, 상기 절연층(24)은 절연 성능을 확보하면서 양극판에 부착될 수 있는 것이며 되고, 그 소재나 성분이 특별히 한정되는 것은 아니다. 예를 들면, 상기 절연층은 절연 코팅층 또는 절연 테이프일 수 있으며, 상기 절연 코팅층은 유기 바인더 및 무기 입자를 포함하는 것일 수 있다. 이때, 상기 유기 바인더는, 예를 들면, 스티렌-부타디엔 고무(SBR)일 수 있으며, 상기 무기 입자는 알루미나 산화물일 수 있으나, 이에 한정되는 것은 아니다.
다음으로, 본 발명의 전극 조립체의 각 구성요소에 대해 보다 자세히 설명한다.
(1) 양극판
상기 양극판은 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 양극 활물질층은 양극 활물질, 도전재 및 바인더를 포함할 수 있다.
구체적으로는 상기 양극판은 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 양극 슬러리를 도포하고, 건조 공정을 통해 양극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 양극 슬러리 도포 시에 양극 집전체의 일부 영역, 예를 들면 양극 집전체의 일 단부에 양극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 양극판을 제조할 수 있다.
상기 양극 집전체로는, 당해 기술 분야에서 사용되는 다양한 양극 집전체들이 사용될 수 있다. 예를 들어, 상기 양극 집전체로는, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 상기 양극 집전체는 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명에 있어서, 상기 양극 활물질은 1개의 1차 입자로 이루어진 단입자 및/또는 10개 이하의 1차 입자들의 응집체인 유사-단입자를 포함한다.
종래에는 리튬 이차 전지의 양극 활물질로 수십 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자를 사용하는 것이 일반적이었다. 그러나 이와 같이 많은 1차 입자들이 응집된 2차 입자 형태의 양극 활물질의 경우, 양극 제조 시에 압연 공정에서 1차 입자들이 떨어져나가는 입자 깨짐이 발생하기 쉽고, 충방전 과정에서 입자 내부에 크랙이 발생한다는 문제점이 있다. 양극 활물질의 입자 깨짐이나 입자 내부의 크랙이 발생할 경우, 전해액과의 접촉 면적이 증가하게 되기 때문에 전해액과의 부반응으로 인한 가스 발생이 증가한다는 문제점이 있다. 전지 내부에서 가스 발생이 증가하면 전지 내부의 압력이 증가하여 전지 폭발이 발생될 위험이 있다. 특히, 원통형 전지의 부피를 증가시킬 경우, 부피 증가에 따라 전지 내부의 활물질 양이 증가하고, 이로 인해 가스 발생량도 현저하게 증가하기 때문에 전지의 발화 및/또는 폭발 위험성이 더 커지게 된다.
이에 비해, 1개의 1차 입자로 이루어진 단입자 및/또는 1차 입자가 10개 이하로 응집된 유사-단입자 형태의 양극 활물질은 1차 입자가 수십~수백개 응집되어 있는 기존의 2차 입자 형태의 양극 활물질에 비해 입자 강도가 높기 때문에 압연 시의 입자 깨짐이 거의 발생하지 않는다. 또한, 단입자 및/또는 유사-단입자 형태의 양극 활물질의 경우, 입자를 구성하는 1차 입자들의 개수가 적기 때문에 충방전 시에 1차 입자들의 부피 팽창, 수축에 따른 변화가 적고, 이에 따라 입자 내부의 크랙 발생도 현저하게 감소한다.
따라서, 본 발명과 같이 단입자 및/또는 유사-단입자 형태의 양극 활물질을 사용할 경우, 입자 깨짐 및 내부 크랙 발생으로 인한 가스 발생량을 현저하게 감소시킬 수 있으며, 이에 따라, 대형 전지에서도 우수한 안전성을 구현할 수 있다.
한편, 상기 단입자 및/또는 유사-단입자 양극 활물질은 양극 활물질층에 포함되는 전체 양극 활물질의 중량을 기준으로 95중량% 내지 100중량%, 바람직하게는 98중량% 내지 100중량%, 더 바람직하게는 99중량% 내지 100중량%, 보다 더 바람직하게는 100중량%의 양으로 포함되는 것이 바람직하다. 단입자 및/또는 유사-단입자의 함량이 상기 범위를 만족할 때, 대형 전지 적용 시에 충분한 안전성을 얻을 수 있다. 2차 입자 형태의 양극 활물질이 전체 양극 활물질 중 5중량%를 초과하는 양으로 포함될 경우, 전극 제조 및 충방전 시에 2차 입자로부터 발생한 미분으로 인해 전해액과의 부반응이 증가하여 가스 발생 억제 효과가 떨어지고, 이로 인해 대형 전지에 적용 시에 안정성 개선 효과가 저하될 수 있기 때문이다.
한편, 본 발명에 따른 양극 활물질은 평균 입경 D50이 5㎛ 이하, 4㎛ 이하, 3㎛ 이하, 또는 2 ㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 양극 활물질의 평균 입경 D50이 상기 범위를 만족할 때, 저항 증가를 최소화할 수 있다.
단입자 및/또는 유사-단입자 형태의 양극 활물질은 입자 내부에서 리튬 이온의 확산 경로가 되는 1차 입자들 사이의 계면이 적기 때문에 2차 입자 형태의 양극 활물질보다 리튬 이동성이 떨어지고, 이로 인해 저항이 증가한다는 문제점이 있다. 이러한 저항 증가는 입자의 크기가 커질수록 더욱 심화되며, 저항이 증가하면 용량 및 출력 특성이 악영향을 미친다. 따라서, 본 발명에서는 평균 입경 D50이 5㎛ 이하로 작은 단입자 또는 유사-단입자 양극 활물질을 적용하여 입자 내부에서의 리튬 이온 확산 거리를 최소화함으로써 저항 증가를 억제할 수 있도록 하였다.
상기 양극 활물질은 1차 입자의 평균 입경이 5㎛ 이하, 4㎛ 이하, 3㎛ 이하, 또는 2㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 1차 입자의 평균 입경이 상기 범위를 만족할 경우, 전기 화학적 특성이 우수한 단입자 및/또는 유사-단입자 형태의 양극 활물질을 형성할 수 있다. 1차 입자의 평균 입경이 너무 작으면, 양극 활물질을 형성하는 1차 입자의 응집 개수가 많아져 압연 시에 입자 깨짐 발생 억제 효과가 떨어지고, 1차 입자의 평균 입경이 너무 크면 1차 입자 내부에서의 리튬 확산 경로가 길어져 저항이 증가하고 출력 특성이 떨어질 수 있다.
본 발명에 있어서, 상기 양극 활물질층에 포함된 양극 활물질은 유니모달 입도 분포를 갖는 것이 바람직하다. 종래에는 양극 활물질층의 전극 밀도를 향상시키기 위해 평균 입경이 큰 대입경 양극 활물질과 평균 입경이 작은 소입경 양극 활물질을 혼합하여 사용하는 바이모달 양극 활물질이 많이 사용되어 왔다. 그러나, 단입자 또는 유사-단입자 형태의 양극 활물질의 경우, 입경이 증가하면 리튬 이동 경로가 길어져 저항이 현저하게 증가하기 때문에 대입경 입자를 혼합하여 사용할 경우, 용량 및 출력 특성이 저하되는 문제점이 발생할 수 있다. 따라서, 본 발명에서는 유니모달 분포를 갖는 양극 활물질을 사용함으로써, 저항 증가를 최소화할 수 있도록 하였다.
한편, 상기 양극 활물질은 리튬 니켈계 산화물을 포함하는 것일 수 있으며, 구체적으로는, 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것일 수 있다. 바람직하게는, 상기 리튬 니켈계 산화물은 Ni을 80몰% 이상 100몰% 미만, 82몰% 이상 100몰% 미만, 또는 83몰% 이상 100몰% 미만으로 포함할 수 있다. 상기와 같이 Ni 함량이 높은 리튬 니켈계 산화물을 사용할 경우, 높은 용량을 구현할 수 있다.
더 구체적으로는, 상기 양극 활물질은, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합일 수 있으며, 바람직하게는 Mn 또는 Mn 및 Al일 수 있다.
상기 M2는 Zr, W, Y, Ba, Ca, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 1종 이상이며, 바람직하게는 Zr, Y, Mg, 및 Ti로 이루어진 군에서 선택된 1종 이상일 수 있고, 더 바람직하게는 Zr, Y 또는 이들의 조합일 수 있다. M2 원소는 필수적으로 포함되는 것은 아니나, 적절한 양으로 포함될 경우, 소성 시의 입 성장을 촉진하거나, 결정 구조 안정성을 향상시키는 역할을 수행할 수 있다.
상기 a는 리튬 니켈계 산화물 내의 리튬 몰비를 나타내는 것으로, 0.8≤a ≤1.2, 0.85≤a ≤1.15, 또는 0.9≤a ≤1.2일 수 있다. 리튬의 몰비가 상기 범위를 만족할 때, 리튬 니켈계 산화물의 결정 구조가 안정적으로 형성될 수 있다.
상기 b는 리튬 니켈계 산화물 내 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.8≤b<1, 0.82≤b<1, 또는 0.83≤b<1일 수 있다. 니켈의 몰비가 상기 범위를 만족할 때, 높은 에너지 밀도를 나타내어 고용량 구현이 가능하다.
상기 c는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 코발트 몰비를 나타내는 것으로, 0<c<0.2, 0<c<0.18, 또는 0.01≤c≤0.17일 수 있다. 코발트의 몰비가 상기 범위를 만족할 때, 양호한 저항 특성 및 출력 특성을 구현할 수 있다.
상기 d는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M1 원소의 몰비를 나타내는 것으로, 0<d<0.2, 0<d<0.18, 또는 0.01≤d≤0.17일 수 있다. M1 원소의 몰비가 상기 범위를 만족할 때, 양극 활물질의 구조 안정성이 우수하게 나타난다.
상기 e는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M2 원소의 몰비를 나타내는 것으로, 0≤e≤0.1, 또는 0≤e≤0.05일 수 있다.
한편, 본 발명에 따른 양극 활물질은, 필요에 따라, 상기 리튬 니켈계 산화물 입자 표면에, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 바람직하게는 상기 코팅 원소는 Al, B, Co 또는 이들의 조합일 수 있다.
리튬 니켈계 산화물 입자 표면에 코팅층이 존재할 경우, 코팅층에 의해 전해질과 리튬 복합전이금속 산화물의 접촉이 억제되며, 이로 인해 전해질과의 부반응으로 인한 전이금속 용출이나 가스 발생을 감소시키는 효과를 얻을 수 있다.
상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
다음으로, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 수행하는 것으로, 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
한편, 본 발명에 따른 양극판 상에는, 필요에 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다. 상기 절연층은 전극 조립체의 권취 방향과 평행한 방향을 따라 형성될 수 있다.
(2) 음극판
상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 음극 활물질층은 음극 활물질, 도전재 및 바인더를 포함할 수 있다.
구체적으로는 상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 음극 슬러리를 도포하고, 건조 공정을 통해 음극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 음극 슬러리 도포 시에 음극 집전체의 일부 영역, 예를 들면 음극 집전체의 일 단부에 음극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 음극판을 제조할 수 있다.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료; Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 등과 같은 실리콘계 물질; 리튬 금속 박막; Sn, Al 등과 같이 리튬과 합금화가 가능한 금속 물질; 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
바람직하게는, 본 발명에 따른 음극판은 실리콘계 음극 활물질을 포함할 수 있다. 상기 실리콘계 음극 활물질은 Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 또는 이들의 조합일 수 있으며, 바람직하게는 SiOy(여기서, 0<y<2)일 수 있다. 실리콘계 음극 활물질은 높은 이론 용량을 가지기 때문에 실리콘계 음극 활물질을 포함할 경우, 용량 특성을 향상시킬 수 있다.
한편, 상기 실리콘계 음극 활물질은, Mb 금속으로 도핑된 것일 수 있으며, 이때, 상기 Mb 금속은 1족 금속 원소, 2족 금속 원소일 수 있으며, 구체적으로는, Li, Mg 등일 수 있다. 구체적으로는 상기 실리콘 음극 활물질은 Mb 금속으로 도핑된 Si, SiOy(여기서, 0<y<2), Si-C 복합체 등일 수 있다. 금속 도핑된 실리콘계 음극 활물질의 경우, 도핑 원소로 인해 활물질 용량은 다소 저하되나 높은 효율을 갖기 때문에, 높은 에너지 밀도를 구현할 수 있다.
또한, 상기 실리콘계 음극 활물질은 입자 표면에 탄소 코팅층을 더 포함할 수 있다. 이때, 상기 탄소 코팅량은 실리콘계 음극 활물질 전체 중량을 기준으로 20중량% 이하, 바람직하게는 1 ~ 20중량%일 수 있다.
또한, 상기 음극판은, 필요에 따라, 음극 활물질로 탄소계 음극 활물질을 더 포함할 수 있다. 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
한편, 음극 활물질로 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 사용할 경우, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질의 혼합비는 중량 비율로 1 : 99 내지 20 : 80, 바람직하게는 1 : 99 내지 15 : 85, 더 바람직하게는 1 : 99 내지 10 : 90일 수 있다.
상기 음극 활물질은 음극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
한편, 상기 음극 집전체로는, 당해 기술 분야에서 일반적으로 사용되는 음극 집전체들이 사용될 수 있으며, 예를 들면, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
(3) 분리막
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하다. 구체적으로는 상기 분리막으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있다.
리튬 이차 전지
다음으로 본 발명에 따른 리튬 이차 전지에 대해 설명한다.
본 발명에 따른 전지는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함할 수 있다.
바람직하게는, 본 발명에 따른 리튬 이차 전지는, 원통형 전지일 수 있으며, 더 바람직하게는, 폼 팩터의 비(원통형전지의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Ф)의 비로 정의됨)가 0.4 이상인 대형 원통형 전지일 수 있다. 여기서, 폼 팩터란, 원통형 전지의 직경 및 높이를 나타내는 값을 의미한다.
본 발명에 따른 원통형 전지는, 예를 들면, 46110 셀(직경 46mm, 높이 110mm, 폼 팩터 비 0.418), 4875 셀(직경 48mm, 높이 75mm, 폼 팩터 비 0.640), 48110 셀(직경 48mm, 높이 110mm, 폼 팩터 비 0.436), 4880 셀(직경 48mm, 높이 80mm, 폼 팩터 비 0.600), 4680셀((직경 46mm, 높이 80mm, 폼 팩터 비 0.575)일 수 있다. 폼 팩터를 나타내는 수치에서 앞의 숫자 2개는 셀의 직경을 나타내고, 그 다음 숫자 2개 또는 3개는 셀의 높이를 나타낸다.
본 발명에 따른 리튬 이차 전지는, 단입자 및/또는 유사-단입자 형태의 양극 활물질을 적용하여 종래에 비해 가스 발생량을 현저하게 감소시켰으며, 이에 따라 폼 팩터의 비가 0.4 이상인 대형 원통형 전지에서도 우수한 안전성을 구현할 수 있다.
한편, 본 발명에 따른 전지는, 바람직하게는, 전극 탭을 포함하지 않는 탭-리스(Tab-less) 구조의 전지일 수 있으나, 이에 한정되는 것은 아니다.
상기 탭-리스 구조의 전지는, 예를 들면, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 전극 조립체의 상단 및 하단에 각각 양극판 무지부 및 음극판 무지부가 위치하고, 상기 양극판 무지부 및 음극판 무지부에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 있는 구조일 수 있다.
도 3에는 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 3을 참조하여, 본 발명의 일 실시예에 따른 전지에 대해 설명한다. 다만, 도 3은 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 전지의 구조가 도 3에 개시된 범위로 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 전지(140)는 젤리-롤 타입의 전극 조립체(141)와, 상기 전극 조립체(141)가 수납되는 전지 캔(142), 및 상기 전지 캔(142)의 개방 단부를 밀봉하는 밀봉체(143)를 포함한다.
이때, 상기 전극 조립체의 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하는 것일 수 있으며, 상기 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하도록 적층되고 권취될 수 있다. 전극 조립체에 대해서는 상술하였으므로 이하에서는 전극 조립체를 제외한 나머지 구성 요소들에 대해서만 설명하기로 한다.
전지 캔(142)은 상방에 개구부가 형성된 용기로, 알루미늄이나 스틸과 같은 도전성을 갖는 금속 재질로 이루어진다. 전지 캔은 상단 개구부를 통해 내측 공간에 전극 조립체(141)를 수용하며, 전해질도 함께 수용한다.
본 발명에서 사용되는 전해질로는 리튬 이차전지에 사용 가능한 다양한 전해질들, 예를 들면, 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
구체적으로는, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 5.0M, 바람직하게는 0.1 내지 3,0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제를 추가로 포함할 수 있다. 예를 들어, 상기 첨가제로는 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 10중량%, 바람직하게는 0.1 내지 5 중량%로 포함될 수 있다.
전지 캔(142)은 음극판의 무지부(146b)와 전기적으로 연결되며, 외부 전원과 접촉하여 외부 전원으로부터 인가된 전류를 음극판으로 전달하는 음극 단자로 기능한다.
필요에 따라, 상기 전지 캔(142)의 상단에 비딩부(147) 및 크림핑부(148)가 구비될 수 있다. 상기 비딩부(147)는 전지 캔(142)의 외주면 둘레를 D1의 거리까지 압입하여 형성될 수 있다. 비딩부(147)는 전지 캔(142)의 내부에 수용된 전극 조립체(141)가 전지캔(142)의 상단 개구부를 통해 빠져 나오지 못하도록 하며, 밀봉체(143)가 안착되는 지지부로 기능할 수 있다.
상기 크림핑부(148)는 상기 비딩부(147)의 상부에 형성될 수 있으며, 비딩부(147) 상에 배치되는 캡 플레이트(143a)의 외주면과 캡 플레이트(143a)의 상면 일부를 감싸도록 연장 및 절곡된 형태를 갖는다.
다음으로, 상기 밀봉체(143)는, 전지 캔(142)의 개방 단부를 밀봉하기 위한 것으로, 캡 플레이트(143a), 캡 플레이트(143a)와 전지 캔(142) 사이에 기밀성을 제공하며 절연성을 가지는 제1가스켓(143b)을 포함하며, 필요에 따라. 캡 플레이트(143a)와 전기적 및 기계적으로 결합된 연결 플레이트(143c)을 더 포함할 수 있다. 상기 캡 플레이트(143a)는 전지 캔(142)에 형성된 비딩부(147) 상에 압착되며, 크림핑부(148)에 의해 고정될 수 있다.
캡 플레이트(143a)는 전도성을 갖는 금속 재질로 이루어진 부품으로, 전지 캔(142)의 상단 개구부를 커버한다. 캡 플레이트(143a)는 전극 조립체(141)의 양극판과 전기적으로 연결되며, 전지 캔(142)과는 제1가스켓(143b)을 통해 전기적으로 절연된다. 따라서, 캡 플레이트(143a)는 이차 전지의 양극 단자로서 기능할 수 있다. 캡 플레이트(143a)는 그 권취 중심 C로부터 상방으로 돌출된 형성된 돌출부(143d)를 구비할 수 있으며, 상기 돌출부(143d)가 외부 전원과 접촉하여 외부 전원으로부터 전류가 인가되도록 할 수 있다.
캡 플레이트(143a)와 크림핑부(148) 사이에는 전지 캔(142)의 기밀성을 확보하고, 전지 캔(142)과 캡 플레이트(143a) 사이의 전기적 절연을 위해 제1가스켓(143b)이 개재될 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 집전 플레이트(144, 145)를 더 포함할 수 있다. 상기 집전 플레이트는 양극판 무지부(146a)와 음극판의 무지부(146b)에 결합되며, 전극 단자(즉, 양극 단자 및 음극 단자)와 연결된다.
구체적으로는, 본 발명에 따른 전지(140)는 전극 조립체(141) 상부에 결합되는 제1집전 플레이트(144) 및 전극 조립체(141)의 하부에 결합되는 제2집전 플레이트(145)를 포함할 수 있다.
제1집전 플레이트(144) 및/또는 제2집전 플레이트(145)를 더 포함할 수 있다.
제1집전 플레이트(144)는 전극 조립체(141)의 상부에 결합된다. 제1집전 플레이트(144)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 양극판의 무지부(146a)와 전기적으로 연결된다. 제1집전 플레이트(144)에는 리드(149)가 연결될 수 있다. 리드(149)는 전극 조립체(141)의 상방으로 연장되어 연결 플레이트(143c)에 결합되거나 캡 플레이트(143a)의 하면에 직접 결합될 수 있다. 리드(149)와 다른 부품의 결합은, 예를 들면, 용접을 통해 이루어질 수 있다. 바람직하게는 제1집전 플레이트(144)는 리드(149)와 일체로 형성될 수 있다. 이 경우, 리드(149)는 제1집전 플레이트(144)의 중심부로부터 외측으로 연장된 길다란 플레이트 형상을 가질 수 있다.
한편, 상기 제1집전 플레이트(144)는 양극판의 무지부(146a)의 단부에 결합되며, 상기 결합은, 예를 들면, 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
제2집전 플레이트(145)는 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(145)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다. 제2집전 플레이트(145)의 일면은 음극판의 무지부(146b)와 결합될 수 있으며, 반대쪽 면은 전지 캔(142)의 내측 바닥 면과 결합될 수 있다. 이때, 상기 결합은 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 인슐레이터(146)를 더 포함할 수 있다. 인슐레이터(146)는, 제1집전 플레이트(144)의 상면을 커버하도록 배치될 수 있다. 인슐레이터(146)가 제1집전 플레이트(144)을 커버함으로써, 제1집전 플레이트(144)와 전지 캔(142)의 내주면이 직접 접촉되는 것을 방지할 수 있다.
인슐레이터(146)는 제1집전 플레이트(144)로부터 상방으로 연장되는 리드(149)가 인출될 수 있도록 리드 홀(151)을 구비한다. 리드(149)는 리드 홀(151)을 통해 상방으로 인출되어 연결 플레이트(143c)의 하면 또는 캡 플레이트(143a)의 하면에 결합된다.
인슐레이터(146)는 절연성이 있는 고분자 수지, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리이미드 또는 폴리부틸렌테레프탈레이트 등과 같은 고분자 수지 재질로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 전지 캔(142)의 하면에 형성된 벤팅부(152)를 더 구비할 수 있다. 벤팅부(152)는 전지 캔(142)의 하면 중 주변 영역과 비교하여 더 얇은 두께를 갖는 영역에 해당한다. 벤팅부(152)는 두께가 얇기 때문에 주변 영역과 비교하여 구조적으로 취약하다. 따라서, 전지(140) 내부의 압력이 일정 수준 이상으로 증가하면 벤팅부(152)가 파열되면서 전지 캔(142) 내부의 가스가 외부로 배출되어 전지가 폭발하는 것을 방지할 수 있도록 해준다.
도 4에는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 4을 참조하여, 본 발명의 다른 실시예에 따른 전지에 대해 설명한다. 다만, 도 4는 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 전지의 구조가 도 4에 개시된 범위로 한정되는 것은 아니다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 전지(170)는 도 3에 도시된 전지(140)와 비교하여 전지 캔 및 밀봉체의 구조가 상이하며, 전극 조립체 및 전해질의 구성은 실질적으로 동일하다.
구체적으로, 전지(170)는 리벳 단자(172)가 관통 설치된 전지 캔(171) 을 포함한다. 리벳 단자(172)는 전지 캔 (171)의 일 말단의 부분적으로 폐쇄된 폐쇄면(도면의 상부면)에 설치된다. 리벳 단자(172)는 절연성이 있는 제2가스켓(173)이 개재된 상태에서 전지 캔 (171)의 관통 홀(제1말단의 제1 개구)에 리벳팅된다. 리벳 단자(172)는 중력 방형과 반대 방향을 향해 외부로 노출된다.
리벳 단자(172)는, 단자 노출부(172a) 및 단자 삽입부(172b)를 포함한다. 단자 노출부(172a)는, 전지 캔(171)의 폐쇄면의 외측으로 노출된다. 단자 노출부(172a)는, 전지 캔(171)의 부분적으로 폐쇄된 면의 대략 중심부에 위치할 수 있다. 단자 노출부(172a)의 최대 지름은 전지 캔(171)에 형성된 관통 홀의 최대 지름보다 더 크게 형성될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 부분적으로 폐쇄된 폐쇄면의 대략 중심부를 관통하여 양극판의 무지부(146a)와 전기적으로 연결될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 내측 면 상에 리벳(rivet) 결합될 수 있다. 즉, 단자 삽입부(172b)의 단부는, 전지 캔(171)의 내측 면을 향해 휘어진 형태를 가질 수 있다. 단자 삽입부(172b)의 단부의 최대 지름은 전지 캔(171)의 관통 홀의 최대 지름보다 더 클 수 있다.
단자 삽입부(172b)의 하단면은 양극판의 무지부(146a)에 연결된 제1집전 플레이트(144)와 용접될 수 있다. 제1집전 플레이트(144)와 전지 캔(171)의 내측면 사이에는 절연 물질로 이루어진 절연 캡(174)이 개재될 수 있다. 절연 캡(174)은 제1집전 플레이트(144)의 상부와 전극 조립체(141)의 상단 가장 자리 부분을 커버한다. 이로써, 전극 조립체(141)의 외주측 무지부(B3)가 다른 극성을 가진 전지 캔(171)의 내측면과 접촉하여 단락을 일으키는 것을 방지할 수 있다. 리벳 단자(172)의 단자 삽입부(172b)는 절연 캡(174)을 관통하여 제1집전 플레이트(144)에 용접될 수 있다.
제2가스켓(173)은 전지 캔(171)과 리벳 단자(172) 사이에 개재되어 서로 반대 극성을 갖는 전지 캔(171)과 리벳 단자(172)가 전기적으로 접촉되는 것을 방지한다. 이로써 대략 플랫(flat)한 형상을 갖는 전지 캔(171)의 상면이 전지(170)의 양극 단자로 기능할 수 있다.
제2가스켓(173)은, 가스켓 노출부(173a) 및 가스켓 삽입부(173b)를 포함한다. 가스켓 노출부(173a)는 리벳 단자(172)의 단자 노출부(172a)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는 리벳 단자(172)의 단자 삽입부(172b)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는, 단자 삽입부(172b)의 리벳팅(reveting) 시에 함께 변형되어 전지 캔(171)의 내측 면에 밀착될 수 있다. 제2가스켓(173)은, 예를 들어 절연성을 갖는 고분자 수지로 이루어질 수 있다.
제2가스켓(173)의 가스켓 노출부(173a)는, 리벳 단자(172)의 단자 노출부(172a)의 외주면을 커버하도록 연장된 형태를 가질 수 있다. 제2가스켓(173)이 리벳 단자(172)의 외주면을 커버하는 경우, 버스바 등의 전기적 연결 부품을 전지 캔(171)의 상면 및/또는 리벳 단자(172)에 결합시키는 과정에서 단락이 발생되는 것을 방지할 수 있다. 도면에 도시되어 있지는 않으나, 가스켓 노출부(173a)는, 단자 노출부(172a)의 외주면뿐만 아니라 상면의 일부도 함께 커버하도록 연장된 형태를 가질 수 있다.
제2가스켓(173)이 고분자 수지로 이루어지는 경우에 있어서, 제2가스켓(173)은 열 융착에 의해 전지 캔(171) 및 리벳 단자(172)와 결합될 수 있다. 이 경우, 제2가스켓(173)과 리벳 단자(172)의 결합 계면 및 제2가스켓(173)과 전지 캔(171)의 결합 계면에서의 기밀성이 강화될 수 있다. 한편, 제2가스켓(173)의 가스켓 노출부(173a)가 단자 노출부(172a)의 상면까지 연장된 형태를 갖는 경우에 있어서, 리벳 단자(172)는 인서트 사출에 의해 제2가스켓(173)과 일체로 결합될 수 있다.
전지 캔(171)의 상면 중에서 리벳 단자(172) 및 제2가스켓(173)이 차지하는 영역을 제외한 나머지 영역(175)이 리벳 단자(172)와 반대 극성을 갖는 음극 단자에 해당한다.
제2집전 플레이트(176)는, 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(176)는 알루미늄, 스틸, 구리, 니켈 등의 도전성을 갖는 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다.
바람직하게는, 제2집전 플레이트(176)는, 전지 캔(171)과 전기적으로 연결된다. 이를 위해, 제2집전 플레이트(176)는 가장 자리 부분의 적어도 일부가 전지 캔(171)의 내측면과 제1가스켓(178b) 사이에 개재되어 고정될 수 있다. 일 예에서, 제2집전 플레이트(176)의 가장 자리 부분의 적어도 일부는 전지 캔(171)의 하단에 형성된 비딩부(180)의 하단면에 지지된 상태에서 용접에 의해 비딩부(180)에 고정될 수 있다. 변형예에서, 제2집전 플레이트(176)의 가장자리 부분의 적어도 일부는 전지 캔(171)의 내벽 면에 직접적으로 용접될 수 있다.
제2집전 플레이트(176)는, 무지부(146b)와 대향하는 면 상에 방사상으로 형성된 복수의 요철(미도시)을 구비할 수 있다. 요철이 형성된 경우, 제2집전 플레이트(176)을 눌러서 요철을 무지부(146b)에 압입시킬 수 있다.
바람직하게, 제2집전 플레이트(176)와 무지부(146b)의 단부는 예컨대 레이저 용접 등과 같은 용접에 의해 결합될 수 있다.
전지 캔(171)의 하부 개방단을 밀봉하는 밀봉체(178)는 캡 플레이트(178a)와 제1가스켓(178b)을 포함한다. 제1가스켓(178b)은 캡 플레이트(178a)와 전지 캔(171)을 전기적으로 분리시킨다. 크림핑부(181)는 캡 플레이트(178a)의 가장자리와 제1가스켓(178b)을 함께 고정시킨다. 캡 플레이트(178a)에는 벤트부(179)가 구비된다. 벤트부(179)의 구성은 상술한 실시예와 실질적으로 동일하다.
바람직하게, 캡 플레이트(178a)는 도전성이 있는 금속 재질로 이루어진다. 하지만, 캡 플레이트(178a)와 전지 캔(171) 사이에 제1가스켓(178b)이 개재되어 있으므로, 캡 플레이트(178a)는 전기적 극성을 띠지 않는다. 밀봉체(178)는 전지 캔(171) 하부의 개방단을 밀봉시키고 배터리 셀(170)의 내부 압력이 임계치 이상 증가하였을 때 가스를 배출시키는 기능을 한다.
바람직하게, 양극판의 무지부(146a)와 전기적으로 연결된 리벳 단자(172)는 양극 단자로 사용된다. 또한, 제2집전 플레이트(176)를 통해 음극판의 무지부(146b)와 전기적으로 연결된 전지 캔(171)의 상부 표면 중에서 리벳 단자(172)를 제외한 부분(175)는 음극 단자로 사용된다. 이처럼, 2개의 전극 단자가 전지의 상부에 위치할 경우, 버스바 등의 전기적 연결 부품을 전지(170)의 일 측에만 배치시키는 것이 가능한다. 이는, 배터리 팩 구조의 단순화 및 에너지 밀도의 향상을 가져올 수 있다. 또한, 음극 단자로 사용되는 부분(175)은 대략 플랫한 형태를 가지므로 버스바 등의 전기적 연결 부품을 접합시키는데 있어서 충분한 접합 면적을 확보할 수 있다. 이에 따라, 전지(170)는 전기적 연결 부품의 접합 부위에서의 저항을 바람직한 수준으로 낮출 수 있다.
리튬 이차 전지를 상기와 같이 탭-리스 구조로 형성할 경우, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
상기와 같은 본 발명의 리튬 이차 전지는 배터리 팩을 제조하는데 사용될 수 있다. 도 8에는 본 발명의 실시예에 따른 배터리 팩의 구성이 개략적으로 도시되어 있다. 도 8을 참조하면, 본 발명의 실시예에 따른 배터리 팩(3)은 이차전지(1)가 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(2)을 포함한다. 이차전지(1)는 상술한 실시예에 따른 배터리 셀이다. 도면에서는, 도면 도시의 편의상 이차전지(1)들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
배터리 팩(3)은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다.
도 9는 도 8의 배터리 팩(3)을 포함하는 자동차를 설명하기 위한 도면이다.
도 9를 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함하며, 상기 배터리 팩(3)으로부터 전력을 공급받아 동작한다.
이하, 구체적인 실시예를 통해 본 발명을 보다 자세히 설명한다.
실시예 1
평균 입경 D50이 3 ㎛인 유니모달 입도 분포를 가지며, 단입자 형태인 양극 활물질 Li[Ni(0.9Co0.06Mn0.03Al0.01]O2 : 탄소나노튜브 : PVDF 바인더를 97.8 : 0.6 : 1.6의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 시트의 일면에 도포한 후, 120℃에서 건조 후, 압연하여 양극판을 제조하였다.
음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재( super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 음극판을 제조하였다.
상기와 같이 제조된 양극판과 음극판 사이에 분리막을 개재하여 분리막/양극판/분리막/음극판 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 원통형 전지 캔에 삽입한 후 전해액을 주입하여 4680 셀을 제조하였다.
비교예 1
양극 활물질로 대입경 평균 입경 D50이 9㎛이고, 소입경 평균 입경 D50이 4㎛인 바이모달 입도 분포를 가지며, 2차 입자 형태인 Li[Ni0.9Co0.05Mn0.04Al0.01]O2을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 4680 셀을 제조하였다.
실험예
실시예 1 및 비교예 1에 의해 제조된 4680 셀에 대하여 핫 박스 테스트(hot box test)를 실시하였다.
구체적으로는, 실시예 1 및 비교예 1에 의해 제조된 4680 셀 각각을 상온에서 핫 박스 챔버(hot box chamber)에 넣고, 5℃/min의 승온 속도로 130℃까지 승온시킨 후 30분 동안 유지시키는 핫 박스 평가를 진행하고, 시간에 따른 전지의 온도 변화를 측정하였다. 정확한 평가를 위해 실시예 1의 셀에 대해서는 2회의 핫 박스 평가를 실시하였다. 측정 결과는 도 4 및 도 5에 도시하였다.
도 5는 실시예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이며, 도 6은 비교예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 5 및 도 6을 통해, 단입자 양극 활물질을 사용한 실시예 1의 리튬 이차 전지의 경우, 65분 경과 시까지 전지의 전압 및 온도가 안정적으로 유지되는데 반해, 비교예 1의 리튬 이차 전지는 35분 경과 후에 전지 온도가 급격하게 상승하였음을 확인할 수 있다.

Claims (18)

  1. 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 리튬 이차 전지이며,
    상기 양극판은 양극 활물질층을 포함하고,
    상기 양극 활물질층은 단입자, 유사-단입자 또는 이들의 조합으로 이루어지는 양극 활물질을 상기 양극 활물질층에 포함된 전체 양극 활물질의 중량을 기준으로 95중량% 내지 100중량%의 양으로 포함하고,
    상기 양극 활물질의 평균 입경 D50이 5㎛ 이하이며,
    상기 양극 활물질층은 체적 누적 입도 분포 그래프에서 단일 피크(single peak)를 나타내는 유니모달 입도 분포를 갖는 양극 활물질을 포함하고,
    상기 리튬 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지인 리튬 이차 전지.
  2. 제1항에 있어서,
    상기 양극 활물질은 단입자, 유사-단입자 또는 이들의 조합으로 이루어진 것인 리튬 이차 전지.
  3. 삭제
  4. 제1항에 있어서,
    상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것인 리튬 이차 전지.
  5. 제1항에 있어서,
    상기 양극 활물질은 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것인 리튬 이차 전지.
    [화학식 1]
    LiaNibCocM1 dM2 eO2
    상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합이고, M2는 Zr, W, Y, Ti, Mg, Ca, Sr, Mg, Ta, Nb 및 Ba로 이루어지는 군에서 선택되는 1종 이상이며, 0.8≤a ≤1.2, 0.83≤b<1, 0<c<0.17, 0<d<0.17, 0≤e≤0.1임
  6. 제1항에 있어서,
    상기 양극 활물질은 1차 입자 입경이 0.5㎛ 내지 5㎛인 리튬 이차 전지.
  7. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  8. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  9. 제8항에 있어서,
    상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함되는 것인 리튬 이차 전지.
  10. 삭제
  11. 제1항에 있어서,
    상기 원통형 전지는 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀인 리튬 이차 전지.
  12. 제1항에 있어서,
    상기 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하고,
    상기 양극판 또는 음극판의 무지부의 적어도 일부가 전극 탭을 정의하는 구조의 전지인 리튬 이차 전지.
  13. 제12항에 있어서,
    상기 양극판 무지부 및 음극판 무지부는 각각 상기 양극판 및 음극판의 일변 단부에 상기 전극 조립체가 권취되는 방향을 따라 형성되며,
    상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고,
    상기 집전 플레이트가 전극 단자와 연결되는 것인 리튬 이차 전지.
  14. 제13항에 있어서,
    상기 양극판 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되고,
    상기 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 권취 중심을 향하여 절곡되어 있는 리튬 이차 전지.
  15. 제14항에 있어서,
    상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고,
    상기 중첩된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있는 리튬 이차 전지.
  16. 제13항에 있어서,
    상기 양극판 상에는, 권취 방향과 평행한 방향을 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성되어 있는 리튬 이차 전지.
  17. 제1항, 제2항, 제4항 내지 제9항 및 제11항 내지 제16항 중 어느 한 항의 리튬 이차 전지를 포함하는 전지 팩.
  18. 제17항의 전지 팩을 포함하는 자동차.
KR1020220121173A 2021-10-14 2022-09-23 리튬 이차 전지 KR102673253B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/965,619 US20230117276A1 (en) 2021-10-14 2022-10-13 Lithium secondary battery
JP2024518487A JP2024534588A (ja) 2021-10-14 2022-10-14 リチウム二次電池
EP22881412.5A EP4418400A1 (en) 2021-10-14 2022-10-14 Lithium secondary battery
CA3233003A CA3233003A1 (en) 2021-10-14 2022-10-14 Lithium secondary battery
CN202280065721.3A CN118020194A (zh) 2021-10-14 2022-10-14 锂二次电池
PCT/KR2022/015624 WO2023063785A1 (ko) 2021-10-14 2022-10-14 리튬 이차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210136709 2021-10-14
KR1020210136709 2021-10-14
KR1020220049184 2022-04-20
KR1020220049184A KR20230054244A (ko) 2021-10-14 2022-04-20 원통형 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20230054267A KR20230054267A (ko) 2023-04-24
KR102673253B1 true KR102673253B1 (ko) 2024-06-12

Family

ID=86141622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220121173A KR102673253B1 (ko) 2021-10-14 2022-09-23 리튬 이차 전지

Country Status (1)

Country Link
KR (1) KR102673253B1 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6542421B1 (ja) * 2018-03-29 2019-07-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
KR102712362B1 (ko) * 2018-10-12 2024-10-04 삼성에스디아이 주식회사 이차전지
KR20210047755A (ko) * 2019-10-22 2021-04-30 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법
JP6742547B1 (ja) * 2020-01-17 2020-08-19 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池

Also Published As

Publication number Publication date
KR20230054267A (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
KR102673253B1 (ko) 리튬 이차 전지
KR102686803B1 (ko) 리튬 이차 전지
KR102701053B1 (ko) 리튬 이차 전지
EP4418399A1 (en) Lithium secondary battery
US20230121815A1 (en) Lithium secondary battery
US20230117276A1 (en) Lithium secondary battery
EP4418400A1 (en) Lithium secondary battery
US20240105957A1 (en) Lithium secondary battery
KR20230054244A (ko) 원통형 리튬 이차 전지
EP4376139A1 (en) Cylindrical secondary battery, and battery pack and vehicle including same
US20240128597A1 (en) Cylindrical battery, and battery pack and vehicle including the same
KR20230053534A (ko) 리튬 이차 전지
EP4418398A1 (en) Lithium secondary battery
EP4395026A1 (en) Cylindrical battery, and battery pack and vehicle including cylindrical battery
EP4333194A1 (en) Cylindrical battery, and battery pack and vehicle comprising same
EP4329059A1 (en) Cylindrical secondary battery, and battery pack and vehicle including cylindrical secondary battery
KR20240101251A (ko) 리튬 이차 전지
KR20240101440A (ko) 리튬 이차 전지
CN118020194A (zh) 锂二次电池
CN118160128A (zh) 锂二次电池
KR20240100156A (ko) 원통형 리튬 이차 전지
KR20240101436A (ko) 리튬 이차 전지
KR20240002948A (ko) 원통형 리튬 이차 전지
KR20240100285A (ko) 원통형 리튬 이차전지
KR20240101471A (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant