KR102661213B1 - Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom - Google Patents

Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom Download PDF

Info

Publication number
KR102661213B1
KR102661213B1 KR1020210157220A KR20210157220A KR102661213B1 KR 102661213 B1 KR102661213 B1 KR 102661213B1 KR 1020210157220 A KR1020210157220 A KR 1020210157220A KR 20210157220 A KR20210157220 A KR 20210157220A KR 102661213 B1 KR102661213 B1 KR 102661213B1
Authority
KR
South Korea
Prior art keywords
graphene
graphene oxide
core
solution
graphite
Prior art date
Application number
KR1020210157220A
Other languages
Korean (ko)
Other versions
KR20230071243A (en
Inventor
양선혜
이건웅
정승열
김익준
정수연
김병국
류지현
이혜정
백종규
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020210157220A priority Critical patent/KR102661213B1/en
Publication of KR20230071243A publication Critical patent/KR20230071243A/en
Priority to KR1020240040682A priority patent/KR20240042595A/en
Application granted granted Critical
Publication of KR102661213B1 publication Critical patent/KR102661213B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명은 반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법, 이로부터 제조되는 코어-쉘 복합체에 관한 것이다.
이러한 본 발명은, 소수성 입자와 알코올을 혼합하여 활물질 반죽을 제조하는 단계; 활물질 반죽과, 수계 용매 기반의 친수성 그래핀을 혼합하여 분무 용액을 제조하는 단계; 분무 용액을 분무 건조하여 소수성 입자의 표면에 친수성 그래핀이 코팅된 코어-쉘 복합체를 제조하는 단계;를 포함하는 것을 기술적 요지로 한다.
The present invention relates to a method for manufacturing a core-shell composite in which graphene is coated on the surface of hydrophobic particles using a kneading method, and a core-shell composite manufactured therefrom.
The present invention includes the steps of mixing hydrophobic particles and alcohol to prepare an active material paste; Preparing a spray solution by mixing an active material paste and an aqueous solvent-based hydrophilic graphene; The technical gist includes the step of spray-drying the spray solution to produce a core-shell composite in which hydrophilic graphene is coated on the surface of the hydrophobic particles.

Description

반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법, 이로부터 제조되는 코어-쉘 복합체{METHOD FOR PREPARING A CORE-SHELL STRUCTURED COMPOSITE COATED WITH GRAPHENE ON THE SURFACE OF HYDROPHOBIC PARTICLES USING A KNEADING METHOD, AND A CORE-SHELL STRUCTURED COMPOSITE PREPARED THEREFROM}Method for manufacturing a core-shell composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell composite manufactured therefrom KNEADING METHOD, AND A CORE-SHELL STRUCTURED COMPOSITE PREPARED THEREFROM}

본 발명은 반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법, 이로부터 제조되는 코어-쉘 복합체에 관한 것이다.The present invention relates to a method for manufacturing a core-shell composite in which graphene is coated on the surface of hydrophobic particles using a kneading method, and a core-shell composite manufactured therefrom.

이차전지는 적용 분야에 따라 전극 소재가 구별되고, 전극 소재의 표면 특성, 크기의 다양성, 활물질, 도전재 및 바인더 등의 부반응으로 인하여 셀 성능 저하가 야기되고 있다. 예를 들면 실리콘 기반 고용량 음극재의 경우 리튬 이온의 흡수 및 저장 시 결정 구조의 변화로 인해 약 400% 이상의 부피 변화가 발생되고, 계속된 부피 변화로 인해 실리콘의 구조가 와해되는 현상이 야기되므로, 초기 효율 및 사이클 특성이 저하되기 때문에 이차전지의 가역성을 향상시키면서 고용량을 유지하는 기술이 필수적이다.In secondary batteries, electrode materials are differentiated depending on the field of application, and cell performance is deteriorated due to side reactions such as surface characteristics and size diversity of electrode materials, active materials, conductive materials, and binders. For example, in the case of silicon-based high-capacity anode materials, a change in the crystal structure occurs when lithium ions are absorbed and stored, resulting in a volume change of approximately 400% or more. The continued volume change causes the structure of the silicon to break down, so the initial Because efficiency and cycle characteristics decrease, technology that improves the reversibility of secondary batteries while maintaining high capacity is essential.

이를 위해 구조적 안정성 및 표면 안정화, 전해액과의 함침 특성, 계면 반응에서의 저항 감소 등의 성능을 향상시키기 위해 활물질에 열화학기상증착법을 이용하여 탄소를 코팅하는 방법을 주로 이용하고 있다. 하지만 탄소 코팅의 경우 활물질 표면에 금속 촉매를 도입할 수 없기 때문에 결정성 저하 및 탄소층의 두께 조절이 어려운 단점이 있다.To this end, a method of coating active materials with carbon using thermal chemical vapor deposition is mainly used to improve performance such as structural stability, surface stabilization, impregnation with electrolyte, and reduction of resistance in interface reactions. However, in the case of carbon coating, a metal catalyst cannot be introduced to the surface of the active material, so it has the disadvantage of reduced crystallinity and difficulty controlling the thickness of the carbon layer.

표면에 탄소층을 코팅하지 않고 고용량의 활물질을 이차전지용 전극에 도입하는 것은 불가능하기 때문에 대부분 결함이 많은 탄소층을 활물질 표면에 성장시켜 사용하고 있다. 또한 대부분의 활물질의 경우 탄소 코팅된 금속 및 금속산화물, 흑연, 탄소나노튜브, 카본블랙, 그래핀, 소프트 카본, 하드 카본, 황 복합체 등과 같이 표면에 탄소로 이루어져 있기 때문에 전기화학적인 특성 향상을 위해 전기전도성이 우수하고, 전해액과 부반응을 야기시키지 않는 물질을 도포하는 공정은 중요하다.Since it is impossible to introduce a high-capacity active material into a secondary battery electrode without coating a carbon layer on the surface, a carbon layer with many defects is mostly used by growing it on the surface of the active material. In addition, most active materials, such as carbon-coated metals and metal oxides, graphite, carbon nanotubes, carbon black, graphene, soft carbon, hard carbon, and sulfur composites, have carbon on their surfaces to improve electrochemical properties. The process of applying a material that has excellent electrical conductivity and does not cause side reactions with the electrolyte is important.

'그래핀-탄소나노튜브 복합체의 제조방법(공개번호: 10-2021-0128176)'에서는 산화그래핀을 환원시킨 그래핀과, 산처리된 탄소나노튜브를 용매 중에 분산시키고 분무 건조하여 그래핀-탄소나노튜브 복합체를 제조하는 방법을 개시하고 있다. 또한 '구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법, 이에 따라 제조된 그래핀-탄소나노튜브 복합체 및 이를 포함하는 슈퍼커패시터(10-1744122)'에서는 산 처리된 탄소나노튜브, 그래핀 옥사이드 및 용매를 혼합한 콜로이드 혼합용액을 분무 건조하고 열처리하여 그래핀-탄소나노튜브 복합체를 제조하는 방법을 개시하고 있다.In 'Method for manufacturing graphene-carbon nanotube composite (Publication number: 10-2021-0128176)', graphene obtained by reducing graphene oxide and acid-treated carbon nanotubes are dispersed in a solvent and spray-dried to produce graphene-carbon nanotubes. A method for manufacturing a carbon nanotube composite is disclosed. In addition, in 'Method for manufacturing a crumpled graphene-carbon nanotube composite, a graphene-carbon nanotube composite manufactured thereby, and a supercapacitor containing the same (10-1744122)', acid-treated carbon nanotubes, graphene oxide, and A method of producing a graphene-carbon nanotube composite is disclosed by spray drying and heat treating a colloidal mixed solution mixed with a solvent.

하지만 활물질로 사용되는 탄소 소재의 표면은 소수성을 지녀 수계 용매 내에서 분산이 어려워서 산화그래핀이나 산화그래핀환원물과 같이 수계 분산된 용액 내에서의 분산 역시 용이하지 않기 때문에, 활물질과 산화그래핀 또는 산화그래핀환원물과 혼합될 때 상 분리 현상이 쉽게 발생되어 결국 전극 효율이 저하될 수 밖에 없는 문제점이 있으므로, 이를 해결해 보기 위한 연구가 절실히 요구되고 있는 실정이다.However, the surface of the carbon material used as an active material is hydrophobic and difficult to disperse in aqueous solvents, so it is also difficult to disperse in aqueous solutions such as graphene oxide or reduced graphene oxide. Alternatively, when mixed with reduced graphene oxide, a phase separation phenomenon easily occurs, which ultimately leads to a decrease in electrode efficiency. Therefore, research to solve this problem is urgently needed.

국내 공개특허공보 제10-2021-0128176호, 2021.10.26.자 공개.Domestic Open Patent Publication No. 10-2021-0128176, published on October 26, 2021. 국내 등록특허공보 제10-1744122호, 2017.05.31.자 등록.Domestic Patent Publication No. 10-1744122, registered on May 31, 2017.

본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 층 분리 현상이 발생되지 않도록 반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법, 이로부터 제조되는 코어-쉘 복합체를 제공하는 것을 기술적 해결과제로 한다.The present invention was invented to solve the above problems, a method for manufacturing a core-shell composite coated with graphene on the surface of hydrophobic particles using a kneading method to prevent layer separation, and a core-shell composite manufactured therefrom. The technical solution is to provide .

상기의 기술적 과제를 해결하기 위하여 본 발명은, 소수성 입자와 알코올을 혼합하여 활물질 반죽을 제조하는 단계; 상기 활물질 반죽과, 수계 용매 기반의 친수성 그래핀을 혼합하여 분무 용액을 제조하는 단계; 및 상기 분무 용액을 분무 건조하여 상기 소수성 입자의 표면에 상기 친수성 그래핀이 코팅된 코어-쉘 복합체를 제조하는 단계;를 포함하는 것을 특징으로 하는, 반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법을 제공한다.In order to solve the above technical problem, the present invention includes the steps of mixing hydrophobic particles and alcohol to prepare an active material paste; Preparing a spray solution by mixing the active material paste and hydrophilic graphene based on an aqueous solvent; And spray-drying the spray solution to prepare a core-shell composite in which the hydrophilic graphene is coated on the surface of the hydrophobic particle. Graphene is coated on the surface of the hydrophobic particle using a kneading method. A method for manufacturing a core-shell composite is provided.

본 발명에 있어서, 상기 소수성 입자는, 천연흑연, 인조흑연, 탄소나노튜브, 카본블랙, 탄소 코팅된 금속, 탄소 코팅된 금속산화물, 그래핀, 소프트 카본 및 하드 카본으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한다.In the present invention, the hydrophobic particle is one selected from the group consisting of natural graphite, artificial graphite, carbon nanotubes, carbon black, carbon-coated metal, carbon-coated metal oxide, graphene, soft carbon, and hard carbon. It is characterized by the above.

본 발명에 있어서, 상기 친수성 그래핀은, 물(H2O)을 포함하는 수계 용매에 산화그래핀 또는 산화그래핀환원물이 분산되어 형성되는 그래핀 용액인 것을 특징으로 한다.In the present invention, the hydrophilic graphene is characterized in that it is a graphene solution formed by dispersing graphene oxide or reduced graphene oxide in an aqueous solvent containing water (H 2 O).

본 발명에 있어서, 상기 그래핀 용액은, 그래파이트를 산화시킨 후 분산 및 박리하여 형성되는 산화그래핀을 양이온-파이 상호작용을 통해 형성되는 산화그래핀 분산 용액인 것을 특징으로 한다.In the present invention, the graphene solution is characterized in that it is a graphene oxide dispersion solution formed by oxidizing graphite and then dispersing and exfoliating graphene oxide through cation-pi interaction.

본 발명에 있어서, 상기 그래핀 용액은, 그래파이트를 산화시킨 후 분산 및 박리하여 형성되는 산화그래핀을 양이온-파이 상호작용을 통해 산화그래핀 분산 용액을 형성하고, 상기 산화그래핀 분산 용액에 환원제를 투입하여 환원시킨 산화그래핀환원물 분산 용액인 것을 특징으로 한다.In the present invention, the graphene solution is formed by oxidizing graphite and then dispersing and exfoliating graphene oxide to form a graphene oxide dispersion solution through cation-pi interaction, and adding a reducing agent to the graphene oxide dispersion solution. It is characterized in that it is a dispersion solution of reduced graphene oxide material reduced by adding .

본 발명에 있어서, 상기 분무 용액은, 상기 알코올과 상기 수계 용매의 분자간 극성력과 수소결합에 의한 상호인력으로 용해된 용질-용매 기반의 용액인 것을 특징으로 한다.In the present invention, the spray solution is characterized as a solute-solvent based solution dissolved by mutual attraction due to intermolecular polar forces and hydrogen bonds between the alcohol and the aqueous solvent.

상기의 다른 기술적 과제를 해결하기 위하여 본 발명은, 상기 방법으로 제조되되, 코어로 배치되는 소수성 입자; 및 상기 소수성 입자의 외부에 코팅되어 쉘로 배치되는 친수성 그래핀;을 포함하여 형성되는 것을 특징으로 하는, 반죽법을 이용한 코어-쉘 복합체를 제공한다.In order to solve the above other technical problems, the present invention includes hydrophobic particles produced by the above method and disposed as a core; and hydrophilic graphene coated on the outside of the hydrophobic particles and disposed as a shell.

본 발명에 있어서, 상기 소수성 입자는, 천연흑연, 인조흑연, 탄소나노튜브, 카본블랙, 탄소 코팅된 금속, 탄소 코팅된 금속산화물, 그래핀, 소프트 카본 및 하드 카본으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한다.In the present invention, the hydrophobic particle is one selected from the group consisting of natural graphite, artificial graphite, carbon nanotubes, carbon black, carbon-coated metal, carbon-coated metal oxide, graphene, soft carbon, and hard carbon. It is characterized by the above.

본 발명에 있어서, 상기 친수성 그래핀은, 산화그래핀 또는 산화그래핀환원물인 것을 특징으로 한다.In the present invention, the hydrophilic graphene is characterized in that it is graphene oxide or a reduced graphene oxide product.

상기 과제의 해결 수단에 의한 본 발명에 따르면, 소수성 표면을 갖는 입자와 알코올을 혼합하는 반죽법을 이용하여 활물질 반죽을 제조함으로써, 알코올에 의해 소수성 입자의 표면을 젖게 만들어 산화그래핀 또는 산화그래핀환원물과 분산된 후 분무 건조를 통하여 소수성 입자가 코어로 배치되고 산화그래핀 또는 산화그래핀환원물이 쉘로 배치된 코어-쉘 구조의 복합체 분말을 보다 간단한 공정으로 대량 생산할 수 있는 효과가 있다.According to the present invention as a means of solving the above problem, the active material dough is manufactured using a kneading method of mixing particles with a hydrophobic surface and alcohol, thereby wetting the surface of the hydrophobic particles with alcohol to produce graphene oxide or graphene oxide. After being dispersed with the reduced product, it is possible to mass-produce a core-shell structured composite powder in which hydrophobic particles are arranged as the core and graphene oxide or graphene oxide reduced product is arranged as the shell through spray drying in a simpler process.

이에 따라 본 발명의 코어-쉘 복합체로 이루어진 고성능 복합 활물질은 전해질과의 계면에서 형성될 수 있는 부반응이 억제되고 전기전도성을 높일 수 있으므로, 고용량, 장수명 및 고안정성의 전기화학특성을 요구하는 이차전지용 전극에 적용되어 성능 향상을 도모할 수 있는 효과가 있다.Accordingly, the high-performance composite active material composed of the core-shell composite of the present invention can suppress side reactions that may form at the interface with the electrolyte and increase electrical conductivity, so it is used for secondary batteries that require electrochemical properties of high capacity, long life, and high stability. When applied to electrodes, it has the effect of improving performance.

도 1은 본 발명에 따른 코어-쉘 복합체의 제조방법을 나타낸 순서도.
도 2는 실시예 1 및 비교예 1에서 흑연에 에탄올을 반죽한 여부에 따른 층 분리를 비교하여 나타낸 사진.
도 3a는 실시예 1에 따른 활물질-산화그래핀환원물 복합체 분말을 나타낸 SEM 사진이고, 도 3b는 도 3a를 확대하여 나타낸 SEM 사진.
도 4a는 흑연 및 산화그래핀환원물의 혼합 분말을 나타낸 SEM 사진이고, 도 4b는 도 4a를 확대하여 나타낸 SEM 사진.
도 5는 소수성 활물질인 순수 흑연을 나타낸 SEM 사진.
도 6a는 실시예 1에 따른 활물질-산화그래핀환원물 복합체 분말의 물 접촉각 사진이고, 도 6b는 흑연 및 산화그래핀환원물의 혼합 분말의 물 접촉각 사진이며, 도 6c는 순수 흑연의 물 접촉각 사진.
도 7a는 열중량 분석하여 나타낸 그래프이고, 도 7b는 도 7a에 대한 열중량 분석에 의해 얻어진 곡선의 미분 곡선을 나타낸 그래프이며, 도 7c는 도 7a의 A 영역을 확대하여 나타낸 그래프.
1 is a flowchart showing a method of manufacturing a core-shell composite according to the present invention.
Figure 2 is a photograph showing a comparison of layer separation depending on whether ethanol was kneaded into graphite in Example 1 and Comparative Example 1.
Figure 3a is an SEM photograph showing the active material-reduced graphene oxide composite powder according to Example 1, and Figure 3b is an SEM photograph showing an enlarged view of Figure 3a.
Figure 4a is an SEM photograph showing a mixed powder of graphite and reduced graphene oxide, and Figure 4b is an SEM photograph showing an enlarged view of Figure 4a.
Figure 5 is an SEM photograph showing pure graphite, a hydrophobic active material.
Figure 6a is a photograph of the water contact angle of the active material-reduced graphene oxide composite powder according to Example 1, Figure 6b is a photograph of the water contact angle of the mixed powder of graphite and reduced graphene oxide, and Figure 6c is a photograph of the water contact angle of pure graphite. .
FIG. 7A is a graph showing thermogravimetric analysis, FIG. 7B is a graph showing the differential curve of the curve obtained by thermogravimetric analysis for FIG. 7A, and FIG. 7C is an enlarged graph showing area A of FIG. 7A.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 반죽법을 이용한 소수성 입자 표면에 그래핀이 코팅된 코어-쉘 복합체의 제조방법에 관한 것으로, 코어-쉘 복합체를 제조하는 방법은 본 발명에 따른 코어-쉘 복합체의 제조방법을 순서도로 나타낸 도 1에 나타낸 바와 같이, 소수성 표면을 갖는 입자와 알코올을 혼합하여 활물질 반죽을 제조하는 단계(S10)와, 활물질 반죽과 친수성 그래핀을 혼합하여 분무 용액을 제조하는 단계(S20)와, 분무 용액을 분무 건조하여 소수성 입자의 표면에 그래핀이 코팅된 코어-쉘 복합체를 제조하는 단계(S30)를 포함하여 이루어진다.The present invention relates to a method of manufacturing a core-shell composite coated with graphene on the surface of hydrophobic particles using a kneading method. The method of manufacturing a core-shell composite is a flowchart of the method of manufacturing a core-shell composite according to the present invention. As shown in Figure 1, a step of preparing an active material paste by mixing particles with a hydrophobic surface and alcohol (S10), a step of preparing a spray solution by mixing the active material paste and hydrophilic graphene (S20), and spraying It includes a step (S30) of spray-drying the solution to produce a core-shell composite in which graphene is coated on the surface of the hydrophobic particles.

상술한 제조방법에 따르면 먼저, 소수성 표면을 갖는 입자와 알코올을 혼합하여 활물질 반죽을 제조한다(S10).According to the above-described manufacturing method, first, an active material paste is prepared by mixing particles with a hydrophobic surface and alcohol (S10).

설명에 앞서, 소수성 표면을 갖는 입자는 활물질의 코어가 되는 것으로, 그 표면이 소수성으로 이루어져 친수성을 갖는 물과 같은 수계 용매에 분산이 어려워 그래핀이 수계 분산된 용액 내에서 분산이 용이하지 않기 때문에 친수성 그래핀과 복합화가 이루어질 때 상 분리 현상이 발생한다.Before explaining, particles with a hydrophobic surface become the core of the active material, and the surface is hydrophobic, making it difficult to disperse in an aqueous solvent such as water, which has hydrophilic properties. This is because graphene is not easily dispersed in an aqueous dispersed solution. When complexed with hydrophilic graphene, phase separation occurs.

이를 해결해 보고자, 본 단계에서는 소수성 표면을 갖는 입자가 친수성 용매 내 산화그래핀, 산화그래핀환원물 중 하나 이상의 그래핀과 균질 혼합이 될 수 있도록 알코올계 용매를 혼합하는 반죽법을 이용하여 활물질 반죽을 제조한다.To solve this problem, in this step, the active material is kneaded using a kneading method of mixing an alcohol-based solvent so that particles with a hydrophobic surface can be homogeneously mixed with at least one of graphene oxide and graphene oxide reduced product in a hydrophilic solvent. manufactures.

알코올의 혼합으로 반죽법을 통하여 제조되는 활물질 반죽의 표면은 젖음(wetting)성을 갖게 되어 추후 산화그래핀이나 산화그래핀환원물과 균질하게 분산된 후 분무 건조될 때 소수성을 갖는 입자에 산화그래핀이나 산화그래핀환원물의 그래핀이 도포된 코어-쉘 구조의 복합체 형태의 파우더로 제조할 수 있게 된다.The surface of the active material dough, which is manufactured through a kneading method by mixing alcohol, has wetting properties, and when it is homogeneously dispersed with graphene oxide or reduced graphene oxide and then spray-dried, graphene oxide is added to hydrophobic particles. It can be manufactured as a powder in the form of a composite core-shell structure coated with graphene from pin or reduced graphene oxide.

소수성 입자는 탄소 코팅된 금속, 탄소 코팅된 금속산화물, 천연흑연, 인조흑연, 탄소나노튜브, 카본블랙, 소프트 카본, 하드 카본 및 그래핀으로 이루어진 군에서 1종 이상이 선택될 수 있으며, 이차전지용 활물질로 사용될 수 있는 소수성 표면을 갖는 입자를 의미한다.The hydrophobic particles may be one or more selected from the group consisting of carbon-coated metal, carbon-coated metal oxide, natural graphite, artificial graphite, carbon nanotubes, carbon black, soft carbon, hard carbon, and graphene, and are used for secondary batteries. It refers to particles with a hydrophobic surface that can be used as an active material.

그중 흑연은 단위 구조가 탄소육각망평면이 평행하게 배열된 층상 구조로, 이들이 갖는 결정화도에 따라 천연흑연과 인조흑연으로 구분될 수 있는데, 흑연이 갖는 소수성은 물에 의해 흑연 표면의 불충분한 습윤성으로 불안정한 부산물 생성을 초래할 수 있는데, 이 경우 산화그래핀 또는 산화그래핀환원물이 코팅될 때 미분산된 흑연 입자가 응집되는 문제점이 있어, 소수성 입자를 코팅하는 것은 중요하다 할 수 있다.Among them, graphite has a layered structure in which carbon hexagonal network planes are arranged in parallel, and can be divided into natural graphite and artificial graphite depending on their crystallinity. The hydrophobicity of graphite is due to insufficient wettability of the graphite surface by water. This may result in the creation of unstable by-products. In this case, there is a problem in which undispersed graphite particles aggregate when graphene oxide or reduced graphene oxide is coated, so coating hydrophobic particles is important.

반죽법에 사용되는 알코올은 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부틸알코올 및 이소부틸알코올 중 어느 하나 이상의 알코올계 용매일 수 있으며, 상기 종류에 한정하는 것만은 아니고 소수성 활물질 입자와 반죽되어 소수성 활물질 입자의 표면에 젖음성을 부여할 수 있는 알코올계 용매라면 다양하게 사용할 수 있다.The alcohol used in the kneading method may be any one or more alcohol-based solvents among methanol, ethanol, propanol, isopropyl alcohol, butyl alcohol, and isobutyl alcohol. It is not limited to the above types, and is kneaded with hydrophobic active material particles to form a hydrophobic active material. Any alcohol-based solvent that can provide wettability to the surface of particles can be used in a variety of ways.

소수성 입자와 알코올은 1 : 1 내지 5의 중량비율로 혼합될 수 있다. 알코올이 소수성 입자 1 중량비율 대비하여 1 중량비율 미만으로 반죽되면 소수성 입자의 표면에 젖음성을 충분히 제공하지 못하여 친수성 그래핀의 균일한 코팅이 어려워져 결국 안정적인 형태의 코어-쉘 복합체를 제조하지 못하는 단점이 있다. 반면 알코올이 5 중량비율을 초과하여 혼합되면 오히려 소수성 입자의 형태 유지가 쉽지 않아 이 역시 코어-쉘 복합체로 용이하게 형성되지 않게 되는 문제점이 있다.Hydrophobic particles and alcohol may be mixed at a weight ratio of 1:1 to 5. If the alcohol is mixed in less than 1 weight ratio compared to 1 weight ratio of the hydrophobic particles, it does not provide sufficient wettability to the surface of the hydrophobic particles, making it difficult to uniformly coat the hydrophilic graphene, which ultimately makes it impossible to manufacture a stable core-shell composite. There is. On the other hand, if the alcohol is mixed in a weight ratio exceeding 5, it is difficult to maintain the shape of the hydrophobic particles, so there is a problem in that they are not easily formed into a core-shell complex.

소수성 입자와 알코올을 반죽함에 있어 5 내지 20분 동안 실시할 수 있다. 5분 미만으로 반죽하면 소수성 입자를 분산시켜 그 표면에 젖음성을 제공하기엔 부족한 시간이며, 20분을 초과하면 그 이하의 시간으로 반죽한 경우와 비교하여 더 탁월한 반죽 효율이 나타나지 않아 굳이 20분을 초과하여 반죽할 필요성은 없다.Kneading the hydrophobic particles and alcohol can be carried out for 5 to 20 minutes. If you knead for less than 5 minutes, it is not enough time to disperse the hydrophobic particles and provide wettability to the surface. If you knead for more than 20 minutes, you will not see any better kneading efficiency compared to kneading for less than 20 minutes, so it is not necessary to knead for more than 20 minutes. So there is no need to knead it.

다음으로, 활물질 반죽과 친수성 그래핀을 혼합하여 분무 용액을 제조한다(S20).Next, a spray solution is prepared by mixing the active material paste and hydrophilic graphene (S20).

친수성 그래핀은, 물(water, H2O)을 포함하는 수계 용매에 산화그래핀 또는 산화그래핀환원물이 분산되어 형성되는 그래핀 용액으로, 수분산된 산화그래핀이나 산화그래핀환원물이 소수성 표면을 갖는 입자의 표면에 균일하게 도포되어 활물질 성능을 향상시킬 수 있게 된다.Hydrophilic graphene is a graphene solution formed by dispersing graphene oxide or reduced graphene oxide in an aqueous solvent containing water (H 2 O), and is composed of water-dispersed graphene oxide or reduced graphene oxide. By being uniformly applied to the surface of particles having a hydrophobic surface, the performance of the active material can be improved.

즉 그래핀 용액은 그래파이트를 산화시킨 후 분산 및 박리하여 형성되는 산화그래핀을 양이온-파이 상호작용을 통해 형성되는 산화그래핀 분산 용액이거나, 이러한 산화그래핀 분산 용액에 환원제를 투입하여 환원시킨 산화그래핀환원물 분산 용액으로 이루어질 수 있다. 그래핀 용액으로 산화그래핀 분산 용액이 사용되는 경우, 추후 분무 용액을 분무 건조 하기 전이나 분무 건조하여 코어-쉘 복합체를 형성한 후 열처리 등의 과정을 거쳐 산화그래핀을 환원시켜 결국 활물질-산화그래핀환원물의 코어-쉘 복합체를 제조할 수 있게 된다.In other words, the graphene solution is a graphene oxide dispersion solution formed by oxidizing graphite and then dispersing and exfoliating graphene oxide through cation-pi interaction, or an oxidation solution obtained by reducing the graphene oxide dispersion solution by adding a reducing agent. It may be made of a graphene reduced water dispersion solution. When a graphene oxide dispersion solution is used as a graphene solution, the graphene oxide is reduced through a process such as heat treatment to form a core-shell complex before spray-drying the spray solution or by spray-drying it, ultimately leading to active material oxidation. It is possible to manufacture a core-shell composite of reduced graphene material.

산화그래핀, 산화그래핀환원물 중 하나 이상의 그래핀이 수계 물에 분산된 용액에 있어서, 그래핀이 분산되어 있던 물과 소수성 입자를 반죽한 알코올과 같은 극성-극성의 경우 용해도 파라미터(solubility parameter, δ)를 이용하여 극성력과 수소결합에 의한 분자 간 상호인력으로 용질-용매 간 용해도 방식을 도입함으로써, 소수성의 활물질과 수분산된 그래핀의 분산도를 향상시킬 수 있다.In a solution in which at least one of graphene oxide and reduced graphene oxide is dispersed in aqueous water, in the case of a polar-polar solution such as alcohol kneaded with the water in which the graphene was dispersed and hydrophobic particles, the solubility parameter , δ), the dispersibility of hydrophobic active materials and water-dispersed graphene can be improved by introducing a solute-solvent solubility method using mutual attraction between molecules due to polar force and hydrogen bonding.

용해도 파라미터는 특별히 제한되지 않고, 공지된 방식에 따를 수 있다. 예를 들면, HSP(Hansen solubility parameter)에 따라 분자 간 분산력, 분자 간 극성력, 분자 간 수소결합 성분에 의해 계산되거나 구해질 수 있다. 즉 용해도 파라미터는 소수성 입자와 반죽된 알코올과, 그래핀이 분산되어져 있던 물의 상호 관계로부터 분무 용액의 거동과 물 및 알코올의 적합성을 예측할 수 있으며, 용해도가 용매의 응집성과 밀접한 관계가 있다고 가정하여, 응집 에너지 밀도만으로 용해도 파라미터를 표현한 것이다.Solubility parameters are not particularly limited and may follow known methods. For example, it can be calculated or obtained by the intermolecular dispersion force, intermolecular polarity force, and intermolecular hydrogen bond component according to HSP (Hansen solubility parameter). In other words, the solubility parameter can predict the behavior of the spray solution and the suitability of water and alcohol from the relationship between the alcohol kneaded with the hydrophobic particles and the water in which the graphene was dispersed. Assuming that solubility is closely related to the cohesion of the solvent, The solubility parameter is expressed only by the cohesive energy density.

마지막으로, 분무 용액을 분무 건조하여 소수성 입자의 표면에 그래핀이 코팅된 코어-쉘 복합체를 제조한다(S30).Finally, the spray solution is spray-dried to prepare a core-shell composite in which graphene is coated on the surface of the hydrophobic particles (S30).

소수성 표면을 갖는 입자와, 산화그래핀 또는 산화그래핀환원물을 포함한 분무 용액을 분무 건조하여, 분무 건조되는 와중에 소수성 표면을 갖는 입자가 코어로 배치되고, 산화그래핀 및 산화그래핀환원물 중 하나 이상의 그래핀이 쉘로 배치된 코어-쉘 복합체 형태의 파우더를 형성할 수 있다.By spray drying a spray solution containing particles with a hydrophobic surface and graphene oxide or reduced graphene oxide, the particles with a hydrophobic surface are arranged as a core during spray drying, and among the graphene oxide and reduced graphene oxide It is possible to form a powder in the form of a core-shell composite in which one or more graphene is arranged as a shell.

합성된 코어-쉘 복합체 분말에 있어서, 소수성 입자의 표면에 대한 산화그래핀환원물의 평균 접촉각 범위는 10 내지 20°일 수 있으며, 10°미만의 접촉각이 되도록 제어할 필요성이 없으며, 20°를 초과하면 소수성 입자의 젖음성이 좋지 못함을 의미하기 때문에 소수성 입자 표면에 대한 산화그래핀환원물의 코팅막이 균일하게 형성되지 못하는 문제점이 있다.In the synthesized core-shell composite powder, the average contact angle range of the reduced graphene oxide material with respect to the surface of the hydrophobic particle may be 10 to 20°, and there is no need to control the contact angle to be less than 10°, and the contact angle may be greater than 20°. This means that the wettability of the hydrophobic particles is not good, so there is a problem in that a coating film of reduced graphene oxide material is not formed uniformly on the surface of the hydrophobic particles.

이렇게 합성되는 분말 형태의 코어-쉘 복합체는 소수성 표면을 갖는 입자에 산화그래핀, 산화그래핀환원물 중 하나 이상의 그래핀이 도포되어 형성되는 고성능 복합 활물질로, 고성능 복합 활물질에 전기전도성을 부여하고, 표면 안정화를 이루면서 전해액과의 함침 특성을 향상시킬 수 있다. 이에 따라 고성능 복합 활물질과 전해질의 계면에 형성되는 부반응을 억제하고 전도성을 향상시켜 이차전지용 전극의 전기화학특성을 높일 수 있게 된다.The core-shell composite in powder form synthesized in this way is a high-performance composite active material formed by applying one or more graphene oxide or reduced graphene oxide to particles with a hydrophobic surface. It imparts electrical conductivity to the high-performance composite active material and , surface stabilization can be achieved while improving impregnation characteristics with electrolyte solution. Accordingly, it is possible to increase the electrochemical characteristics of secondary battery electrodes by suppressing side reactions formed at the interface between the high-performance composite active material and the electrolyte and improving conductivity.

이하, 본 발명의 실시예를 더욱 상세하게 설명하면 다음과 같다. 단, 이하의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in more detail as follows. However, the following examples are merely illustrative to aid understanding of the present invention and are not intended to limit the scope of the present invention.

<실시예 1><Example 1>

1-1. 흑연 반죽의 제조1-1. Preparation of graphite paste

소수성 활물질인 순수 흑연(순도 99.98%, POSCO 제조) 5g에 에탄올 10g을 첨가하고 스패츌러로 잘 혼합하였다. 이때, 소수성 표면 특성을 가진 흑연에 에탄올이 충분히 스며들도록 10분 동안 반죽하였다.10 g of ethanol was added to 5 g of pure graphite (99.98% purity, manufactured by POSCO), a hydrophobic active material, and mixed well with a spatula. At this time, it was kneaded for 10 minutes to allow ethanol to sufficiently permeate into the graphite, which has hydrophobic surface properties.

1-2. 산화그래핀 분산 용액의 제조1-2. Preparation of graphene oxide dispersion solution

순수 흑연(순도 99.9995%, -200메쉬, Alfar Aesar 제조) 10g, 발연질산 350㎖ 및 소듐 클로라이드 옥사이드(NaClO4) 74g을 실온에서 순차적으로 37g씩 나누어 혼합하였다. 혼합물을 48시간 동안 교반한 후 중화 과정과 세척, 여과 및 클리닝, 건조 과정을 거쳐 산화그래핀을 제조하였다. 상기의 과정을 통해 만들어진 산화그래핀은 300mg/ℓ 농도로 KOH가 녹아있는 증류수(pH 10)에 호모게나이저를 15,000 rpm으로 1시간 동안 처리하여 균일한 산화그래핀 분산 용액을 만들었다. 이후, 양이온-파이 상호작용을 인가시키기 위해서 상온에서 산화그래핀 분산 용액의 반응 시간을 1시간 이상 유지시킨 다음, 10시간 이상 동결 건조하여 분말 형태의 산화그래핀을 제조하였다. 분말 형태의 산화그래핀을 분산시키기 위한 용매로 증류수를 이용하여 300㎎/ℓ 농도의 산화그래핀 분산 용액을 제조하였다.10 g of pure graphite (purity 99.9995%, -200 mesh, manufactured by Alfar Aesar), 350 ml of fuming nitric acid, and 74 g of sodium chloride oxide (NaClO 4 ) were sequentially mixed at room temperature in 37 g portions. After stirring the mixture for 48 hours, graphene oxide was prepared through neutralization, washing, filtration, cleaning, and drying. The graphene oxide produced through the above process was treated with a homogenizer at 15,000 rpm for 1 hour in distilled water (pH 10) containing KOH dissolved at a concentration of 300 mg/l to create a uniform graphene oxide dispersion solution. Then, in order to apply cation-pi interaction, the reaction time of the graphene oxide dispersion solution was maintained at room temperature for more than 1 hour, and then freeze-dried for more than 10 hours to prepare graphene oxide in powder form. A graphene oxide dispersion solution with a concentration of 300 mg/L was prepared using distilled water as a solvent for dispersing graphene oxide in powder form.

1-3. 활물질-산화그래핀환원물 복합체 분말의 제조1-3. Production of active material-reduced graphene oxide composite powder

실시예 1-1에서 제조한 흑연 반죽을 실시예 1-2에서 제조한 산화그래핀 분산 용액 50ml(0.5wt%)에 첨가하고 기계식 교반기로 1,000rpm으로 20분 동안 처리하여 흑연-산화그래핀 복합체 분무 용액을 제조한 후, 혼합 용액을 분무 건조하여 활물질-산화그래핀 복합 음극재 분말을 제조하였다. 분말을 17℃/min으로 가열하여 1,000℃에서 1시간 동안 열처리하여 활물질-산화그래핀환원물 분말을 제조하였다.The graphite dough prepared in Example 1-1 was added to 50 ml (0.5 wt%) of the graphene oxide dispersion solution prepared in Example 1-2 and treated with a mechanical stirrer at 1,000 rpm for 20 minutes to form a graphite-graphene oxide composite. After preparing the spray solution, the mixed solution was spray dried to prepare an active material-graphene oxide composite anode material powder. The powder was heated at 17°C/min and heat treated at 1,000°C for 1 hour to prepare active material-reduced graphene oxide powder.

<실시예 2><Example 2>

2-1. 흑연 반죽의 제조2-1. Preparation of graphite paste

소수성 활물질인 순수 흑연(순도 99.98%, POSCO 제조) 5g에 에탄올 10g을 첨가하고 스패츌러로 잘 혼합하였다. 이때, 소수성 표면 특성을 가진 흑연에 에탄올이 충분히 스며들도록 10분 동안 반죽하였다.10 g of ethanol was added to 5 g of pure graphite (99.98% purity, manufactured by POSCO), a hydrophobic active material, and mixed well with a spatula. At this time, it was kneaded for 10 minutes to allow ethanol to sufficiently permeate into the graphite, which has hydrophobic surface characteristics.

2-2. 산화그래핀환원물 분산 용액의 제조2-2. Preparation of reduced graphene oxide dispersion solution

순수 흑연(순도 99.9995%, -200메쉬, Alfar Aesar 제조) 10g, 발연질산 350㎖ 및 소듐 클로라이드 옥사이드(NaClO4) 74g을 실온에서 순차적으로 37g씩 나누어 혼합하였다. 혼합물을 48시간 동안 교반한 후 중화 과정과 세척, 여과 및 클리닝, 건조 과정을 거쳐 산화그래핀을 제조하였다. 상기의 과정을 통해 만들어진 산화그래핀은 300mg/ℓ 농도로 KOH가 녹아있는 증류수(pH 10)에 호모게나이저를 15,000 rpm으로 1시간 동안 처리하여 균일한 산화그래핀 분산 용액을 만들었다. 이후, 양이온-파이 상호작용을 인가시키기 위해서 상온에서 산화그래핀 분산 용액의 반응 시간을 1시간 이상 유지시킨 다음, 10시간 이상 동결 건조하여 분말 형태의 산화그래핀을 제조하였다. 분말 형태의 산화그래핀을 분산시키기 위한 용매로 증류수를 이용하였으며, 300㎎/ℓ 농도의 산화그래핀 분산 용액에 HI acid 170㎕를 넣고 16시간 동안 400rpm으로 교반하여 환원시킴으로써 고농도로 분산된 산화그래핀환원물 분산 용액을 제조하였다. 이때 산화그래핀환원물의 크기는 5 내지 10㎛였다.10 g of pure graphite (purity 99.9995%, -200 mesh, manufactured by Alfar Aesar), 350 ml of fuming nitric acid, and 74 g of sodium chloride oxide (NaClO 4 ) were mixed sequentially in 37 g portions at room temperature. After stirring the mixture for 48 hours, graphene oxide was prepared through neutralization, washing, filtration, cleaning, and drying. The graphene oxide produced through the above process was treated with a homogenizer at 15,000 rpm for 1 hour in distilled water (pH 10) containing KOH dissolved at a concentration of 300 mg/l to create a uniform graphene oxide dispersion solution. Then, in order to apply cation-pi interaction, the reaction time of the graphene oxide dispersion solution was maintained at room temperature for more than 1 hour, and then freeze-dried for more than 10 hours to prepare graphene oxide in powder form. Distilled water was used as a solvent to disperse graphene oxide in powder form, and 170 ㎕ of HI acid was added to the graphene oxide dispersion solution with a concentration of 300 mg/l and stirred at 400 rpm for 16 hours to reduce the graphene oxide dispersed in high concentration. A dispersion solution of pin-reduced water was prepared. At this time, the size of the reduced graphene oxide was 5 to 10㎛.

2-3. 활물질-산화그래핀환원물 복합체 분말의 제조2-3. Production of active material-reduced graphene oxide composite powder

실시예 2-1에서 제조된 흑연 반죽을 실시예 2-2에서 제조된 산화그래핀환원물 분산 용액 50ml(0.5wt%)에 첨가하고 기계식 교반기로 1,000rpm으로 20분 동안 처리하여 흑연-산화그래핀환원물 복합체 분무 용액을 제조하였다. 혼합 용액을 분무건조하여 활물질-산화그래핀환원물 복합체 분말을 제조하였다.The graphite dough prepared in Example 2-1 was added to 50 ml (0.5 wt%) of the reduced graphene oxide dispersion solution prepared in Example 2-2 and treated with a mechanical stirrer at 1,000 rpm for 20 minutes to produce graphite-graphite oxide. A pin-reduced product composite spray solution was prepared. The mixed solution was spray dried to prepare active material-reduced graphene oxide composite powder.

<비교예 1><Comparative Example 1>

비교예 1에서는 실시예 1 및 2에서와 같이 흑연에 에탄올을 첨가 및 반죽하여 흑연 반죽으로 제조하지 않았다. 즉 소수성 활물질인 순수 흑연(순도 99.98%, POSCO 제조) 5g을 산화그래핀 분산 용액 50ml(0.5wt%)에 첨가하고 기계식 교반기로 1,000rpm으로 20분 동안 처리하여 흑연-산화그래핀환원물 복합체 분무 용액을 만들었다. 혼합 용액을 분무 건조하여 활물질-산화그래핀환원물 복합체 분말을 제조하였다.In Comparative Example 1, graphite dough was not prepared by adding ethanol to graphite and kneading it as in Examples 1 and 2. That is, 5 g of pure graphite (purity 99.98%, manufactured by POSCO), a hydrophobic active material, was added to 50 ml (0.5 wt%) of the graphene oxide dispersion solution, treated with a mechanical stirrer at 1,000 rpm for 20 minutes, and the graphite-graphene oxide reduced product complex was sprayed. A solution was made. The mixed solution was spray dried to prepare an active material-reduced graphene oxide composite powder.

<시험예 1><Test Example 1>

본 시험예에서는 실시예 1에서 제조된 활물질-산화그래핀환원물 복합체 분말과, 흑연 분말과 실시예 2에서 제조된 산화그래핀환원물 분산 용액을 분무 건조한 산화그래핀환원물 분말을 혼합한 혼합 분말과, 순수 흑연의 형태를 분석해 보았다.In this test example, the active material-graphene oxide reduced material composite powder prepared in Example 1, graphite powder, and the graphene oxide reduced material dispersion solution prepared in Example 2 were mixed with spray-dried graphene oxide reduced material powder. The shapes of powder and pure graphite were analyzed.

관련하여, 우선 도 2는 실시예 1 및 비교예 1에서 흑연에 에탄올을 반죽한 여부에 따른 층 분리를 비교하여 사진으로 나타낸 것이다. 도 2에 나타난 바와 같이 실시예 1에서는 흑연에 에탄올을 혼합하는 반죽법을 통하여 흑연 표면에 젖음성이 제공되어 층 분리가 생성되지 않아 균일 혼합이 이루어짐을 확인할 수 있었던 반면, 비교예 1의 경우 순수 흑연 자체에 에탄올을 이용한 반죽을 하지 않아 흑연 표면에 젖음성이 제공되지 못했기 때문에 층 분리가 생성됨을 확인할 수 있었다. 비교예 1에서와 같이 층 분리가 생기면 순수 흑연과 산화그래핀환원물의 균질 혼합이 되지 않음을 알 수 있다.In relation to this, FIG. 2 is a photograph showing a comparison of layer separation depending on whether graphite was kneaded with ethanol in Example 1 and Comparative Example 1. As shown in Figure 2, in Example 1, it was confirmed that wettability was provided to the graphite surface through a kneading method of mixing ethanol with graphite, so that layer separation was not created and uniform mixing was achieved, whereas in Comparative Example 1, pure graphite was used. It was confirmed that layer separation occurred because wettability was not provided to the graphite surface as it was not kneaded using ethanol. It can be seen that when layer separation occurs as in Comparative Example 1, pure graphite and reduced graphene oxide are not homogeneously mixed.

도 3a는 실시예 1에 따른 활물질-산화그래핀환원물 복합체 분말을 10.0kV에서 측정하여 5천 배율로 확대하여 SEM 사진으로 나타낸 것이고, 도 3b는 도 3a를 확대하여 나타내되, 10.0kV에서 측정하여 만 배율로 확대하여 SEM 사진으로 나타낸 것이다. 도 3a 및 도 3b를 참조하면, 입자상의 흑연 표면에 산화그래핀환원물이 안정적으로 코팅되어 있음을 확인할 수 있다.Figure 3a is an SEM photograph of the active material-reduced graphene oxide composite powder according to Example 1 measured at 10.0 kV and enlarged at 5,000 times, and Figure 3b shows Figure 3a enlarged, measured at 10.0 kV. This is enlarged at 10,000 magnification and shown as an SEM photo. Referring to FIGS. 3A and 3B, it can be seen that the reduced graphene oxide material is stably coated on the surface of the particle-shaped graphite.

도 3과의 비교를 위하여, 흑연 분말과 실시예 2에서 제조된 산화그래핀환원물 분산 용액을 분무 건조한 산화그래핀환원물 분말을 혼합한 혼합 분말의 형태를 확인해 보았다(흑연 분말 및 산화그래핀환원물 분말의 중량은 실시예 1에서와 대등하게 하였다.). 관련하여, 도 4a는 흑연 및 산화그래핀환원물의 혼합 분말을 10.0kV에서 측정하여 5천 배율로 확대하여 나타낸 SEM 사진이고, 도 4b는 도 4a를 확대한 것으로 10.0kV에서 측정하여 만 배율로 확대하여 SEM 사진으로 나타낸 것이다. 도 4a 및 도 4b를 참조하면 흑연 분말의 표면에 코팅되지 못한 산화그래핀환원물이 흑연 분말과 분리된 상태로 존재함이 확인되며, 도 4b에서 흑연 분말(G)의 표면에 산화그래핀환원물(rGO)이 균일한 피막으로 코팅되지 못하고 뭉쳐진 상태로 흑연 분말(G)의 표면에 붙어있는 현상이 확인되었다. 또한 도 5는 소수성 활물질인 순수 흑연을 10.0kV에서 측정하여 만 배율로 확대하여 SEM 사진으로 나타낸 것으로, 도 5를 참조하면, 외부에 코팅되지 않은 순수 흑연 형태가 확인된다. 이처럼 도 4 및 도 5에서와는 달리 실시예 1의 활물질-산화그래핀환원물 복합체 분말을 나타낸 도 3을 참조하면, 소수성 입자의 표면에 젖음성이 제공되어 산화그래핀환원물의 코팅이 안정적으로 이루어진 복합체가 형성됨을 확인할 수 있다.For comparison with FIG. 3, the form of the mixed powder was confirmed by mixing graphite powder and graphene oxide reduced material powder spray-dried with the graphene oxide reduced material dispersion solution prepared in Example 2 (graphite powder and graphene oxide The weight of the reduced product powder was equal to that in Example 1.) In relation to this, Figure 4a is an SEM photograph showing a mixed powder of graphite and reduced graphene oxide measured at 10.0kV and magnified at 5,000 times, and Figure 4b is an enlarged view of Figure 4a, measured at 10.0kV and magnified at 10,000 times. This is shown in SEM photos. Referring to Figures 4a and 4b, it is confirmed that the reduced graphene oxide material that was not coated on the surface of the graphite powder exists in a state separated from the graphite powder, and in Figure 4b, reduced graphene oxide is present on the surface of the graphite powder (G). It was confirmed that water (rGO) was not coated with a uniform film and stuck to the surface of the graphite powder (G) in a lumped state. In addition, Figure 5 shows an SEM photograph of pure graphite, a hydrophobic active material, measured at 10.0 kV and magnified at 10,000 magnification. Referring to Figure 5, the form of pure graphite without external coating is confirmed. In this way, unlike in FIGS. 4 and 5, referring to FIG. 3 showing the active material-reduced graphene oxide material composite powder of Example 1, wettability is provided on the surface of the hydrophobic particles, resulting in a composite in which the coating of the reduced graphene oxide material is stable. formation can be confirmed.

<시험예 2><Test Example 2>

본 시험예에서는 실시예 1에서 제조된 활물질-산화그래핀환원물 복합체 분말과, 흑연 분말과 실시예 2에서 제조된 산화그래핀환원물 분산 용액을 분무 건조한 산화그래핀환원물 분말을 혼합한 혼합 분말과, 순수 흑연의 물 접촉각(contact angle)을 비교하여 분석해 보았다.In this test example, the active material-graphene oxide reduced material composite powder prepared in Example 1, graphite powder, and the graphene oxide reduced material dispersion solution prepared in Example 2 were mixed with spray-dried graphene oxide reduced material powder. The water contact angle of powder and pure graphite was compared and analyzed.

관련하여, 보통 접촉각은 액체-기체 경계면과 액체-고체 경계면의 사잇각을 액체 내부 쪽에서 잰 각도로, 표면 코팅이 잘 되었는지를 확인할 수 있는 것으로, 액체의 고체 표면에 대한 평균 접촉각은 표면 코팅 정도로 예측할 수 있게 된다.In relation to this, the normal contact angle is the angle between the liquid-gas interface and the liquid-solid interface measured from the inside of the liquid, and can be used to check whether the surface coating is good. The average contact angle of a liquid on a solid surface can be predicted to the degree of surface coating. There will be.

접촉각은 접촉각 측정기(Phoenix 300, Surface & Electro-Optics Co.)를 이용하여 측정하였으며, 이를 위해 넓이 2×2cm, 깊이 2mm의 홈이 파진 유리 기판에 분말 상태의 시료를 올리고 유리 기판의 높이에 맞춰 평평하게 채운 후, 접촉각 측정기에 놓고 주사기를 통해 물을 한 방울 떨어뜨린 후 측정하였다.The contact angle was measured using a contact angle meter (Phoenix 300, Surface & Electro-Optics Co.). For this purpose, a powder sample was placed on a glass substrate with a groove of 2 × 2 cm in width and 2 mm in depth, and adjusted to the height of the glass substrate. After filling it flat, it was placed in a contact angle meter and measured after adding a drop of water through a syringe.

도 6a는 실시예 1에 따른 활물질-산화그래핀환원물 복합체 분말의 물 접촉각 사진을 나타낸 것이고, 도 6b는 흑연 및 산화그래핀환원물의 혼합 분말의 물 접촉각 사진을 나타낸 것이며, 도 6c는 순수 흑연의 물 접촉각 사진을 나타낸 것이다.Figure 6a shows a photograph of the water contact angle of the active material-reduced graphene oxide composite powder according to Example 1, Figure 6b shows a photograph of the water contact angle of the mixed powder of graphite and reduced graphene oxide, and Figure 6c shows a photograph of the water contact angle of pure graphite. This is a picture of the water contact angle.

산화그래핀환원물이 소수성 입자 표면에 균일하게 코팅되기 위해서는 소수성 입자 표면에 대한 분무 용액의 평균 접촉각을 낮추는 것이 중요하며, 도 6a를 참조하면 소수성 활물질 입자 표면과, 이러한 표면에 접촉되는 분무 용액 간에 형성되는 접촉각이 낮아짐을 확인할 수 있었다. 소수성의 활물질 입자와 반죽되는 알코올은 극성이고, 친수성 그래핀을 구성하는 수계 용매 역시 극성으로, 극성 분자-극성 분자 간의 극성과 수소결합에 의해 알코올과 물이 상호 인력으로 용해도가 높아져 소수성 입자 표면에 대한 분무 용액의 평균 접촉각이 낮아짐으로써 소수성 활물질 입자 표면에 친수성 그래핀 코팅막을 얇고 균일하게 형성된 것이다.In order for reduced graphene oxide to be uniformly coated on the hydrophobic particle surface, it is important to lower the average contact angle of the spray solution with respect to the hydrophobic particle surface. Referring to FIG. 6a, there is a difference between the surface of the hydrophobic active material particle and the spray solution in contact with this surface. It was confirmed that the formed contact angle was lowered. The alcohol kneaded with the hydrophobic active material particles is polar, and the aqueous solvent that makes up the hydrophilic graphene is also polar, and the solubility of alcohol and water increases due to mutual attraction due to polarity and hydrogen bonding between polar molecules and forms on the surface of hydrophobic particles. By lowering the average contact angle of the spray solution, a thin and uniform hydrophilic graphene coating film is formed on the surface of the hydrophobic active material particles.

도 6b(접촉각: 102.28°) 및 도 6c(접촉각: 120.64°)와 달리 도 6a에서와 같이 유리 기판의 표면에 대한 실시예 1의 활물질-산화그래핀환원물 복합체 분말의 접촉각은 13.83°인 바, 평균 접촉각 범위가 10 내지 20°임이 확인될 수 있으며, 상기 범위에서 산화그래핀환원물이 소수성 입자에 코팅이 균일하게 이루어짐에 따라 활물질과 전해질의 접촉 면적을 극대화할 수 있음을 알 수 있다.Unlike Figures 6b (contact angle: 102.28°) and Figure 6c (contact angle: 120.64°), the contact angle of the active material-reduced graphene oxide composite powder of Example 1 with respect to the surface of the glass substrate as shown in Figure 6a is 13.83°. , it can be confirmed that the average contact angle range is 10 to 20°, and in this range, the contact area between the active material and the electrolyte can be maximized as the reduced graphene oxide material is uniformly coated on the hydrophobic particles.

<시험예 3><Test Example 3>

본 시험예에서는 실시예 1에서 제조된 활물질-산화그래핀환원물 복합체 분말(G@rGO)과, 흑연 분말과 실시예 2에서 제조된 산화그래핀환원물 분산 용액을 분무 건조한 산화그래핀환원물 분말을 단순히 혼합한 혼합 분말(G/rGO)과, 순수 흑연(G)의 열중량 분석(TGA)을 해 보았다. 단, G/rGO의 경우 정확한 열중량 분석 결과를 얻기 위하여 실시예 1의 활물질 및 산화그래핀환원물의 중량과 동일하게 맞추었다.In this test example, the active material-graphene oxide reduced material composite powder (G@rGO) prepared in Example 1, graphite powder, and graphene oxide reduced material dispersion solution prepared in Example 2 were spray dried. Thermogravimetric analysis (TGA) was performed on mixed powder (G/rGO), which was simply mixed powder, and pure graphite (G). However, in the case of G/rGO, the weight of the active material and reduced graphene oxide in Example 1 was set to be the same in order to obtain accurate thermogravimetric analysis results.

관련하여, 열중량 분석은 열중량 분석기(TA Instruments, TGA Q50)를 이용하여 측정하였으며, 이를 위해 각 시료를 건조된 분말 상태로 준비하고, 세라믹팬에 10mg 정도 담고 상온에서 100℃까지 가열하여 시료 내의 수분을 제거한 후 40℃로 냉각하여 40℃에서부터 900℃까지 10℃/min으로 무게 변화를 측정하였다.In relation to this, thermogravimetric analysis was measured using a thermogravimetric analyzer (TA Instruments, TGA Q50). For this purpose, each sample was prepared in a dried powder state, about 10 mg was placed in a ceramic pan, and the sample was heated from room temperature to 100°C. After removing the moisture inside, it was cooled to 40°C and the weight change was measured at 10°C/min from 40°C to 900°C.

열중량 분석한 결과를 도 7a에 그래프로 나타내었고, 도 7b는 도 7a에 대한 열중량 분석에 의해 얻어진 곡선의 미분 곡선을 그래프로 나타낸 것이며, 도 7c는 도 7a의 A 영역을 확대하여 나타낸 것이다.The results of thermogravimetric analysis are shown graphically in FIG. 7A, FIG. 7B is a graphical representation of the differential curve of the curve obtained by thermogravimetric analysis for FIG. 7A, and FIG. 7C is an enlarged view of area A of FIG. 7A. .

도 7b는 도 7a를 미분한 그래프로, 도 7a의 열중량 분석에 의해 얻어진 열중량 곡선의 미분 곡선(derivative thermogravimetric curve)을 나타낸 그래프인데, 이러한 미분 곡선은 열중량 분석에 의해 측정된 데이터로부터 변환되어 얻어질 수 있으며, X축 값은 온도(℃)이고, y축 값은 온도에 따른 중량의 감소 속도(%/℃)를 의미한다. 도 7b에 의하면, 중량 손실이 발생하기 시작하는 온도에서 피크가 발생하고, 온도에 따른 중량 손실률이 최대인 지점에서 최대값을 나타내기 때문에 온도에 따른 중량 손실률의 변화를 용이하게 파악할 수 있다.FIG. 7B is a graph obtained by differentiating FIG. 7A and showing the derivative thermogravimetric curve of the thermogravimetric curve obtained by the thermogravimetric analysis of FIG. 7A. This differential curve is converted from data measured by thermogravimetric analysis. It can be obtained by doing so, where the According to FIG. 7b, the peak occurs at the temperature at which weight loss begins to occur, and the maximum value is shown at the point where the weight loss rate according to temperature is maximum, so it is possible to easily determine the change in weight loss rate according to temperature.

도 7a의 A 부분을 확대한 도 7c를 참조하면, 산화그래핀환원물의 존재 여부에 따라 곡선상 단차 여부를 확인할 수 있는 바, 순수 흑연(G)의 경우 700℃ 부근에서 곡선상 단차 없이 중량 감소가 일어나고, 본 발명의 실시예 1에 따른 활물질-산화그래핀환원물 복합체 분말(G@rGO)의 경우, 산화그래핀환원물이 활물질의 표면에 코팅되어 있어 흑연(G) 자체 보다 상대적으로 낮은 온도에서 열분해가 일어난다.Referring to FIG. 7C, which is an enlarged portion of part A of FIG. 7A, it can be seen whether there is a step in the curve depending on the presence or absence of reduced graphene oxide. In the case of pure graphite (G), the weight decreases without a step in the curve around 700°C. occurs, and in the case of the active material-reduced graphene oxide material composite powder (G@rGO) according to Example 1 of the present invention, the reduced graphene oxide material is coated on the surface of the active material, which is relatively lower than the graphite (G) itself. Thermal decomposition occurs at temperature.

실시예 1(G@rGO)의 경우 활물질의 표면에 산화그래핀환원물의 결합이 잘 이루어졌기 때문에 분해온도 그래프 선의 단차가 나타나지 않아 열적 안정성을 가지는 반면, 흑연 분말과 산화그래핀환원물 분말을 단순히 혼합한 혼합 분말(G/rGO)의 경우 산화그래핀환원물과, 산화그래핀환원물에 포함되어 있던 oxide functional group과, 흑연 각각이 동시에 열분해되지 않고 시간차를 두고 별도로 열분해되기 때문에, 실시예 1과 달리 도 7c의 a 부분과 같은 단차가 더 생김을 확인할 수 있다.In the case of Example 1 (G@rGO), the reduced graphene oxide material was well bonded to the surface of the active material, so there was no step in the decomposition temperature graph line, showing thermal stability. However, the graphite powder and the reduced graphene oxide powder were simply mixed together. In the case of mixed mixed powder (G/rGO), the graphene oxide reduced product, the oxide functional group contained in the graphene oxide reduced product, and the graphite are not thermally decomposed at the same time but are thermally decomposed separately over time, Example 1 Unlike in , it can be seen that more steps appear, such as part a of Figure 7c.

이러한 열중량 분석 결과로부터, 흑연 분말과 산화그래핀환원물 분말을 단순히 혼합하여 흑연, 산화그래핀환원물 및 산화그래핀환원물이 갖고 있던 oxide functional group이 열분해되는 온도가 각각 상이하게 도출되는 혼합 분말(G/rGO)은 흑연의 표면에 산화그래핀환원물의 코팅이 되지 않음을 알 수 있고, 실시예 1에서 흑연 및 산화그래핀환원물의 단순 혼합 분말 보다 활물질의 표면에 산화그래핀환원물의 바인딩이 잘 이루어져 단일 형태의 복합체 형성이 잘 되어 열분해되는 것임을 알 수 있다.From these thermogravimetric analysis results, the graphite powder and the graphene oxide reduced product powder were simply mixed, resulting in different thermal decomposition temperatures for the oxide functional groups of the graphite, graphene oxide reduced product, and graphene oxide reduced product. It can be seen that the powder (G/rGO) is not coated with reduced graphene oxide material on the surface of graphite, and in Example 1, reduced graphene oxide material binds to the surface of the active material compared to the simple mixed powder of graphite and reduced graphene oxide material. It can be seen that this is done well, forming a single complex and thermally decomposing.

정리하면, 본 발명은 소수성 입자와 알코올을 혼합하는 반죽법을 통한 활물질 반죽과, 수계 용매 기반의 친수성 그래핀을 혼합한 분무 용액을 분무 건조함으로써 소수성 입자의 표면에 친수성 그래핀이 코팅된 코어-쉘 복합체를 수득할 수 있는 특징이 있다.In summary, the present invention is a core coated with hydrophilic graphene on the surface of the hydrophobic particles by spray-drying a spray solution that mixes active material kneading through a kneading method of mixing hydrophobic particles with alcohol and hydrophilic graphene based on an aqueous solvent. There is a feature that allows a shell complex to be obtained.

즉, 소수성의 활물질 입자의 표면에 알코올을 이용한 반죽법을 통해 산화그래핀 또는 산화그래핀환원물 분산 용액과 균질 분산이 이루어진 분무 용액을 얻은 후 분무 건조하여 소수성 활물질과 친수성 그래핀이 코어-쉘 구조로 형성된 고성능 복합 활물질을 전극에 적용함으로써, 필수적인 탄소 코팅의 문제점을 해결할 수 있는데 의미가 있다.That is, a spray solution in which graphene oxide or reduced graphene oxide dispersion solution and homogeneous dispersion are obtained through a kneading method using alcohol on the surface of the hydrophobic active material particles, and then spray-dried to form a core-shell mixture of the hydrophobic active material and hydrophilic graphene. It is meaningful that the problems of essential carbon coating can be solved by applying the structured high-performance composite active material to the electrode.

따라서 본 발명의 코어-쉘 복합체로 이루어진 고성능 복합 활물질은 전해질과의 계면에서 형성될 수 있는 부반응을 억제할 수 있고, 이를 통하여 전기전도성을 높일 수 있으므로 고용량, 장수명 및 고안정성의 전기화학특성을 요구하는 이차전지용 전극에 적용되어 성능 향상을 도모할 수 있을 것으로 기대된다.Therefore, the high-performance composite active material composed of the core-shell composite of the present invention can suppress side reactions that may form at the interface with the electrolyte and increase electrical conductivity through this, and thus requires electrochemical characteristics of high capacity, long life, and high stability. It is expected that it can be applied to electrodes for secondary batteries to improve performance.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다. 본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for explanation, and the scope of the technical idea of the present invention is not limited by these examples. The scope of protection of the present invention should be interpreted in accordance with the scope of the patent claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of the present invention.

Claims (9)

소수성 입자와 알코올을 혼합하여 활물질 반죽을 제조하는 단계;
상기 활물질 반죽과, 친수성 그래핀 용액을 혼합하여 분무 용액을 제조하는 단계; 및
상기 분무 용액을 분무 건조하여 상기 소수성 입자의 표면에 상기 친수성 그래핀이 코팅된 코어-쉘 복합체를 제조하는 단계;를 포함하고,
상기 친수성 그래핀 용액은, 물(H2O)을 포함하는 수계 용매에 산화그래핀 또는 산화그래핀환원물이 분산되어 형성되는 그래핀 용액이고,
상기 분무 용액은, 상기 알코올과 상기 수계 용매의 분자간 극성력과 수소결합에 의한 상호인력으로 용해된 용질-용매 기반의 용액이며,
상기 코어-쉘 복합체는, 상기 소수성 입자의 표면에 코팅된 친수성 그래핀의 평균 접촉각이 10 내지 20°인 것을 특징으로 하는,
반죽법을 이용한 소수성 입자 표면에 친수성 그래핀이 코팅된 코어-쉘 복합체의 제조방법.
Preparing an active material paste by mixing hydrophobic particles and alcohol;
Preparing a spray solution by mixing the active material paste and a hydrophilic graphene solution; and
Spray-drying the spray solution to prepare a core-shell composite in which the hydrophilic graphene is coated on the surface of the hydrophobic particles,
The hydrophilic graphene solution is a graphene solution formed by dispersing graphene oxide or reduced graphene oxide in an aqueous solvent containing water (H 2 O),
The spray solution is a solute-solvent based solution dissolved by the intermolecular polar force of the alcohol and the aqueous solvent and the mutual attraction due to hydrogen bonding,
The core-shell composite is characterized in that the average contact angle of the hydrophilic graphene coated on the surface of the hydrophobic particle is 10 to 20°.
Method for manufacturing a core-shell composite in which hydrophilic graphene is coated on the surface of hydrophobic particles using a kneading method.
제1항에 있어서,
상기 소수성 입자는,
천연흑연, 인조흑연, 탄소나노튜브, 카본블랙, 탄소 코팅된 금속, 탄소 코팅된 금속산화물, 그래핀, 소프트 카본 및 하드 카본으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는, 반죽법을 이용한 코어-쉘 복합체의 제조방법.
According to paragraph 1,
The hydrophobic particles are,
Characterized by at least one selected from the group consisting of natural graphite, artificial graphite, carbon nanotubes, carbon black, carbon-coated metal, carbon-coated metal oxide, graphene, soft carbon, and hard carbon, using a kneading method. Method for manufacturing core-shell composite.
삭제delete 제1항에 있어서,
상기 그래핀 용액은,
그래파이트를 산화시킨 후 분산 및 박리하여 형성되는 산화그래핀을 양이온-파이 상호작용을 통해 형성되는 산화그래핀 분산 용액인 것을 특징으로 하는, 반죽법을 이용한 코어-쉘 복합체의 제조방법.
According to paragraph 1,
The graphene solution is,
A method of manufacturing a core-shell composite using a kneading method, characterized in that the graphene oxide dispersion solution is formed by oxidizing graphite and then dispersing and exfoliating graphene oxide through cation-pi interaction.
제1항에 있어서,
상기 그래핀 용액은,
그래파이트를 산화시킨 후 분산 및 박리하여 형성되는 산화그래핀을 양이온-파이 상호작용을 통해 산화그래핀 분산 용액을 형성하고, 상기 산화그래핀 분산 용액에 환원제를 투입하여 환원시킨 산화그래핀환원물 분산 용액인 것을 특징으로 하는, 반죽법을 이용한 코어-쉘 복합체의 제조방법.
According to paragraph 1,
The graphene solution is,
Graphene oxide, which is formed by oxidizing graphite, then dispersing and exfoliating, forms a graphene oxide dispersion solution through cation-pi interaction, and a reducing agent is added to the graphene oxide dispersion solution to reduce the graphene oxide dispersion. A method of manufacturing a core-shell composite using a kneading method, characterized in that it is a solution.
삭제delete 제1항, 제2항, 제4항 및 제5항 중 어느 한 항의 방법으로 제조되되,
코어로 배치되는 소수성 입자; 및
상기 소수성 입자의 외부에 코팅되어 쉘로 배치되는 친수성 그래핀;을 포함하여 형성되는 것을 특징으로 하는, 반죽법을 이용한 코어-쉘 복합체.
Manufactured by the method of any one of paragraphs 1, 2, 4, and 5,
Hydrophobic particles disposed as a core; and
A core-shell composite using a kneading method, characterized in that it is formed including; hydrophilic graphene coated on the outside of the hydrophobic particles and disposed as a shell.
삭제delete 삭제delete
KR1020210157220A 2021-11-16 2021-11-16 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom KR102661213B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210157220A KR102661213B1 (en) 2021-11-16 2021-11-16 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom
KR1020240040682A KR20240042595A (en) 2021-11-16 2024-03-25 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210157220A KR102661213B1 (en) 2021-11-16 2021-11-16 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020240040682A Division KR20240042595A (en) 2021-11-16 2024-03-25 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Publications (2)

Publication Number Publication Date
KR20230071243A KR20230071243A (en) 2023-05-23
KR102661213B1 true KR102661213B1 (en) 2024-04-25

Family

ID=86544436

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210157220A KR102661213B1 (en) 2021-11-16 2021-11-16 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom
KR1020240040682A KR20240042595A (en) 2021-11-16 2024-03-25 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020240040682A KR20240042595A (en) 2021-11-16 2024-03-25 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Country Status (1)

Country Link
KR (2) KR102661213B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787311A (en) 2012-10-31 2014-05-14 海洋王照明科技股份有限公司 Preparation methods of graphene-carbon nanotube composite thin film and electrochemical capacitor
CN106450231A (en) 2016-11-29 2017-02-22 中南大学 Preparation method of stannic oxide particle/graphene nano-composite negative electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744122B1 (en) 2016-12-12 2017-06-07 한국지질자원연구원 Manufacturing method of crumpled graphene-carbon nanotube composite, crumpled graphene-carbon nanotube composite manufactured thereby and supercapacitor containing the composite
KR102330108B1 (en) * 2017-12-01 2021-11-23 주식회사 엘지에너지솔루션 Method of Preparing Electrode for Secondary Battery
KR102241526B1 (en) * 2018-08-29 2021-04-16 한국전기연구원 Preparation of high density anode with reduced graphene oxide-silicon metal particle compound and fabrication of electrodes for secondary battery and process for preparing the same
KR102212969B1 (en) * 2018-08-29 2021-02-05 한국전기연구원 Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same
KR20210128176A (en) 2020-04-16 2021-10-26 주식회사 그래핀올 Method for Preparing Graphene-Carbon Nanotube Composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787311A (en) 2012-10-31 2014-05-14 海洋王照明科技股份有限公司 Preparation methods of graphene-carbon nanotube composite thin film and electrochemical capacitor
CN106450231A (en) 2016-11-29 2017-02-22 中南大学 Preparation method of stannic oxide particle/graphene nano-composite negative electrode material

Also Published As

Publication number Publication date
KR20230071243A (en) 2023-05-23
KR20240042595A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5777701B2 (en) Method for producing two-dimensional sandwich nanomaterials based on graphene
US8765302B2 (en) Graphene-enabled vanadium oxide cathode and lithium cells containing same
Luo et al. 3D pomegranate-like TiN@ graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium–sulfur batteries
JP5675989B2 (en) Method for producing positive electrode material for lithium air secondary battery and lithium air secondary battery
KR20130015719A (en) A complex comprising a mesoporous silicon oxide and a graphene, and method for preparing the same
KR101975033B1 (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
Liu et al. MoO 2@ carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties
Li et al. Excellent sodium storage performance of carbon-coated TiO2: Assisted with electrostatic interaction of surfactants
CN109920995B (en) Silicon or oxide @ titanium oxide core-shell structure composite material and preparation method thereof
Jiang et al. An interlayer composed of a porous carbon sheet embedded with TiO 2 nanoparticles for stable and high rate lithium–sulfur batteries
Wang et al. Electrocatalysis of polysulfide conversion by conductive RuO 2 nano dots for lithium–sulfur batteries
Zhu et al. Performance improvement of N-doped carbon ORR catalyst via large through-hole structure
CN106025228A (en) Nanocomposite loading carbon-coated SnO2 nano particles on graphene sheets and preparation method of nanocomposite
Tang et al. Hybrid porous bamboo-like CNTs embedding ultrasmall LiCrTiO 4 nanoparticles as high rate and long life anode materials for lithium ion batteries
KR20180012948A (en) Composite including porous grapheme and carbonaceous material
Chang-Jian et al. Spray-drying synthesis of Li4Ti5O12 microspheres in pilot scale using TiO2 nanosheets as starting materials and their application in high-rate lithium ion battery
Ye et al. Constructing Li 3 VO 4 nanoparticles anchored on crumpled reduced graphene oxide for high-power lithium-ion batteries
CN113451566A (en) Composite coated positive electrode material and preparation method and application thereof
Gao et al. Self-assembly of hierarchical silicon suboxide nanoparticles encapsulated in nitrogen-doped carbon as high performance anode material for lithium-ion batteries
Wang et al. Uniformly distributed 1T/2H-MoS2 nanosheets integrated by melamine foam-templated 3D graphene aerogels as efficient polysulfides trappers and catalysts in lithium-sulfur batteries
Gómez-Cámer et al. Electrochemical study of Si/C composites with particulate and fibrous morphology as negative electrodes for lithium-ion batteries
Xu et al. SnO 2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes
Aghamohammadi et al. Effects of calcination parameters on the purity, morphology, and electrochemical properties of the synthesized TiNb2O7 by the solvothermal method as anode materials for Li-ion batteries
Hao et al. Nanodesigns for Na3V2 (PO4) 3-based cathode in sodium-ion batteries: a topical review
KR102661213B1 (en) Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
A107 Divisional application of patent
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant