KR102212969B1 - Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same - Google Patents

Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same Download PDF

Info

Publication number
KR102212969B1
KR102212969B1 KR1020180160547A KR20180160547A KR102212969B1 KR 102212969 B1 KR102212969 B1 KR 102212969B1 KR 1020180160547 A KR1020180160547 A KR 1020180160547A KR 20180160547 A KR20180160547 A KR 20180160547A KR 102212969 B1 KR102212969 B1 KR 102212969B1
Authority
KR
South Korea
Prior art keywords
graphene oxide
silicon metal
polymer
composite
metal particle
Prior art date
Application number
KR1020180160547A
Other languages
Korean (ko)
Other versions
KR20200025984A (en
Inventor
정승열
이건웅
양선혜
박종환
김익준
정수연
이혜정
김민철
임상민
류지현
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of KR20200025984A publication Critical patent/KR20200025984A/en
Application granted granted Critical
Publication of KR102212969B1 publication Critical patent/KR102212969B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재에 관한 것으로, 양이온-파이 상호작용을 통하여 산화그래핀환원물을 제조하는 산화그래핀환원물 제조단계, 실리콘금속입자에 폴리머를 코팅 후 상기 산화그래핀환원물과 복합화하는 제1과정 및 상기 산화그래핀환원물에 상기 폴리머를 코팅 후 상기 실리콘 금속입자와 복합화하는 제2과정 중 어느 하나를 이용하여 복합체 분산용액을 제조하는 복합체분산용액 제조단계, 상기 복합체 분산용액을 분무건조하여 코어-쉘 구조의 복합체 분말을 제조하는 복합체분말 제조단계를 포함하는 것을 기술적 요지로 한다. 이에 의하여 제조된 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합재는 소재 간 접착력이 향상되며, 복합체를 음극재로 이용하는 이차전지는 고용량 및 안정적 사이클을 형성하고 음극재의 대량 생산이 가능한 효과를 얻을 수 있다.The present invention relates to a method for preparing a polymer-added graphene oxide reduced product-silicon metal particle composite, a composite prepared thereby and a negative electrode material for a secondary battery using the composite, wherein the graphene oxide reduced product is prepared through a cation-pi interaction. The graphene oxide-reduced product manufacturing step to be prepared, a first step of coating a polymer on a silicon metal particle and then complexing it with the graphene-reduced product, and coating the polymer on the graphene oxide-reduced product and then complexing it with the silicon metal particle. The technical gist of the present invention is to include a composite dispersion solution preparation step of preparing a composite dispersion solution using any one of the second processes, and a composite powder production step of spray-drying the composite dispersion solution to prepare a core-shell composite powder. do. The resulting polymer-added graphene oxide-reduced silicon metal particle composite improves adhesion between materials, and a secondary battery using the composite as an anode material forms a high capacity and stable cycle, and has the effect of enabling mass production of anode materials. Can be obtained.

Description

폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재 {Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same}Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery prepared by reducing graphene oxide-silicon metal particle composite battery and process for preparing the same}

본 발명은 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재에 관한 것으로, 보다 상세하게는 저결함/고순도 산화그래핀 분산용액에 양이온-파이 상호작용을 통해 산화그래핀 환원물을 형성하고, 산화그래핀환원물 분산용액과 실리콘 금속입자의 안정적 복합화를 위해 실리콘 금속입자에 수용성 폴리머를 코팅 후 산화그래핀환원물과 복합화 또는 산화그래핀환원물에 수용성 폴리머를 코팅 후 실리콘 금속입자와 복합화하여 수용액 상의 복합체 분산용액을 제조하며, 산화그래핀 환원물-실리콘 금속입자 분산용액을 단일 공정으로 분무건조하여 코어-쉘 구조의 복합체 분말을 형성하고, 이를 통해 제조되는 복합체를 이용하여 고성능 이차전지용 음극재를 형성하는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재에 관한 것이다. The present invention relates to a method for preparing a polymer-added graphene oxide reduced product-silicon metal particle composite, a composite prepared thereby and a negative electrode material for a secondary battery using the composite, and more particularly, a low defect/high purity graphene oxide dispersion solution In order to form a graphene oxide reduced product through a cation-pi interaction, and to form a stable composite of the graphene oxide reduced product dispersion solution and the silicon metal particle, a water-soluble polymer is coated on the silicon metal particle and then complexed with the graphene oxide reduced product or The graphene oxide-reduced product is coated with a water-soluble polymer and then complexed with silicon metal particles to prepare a complex dispersion solution in an aqueous solution, and the graphene oxide-reduced product-silicon metal particle dispersion solution is spray-dried in a single process to form a core-shell structure. A method for preparing a polymer-added graphene oxide reduced product-silicon metal particle composite, characterized by forming a powder and forming a negative electrode material for a high-performance secondary battery by using the composite prepared therethrough, and the composite and composite prepared thereby It relates to a negative electrode material for a secondary battery to be used.

최근 소형화, 경량화된 각종 전자기기와 더불어 초대형 전력저장시스템에 대한 수요가 급증함에 따라 새로운 에너지원에 대해 전 세계적인 관심이 높아지고 있다. 그중에서도 친환경적이며 높은 에너지 밀도를 지니고 급속 충/방전이 가능한 이차전지 분야에 대한 연구 개발이 집중되고 있다. 특히 리튬이차천지의 음극활물질로 사용되는 탄소계, 금속계, 산화물계 물질들은 종류가 다양할 뿐만 아니라 고출력, 고밀도 에너지 전력향상에 핵심적인 역할을 하고 있어 많은 연구 및 상용화가 이루어지고 있다. 그 중 음극활물질로 언급되는 탄소계 물질 중 흑연(graphite)은 매우 안정적이고 부피팽창을 수반하지 않는 매우 우수한 재료이지만, 이론적인 용량의 한계로 인해 고용량을 요구하는 모바일 기기에 부응하는 음극활물질로는 미흡한 실정이다. 따라서 음극활물질로 새로운 고용량 소재를 요구하고 있는데 그 중 실리콘(Si)이 높은 이론용량을 가지고 있다. 실리콘은 리튬(Li)과 합금화(alloying), 합금부식화(dealloying)을 통하여 리튬 이온의 충방전이 가능한 금속 원소로서, 기존 음극활물질 재료인 흑연에 비하여 무게당, 부피당 용량에 월등한 특성을 보이기 때문에 차세대 고용량 리튬이차전지 재료로서 활발히 연구되고 있다.Recently, as the demand for ultra-large power storage systems along with various electronic devices that have been miniaturized and lightened has increased rapidly, global interest in new energy sources is increasing. Among them, research and development is being focused on the field of rechargeable batteries that are eco-friendly, have high energy density, and can be rapidly charged/discharged. In particular, carbon-based, metal-based, and oxide-based materials used as negative electrode active materials of lithium secondary heaven and earth are not only diverse in type, but also play a key role in improving high-power, high-density energy power, and many studies and commercializations are being made. Among the carbon-based materials referred to as anode active materials, graphite is a very stable material and does not involve volume expansion, but due to its theoretical capacity limitation, it is a cathode active material that meets mobile devices that require high capacity. It is inadequate. Therefore, a new high-capacity material is required as an anode active material, of which silicon (Si) has a high theoretical capacity. Silicon is a metal element capable of charging and discharging lithium ions through alloying with lithium (Li), and alloying, and shows superior characteristics in capacity per weight and volume compared to graphite, which is a material for negative electrode active material. Therefore, it is being actively studied as a material for a next-generation high-capacity lithium secondary battery.

하지만 실리콘이 높은 이론용량 특성을 보임에도 불구하고 상용화가 쉽지 않은 이유는, 리튬 이온을 흡수 및 저장시 결정구조의 변화에 의해 300% 이상의 큰 부피팽창이 발생하게 된다. 또한 계속된 부피변화로 인해 실리콘의 구조가 와해되는 현상이 야기된다. 이를 통해 초기 효율 및 사이클 특성이 저하되기 때문에 리튬 이차전지의 가역성을 향상시키며, 고용량을 유지하는 기술이 필수적이게 된다.However, despite the high theoretical capacity characteristics of silicon, the reason why it is not easy to commercialize is that when lithium ions are absorbed and stored, a large volume expansion of 300% or more occurs due to a change in the crystal structure. In addition, a phenomenon in which the structure of silicon is broken due to the continuous volume change is caused. Through this, since the initial efficiency and cycle characteristics are deteriorated, a technology for improving the reversibility of the lithium secondary battery and maintaining a high capacity becomes essential.

이를 위해 종래기술 '대한민국특허청 공개특허 제10-2015-0116238호 그래핀-금속나노입자복합체, 상기 복합체를 포함하는 탄소나노섬유복합체 및 상기 탄소나노입자복합체를 포함하는 이차전지' 및 '대한민국특허청 등록특허 제10-1634723호 실리콘 슬러지로부터 실리콘-카본-그래핀 복합체의 제조방법'과 같이 금속입자의 표면을 개질하고 이를 산화그래핀과 반응시켜 그래핀이 랩핑된 금속입자를 만드는 기술이 알려져 있다. 하지만 이와 같은 경우 금속입자를 표면개질하는 단계와, 산화그래핀이 금속입자를 랩핑한 후 환원하는 단계를 거쳐야 하기 때문에 제조 단계가 복잡하다는 단점이 있다. 또한 산화그래핀을 환원하는 과정에서 열처리에 의해 금속입자가 산화되는 등 상태가 변형되는 문제점이 생길 수도 있다.To this end, the prior art'Korean Patent Office Publication No. 10-2015-0116238 graphene-metal nanoparticle composite, carbon nanofiber composite including the composite, and secondary battery including the carbon nanoparticle composite' and'registered with the Korean Intellectual Property Office. [0003] A technique for producing graphene-wrapped metal particles by modifying the surface of metal particles and reacting them with graphene oxide is known as in Patent No. 10-1634723,'Method of manufacturing a silicon-carbon-graphene composite from silicon sludge.' However, in this case, there is a disadvantage in that the manufacturing step is complicated because the step of surface modification of the metal particles and the step of reducing the graphene oxide after wrapping the metal particles are required. In addition, during the process of reducing graphene oxide, there may be a problem in that the state is deformed, such as metal particles are oxidized by heat treatment.

대한민국특허청 공개특허 제10-2015-0116238호Republic of Korea Patent Office Publication No. 10-2015-0116238 대한민국특허청 등록특허 제10-1634723호Korean Intellectual Property Office Registration Patent No. 10-1634723

본 발명의 기술적 과제는, 배경기술에서 언급한 문제점을 해결하기 위한 것으로, 더욱 상세하게는 저결함/고순도 산화그래핀 분산용액에 양이온-파이 상호작용을 통해 산화그래핀 환원물을 형성하고, 산화그래핀환원물 분산용액과 실리콘 금속입자의 안정적 복합화를 위해 실리콘 금속입자에 수용성 폴리머를 코팅 후 산화그래핀환원물과 복합화 또는 산화그래핀환원물에 수용성 폴리머를 코팅 후 실리콘 금속입자와 복합화하여 수용액 상의 복합체 분산용액을 제조하며, 산화그래핀 환원물-실리콘 금속입자 분산용액을 단일 공정으로 분무건조하여 코어-쉘 구조의 복합체 분말을 형성하고, 이를 통해 제조되는 복합체를 이용하여 고성능 이차전지용 음극재를 제조하는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재를 제공하는 것이다.The technical problem of the present invention is to solve the problems mentioned in the background art, and more particularly, to form a reduced graphene oxide through a cation-pi interaction in a low defect/high purity graphene oxide dispersion solution, and oxidize For the stable complexing of the graphene-reduced material dispersion solution and the silicon metal particles, a water-soluble polymer is coated on the silicon metal particles and then complexed with the graphene-oxide-reduced material or a water-soluble polymer is coated on the graphene-oxide-reduced material and then combined with the silicon metal particles. A composite dispersion solution of the phase is prepared, and the graphene oxide reduced product-silicon metal particle dispersion solution is spray-dried in a single process to form a core-shell structure composite powder, and the resulting composite is used to form a high-performance secondary battery anode material It is to provide a method for producing a reduced graphene oxide-silicon metal particle composite with a polymer added thereto, characterized in that to prepare a composite, and a negative electrode material for a secondary battery using the composite and the composite.

본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. There will be.

기술적 과제를 해결하기 위해 안출된 본 발명에 따른 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법은, 양이온-파이 상호작용을 통하여 산화그래핀환원물을 제조하는 산화그래핀환원물 제조단계, 실리콘금속입자에 폴리머를 코팅 후 상기 산화그래핀환원물과 복합화하는 제1과정 및 상기 산화그래핀환원물에 상기 폴리머를 코팅 후 상기 실리콘 금속입자와 복합화하는 제2과정 중 어느 하나를 이용하여 복합체 분산용액을 제조하는 복합체분산용액 제조단계, 상기 복합체 분산용액을 분무건조하여 코어-쉘 구조의 복합체 분말을 제조하는 복합체분말 제조단계를 포함하여 구성될 수 있다.The method for preparing a reduced graphene oxide-silicon metal particle composite with a polymer according to the present invention devised to solve the technical problem is a reduced graphene oxide for preparing a reduced graphene oxide through a cation-pi interaction The manufacturing step, any one of a first process of coating a polymer on a silicon metal particle and then complexing it with the graphene oxide-reduced material, and a second process of coating the polymer on the graphene oxide-reduced material and then complexing it with the silicon metal particle. A composite dispersion solution preparation step of preparing a composite dispersion solution by using, and a composite powder preparation step of preparing a composite powder having a core-shell structure by spray-drying the composite dispersion solution.

여기서, 상기 산화그래핀환원물 제조단계는, 그래파이트를 산화하여 산화그래파이트를 형성하는 산화그래파이트 형성과정, 상기 산화그래파이트를 분산 및 박리하여 산화그래핀을 형성하는 산화그래핀 형성과정, 양이온-파이 상호작용을 통해 상기 산화그래핀을 포함하는 산화그래핀 분산용액을 제조하는 산화그래핀 분산용액 제조과정 및 상기 산화그래핀 분산용액을 환원시켜 산화그래핀환원물 분산용액을 제조하는 산화그래핀환원물 분산용액 제조과정을 포함하여 구성될 수 있다.Here, the graphene oxide-reduced product manufacturing step includes a process of forming graphite oxide in which graphite is oxidized to form graphite oxide, a process of forming graphene oxide in which graphene oxide is formed by dispersing and peeling the graphite oxide, and cation-pi mutual Graphene oxide-reduced product for preparing a graphene oxide dispersion solution for preparing a graphene oxide dispersion solution containing the graphene oxide through action and reducing the graphene oxide dispersion solution to prepare a graphene oxide-reduced product dispersion solution It can be configured including a dispersion solution manufacturing process.

상기 폴리머는 수용성 폴리머이며, 상기 수용성 폴리머는 폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The polymer is a water-soluble polymer, and the water-soluble polymer is polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide, and polyvinyl Acetate (Polyvinyl acetate), polyacrylamide, polyvinylpyrrolidone, polydiallyldimethylammonium chloride, polyethylene oxide, polyacrylic acid, polystyrenesulfonic acid, Polysilicic acid, polyphosphoric acid, polyethylenesulfonic acid, poly-3-vinyloxypropane-1-sulfonic acid, poly- 4-vinylphenol, poly-4-vinylphenyl sulfuric acid, polyethyleneohosphoric acid, polymaleic acid, poly-4 -Vinylbenzoic acid (Poly-4-vinylbenzoic acid), methyl cellulose, Hydroxy ethyl cellulose, Carboxy methyl cellulose, Sodium carboxy methyl cellulose, Hydro Selected from the group consisting of hydroxypropyl cellulose, sodium carboxymethylcellulose, polysaccharide, starch, and mixtures thereof It is desirable to be.

상기 복합체분산용액 제조단계의 상기 제1 과정은, 정제수에 상기 폴리머를 투입한 후 교반하여 분산하여 분산된 폴리머 용액을 제조하고, 상기 분산된 폴리머 용액에 상기 실리콘금속입자를 첨가하고 교반하여 분산된 실리콘 금속입자-폴리머 복합체 분산용액을 제조하며, 상기 실리콘 금속입자-폴리머 복합체 분산용액을 분무건조하여 파우더화 한 후 상기 산화그래핀환원물 분산용액과 혼합하는 과정이다.In the first step of the preparation of the complex dispersion solution, the polymer is added to purified water and then stirred to prepare a dispersed polymer solution, and the silicon metal particles are added to the dispersed polymer solution, followed by stirring. A silicon metal particle-polymer composite dispersion solution is prepared, and the silicon metal particle-polymer complex dispersion solution is spray-dried and powdered, and then mixed with the graphene-reduced material dispersion solution.

상기 복합체분산용액 제조단계의 싱기 제2 과정은, 정제수에 상기 폴리머를 투입한 후 교반하여 분산하여 분산된 폴리머 용액을 제조하고, 상기 분산된 폴리머 용액에 상기 산화그래핀환원물 첨가하고 산성용액으로 제조한 후 교반하여 폴리머-산화그래핀환원물을 복합화한 용액을 제조하며, 상기 복합화한 용액에 상기 실리콘 금속입자를 첨가하여 혼합하는 과정이다.In the second step of preparing the complex dispersion solution, the polymer is added to purified water and then stirred to disperse to prepare a dispersed polymer solution, and the graphene oxide-reduced product is added to the dispersed polymer solution, followed by an acidic solution. After preparation, the mixture is stirred to prepare a solution in which the polymer-graphene oxide reduced product is complexed, and the silicon metal particles are added to the complexed solution and mixed.

상기 복합체분말 제조단계에서 상기 분무건조는, 상기 산화그래핀환원물-실리콘 금속입자 분산액을 분무건조하여 상기 폴리머와 물은 증발되고, 상기 실리콘 금속입자 표면을 상기 산화그래핀환원물이 둘러싸도록 제조하는 것이 바람직하다.In the composite powder manufacturing step, the spray drying is performed so that the graphene oxide-reduced product-silicon metal particle dispersion is spray-dried to evaporate the polymer and water, and the graphene oxide-reduced product surrounds the surface of the silicon metal particle. It is desirable to do.

여기서, 상기 분무건조는 여러 번 반복적으로 이루어져 상기 실리콘 금속입자가 외부에 노출되지 않도록 상기 산화그래핀환원물이 둘러싸는 것을 특징으로 한다.Here, the spray drying is repeated several times, and the graphene oxide-reduced material is surrounded so that the silicon metal particles are not exposed to the outside.

또한, 상기 분무건조는 상기 산화그래핀환원물의 사이즈가 상이한 분산용액을 각각 준비한 후, 이를 번갈아가면서 분무건조하는 것을 특징으로 한다.In addition, the spray drying is characterized in that after preparing a dispersion solution having a different size of the graphene oxide-reduced material, spray drying it alternately.

한편, 본 발명에 따른 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법에 따라 제조된 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체는, 코어로 내부에 존재하는 실리콘 금속입자, 상기 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘 구조의 산화그래핀환원물, 및 상기 실리콘 금속입자와 상기 산화그래핀환원물 사이에서 상기 실리콘 금속입자를 둘러싸며 코팅되어 있는 폴리머를 포함하여 구성되는 것을 기술적 요지로 한다.On the other hand, the graphene oxide reduced product-silicon metal particle composite to which a polymer is added, prepared according to the method for producing a polymer-added graphene oxide-silicon metal particle composite according to the present invention, comprises a silicon metal present inside the core furnace. Particles, a graphene oxide-reduced product having an outer shell structure surrounding the silicon metal particle, and a polymer coated by surrounding the silicon metal particle between the silicon metal particle and the graphene oxide-reduced product It is the technical gist that is constituted.

본 발명에 따른 이차전지용 음극은, 집전체, 상기 집전체의 일면에 형성되며 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체를 갖는 음극활물질을 포함하여 구성되며, 상기 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체는, 양이온-파이 상호작용을 통해 형성된 산화그래핀을 환원시킨 산화그래핀환원물과 상기 산화그래핀환원물 및 실리콘 금속입자 중 어느 하나를 폴리머를 이용하여 코팅한 후 다른 하나와 복합화하여 형성된 복합체 분산용액을 분무건조하여, 상기 실리콘 금속입자는 코어로 내부에 존재하고, 상기 산화그래핀환원물은 상기 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘 구조로 이루어지는 코어-쉘 구조의 복합체 분말인 것이 바람직하다.The negative electrode for a secondary battery according to the present invention comprises a current collector and a negative electrode active material formed on one surface of the current collector and having a graphene-oxidized reduced product-silicon metal particle complex to which a polymer is added, and the oxidation of the polymer is added. The graphene-reduced product-silicon metal particle complex is coated with a graphene-oxide-reduced product obtained by reducing graphene oxide formed through a cation-pi interaction, and any one of the graphene-oxide-reduced product and silicon metal particles using a polymer. Then, the composite dispersion solution formed by compounding with the other is spray-dried, and the silicon metal particles are present inside as a core, and the graphene oxide-reduced product is formed into an outer shell structure surrounding the silicon metal particles. It is preferably a composite powder having a core-shell structure made of.

상기한 구성에 의한 본 발명은 아래와 같은 효과를 기대할 수 있다. The present invention according to the above configuration can expect the following effects.

폴리머를 첨가하여 산화그래핀환원물과 실리콘 금속입자 간 접합성이 향상되고, 균일한 그래핀 도포가 가능하다.By adding a polymer, the bondability between the reduced graphene oxide and the silicon metal particles is improved, and even graphene coating is possible.

이에 따라 고용량, 안정적 사이클 특성을 유지할 수 있는 산화그래핀환원물-실리콘 금속입자 복합체 제조가 가능하며, 분무건조를 통한 분말 제조법 도입을 통하여 대량제조 및 고성능 이차전지용 음극재 제조가 가능한 효과를 가질 수 있다.Accordingly, it is possible to manufacture a graphene oxide-reduced material-silicon metal particle composite that can maintain high capacity and stable cycle characteristics, and through the introduction of a powder manufacturing method through spray drying, mass production and high-performance secondary battery anode materials can be produced. have.

이러한 본 발명에 의한 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.

도 1 및 도 2는 본 발명의 실시예에 따른 폴리머 코팅된 산화그래핀환원물-실리콘 금속입자 복합체 제조방법의 순서도이다.
도 3은 본 발명의 실시예에 따른 폴리머 코팅된 산화그래핀환원물-실리콘 금속입자 복합체의 구성을 나타내는 도면이다.
도 4는 실리콘금속입자-산화그래핀환원물 (Si-rGO) 및 본 발명의 실시예에 따른 폴리머 코팅된 실리콘금속입자-수용성폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체의 전자현미경 이미지이다.
도 5는 본 발명의 실시예에 다른 산화그래핀환원물-폴리머-실리콘 금속입자의 표면 형상 및 실리콘에 부착되어있는 그래핀을 나타내는 HR-TEM 측정결과 이미지이다.
도 6은 실리콘금속입자-산화그래핀환원물 (Si-rGO) 및 본 발명의 실시예에 따른 실리콘금속입자-수용성폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체의 열중량분석을 통하여 측정한 결과를 나타내는 도면이다.
도 7은 실리콘금속입자-산화그래핀환원물 (Si-rGO)을 이용한 이차전지 및 본 발명의 실시예에 따른 실리콘금속입자-수용성폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체를 이용한 이차전지의 사이클 특성을 나타내는 도면이다.
1 and 2 are a flow chart of a method of manufacturing a polymer-coated graphene oxide reduced product-silicon metal particle composite according to an embodiment of the present invention.
3 is a view showing the configuration of a polymer-coated graphene oxide reduced product-silicon metal particle composite according to an embodiment of the present invention.
4 is an electron of a silicon metal particle-graphene oxide reduced product (Si-rGO) and a polymer-coated silicon metal particle-water-soluble polymer-graphene oxide reduced product (Si-polymer-rGO) complex according to an embodiment of the present invention. It is a microscope image.
5 is an HR-TEM measurement result image showing the surface shape of graphene oxide-reduced material-polymer-silicon metal particles and graphene adhered to silicon according to an embodiment of the present invention.
6 is a thermogravimetric analysis of a silicon metal particle-graphene oxide reduced product (Si-rGO) and a silicon metal particle-water-soluble polymer-graphene oxide reduced product (Si-polymer-rGO) composite according to an embodiment of the present invention. It is a diagram showing the results measured through.
7 shows a secondary battery using a silicon metal particle-graphene oxide reduced product (Si-rGO) and a silicon metal particle-water-soluble polymer-graphene oxide reduced product (Si-polymer-rGO) composite according to an embodiment of the present invention. It is a diagram showing the cycle characteristics of the used secondary battery.

이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. 그리고, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later. And, in describing the present invention, descriptions of functions or configurations that are already known will be omitted in order to clarify the gist of the present invention.

도 1 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재에 대하여 상세히 설명하기로 한다.Referring to FIGS. 1 to 7, a method of manufacturing a graphene oxide reduced product-silicon metal particle composite with a polymer added according to an embodiment of the present invention, the composite prepared thereby, and a negative electrode material for a secondary battery using the composite are detailed. I will explain.

본 발명에 따른 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체는, 저결함/고순도 산화그래핀 분산용액에 양이온-파이 상호작용을 통해 산화그래핀 환원물을 형성하고, 산화그래핀환원물 분산용액과 실리콘 금속입자의 안정적 복합화를 위해 실리콘 금속입자에 수용성 폴리머를 코팅 후 산화그래핀환원물과 복합화 또는 산화그래핀환원물에 수용성 폴리머를 코팅 후 실리콘 금속입자와 복합화하여 수용액 상의 복합체 분산용액을 제조하며, 산화그래핀 환원물-실리콘 금속입자 분산용액을 단일 공정으로 분무건조하여 형성된다. 여기서 폴리머가 코팅된 실리콘 금속입자는 코어로 내부에 존재하고 산화그래핀환원물은 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘 구조로 이루어지게 된다. 따라서 소재 간 접합성이 향상되는 효과를 가질 수 있다.The graphene oxide-reduced product-silicon metal particle complex to which the polymer is added according to the present invention forms a reduced graphene oxide through a cation-pi interaction in a low defect/high purity graphene oxide dispersion solution, and reduces graphene oxide. For the stable compounding of the water dispersion solution and the silicon metal particles, the silicon metal particles are coated with a water-soluble polymer and then complexed with the graphene oxide-reduced product or the graphene oxide-reduced material is coated with a water-soluble polymer and then complexed with silicon metal particles to disperse the complex in an aqueous solution. A solution is prepared and formed by spray-drying a graphene oxide reduced product-silicon metal particle dispersion solution in a single process. Here, the polymer-coated silicon metal particles exist inside the core, and the graphene oxide-reduced product has an outer shell structure surrounding the silicon metal particles. Therefore, it can have an effect of improving the bonding between materials.

이와 같은 복합체를 포함하는 이차전지용 음극재는, 집전체와, 집전체의 일면에 형성되며 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체를 갖는 음극활물질로 이루어진다. 여기서 저결함/고순도 산화그래핀 분산용액에 양이온-파이 상호작용을 통해 산화그래핀 환원물을 형성하고, 산화그래핀환원물 분산용액과 실리콘 금속입자의 안정적 복합화를 위해 실리콘 금속입자에 수용성 폴리머를 코팅 후 산화그래핀환원물과 복합화 또는 산화그래핀환원물에 수용성 폴리머를 코팅 후 실리콘 금속입자와 복합화하여 수용액 상의 복합체 분산용액을 제조하며, 산화그래핀 환원물-실리콘 금속입자 분산용액을 단일 공정으로 분무건조하여 이루어진다. 따라서, 균일한 그리핀 도포를 통한 이차전지의 교용량 및 안정적 사이클 특성이 향상되는 효과를 가질 수 있다.A negative electrode material for a secondary battery including such a composite includes a current collector and a negative electrode active material formed on one surface of the current collector and having a graphene oxide reduced product-silicon metal particle composite to which a polymer is added. Here, a graphene oxide reduced product is formed through a cation-pi interaction in a low defect/high purity graphene oxide dispersion solution, and a water-soluble polymer is added to the silicon metal particles for the stable combination of the graphene oxide reduced product dispersion solution and the silicon metal particles. After coating, the graphene oxide-reduced product is complexed or the graphene-oxide-reduced product is coated with a water-soluble polymer and then complexed with silicon metal particles to prepare a complex dispersion solution in an aqueous solution. It is made by spray drying. Therefore, it is possible to have an effect of improving the bridge capacity and stable cycle characteristics of the secondary battery through uniform application of griffin.

이와 같은 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체 제조방법은 도 1에 도시된 바와 같이 산화그래핀환원물 제조단계(S10), 복합체 분산용액 제조단계(S20) 및 복합체 분말 제조단계(S30)를 포함하여 구성될 수 있다. The graphene oxide-reduced material-silicon metal particle composite manufacturing method to which such a polymer is added includes a graphene-oxide-reduced product manufacturing step (S10), a composite dispersion solution manufacturing step (S20), and a composite powder manufacturing step as shown in FIG. It may be configured to include (S30).

먼저, 양이온-파이 상호작용을 통하여 산화그래핀환원물을 제조한다(S10).First, a reduced graphene oxide is prepared through a cation-pi interaction (S10).

여기서, 산화그래핀환원물 제조단계(S10)는 산화그래파이트 형성과정, 산화그래핀 형성과정, 산화그래핀 분산용액 제조과정 및 산화그래핀환원물 분산용액 제조과정을 포함하여 구성될 수 있다.Here, the graphene oxide-reduced product manufacturing step (S10) may include a graphite oxide formation process, a graphene oxide formation process, a graphene oxide dispersion solution manufacturing process, and a graphene oxide reduced product dispersion solution manufacturing process.

산화그래파이트 형성과정은 분말상태의 그래파이트 플레이크(flake)로부터 분말상태의 산화그래파이트 플레이크를 합성하는 과정이다.The process of forming graphite oxide is a process of synthesizing powdered graphite oxide flakes from powdered graphite flakes.

산화그래파이트 분말은 분말상태의 99.9995%의 고순도 그래파이트 플레이크를 산처리를 통해 합성한 후 수용액의 반복 세척과정과 원심분리기를 이용하여 불순물을 제거함으로써 얻어진다. 산처리는 고순도 그래파이트 플레이크에 농질산(fuming nitric acid) 또는 황산(sulfuric acid) 등과 같은 강산에 소듐클로레이트(NaClO4) 또는 포타슘퍼망가네이트(KMnO4)를 첨가하여 상온에서 48시간 교반을 통해 산화시킨다. 그리고 증류수를 사용하여 중화시킨 후 필터링(filtering) 및 워싱(washing)을 반복한다. 산화된 그래파이트 용액은 건조과정을 거친 후 그라인딩(grinding)을 이용하여 산화그래파이트 분말을 얻는다.Graphite oxide powder is obtained by synthesizing 99.9995% high-purity graphite flakes in powder form through acid treatment, and then removing impurities using a repeated washing process of an aqueous solution and a centrifuge. Acid treatment is oxidized by adding sodium chlorate (NaClO 4 ) or potassium permanganate (KMnO 4 ) to a strong acid such as fuming nitric acid or sulfuric acid to high-purity graphite flakes and stirring at room temperature for 48 hours. . After neutralizing with distilled water, filtering and washing are repeated. The oxidized graphite solution undergoes a drying process and then grinding to obtain graphite oxide powder.

산처리는 일반적으로 사용하는 스타우덴마이어법(L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), 험머스법(W. Hummers 외 1명, J.Am. Chem. Soc., 80, 1339, 1958)이 아닌 브로디법(B. C. Brodie Ann. Chim.Phys., 59, 466-472, 1860)을 사용한다. 험머스법을 통해 얻어지는 산화그래파이트 플레이크는 추후에 박리가 잘 일어나기 때문에, 대부분의 경우 산화그래핀을 제조하는 데 있어 험머스법을 사용한다. 하지만 험머스법은 산화그래파이트의 박리가 잘 일어나는 대신에 산화작용기를 많이 포함하고 있어 순도가 낮고 이로 인해 산화그래핀 품질이 떨어진다는 단점이 있다. 이에 비해 브로디법의 경우 산화그래파이트의 박리가 힘들지만 제조된 산화그래핀이 고순도, 저결함으로 품질이 우수하다는 장점이 있다. 따라서 본 발명에서는 일반적으로 사용하는 험머스법이 아닌 브로디법을 이용하여 산화그래핀을 제조한다.Acid treatment is generally used in the Staudenmaier method (L. Staudenmaier, Ber. Dtsch. Chem. Gas., 31, 1481-1499, 1898), the Hummers method (W. Hummers et al., J.Am. Chem. Soc., 80, 1339, 1958), but the Brodie method (BC Brodie Ann. Chim. Phys., 59, 466-472, 1860). Since the graphite oxide flakes obtained through the Hummers method are easily peeled later, in most cases, the Hummers method is used to prepare graphene oxide. However, the Hummers method has a disadvantage in that the purity of the graphene oxide is low because it contains a large number of oxidizing functional groups instead of the exfoliation of graphite oxide easily. In contrast, in the case of the Brody method, it is difficult to peel the graphite oxide, but the produced graphene oxide has the advantage of excellent quality due to high purity and low defects. Therefore, in the present invention, graphene oxide is prepared using the Brody method, not the Hummers method generally used.

그리고 산화그래핀 형성과정은 산화그래파이트 플레이크를 용매 내에 분산 및 박리 시킴으로서 산화그래핀을 형성하는 과정이다.In addition, the process of forming graphene oxide is a process of forming graphene oxide by dispersing and exfoliating graphite oxide flakes in a solvent.

상기 산화그래파이트 합성단계에서 제조된 산화그래파이트 분말을 용매에 분산시켜 산화그래파이트 분산용액을 만들고, 분산용액 내에서 산화그래파이트를 박리시켜 저결함/고순도 산화그래핀을 형성한다.The graphite oxide powder prepared in the graphite oxide synthesis step is dispersed in a solvent to prepare a graphite oxide dispersion solution, and the graphite oxide is peeled off in the dispersion solution to form low defect/high purity graphene oxide.

산화그래파이트 분말을 분산시키 위한 용매는 알칼리 용매가 바람직한데, 알칼리 용매는 수산화나트륨(NaOH) 수용액, 수산화칼륨(KOH) 수용액, 수산화암모늄(NH4H) 수용액, 수산화리튬(LiOH) 수용액, 수산화칼슘(Ca(OH)2) 수용액 및 이의 혼합물로 이루어진 군에서 선택되는 것을 사용하며, 용매의 pH는 8 이상부터 분산이 가능하며 가장 바람직한 pH는 10 이상이다.The solvent for dispersing the graphite oxide powder is preferably an alkali solvent, and the alkali solvent is a sodium hydroxide (NaOH) aqueous solution, potassium hydroxide (KOH) aqueous solution, ammonium hydroxide (NH 4 H) aqueous solution, lithium hydroxide (LiOH) aqueous solution, calcium hydroxide ( Ca(OH) 2 ) A solution selected from the group consisting of an aqueous solution and a mixture thereof is used, and the pH of the solvent can be dispersed from 8 or higher, and the most preferable pH is 10 or higher.

산화그래파이트 분산용액에 초음파 분쇄(sonication), 호모게나이저(homogenizer), 고압균질기(high pressurehomogenizer) 중 하나 이상을 사용하여 산화그래파이트의 분산 및 박리가 이루어진다. 이때 분산 및 박리시 필요한 시간은 10분 내지 5시간으로, 10분 미만일 경우 분산 및 박리가 원활히 이루어지지 않으며, 5시간을 초과하여 처리를 실시할 경우 결함 형성이 많아져 고품질 산화그래핀을 얻을 수 없다.The graphite oxide is dispersed and peeled off by using at least one of a sonication, a homogenizer, and a high pressure homogenizer in the graphite oxide dispersion solution. At this time, the time required for dispersion and peeling is 10 minutes to 5 hours, and if it is less than 10 minutes, dispersion and peeling do not occur smoothly, and if the treatment is performed for more than 5 hours, defects are formed and high quality graphene oxide can be obtained. none.

또한 산화그래핀 분산용액 제조과정은 양이온-파이 상호작용을 통한 단일층 산화그래핀 분산용액을 제조한는 과정이다.In addition, the process of preparing a graphene oxide dispersion solution is a process of preparing a single layer graphene oxide dispersion solution through a cation-pi interaction.

분산 및 박리된 산화그래핀을 양이온-파이 상호작용을 통하여 양이온반응 산화그래핀 분산용액을 형성한다. 이를 상세히 설명하면 산화그래핀을 알칼리 용매 와 산화그래핀을 분산 및 박리하여 산화그래핀 분산용액을 형성하는 단계와, 산화그래핀 분산용액 내에 탄소 원자들이 2차원 상에서 sp2결합에 의해 연결된 배열의 중심에 양이온을 위치시킴에 의해, 양이온과 sp2영역의 파이구조와의 양이온-파이 상호작용을 통해 양이온반응 산화그래핀 분산용액을 형성하는 단계로 이루어진다.The dispersed and peeled graphene oxide is subjected to a cation-pi interaction to form a cationic reaction graphene oxide dispersion solution. To explain this in detail, the steps of forming a graphene oxide dispersion solution by dispersing and exfoliating graphene oxide with an alkali solvent and graphene oxide, and an arrangement in which carbon atoms in the graphene oxide dispersion solution are connected by sp 2 bonds in two dimensions. It consists of forming a cationic reaction graphene oxide dispersion solution through a cation-pi interaction between the cation and the pi structure of the sp 2 region by placing a cation in the center.

양이온반응 산화그래핀 분산용액은 초음파 분쇄 등과 같은 외부의 물리적 힘이 가해지지 않은 상태에서 산화그래핀 분산용액을 상온에서 1분 내지 10시간 정도의 반응시간을 유지함으로써 얻어질 수 있다.Cationic reaction graphene oxide dispersion solution can be obtained by maintaining a reaction time of about 1 minute to 10 hours at room temperature in a graphene oxide dispersion solution in a state where an external physical force such as ultrasonic grinding is not applied.

여기서 산화그래핀 분산용액의 농도 범위가 1mg/L 내지 50g/L인 상태에서 상온에서 10분 정도의 반응 시간을 유지함으로써 얻어질 수 있다. 이때 산화그래핀 분산용액 농도의 범위가 1mg/L 미만일 경우 고농도 산화그래핀 형성이 어려우며, 산화그래핀 분산용액의 농도 범위가 50g/L을 초과할 경우 산화그래핀의 뭉침현상이 일어나는 단점이 있다.Here, it can be obtained by maintaining a reaction time of about 10 minutes at room temperature in a state in which the concentration range of the graphene oxide dispersion solution is 1 mg/L to 50 g/L. At this time, when the concentration of the graphene oxide dispersion solution is less than 1mg/L, it is difficult to form high-concentration graphene oxide, and when the concentration range of the graphene oxide dispersion solution exceeds 50g/L, there is a disadvantage that agglomeration of graphene oxide occurs. .

이러한 반응은, 산화그래핀 분산용액에 포함된 알칼리 용매를 통하여 나트륨(Na+), 칼륨(K+), 암모늄(NH4 +), 리튬(Li+)과 같은 일가 양이온과 육각형 sp2 영역의 파이 구조와의 반응을 활성화시키는 것으로서, 알칼리 용매의 약환원반응을 통한 산화그래핀의 산소작용기 제거 및 양이온과의 상호작용을 위한 반응시간의 유지를 통하여 형성되는 것이다. 도 2는 첨가된 용매가 수산화나트륨 수용액이며, 양이온은 나트륨이온이다.These reactions are carried out through an alkaline solvent contained in the graphene oxide dispersion solution, through monovalent cations such as sodium (Na + ), potassium (K + ), ammonium (NH 4 + ), and lithium (Li + ), and the hexagonal sp 2 region. It activates the reaction with the pi structure, and is formed through the removal of oxygen functional groups of graphene oxide through a weak reduction reaction of an alkaline solvent and maintenance of the reaction time for interaction with the cation. 2, the added solvent is an aqueous sodium hydroxide solution, and the cation is sodium ion.

양이온반응 산화그래핀 분산용액을 제조는 양이온-파이 상호작용의 활성화를 위해서 회전증발법, 원심분리법, 교반법 등과 같은 용매휘발법을 이용할 수 있다. 이는 약환원을 통하여 양이온이 흡착할 수 있는 그래핀의 육각형 sp2영역을 보다 증가시키기 위하여 온도와 시간을 조절함으로써 국부적인 산화작용기를 제거한다. 그리고 용매휘발법을 이용하여 물을 증발시킴으로서 양이온-파이 상호작용을 활성화시키며 고농도 분산용액을 제조한다.In preparing the cationic reaction graphene oxide dispersion solution, a solvent volatilization method such as rotary evaporation method, centrifugation method, stirring method, etc. may be used to activate the cation-pi interaction. This removes local oxidizing functional groups by controlling the temperature and time to further increase the hexagonal sp 2 region of graphene that can be adsorbed by cations through weak reduction. In addition, by evaporating water using a solvent volatilization method, the cation-pi interaction is activated, and a high concentration dispersion solution is prepared.

분산용액 제조과정은 상기 단일층 산화그래핀 분산용액을 환원시켜 산화그래핀환원물 분산용액을 제조하는 과정이다.The dispersion solution preparation process is a process of preparing a graphene oxide-reduced dispersion solution by reducing the single-layer graphene oxide dispersion solution.

양이온반응 단일층 산화그래핀 분산용액을 용매에 중화시킨 후 제조된 용액에 환원제를 첨가하여 습식공정을 통해 환원시킴으로써 산화그래핀 환원물 분산용액을 얻게 된다. 여기서 환원제는 통상적인 환원제를 제한 없이 사용할 수 있으며, 예를 들어 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 수산화붕소나트륨(NaBH4), 히드라진(N2H4), 하이드로아이오닉산(Hydroionic acid), 아스코빅산(Ascovic acid) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.After neutralizing the cationic reaction single layer graphene oxide dispersion solution in a solvent, a reducing agent is added to the prepared solution to reduce it through a wet process, thereby obtaining a graphene oxide reduced product dispersion solution. Here, the reducing agent can be used without limitation, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydroionic acid, ascorbic acid, and mixtures thereof.

실리콘금속입자에 폴리머를 코팅 후 상기 산화그래핀환원물과 복합화하는 제1과정(S21) 및 상기 산화그래핀환원물에 상기 폴리머를 코팅 후 상기 실리콘 금속입자와 복합화하는 제2과정(S22) 중 어느 하나를 이용하여 복합체 분산용액을 제조한다(S20).During the first process (S21) of coating the polymer on the silicon metal particles and then complexing them with the graphene-reduced material (S21), and the second process (S22) of coating the polymer on the graphene oxide-reduced material and then complexing them with the silicon metal particles. Using any one to prepare a complex dispersion solution (S20).

제1 과정(S21)은, 표면에 개질이 이루어지지 않은 순수한 상태의 실리콘 금속입자에 폴리머를 코팅하고 산화그래핀환원물 분산용액에 복합화하여 수용액 상의 복합체 분산용액을 제조하는 과정이며, 보다 구체적으로 정제수에 상기 폴리머를 투입한 후 교반하여 분산하여 분산된 폴리머 용액을 제조하고, 상기 분산된 폴리머 용액에 상기 실리콘금속입자를 첨가하고 교반하여 분산된 실리콘 금속입자-폴리머 복합체 분산용액을 제조하며, 상기 실리콘 금속입자-폴리머 복합체 분산용액을 분무건조하여 파우더화 한 후 상기 산화그래핀환원물 분산용액과 혼합하는 과정이다.The first process (S21) is a process of preparing a complex dispersion solution in an aqueous solution by coating a polymer on a pure silicon metal particle without modification on the surface and compounding it in a graphene oxide-reduced dispersion solution. The polymer is added to purified water and then stirred to prepare a dispersed polymer solution, and the silicon metal particles are added to the dispersed polymer solution and stirred to prepare a dispersed silicon metal particle-polymer composite dispersion solution. This is a process of spray-drying a silicon metal particle-polymer composite dispersion solution to powder it, and then mixing it with the graphene oxide-reduced material dispersion solution.

제2 과정(S22)은 양이온-파이 상호작용된 산화그래핀환원물에 수용성폴리머를 코팅하고 실리콘 금속입자와 복합화하여 수용액 상의 분산용액을 제조하는 과정이며, 보다 구체적으로 정제수에 상기 폴리머를 투입한 후 교반하여 분산하여 분산된 폴리머 용액을 제조하고, 상기 분산된 폴리머 용액에 상기 산화그래핀환원물 첨가하고 산성용액으로 제조한 후 교반하여 폴리머-산화그래핀환원물을 복합화한 용액을 제조하며, 상기 복합화한 용액에 상기 실리콘 금속입자를 첨가하여 혼합하는 과정이다.The second process (S22) is a process of preparing a dispersion solution in an aqueous solution by coating a water-soluble polymer on the cation-pi-interacted graphene oxide-reduced product and complexing it with silicon metal particles. More specifically, the polymer is added to purified water. After stirring to prepare a dispersed polymer solution, the graphene oxide-reduced product is added to the dispersed polymer solution, prepared as an acidic solution, and then stirred to prepare a solution in which the polymer-graphene oxide-reduced product is complexed, This is a process of adding and mixing the silicon metal particles to the complexed solution.

전술한 바와 같이, 복합체 분산용액 제조단계는 제1 과정 및 제2 과정 중 어느 하나의 과정을 이용하여 제조할 수 있다.As described above, the manufacturing step of the composite dispersion solution may be prepared using any one of the first and second processes.

여기서, 폴리머는 수용성 폴리머인 것이 바람직할 수 있으며, 폴리머는 폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되지는 않는다.Here, the polymer may be preferably a water-soluble polymer, and the polymer is polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide. ), polyvinyl acetate, polyacrylamide, polyvinylpyrrolidone, polydiallyldimethylammonium chloride, polyethyleneoxide, polyacrylic acid, polystyrenesulfonic acid ( Polystyrenesulfonic acid), polysilicic acid, polyphosphoric acid, polyethylenesulfonic acid, poly-3-vinyloxypropane-1-sulfonic acid ), Poly-4-vinylphenol, Poly-4-vinylphenyl sulfuric acid, Polyethyleneohosphoric acid, Polymaleic acid , Poly-4-vinylbenzoic acid, Methyl cellulose, Hydroxy ethyl cellulose, Carboxy methyl cellulose, Sodium carboxy methyl cellulose), hydroxypropyl cellulose, sodium carboxymethylcellulose, polysaccharide, starch, and a mixture thereof It is preferably selected from the group, but is not limited thereto.

마지막으로, 상기 폴리머가 코팅된 산화그래핀환원물-실리콘 금속입자 분산용액을 분무 건조하여 코어-쉘 구조의 복합체 분말을 제조하는 복합체 분말을 제조한다(S30).Finally, the graphene oxide-reduced product coated with the polymer-silicon metal particle dispersion solution is spray-dried to prepare a composite powder for preparing a core-shell structured composite powder (S30).

복합체 분산용액 제조단계를 통해 제조된 폴리머가 코팅된 산화그래핀환원물-실리콘 금속입자 분산용액을 건조하여, 폴리머가 코팅된 실리콘 금속입자는 코어(core)로 내부에 존재하고 산화그래핀환원물은 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘(shell) 구조로 이루어지는 코어-쉘 구조의 복합체 분말을 제조한다.The polymer-coated graphene-oxide-reduced product-silicon metal particle dispersion solution prepared through the composite dispersion solution manufacturing step is dried, and the silicon metal particles coated with the polymer are present inside as a core, and the graphene oxide-reduced product is To prepare a composite powder having a core-shell structure consisting of an outer shell structure surrounding the silver silicon metal particles.

따라서, 소재 간 접합성을 향상시키는 효과를 가진다.Therefore, it has the effect of improving the bonding property between materials.

이때 폴리머가 코팅된 산화그래핀환원물-실리콘 금속입자 분산용액을 건조하는 방법으로는 분무건조가 가장 바람직한데, 분무건조의 경우 한 번만 이루어져도 무방하나 폴리머가 코팅된 실리콘 금속입자의 주위를 산화그래핀환원물이 완벽하게 둘러싸기 위해서는 두, 세 번 이상으로 분무건조를 수행하는 것이 바람직하다. 이때 분무건조는 산화그래핀환원물-실리콘 금속입자 분산용액을 여러 번 분무시키나, 필요에 따라서 산화그래핀환원물-실리콘 금속입자 분산용액을 분무시킨 후 산화그래핀환원물만 존재하는 분산용액을 분무건조하여 실리콘 표면을 둘러싸도록 구성할 수도 있다. 분무건조 중 수용성 폴리머와 물은 증발되고 산화그래핀환원물과 실리콘 금속입자 만이 남게되어 코어-쉘 구조의 복합체를 형성하게 된다.At this time, spray drying is the most preferable method of drying the polymer-coated graphene-reduced oxide-silicon metal particle dispersion solution. In the case of spray drying, it is okay to do it only once, but the circumference of the polymer-coated silicon metal particle is oxidized. In order to completely surround the graphene-reduced material, it is preferable to perform spray drying two or three times or more. At this time, spray drying sprays the graphene oxide-reduced product-silicon metal particle dispersion solution several times, but if necessary, spray the graphene oxide-reduced product-silicon metal particle dispersion solution and then use a dispersion solution containing only the graphene oxide-reduced product. It can be spray-dried to surround the silicone surface. During spray drying, the water-soluble polymer and water are evaporated, leaving only the graphene oxide reduced product and silicon metal particles to form a core-shell structured complex.

또한 폴리머가 코팅된 산화그래핀환원물-실리콘 금속입자 분산용액을 여러 번 분무건조할 때에 산화그래핀환원물의 사이즈가 상이한 분산용액을 각각 준비한 후, 이를 번갈아가며 분무건조하여 실리콘 금속입자가 외부에 노출되지 않도록 산화그래핀환원물로 감싸게 된다. 예를 들어 상대적으로 사이즈가 작은 산화그래핀환원물을 포함하는 분산용액을 먼저 분무건조하고 여기에 상대적으로 사이즈가 큰 산화그래핀환원물을 포함하는 분산용액을 분무건조하여 실리콘 금속입자의 표면에 산화그래핀환원물을 코팅할 수 있다. 이와 반대로 상대적으로 사이즈가 큰 산화그래핀환원물을 포함하는 분산용액을 먼저 분무건조 한 후 사이즈가 작은 산화그래핀환원물을 포함하는 분산용액을 분무건조하여도 무방하다.In addition, when spray-drying the polymer-coated graphene-reduced-silicon metal particle dispersion solution several times, prepare a dispersion solution having a different size of the graphene-oxide-reduced material, and then alternately spray-dry it so that the silicon metal particles are externally spray-dried. To avoid exposure, it is wrapped in a reduced graphene oxide. For example, a dispersion solution containing a graphene oxide-reduced product having a relatively small size is first spray-dried, and a dispersion solution containing a graphene oxide-reduced product having a relatively large size is spray-dried on the surface of the silicon metal particles. Graphene oxide reduced material can be coated. On the contrary, it is possible to spray-dry a dispersion solution containing a graphene oxide-reduced product having a relatively large size first, and then spray-dry a dispersion solution containing a graphene oxide-reduced product having a small size.

이하에서는 본 발명의 실시예를 좀 더 상세하게 설명한다.Hereinafter, an embodiment of the present invention will be described in more detail.

<실시예 1><Example 1>

먼저, 순수 그래파이트 (순도 99.9995%, -200메쉬, Alfar Aesar 제조) 10g, 발연질산 350㎖ 및 소듐 클로라이드 옥사이드 74g을 실온에서 순차적으로 37g씩 나누어 혼합하였다. 혼합물을 48시간 동안 교반한 후, 중화 과정과 세척, 여과 및 클리닝, 건조과정을 거쳐 산화그래핀을 제조하였다. 상기의 과정을 통해 만들어진 산화그래핀은 300mg/ℓ 농도로 KOH가 녹아있는 증류수(pH10)에 호모게나이저를 15,000 rpm으로 1시간 동안 처리하여 균일한 산화그래핀분산용액을 만들었다. First, 10 g of pure graphite (purity 99.9995%, -200 mesh, manufactured by Alfar Aesar), 350 ml of fuming nitric acid, and 74 g of sodium chloride oxide were sequentially divided and mixed by 37 g at room temperature. After the mixture was stirred for 48 hours, graphene oxide was prepared through neutralization, washing, filtration, cleaning, and drying. The graphene oxide prepared through the above process was treated with a homogenizer in distilled water (pH10) in which KOH was dissolved at a concentration of 300 mg/L for 1 hour at 15,000 rpm to prepare a uniform dispersion of graphene oxide.

이후, 양이온-파이 상호작용을 인가시키기 위해서 상온에서 산화그래핀 분산용액의 반응시간을 1시간 이상 유지시킨다.Thereafter, the reaction time of the graphene oxide dispersion solution is maintained at room temperature for 1 hour or more in order to apply the cation-pi interaction.

이와 같은 산화그래핀 분산용액은 10시간 이상의 동결건조를 통하여 분말형태의 산화그래핀을 제조할 수 있다. 이를 통하여 정확한 산화그래핀의 농도를 계산할 수 있다. Such a graphene oxide dispersion solution can be freeze-dried for 10 hours or more to prepare graphene oxide in powder form. Through this, the exact concentration of graphene oxide can be calculated.

분말형태의 산화그래핀을 분산시키기 위한 용매로 증류수를 이용하였으며 300㎎/ℓ농도의 산화그래핀 분산용액에 히드라진(N2H4) 170㎕를 넣고 100℃로 16시간 동안 400rpm으로 교반하여 환원시켰다. 이때, 고농도로 분산되어진 산화그래핀 환원물을 형성할 수 있다. 이때의 산화그래핀환원물의 크기는 5~10 um를 갖는다.Distilled water was used as a solvent for dispersing the graphene oxide in powder form, and 170 µl of hydrazine (N2H4) was added to the graphene oxide dispersion solution at a concentration of 300 mg/ℓ and reduced by stirring at 100° C. for 16 hours at 400 rpm. At this time, it is possible to form a graphene oxide reduced product dispersed in a high concentration. The size of the graphene oxide-reduced product at this time is 5 to 10 um.

<실시예 2><Example 2>

산화그래핀환원물 분산용액에 10~20 um 크기의 실리콘 금속입자를 혼합하기 위하여 500 rpm으로 스터링(stirring) 한다. 이후 나트륨 카르복시 메틸 셀룰로오스(sodium carboxymethyl cellulos)를 약 3 wt% 첨가하여 분산을 유도시킨다. Stirring at 500 rpm to mix silicon metal particles with a size of 10 to 20 um in the graphene oxide-reduced dispersion solution. Then, about 3 wt% of sodium carboxymethyl cellulos is added to induce dispersion.

도1의 S21의 경우, 정제수(DI water) 1L에 polyacrylic acid (PAA), polyvinyl alcohol (PVA), carboxy methyl cellulose (CMC), sodium carboxy methyl cellulose (SCMC) 등 수용성 폴리머 1g을 넣고 70oC에서 3시간 교반하여 분산시킨다. 분산된 폴리머 용액에 실리콘 금속입자를 9g 첨가하여 교반한다. 분산된 실리콘 금속입자-폴리머 복합체 분산용액을 분무건조하여 파우더화 시킨다. 실리콘 금속입자-폴리머 복합체를 수거하여 1g/L로 분산된 산화그래핀환원물 분산용액에 투입하여 교반한다. 분무건조를 통해 실리콘 금속입자-폴리머-산화그래핀환원물의 복합체를 형성한다.In the case of S21 of Fig. 1, 1 g of water-soluble polymer such as polyacrylic acid (PAA), polyvinyl alcohol (PVA), carboxy methyl cellulose (CMC), sodium carboxy methyl cellulose (SCMC) was added to 1 L of purified water (DI water) at 70 o C. Disperse by stirring for 3 hours. Add 9 g of silicon metal particles to the dispersed polymer solution and stir. The dispersed silicon metal particle-polymer composite dispersion solution is spray-dried and powdered. The silicon metal particle-polymer composite is collected, added to the graphene oxide-reduced dispersion solution dispersed at 1 g/L, and stirred. Through spray drying, a complex of silicon metal particles-polymer-graphene oxide-reduced products is formed.

도1의 S22의 경우 정제수(DI water) 1L에 polyacrylic acid (PAA), polyvinyl alcohol (PVA), carboxy methyl cellulose (CMC), sodium carboxy methyl cellulose (SCMC) 등 수용성 폴리머 1g을 넣고 70oC에서 3시간 교반하여 분산시킨다. 분산된 폴리머 용액에 산화그래핀환원물을 첨가하고 염산을 이용해 산성 용액으로 제조한다. 70oC에서 12시간 교반하여 폴리머-산화그래핀환원물을 복합화 한다. 복합화한 용액에 실리콘 금속입자를 9g 첨가하여 분산시키고 분무건조한다. In the case of S22 of Figure 1, 1 g of water-soluble polymer such as polyacrylic acid (PAA), polyvinyl alcohol (PVA), carboxy methyl cellulose (CMC), sodium carboxy methyl cellulose (SCMC) was added to 1 L of purified water (DI water), and 3 at 70 o C. Disperse by stirring for time. The graphene oxide-reduced product is added to the dispersed polymer solution and prepared as an acidic solution using hydrochloric acid. The polymer-graphene oxide reduced product is compounded by stirring at 70 o C for 12 hours. 9 g of silicon metal particles are added to the complexed solution, dispersed and spray-dried.

분산된 산화그래핀환원물-실리콘 금속입자 복합체 분산용액을 분무건조하여 파우더 화 시킨다. 이때 실리콘의 커버리지(coverage)를 향상시키기 위하여 제조된 복합체를 3번 이하 분무건조를 재 실시한다. 또한, 그래핀의 크기에 따른 커버리지(coverage) 향상을 위해 작은 크기 (5 um 이하)를 코팅 후 큰 크기 (10 um 이상)를 갖는 산화그래핀환원물의 도포를 반복한다. 이때, 큰 크기 코팅 후 작은 크기를 코팅하는 경우도 실시 할 수 있다.The dispersed graphene oxide-reduced product-silicon metal particle complex dispersion solution is spray-dried and powdered. At this time, to improve the coverage of the silicon, the prepared composite is spray-dried again three times or less. In addition, after coating a small size (5 um or less) to improve coverage according to the size of the graphene, the application of the graphene oxide-reduced material having a large size (10 um or more) is repeated. In this case, a case of coating a small size after coating a large size may also be carried out.

이하에서는 본 발명의 도면을 좀 더 상세하게 설명한다.Hereinafter, the drawings of the present invention will be described in more detail.

도 1은 본 발명의 실시예에 따른 폴리머 코팅된 산화그래핀환원물-실리콘 금속입자 복합체 제조방법의 순서도이다.1 is a flowchart of a method of manufacturing a polymer-coated graphene oxide reduced product-silicon metal particle composite according to an embodiment of the present invention.

도2는 본발명의 실시예에 따른 폴리머가 코팅된 실리콘 금속입자 및 폴리머가 코팅된 산화그래핀환원물 분산용액을 산화그래핀환원물 및 실리콘금속입자와 분산을 통한 복합체 용액을 제조하여 코어-쉘 구조의 폴리머가 코팅된 산화그래핀환원물-실리콘금속입자 복합체를 형성하는 실험 과정을 나타낸 도이다.FIG. 2 is a core- It is a diagram showing the experimental process of forming a graphene oxide-reduced product-silicon metal particle composite coated with a polymer having a shell structure.

도 3은 본 발명의 실시예에 따른 산화그래핀환원물-실리콘 금속입자 복합체의 구성을 나타내는 도면이며, 이온-파이 상호작용을 통해 형성된 산화그래핀을 환원시킨 산화그래핀환원물과, 산화그래핀환원물과 혼합된 실리콘 금속입자를 포함하는 산화그래핀환원물-실리콘 금속입자 분산용액을 분무건조하여 형성된다. 여기서 실리콘 금속입자는 코어로 내부에 존재하고 산화그래핀환원물은 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘 구조를 확인할 수 있다.3 is a diagram showing the configuration of a graphene oxide reduced product-silicon metal particle complex according to an embodiment of the present invention, a graphene oxide reduced product obtained by reducing graphene oxide formed through an ion-Pi interaction, and graphene oxide It is formed by spray drying a graphene oxide-reduced product-silicon metal particle dispersion solution containing silicon metal particles mixed with the pin-reduced product. Here, the silicon metal particles exist inside the core, and the graphene oxide-reduced material surrounds the silicon metal particles.

도4는 본발명의 실시예에 따른 폴리머가 도입되지 않은 실리콘금속입자-산화그래핀환원물 (Si-rGO), 및 폴리머가 도입된 실리콘금속입자-수폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체의 비교 형상을 나타내는 FE-SEM 측정결과에 대한 도이다.4 is a silicon metal particle-reduced graphene oxide (Si-rGO), and a silicon metal particle-aqueous polymer-graphene oxide reduced product (Si-) into which a polymer is not introduced according to an embodiment of the present invention. polymer-rGO) is a diagram of the measurement result of FE-SEM showing the comparative shape of the composite.

도5는 본발명의 실시예에 따른 산화그래핀환원물-폴리머-실리콘 금속입자의 표면 형상 및 실리콘에 부착되어있는 그래핀을 나타내는 HR-TEM 측정결과에 대한 도이다.FIG. 5 is a diagram of an HR-TEM measurement result showing the surface shape of graphene oxide-reduced material-polymer-silicon metal particles and graphene attached to silicon according to an embodiment of the present invention.

도6는 본발명의 실시예에 따른 폴리머가 도입되지 않은 실리콘금속입자-산화그래핀환원물 (Si-rGO), 및 폴리머가 도입된 실리콘금속입자-폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체의 열중량분석 (thermogravimetric analysis: TGA)을 통해 폴리머의 유무에 대한 측정결과 나타내는 도이다.6 is a silicon metal particle without a polymer introduced-graphene oxide reduced product (Si-rGO), and a silicon metal particle into which a polymer was introduced-polymer-graphene oxide reduced product (Si-polymer) according to an embodiment of the present invention. -rGO) is a diagram showing the measurement result of the presence or absence of a polymer through thermogravimetric analysis (TGA) of the composite.

도7은 본발명의 실시예에 따른 리튬이차전지의 전기화학적 특성평가를 위하여 수용성폴리머가 도입되지 않은 실리콘금속입자-산화그래핀환원물 (Si-rGO), 및 폴리머가 도입된 실리콘금속입자-폴리머-산화그래핀환원물 (Si-polymer-rGO) 복합체를 기반으로 한 사이클 특성을 나타내는 도이다.7 is a silicon metal particle to which a water-soluble polymer is not introduced-a graphene oxide reduced product (Si-rGO), and a silicon metal particle into which a polymer is introduced for the evaluation of the electrochemical characteristics of a lithium secondary battery according to an embodiment of the present invention. It is a diagram showing cycle characteristics based on a polymer-graphene oxide reduced product (Si-polymer-rGO) complex.

이상에서와 같이, 본 발명은 폴리머를 첨가하여 산화그래핀환원물과 실리콘 금속입자 간 접합성이 향상되고, 균일한 그래핀 도포가 가능하다. 이에 따라 고용량, 안정적 사이클 특성을 유지할 수 있는 산화그래핀환원물-실리콘 금속입자 복합체 제조가 가능하며, 분무건조를 통한 분말 제조법 도입을 통하여 대량제조 및 고성능 이차전지용 음극재 제조가 가능한 효과를 가질 수 있다.As described above, in the present invention, by adding a polymer, the bonding property between the graphene oxide reduced product and the silicon metal particle is improved, and a uniform graphene coating is possible. Accordingly, it is possible to manufacture a graphene oxide-reduced material-silicon metal particle composite that can maintain high capacity and stable cycle characteristics, and through the introduction of a powder manufacturing method through spray drying, mass production and high-performance secondary battery anode materials can be produced. have.

이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, a preferred embodiment according to the present invention has been looked at, and the fact that the present invention can be embodied in other specific forms without departing from its spirit or scope in addition to the above-described embodiments is known to those skilled in the art. This is obvious to them. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description and may be modified within the scope of the appended claims and equivalents thereof.

Claims (10)

양이온-파이 상호작용을 통하여 산화그래핀환원물을 제조하는 산화그래핀환원물 제조단계;
정제수에 수용성 폴리머를 투입한 후 교반 분산하여 분산된 수용성폴리머 용액을 제조하고, 상기 분산된 수용성폴리머 용액에 실리콘금속입자를 첨가하고 교반하여 분산된 실리콘 금속입자-폴리머 복합체 분산용액을 제조하여, 상기 실리콘 금속입자-폴리머 복합체 분산용액을 분무건조한 후 산화그래핀환원물 분산용액과 혼합하여 복합화하는 제1과정 및 정제수에 수용성 폴리머를 투입한 후 교반 분산하여 분산된 수용성폴리머 용액을 제조하고, 상기 분산된 수용성폴리머 용액에 상기 산화그래핀환원물을 첨가하고 산성용액으로 제조한 후 교반하여 폴리머-산화그래핀환원물을 복합화한 용액을 제조하여, 상기 복합화한 용액에 상기 실리콘 금속입자를 첨가하여 혼합하는 제2과정 중 어느 하나를 이용하여 복합체 분산용액을 제조하는 복합체분산용액 제조단계; 상기 복합체 분산용액을 분무건조하여 코어-쉘 구조의 복합체 분말을 제조하는 복합체분말 제조단계;를 포함하되,
상기 수용성 폴리머는 폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법.
Graphene oxide reduced product manufacturing step of preparing a graphene oxide reduced product through a cation-pi interaction;
After adding a water-soluble polymer to purified water, stirring and dispersing to prepare a dispersed water-soluble polymer solution, and adding and stirring silicon metal particles to the dispersed water-soluble polymer solution to prepare a dispersed silicon metal particle-polymer composite dispersion solution. The first step of spray-drying the silicon metal particle-polymer complex dispersion solution, mixing it with the graphene oxide-reduced material dispersion solution, and compounding the mixture, and adding a water-soluble polymer to purified water and then stirring and dispersing to prepare a dispersed aqueous polymer solution, and the dispersion The graphene oxide-reduced product was added to the resulting aqueous polymer solution, prepared as an acidic solution, and stirred to prepare a solution in which the polymer-graphene oxide-reduced product was complexed, and the silicon metal particles were added to the complexed solution and mixed. A complex dispersion solution preparation step of preparing a complex dispersion solution using any one of the second processes; Including; a composite powder manufacturing step of spray-drying the composite dispersion solution to prepare a composite powder having a core-shell structure,
The water-soluble polymer is polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide, polyvinyl acetate, polyvinyl acetate, and polyvinyl acetate. Acrylamide, Polyvinylpyrrolidone, Polydiallyldimethylammonium chloride, Polyethyleneoxide, Polyacrylic acid, Polystyrenesulfonic acid, Polysilicic acid, Polyphosphoric acid, polyethylenesulfonic acid, poly-3-vinyloxypropane-1-sulfonic acid, poly-4-vinylphenol (Poly- 4-vinylphenol), Poly-4-vinylphenyl sulfuric acid, Polyethyleneohosphoric acid, Polymaleic acid, Poly-4-vinylbenzoic acid (Poly-4 -vinylbenzoic acid), methyl cellulose, hydroxyethyl cellulose, carboxy methyl cellulose, sodium carboxy methyl cellulose, hydroxypropyl cellulose ), sodium carboxymethylcellulose, polysaccharide, starch, and a mixture thereof Added graphene oxide reduced product-silicon metal particle composite manufacturing method.
제1항에 있어서,
상기 산화그래핀환원물 제조단계는,
그래파이트를 산화하여 산화그래파이트를 형성하는 산화그래파이트 형성과정;
상기 산화그래파이트를 분산 및 박리하여 산화그래핀을 형성하는 산화그래핀 형성과정;
양이온-파이 상호작용을 통해 상기 산화그래핀을 포함하는 산화그래핀 분산용액을 제조하는 산화그래핀 분산용액 제조과정; 및
상기 산화그래핀 분산용액을 환원시켜 산화그래핀환원물 분산용액을 제조하는 산화그래핀환원물 분산용액 제조과정;
을 포함하여 구성되는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법.
The method of claim 1,
The graphene oxide reduced product manufacturing step,
A process of forming graphite oxide in which graphite is oxidized to form graphite oxide;
A process of forming graphene oxide by dispersing and peeling the graphite oxide to form graphene oxide;
A process for preparing a graphene oxide dispersion solution for preparing a graphene oxide dispersion solution containing the graphene oxide through a cation-pi interaction; And
A process for preparing a graphene oxide-reduced material dispersion solution for preparing a graphene-oxide-reduced material dispersion solution by reducing the graphene oxide dispersion solution;
Graphene oxide reduced product-silicon metal particle composite manufacturing method to which a polymer is added, comprising a.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 복합체분말 제조단계에서 상기 분무건조는,
상기 산화그래핀환원물-실리콘 금속입자 분산액을 분무건조하여 상기 폴리머와 물은 증발되고, 상기 실리콘 금속입자 표면을 상기 산화그래핀환원물이 둘러싸도록 제조하는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법.
The method of claim 1,
The spray drying in the composite powder manufacturing step,
The graphene oxide-reduced product-silicon metal particle dispersion is spray-dried to evaporate the polymer and water, and the graphene oxide-reduced material is formed to surround the surface of the silicon metal particle. Fin reduction product-silicon metal particle composite manufacturing method.
제6항에 있어서,
상기 분무건조는 여러 번 반복적으로 이루어져 상기 실리콘 금속입자가 외부에 노출되지 않도록 상기 산화그래핀환원물이 둘러싸는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법.
The method of claim 6,
The spray-drying is repeated several times to prevent the silicon metal particles from being exposed to the outside, and the graphene oxide-reduced material is surrounded by a polymer-added graphene oxide reduced product-silicon metal particle composite.
제6항에 있어서,
상기 분무건조는 상기 산화그래핀환원물의 사이즈가 상이한 분산용액을 각각 준비한 후, 이를 번갈아가면서 분무건조하는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법.
The method of claim 6,
The spray drying is a method for producing a reduced graphene oxide-silicon metal particle composite with a polymer, characterized in that after preparing a dispersion solution having a different size of the graphene oxide-reduced product and spray-drying it alternately.
제1항, 제2항, 제6항, 제7항, 제8항 중 어느 한 항의 제조방법에 의해 제조된 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체는,
코어로 내부에 존재하는 실리콘 금속입자;
상기 실리콘 금속입자의 주위를 둘러싸는 형태의 외부 쉘 구조의 산화그래핀환원물; 및
상기 실리콘 금속입자와 상기 산화그래핀환원물 사이에서 상기 실리콘 금속입자를 둘러싸며 코팅되어 있는 폴리머;
를 포함하여 구성되는 코어-쉘 구조의 복합체 분말을 형성하는 것을 특징으로 하는 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체.
The graphene oxide-reduced product-silicon metal particle composite to which the polymer prepared by the manufacturing method of claim 1, 2, 6, 7, or 8 is added,
Silicon metal particles present inside the core;
A reduced graphene oxide having an outer shell structure surrounding the silicon metal particle; And
A polymer coated around the silicon metal particles between the silicon metal particles and the graphene oxide-reduced material;
Graphene oxide reduced product-silicon metal particle composite to which a polymer is added, characterized in that to form a composite powder of a core-shell structure comprising a.
이차전지용 음극에 있어서,
집전체;
상기 집전체의 일면에 형성되며, 제1항, 제2항, 제6항, 제7항, 제8항 중 어느 한 항의 제조방법에 의해 제조된 폴리머가 첨가된 산화그래핀환원물-실리콘 금속입자 복합체를 갖는 음극활물질;로 이루어짐을 특징으로 하는 이차전지용 음극.
In the negative electrode for secondary batteries,
Current collector;
A graphene oxide-reduced product-silicon metal formed on one side of the current collector and added with a polymer prepared by the method of any one of claims 1, 2, 6, 7, and 8. A negative electrode for a secondary battery, characterized in that consisting of; an anode active material having a particle composite.
KR1020180160547A 2018-08-29 2018-12-13 Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same KR102212969B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180102283 2018-08-29
KR1020180102283 2018-08-29

Publications (2)

Publication Number Publication Date
KR20200025984A KR20200025984A (en) 2020-03-10
KR102212969B1 true KR102212969B1 (en) 2021-02-05

Family

ID=69801225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180160547A KR102212969B1 (en) 2018-08-29 2018-12-13 Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same

Country Status (1)

Country Link
KR (1) KR102212969B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524264B1 (en) 2020-07-09 2023-04-24 한국기계연구원 Yolk-shell structure nano composites fabricating system and method for fabricating nano composites using the same
KR102661213B1 (en) * 2021-11-16 2024-04-25 한국전기연구원 Method for preparing a core-shell structured composite coated with graphene on the surface of hydrophobic particles using a kneading method, and a core-shell structured composite prepared therefrom
CN114497483B (en) * 2021-12-31 2023-07-04 惠州锂威新能源科技有限公司 Negative plate, preparation method thereof and lithium ion battery
CN115196642B (en) * 2022-07-04 2023-09-26 柯瑞林 Purification method of silicon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297423B1 (en) 2011-11-30 2013-08-14 한국전기연구원 High concentration and stable dispersion of reduced graphene oxide by cation-pi interaction and the manufacturing method thereby
KR101724196B1 (en) 2014-05-09 2017-04-06 주식회사 엘지화학 Graphene-wrapped porous silicon-carbon composite and preparation method thereof
KR101767393B1 (en) * 2017-02-09 2017-08-11 한국지질자원연구원 Manufacturing method of silicon-carbon-graphene composite, composite manufactured thereby and secondary battery containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476043B1 (en) * 2012-07-20 2014-12-24 주식회사 엘지화학 Carbon-silicone composite, preparation method thereof, and anode active material comprising the same
KR101594836B1 (en) 2014-04-07 2016-02-26 전남대학교산학협력단 Graphene-metal nano particle complex, carbon nanofiber composites comprising the complex, and rechargeable battery comprising th composites
KR101930136B1 (en) * 2015-10-20 2018-12-18 한양대학교 산학협력단 Graphene-phthalocyanine hybrid material, method of fabrication of the same, solar cell comprising the same, and method of fabrication of the solar cell
KR101634723B1 (en) 2015-12-30 2016-06-30 한국지질자원연구원 Method for manufacturing of silicon-carbon-graphene composites from silicon sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297423B1 (en) 2011-11-30 2013-08-14 한국전기연구원 High concentration and stable dispersion of reduced graphene oxide by cation-pi interaction and the manufacturing method thereby
KR101724196B1 (en) 2014-05-09 2017-04-06 주식회사 엘지화학 Graphene-wrapped porous silicon-carbon composite and preparation method thereof
KR101767393B1 (en) * 2017-02-09 2017-08-11 한국지질자원연구원 Manufacturing method of silicon-carbon-graphene composite, composite manufactured thereby and secondary battery containing the same

Also Published As

Publication number Publication date
KR20200025984A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
KR102241526B1 (en) Preparation of high density anode with reduced graphene oxide-silicon metal particle compound and fabrication of electrodes for secondary battery and process for preparing the same
KR102212939B1 (en) Reduced graphene oxide - silicon metal particle composite, method for producing a composite, and fabrication of electrodes for secondary battery and process for preparing the same
KR102212969B1 (en) Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same
Jiang et al. A high-performance anode for lithium ion batteries: Fe 3 O 4 microspheres encapsulated in hollow graphene shells
JP6807233B2 (en) How to form a battery electrode and how to form a battery
TWI483449B (en) Nonaqueous electrolyte battery with positive electrode active material and nonaqueous electrolyte battery
Park et al. Boosting the Electrochemical Performance of V2O3 by Anchoring on Carbon Nanotube Microspheres with Macrovoids for Ultrafast and Long‐Life Aqueous Zinc‐Ion Batteries
TW201711960A (en) Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
KR101751787B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
US10381641B2 (en) Hollow silicon structures for use as anode active materials in lithium-ion batteries
JP2013545228A5 (en) Electrode material composite structure, electrode, lithium ion battery, and method of manufacturing electrode
CN111446431B (en) Method for enhancing interface contact of silicon-oxygen-carbon cathode material of lithium ion battery through oxygen transfer reaction
CN109103443B (en) Silicon-based negative electrode material and preparation method thereof
TW201010944A (en) Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
Guo et al. Silica template-assisted synthesis of SnO 2@ porous carbon composites as anode materials with excellent rate capability and cycling stability for lithium-ion batteries
Chen et al. Preparation of graphene supported porous Si@ C ternary composites and their electrochemical performance as high capacity anode materials for Li-ion batteries
WO2014051146A1 (en) Electrode material and production method therefor
JP2014051418A (en) Composite material, method for producing the same, cathode active material, cathode and nonaqueous electrolyte secondary battery
JP2014179176A (en) Electrode material and process of manufacturing the same
KR101604003B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
CN112357956A (en) Carbon/titanium dioxide coated tin oxide nanoparticle/carbon assembled mesoporous sphere material and preparation and application thereof
KR102444415B1 (en) Reduced graphene oxide-silicon metal particle composite formed by light irradiation, a method for producing the composite, and a electrode for secondary battery including the composite
KR20180039456A (en) graphene oxide powder and its manufacturing method
CN113745491B (en) SnO with double-wall hollow ball structure 2 @ C material and preparation method thereof
CN114105145A (en) Carbon-coated three-dimensional porous silicon negative electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant