KR102654692B1 - Recyling carboon complex and preparation method thereof - Google Patents

Recyling carboon complex and preparation method thereof Download PDF

Info

Publication number
KR102654692B1
KR102654692B1 KR1020200099964A KR20200099964A KR102654692B1 KR 102654692 B1 KR102654692 B1 KR 102654692B1 KR 1020200099964 A KR1020200099964 A KR 1020200099964A KR 20200099964 A KR20200099964 A KR 20200099964A KR 102654692 B1 KR102654692 B1 KR 102654692B1
Authority
KR
South Korea
Prior art keywords
recycled
plastic
carbon composite
carbon fiber
milled
Prior art date
Application number
KR1020200099964A
Other languages
Korean (ko)
Other versions
KR20220019492A (en
Inventor
노재승
이상민
전예리
Original Assignee
국립금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립금오공과대학교 산학협력단 filed Critical 국립금오공과대학교 산학협력단
Priority to KR1020200099964A priority Critical patent/KR102654692B1/en
Publication of KR20220019492A publication Critical patent/KR20220019492A/en
Application granted granted Critical
Publication of KR102654692B1 publication Critical patent/KR102654692B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명은 재생 플라스틱에 밀링(milling) 처리된 탄소섬유(milled carbon fiber)와 건식 배합하여 종래의 재생 플라스틱보다 우수한 내구성 및 강도를 가지고, 폐플라스틱의 이용률이 높은 펠렛형 재활용 탄소복합체 및 이의 제조방법에 관한 것이다.The present invention is a pellet-type recycled carbon composite that has superior durability and strength than conventional recycled plastic and has a high utilization rate of waste plastic by dry mixing recycled plastic with milled carbon fiber, and a manufacturing method thereof. It's about.

Description

재활용 탄소복합체 및 이의 제조방법{RECYLING CARBOON COMPLEX AND PREPARATION METHOD THEREOF}Recycled carbon composite and its manufacturing method {RECYLING CARBOON COMPLEX AND PREPARATION METHOD THEREOF}

본 발명은 사용이 끝난 플라스틱 재료들을 수지 재료로서 재활용한 재활용 탄소복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a recycled carbon composite obtained by recycling used plastic materials as a resin material and a method for manufacturing the same.

플라스틱의 소비량이 매년 증가함에 따라 우리 생활 주변에서는 매일 엄청난 양의 플라스틱 폐기물이 양산된다. 컨슈머포스트(2016.10.31)에 따르면, 1950 ~ 2015년 사이 전세계적으로 생산된 플라스틱 양이 약 86억톤에 달하지만, 플라스틱의 재활용 비율은 약 9%에 그치는 것으로 보고되었다.As plastic consumption increases every year, a huge amount of plastic waste is produced every day around our lives. According to Consumer Post (October 31, 2016), the amount of plastic produced worldwide between 1950 and 2015 amounted to approximately 8.6 billion tons, but the recycling rate of plastic was reported to be only about 9%.

최근 환경 보호 등의 의식이 높아짐에 따라 재활용, 재사용 등의 움직임이 강해지고 있는데, 특히, 대형 가전제품, 자동차 등의 제품군 중에서 폐플라스틱의 재활용이 활발하게 이루어지고 있다.Recently, as awareness of environmental protection has increased, movements for recycling and reuse have become stronger. In particular, recycling of waste plastic is actively taking place among product lines such as large home appliances and automobiles.

상기 폐플라스틱을 재활용하는 경우 제품의 단가가 저렴해지고 환경 부담금 등 처리 비용을 절감할 수 있으나, 플라스틱 원재료로 생산된 플라스틱 제품에 비해 내구성이나 충격 강도 등의 품질이 떨어지는 문제가 있어 이에 대한 연구가 시급한 실정이다.When recycling the above-mentioned waste plastic, the unit price of the product becomes cheaper and processing costs such as environmental charges can be reduced. However, there is a problem of poor quality such as durability and impact strength compared to plastic products produced from plastic raw materials, so research on this is urgently needed. This is the situation.

일예로, 일본 공개특허 제2004-042461 호에서는, 폐플라스틱을 재이용하였으나, 이와 같은 방법으로 재활용된 재생 플라스틱은 내구성 및 충격 강도가 좋지 않은 문제가 있어 이에 대한 개선이 필요하다.For example, in Japanese Patent Publication No. 2004-042461, waste plastic was reused, but the recycled plastic recycled in this way has problems with poor durability and impact strength, so improvements are needed.

일본 공개특허 제2004-042461 호(2004.02.12.)Japanese Patent Publication No. 2004-042461 (2004.02.12.)

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 스크랩(scrap) 형태의 폐플라스틱에 밀링(milling) 처리된 탄소섬유(milled carbon fiber)를 첨가하여 우수한 내구성 및 강도를 가지며, 이용률이 높은 재활용 탄소복합체를 제조하고자 한다.The present invention was developed to solve the above problems. By adding milled carbon fiber to waste plastic in the form of scrap, it has excellent durability and strength, and has a high utilization rate. We want to manufacture recycled carbon composites.

본 발명의 재활용 탄소복합체는 밀링 처리된 탄소섬유(milled carbon fiber); 및 재생 플라스틱;을 포함할 수 있다.The recycled carbon composite of the present invention includes milled carbon fiber; and recycled plastic.

본 발명의 바람직한 일실시예로써, 상기 밀링(milling) 처리된 탄소섬유는 탄소섬유 폐기물 및 상용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유, 피치(Pitch)계 탄소섬유 및 레이온(Rayon)계 탄소섬유 중에서 선택된 하나 이상으로부터 유래되는 것일 수 있다.As a preferred embodiment of the present invention, the milled carbon fiber is carbon fiber waste, commercial polyacrylonitrile (PAN)-based carbon fiber, pitch-based carbon fiber, and rayon-based carbon fiber. It may be derived from one or more selected from carbon fiber.

본 발명의 바람직한 일실시예로써, 상기 재생 플라스틱은 폴리프로필렌(Polyproplyene), 폴리에틸렌(Polyethylene), 내충격성 폴리스티렌(High impact polystyrene), 폴리아미드 6(Polyamide 6) 및 폴리아미드 66(Polyamide 66) 중에서 선택된 1종 이상을 포함하는 폐플라스틱을 재생시킨 플라스틱일 수 있다.As a preferred embodiment of the present invention, the recycled plastic is selected from polypropylene, polyethylene, high impact polystyrene, polyamide 6, and polyamide 66. It may be a recycled plastic containing one or more types of waste plastic.

본 발명의 바람직한 일실시예로써, 상기 재활용 탄소복합체는 인장 강도가 45 ~ 60MPa인 것을 포함할 수 있다.As a preferred embodiment of the present invention, the recycled carbon composite may have a tensile strength of 45 to 60 MPa.

본 발명의 바람직한 일실시예로써, 상기 재활용 탄소복합체는 굴곡 강도가 68 ~ 80MPa인 것을 포함할 수 있다.As a preferred embodiment of the present invention, the recycled carbon composite may have a flexural strength of 68 to 80 MPa.

본 발명의 바람직한 일실시예로써, 상기 재활용 탄소복합체는 펠렛형(pellet type)인 것을 포함할 수 있다.As a preferred embodiment of the present invention, the recycled carbon composite may be of a pellet type.

본 발명의 바람직한 일실시예로써, 재생 플라스틱을 준비하는 단계; 상기 재생 플라스틱 및 밀링(milling) 처리된 탄소섬유를 건식 배합하여 건식 배합물을 제조하는 단계; 상기 건식 배합물을 용융 압출하여 사출물을 제조하는 단계; 및 상기 사출물을 냉각하여 재활용 탄소복합체를 제조하는 단계; 를 포함할 수 있다.As a preferred embodiment of the present invention, preparing recycled plastic; Producing a dry blend by dry blending the recycled plastic and milled carbon fiber; Manufacturing an injection molded product by melt-extruding the dry mixture; and cooling the injection molded product to produce a recycled carbon composite. may include.

본 발명의 바람직한 일실시예로써, 상기 재활용 탄소복합체는 상기 재생 플라스틱 및 상기 밀링(milling) 처리된 탄소섬유를 1 : 0.10 ~ 1: 0.70의 중량비로 포함할 수 있다.As a preferred embodiment of the present invention, the recycled carbon composite may include the recycled plastic and the milled carbon fiber at a weight ratio of 1:0.10 to 1:0.70.

본 발명의 바람직한 일실시예로써, 상기 재활용 탄소복합체를 가공하여 펠렛(pellet)으로 제조하는 단계를 더 포함할 수 있다.As a preferred embodiment of the present invention, the step of processing the recycled carbon composite to produce pellets may be further included.

본 발명은 종래의 폐플라스틱을 재활용한 재생 플라스틱보다 내구성 및 강도가 우수하고, 폐플라스틱의 이용률이 높은 재활용 탄소복합체 및 이의 제조방법을 제공할 수 있다.The present invention can provide a recycled carbon composite that is superior in durability and strength to conventional recycled plastic made from recycled waste plastic and has a high utilization rate of waste plastic, and a method for manufacturing the same.

도 1은 본 발명의 일 실시예에 따른 재활용 탄소복합체 펠렛(pellet)의 이미지이다.
도 2는 본 발명의 일 실시예에 따른 재활용 탄소복합체로부터 제조된 재생 플라스틱 제품의 이미지이다.
도 3은 비교예 1에서 제조된 ABS 수지 및 실시예 1에서 제조된 재활용 탄소복합체의 이미지이다.
도 4는 본 발명의 일 실시예에 따른 재활용 탄소복합체 제조방법의 개략도이다.
도 5는 본 발명의 일 실시예에 따른 재활용 탄소복합체 제조공정 중 배합 공정의 이미지이다.
도 6은 본 발명의 일 실시예에 따른 재활용 탄소복합체를 용융 압출(사출)하는 공정의 이미지이다.
Figure 1 is an image of a recycled carbon composite pellet according to an embodiment of the present invention.
Figure 2 is an image of a recycled plastic product manufactured from recycled carbon composite according to an embodiment of the present invention.
Figure 3 is an image of the ABS resin prepared in Comparative Example 1 and the recycled carbon composite prepared in Example 1.
Figure 4 is a schematic diagram of a method for manufacturing recycled carbon composite according to an embodiment of the present invention.
Figure 5 is an image of the mixing process during the manufacturing process of recycled carbon composite according to an embodiment of the present invention.
Figure 6 is an image of a process for melt extrusion (injection) of a recycled carbon composite according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 재활용 탄소복합체의 제조방법을 통해 본 발명에 대하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through a manufacturing method of recycled carbon composite with reference to the attached drawings.

도 4를 참고하여 설명하면, 재활용 탄소복합체의 제조방법은 재생 플라스틱을 준비하는 1단계; 상기 재생 플라스틱 및 밀링(milling) 처리된 탄소섬유를 건식 배합하여 건식 배합물을 제조하는 2단계; 상기 건식배합물을 용융 압출하여 사출물을 제조하는 3단계; 및 상기 사출물을 냉각하여 재활용 탄소복합체를 제조하는 4단계;를 포함할 수 있다.When explained with reference to FIG. 4, the manufacturing method of recycled carbon composite includes the first step of preparing recycled plastic; Step 2 of manufacturing a dry blend by dry blending the recycled plastic and milled carbon fiber; Step 3 of manufacturing an injection molded product by melting and extruding the dry mixture; And it may include a fourth step of cooling the injection molded product to produce a recycled carbon composite.

구체적으로는, 1단계의 준비는 재활용 목적에 따라 폐플라스틱을 선별한 재생 플라스틱을 포함할 수 있다.Specifically, stage 1 preparation may include recycled plastics selected from waste plastics according to recycling purposes.

또한, 상기 폐플라스틱은 스크랩(scrap) 형태일 수 있다.Additionally, the waste plastic may be in the form of scrap.

또한, 상기 재생 플라스틱은 폴리프로필렌(Polyproplyene), 폴리에틸렌(Polyethylene), 내충격성 폴리스티렌(High impact polystyrene), 폴리아미드 6(Polyamide 6) 및 폴리아미드 66(Polyamide 66) 중에서 선택된 1종 이상을 포함는 폐플라스틱을 재생시킨 플라스틱일 수 있으나, 이에 특별히 한정하는 것은 아니다.In addition, the recycled plastic is a waste plastic containing one or more types selected from polypropylene, polyethylene, high impact polystyrene, polyamide 6, and polyamide 66. It may be recycled plastic, but is not particularly limited thereto.

다음으로, 2단계의 배합은 도 5와 같이 건식으로 수행될 수 있으며, 상기 재생 플라스틱 및 밀링(milling)처리된 탄소섬유의 중량비는 상기 재생 플라스틱의 용도에 따라 조절될 수 있는 것이나, 바람직하게는 1 : 0.10 ~ 1 : 0.70의 중량비로 포함하고, 더욱 바람직하게는 1 : 0.15 ~ 1 : 0.65의 중량비로 포함할 수 있으며, 더욱 바람직하게는 1 : 0.20 ~ 1 : 0.60의 중량비로 포함할 수 있다. 만일 상기 탄소 섬유가 0.10 중량비 미만으로 포함될 경우 인장강도 및 굴곡강도가 저하되는 문제가 있을 수 있고, 0.70 중량비를 초과하여 포함될 경우 인장강도 및 굴곡강도의 증가가 미비한 문제가 있을 수 있고, 폐플라스틱의 이용률이 저하되는 문제가 있을 수 있으며, 열변형 온도가 과도하게 높아짐에 따라 가공성이 떨어지는 문제가 발생할 수 있다.Next, the second step mixing can be performed in a dry manner as shown in FIG. 5, and the weight ratio of the recycled plastic and the milled carbon fiber can be adjusted depending on the use of the recycled plastic, but preferably It may be included in a weight ratio of 1:0.10 to 1:0.70, more preferably in a weight ratio of 1:0.15 to 1:0.65, and even more preferably in a weight ratio of 1:0.20 to 1:0.60. . If the carbon fiber is included in a weight ratio of less than 0.10, there may be a problem of a decrease in tensile strength and flexural strength, and if it is included in a weight ratio exceeding 0.70, there may be a problem with a slight increase in tensile strength and flexural strength, and the waste plastic There may be a problem of reduced utilization, and as the heat distortion temperature becomes excessively high, a problem of poor processability may occur.

또한, 상기 밀링(milling) 처리된 탄소섬유는 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유 폐기물, 상용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유, 피치(Pitch)계 탄소섬유 및 레이온(Rayon)계 탄소섬유 중에서 선택된 하나 이상으로부터 유래되는 것일 수 있고, 바람직하게는 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유 및 상용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유 중에서 선택된 1종 이상을 포함할 수 있다.In addition, the milled carbon fiber includes polyacrylonitrile (PAN)-based carbon fiber waste, commercial polyacrylonitrile (PAN)-based carbon fiber, pitch-based carbon fiber, and rayon ( Rayon)-based carbon fibers, and preferably at least one selected from polyacrylonitrile (PAN)-based carbon fibers and commercial polyacrylonitrile (PAN)-based carbon fibers. may include.

또한, 상기 밀링(milling) 처리된 탄소섬유는 평균 입경이 5 ~ 10μm일 수 있고, 바람직하게는 5 ~ 8μm일 수 있다. 만일 5μm 미만일 경우 밀링(milling) 처리시 공정이 복잡해지거나 많은 비용이 발생하는 문제가 있을 수 있으며, 10μm를 초과하는 경우 재생 플라스틱과의 배합이 균일하게 이루어지지 않아 재활용 탄소중합체의 인장강도 및 굴곡강도가 저하되는 문제가 발생할 수 있다.In addition, the milled carbon fiber may have an average particle diameter of 5 to 10 μm, preferably 5 to 8 μm. If it is less than 5μm, there may be problems such as complicated milling processes or high costs, and if it exceeds 10μm, mixing with recycled plastic is not done uniformly, reducing the tensile and flexural strengths of the recycled carbon polymer. Problems with deterioration may occur.

또한, 상기 밀링(milling) 처리된 탄소섬유는 평균 길이가 5 ~ 500μm일 수 있고, 바람직하게는 20 ~ 500μm일 수 있다. 만일 평균 길이가 500μm를 초과하는 경우, 재생 플라스틱과의 배합이 균일하게 이루어지지 않아 재활용 탄소중합체의 인장강도 및 굴곡강도가 저하되는 문제가 발생할 수 있다.Additionally, the milled carbon fiber may have an average length of 5 to 500 μm, preferably 20 to 500 μm. If the average length exceeds 500 μm, the mixing with recycled plastic may not be done uniformly, which may cause the tensile strength and flexural strength of the recycled carbon polymer to deteriorate.

다음으로, 3단계의 용융 압출은 상기 재생 플라스틱의 사출 온도에 맞춰 수행될 수 있으며, 제1열 실린더, 제2열 실린더, 제3열 실린더 및 제4열 실린더를 통해 수행될 수 있다. 이의 바람직한 일예로, 상기 재생 플라스틱이 ABS 수지(acrylonitrile-butadiene-styrene 수지)일 경우, 제1열 실린더는 220 ~ 250℃로 설정하고, 바람직하게는 225 ~ 245℃로 설정하며, 제2열 실린더의 온도를 215 ~ 245℃로 설정하고, 바람직하게는 220 ~ 240℃로 설정하며, 제3열 실린더의 온도를 210 ~ 240℃로 설정하고, 바람직하게는 215 ~ 235℃로 설정하며, 제4열 실린더의 온도를 210 ~ 230℃로 설정하고, 바람직하게는 215 ~ 225℃로 마스터 배치를 설정한 후 사출을 진행할 수 있다. 상기 사출은 도 6과 같이 수행될 수 있다.Next, the three-stage melt extrusion can be performed according to the injection temperature of the recycled plastic and can be performed through the first row cylinder, second row cylinder, third row cylinder, and fourth row cylinder. As a preferred example of this, when the recycled plastic is ABS resin (acrylonitrile-butadiene-styrene resin), the first row cylinder is set to 220 to 250 ° C, preferably 225 to 245 ° C, and the second row cylinder is set to 220 to 250 ° C. The temperature of the third row cylinder is set to 215 to 245°C, preferably 220 to 240°C, and the temperature of the third row cylinder is set to 210 to 240°C, preferably 215 to 235°C. Injection can be performed after setting the temperature of the thermal cylinder to 210 to 230°C, and preferably the master batch to 215 to 225°C. The injection may be performed as shown in FIG. 6.

또한, 상기 사출은 80 ~ 200MPa의 압력 하에서 수행될 수 있고, 바람직하게는 100 ~ 150MPa의 압력 하에서 수행될 수 있다. Additionally, the injection may be performed under a pressure of 80 to 200 MPa, and preferably may be performed under a pressure of 100 to 150 MPa.

다음으로, 4단계의 냉각은 40 ~ 80℃ 하에서, 바람직하게는 50 ~ 60℃ 하에서 냉각수에 의해 수행될 수 있다.Next, the fourth stage of cooling can be performed using cooling water at 40 to 80°C, preferably at 50 to 60°C.

다음으로, 5단계로서 상기 재활용 탄소복합체를 가공하여 펠렛(pellet)으로 제조하는 단계를 더 포함할 수 있으며, 재활용 탄소복합체 펠렛(pellet)은 도 1과 같은 형태일 수 있다.Next, step 5 may further include processing the recycled carbon composite to produce pellets, and the recycled carbon composite pellet may have the form shown in FIG. 1.

상기와 같은 방법으로 제조된 재활용 탄소복합체는 밀링(milling) 처리된 탄소섬유(milled carbon fiber) 및 재생 플라스틱을 포함할 수 있다.The recycled carbon composite manufactured by the above method may include milled carbon fiber and recycled plastic.

또한, 상기 재활용 탄소복합체는 인장 강도가 45 ~ 60MPa일 수 있고, 바람직하게는 50 ~ 60MPa일 수 있다.Additionally, the recycled carbon composite may have a tensile strength of 45 to 60 MPa, preferably 50 to 60 MPa.

또한, 상기 재활용 탄소복합체는 굴곡 강도가 68 ~ 80MPa일 수 있고, 바람직하게는 72 ~ 80MPa일 수 있다.Additionally, the recycled carbon composite may have a flexural strength of 68 to 80 MPa, preferably 72 to 80 MPa.

또한, 상기 재활용 탄소복합체는 하기 관계식 1에 의해 측정된 이용률이 88 ~ 100%일 수 있고, 바람직하게는 94 ~ 98%일 수 있다. 만일 상기 이용률이 88% 미만일 경우 상기 재활용 탄소복합체를 통해 제조된 사출 제품 중에서 재생 플라스틱의 함유량이 낮아 재활용률이 좋지 않은 것일 수 있다.In addition, the recycled carbon composite may have a utilization rate of 88 to 100%, preferably 94 to 98%, as measured by Equation 1 below. If the utilization rate is less than 88%, the recycling rate may be poor due to the low content of recycled plastic among the injection products manufactured using the recycled carbon composite.

[관계식 1][Relationship 1]

또한, 상기 재활용 탄소복합체는 열변형 온도가 85.0 ~ 101.0℃일 수 있고, 바람직하게는 91.0 ~ 100.0℃일 수 있다. 만일 상기 열변형 온도가 91.0℃ 미만일 경우 고온 사용 시 강도가 약해지는 문제가 있을 수 있고, 101.0℃를 초과할 경우 탄소복합체의 가공성이 현저히 떨어지는 문제가 발생할 수 있다.Additionally, the recycled carbon composite may have a heat distortion temperature of 85.0 to 101.0°C, preferably 91.0 to 100.0°C. If the heat distortion temperature is less than 91.0°C, there may be a problem of weakening strength when used at high temperatures, and if it exceeds 101.0°C, the processability of the carbon composite may be significantly reduced.

한편, 본 발명의 재활용 탄소복합체는 도 2와 같은 재생 플라스틱 제품의 제조에 사용될 수 있으며, 자동차 내장재 및 외장재, 가전제품, 하우징, IT 기기, 완구류 및 사무기기 등을 제조하는데 이용될 수 있고, 구체적으로는 콘솔박스, 천판부 내장재, 범퍼, 언더커버, 냉장고, 청소기, 세탁기, 선풍기, TV, 모니터, 주방용 제품 등에 이용될 수 있다.On the other hand, the recycled carbon composite of the present invention can be used to manufacture recycled plastic products as shown in Figure 2, and can be used to manufacture automobile interior and exterior materials, home appliances, housings, IT devices, toys, and office equipment. It can be used in console boxes, top panel interior materials, bumpers, undercovers, refrigerators, vacuum cleaners, washing machines, fans, TVs, monitors, kitchen products, etc.

이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples do not limit the scope of the present invention, and should be interpreted to aid understanding of the present invention.

[실시예][Example]

실시예 1: 재활용 탄소복합체의 제조Example 1: Preparation of recycled carbon composite

ABS 플라스틱을 주로 하는 재생 플라스틱(폐플라스틱) 및 밀링 처리된 탄소섬유(milled carbon fiber)를 1 : 0.43의 중량비로 건식 혼합하여 배합물을 제조하였다. 이때, 상기 밀링(milling) 처리된 탄소섬유는 평균 입경이 8μm이고, 평균 길이가 200μm인 것을 사용하였다.A mixture was prepared by dry mixing recycled plastic (waste plastic), mainly ABS plastic, and milled carbon fiber at a weight ratio of 1:0.43. At this time, the milled carbon fibers had an average particle diameter of 8 μm and an average length of 200 μm.

그리고, 상기 배합물을 100MPa의 압력 하에서 용융 압출 시켜 사출물을 제조하였다.Then, the above mixture was melt-extruded under a pressure of 100 MPa to prepare an injection product.

이때, 상기 용융 압출은 제1열 실린더의 온도를 235℃로 하고, 제2열 실린더의 온도를 230℃로 하며, 제3열 실린더의 온도를 225℃로 하고, 제4열 실린더의 온도를 220℃로 하고 사출하여 수행하였다.At this time, in the melt extrusion, the temperature of the first row cylinder is set to 235°C, the temperature of the second row cylinder is set to 230°C, the temperature of the third row cylinder is set to 225°C, and the temperature of the fourth row cylinder is set to 220°C. It was performed by injection at ℃.

그리고, 상기 사출물을 60℃ 하에서 냉각수의 방법으로 냉각시켜 재활용 탄소복합체를 제조하였다.Then, the injection molded product was cooled using cooling water at 60°C to produce a recycled carbon composite.

실시예 2 ~ 실시예 4: 재활용 탄소복합체 제조Examples 2 to 4: Manufacturing of recycled carbon composites

실시예 1과 동일한 방법으로 재활용 탄소복합체를 제조하되, 재생 플라스틱 및 밀링(milling)처리된 탄소섬유의 중량비를 하기 표 1과 같이 하여 실시예 2 ~ 실시예 4를 실시하였다.A recycled carbon composite was manufactured in the same manner as in Example 1, but Examples 2 to 4 were performed with the weight ratio of recycled plastic and milled carbon fiber as shown in Table 1 below.

비교예 1: ABS 수지 제조Comparative Example 1: ABS resin production

ABS 플라스틱을 70MPa의 압력 하에서 용융 압출 시켜 사출물을 제조하였다. 이때, 상기 용융 압출은 제1열 실린더의 온도를 235℃로 하고, 제2열 실린더의 온도를 230℃로 하며, 제3열 실린더의 온도를 225℃로 하고, 제4열 실린더의 온도를 220℃로 하고 사출하여 수행하였다.An injection molded product was manufactured by melting and extruding ABS plastic under a pressure of 70 MPa. At this time, in the melt extrusion, the temperature of the first row cylinder is set to 235°C, the temperature of the second row cylinder is set to 230°C, the temperature of the third row cylinder is set to 225°C, and the temperature of the fourth row cylinder is set to 220°C. It was performed by injection at ℃.

그리고, 상기 사출물을 25℃ 하에서 냉각수의 방법으로 냉각시켜 ABS 수지를 제조하였다.Then, the injection molded product was cooled using cooling water at 25°C to produce ABS resin.

한편, 상기 ABS 수지는 도 3의 왼쪽 이미지와 같은 형태로 제조될 수 있다.Meanwhile, the ABS resin can be manufactured in a form like the left image in FIG. 3.

비교예 2 ~ 비교예 4: 재활용 탄소복합체 제조Comparative Example 2 ~ Comparative Example 4: Manufacturing of recycled carbon composite

실시예 1과 동일한 방법으로 재활용 탄소복합체를 제조하되, 재생 플라스틱 및 밀링(milling) 처리된 탄소섬유의 중량비를 하기 표 2와 같이 하여 비교예 2 ~ 비교예 4를 실시하였다.A recycled carbon composite was manufactured in the same manner as in Example 1, but Comparative Examples 2 to 4 were performed using the weight ratio of recycled plastic and milled carbon fiber as shown in Table 2 below.

실험예 1: 물성 평가Experimental Example 1: Physical property evaluation

실시예 1 ~ 실시예 4 및 비교예 2 ~ 비교예 4에서 제조된 재활용 탄소복합체, 비교예 1에서 제조된 ABS 수지 사출품을 하기와 같은 방법으로 물성을 평가하여 그 결과를 하기 표 1 ~ 표 2에 나타냈다.The physical properties of the recycled carbon composites manufactured in Examples 1 to 4 and Comparative Examples 2 to 4 and the ABS resin injection molded products manufactured in Comparative Example 1 were evaluated in the following manner, and the results are shown in Tables 1 to 4 below. Shown in 2.

(1)인장 강도 측정(1)Tensile strength measurement

ASTM D638 방법에 의거하여 측정하였다.It was measured according to the ASTM D638 method.

(2)굴곡 강도 측정(2)Measurement of bending strength

3 point 밴딩(banding) 방식으로 ASTM D790 방법에 의거하여 측정하였다.It was measured according to the ASTM D790 method using a 3-point banding method.

(3)열변형 온도 측정(3)Measurement of heat distortion temperature

ASTM D648에 의하여 0.45 MPa 기압조건 및 1.85 MPa 기압조건 하에서 각각 열변형이 개시되는 온도를 측정하였다.According to ASTM D648, the temperature at which thermal deformation was initiated was measured under 0.45 MPa atmospheric pressure conditions and 1.85 MPa atmospheric pressure conditions, respectively.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 중량비 (재생 플라스틱:탄소섬유)Weight ratio (recycled plastic:carbon fiber) 1:0.431:0.43 1 : 0.111 : 0.11 1:0.251:0.25 1:0.671:0.67 인장강도(MPa)Tensile strength (MPa) 51.2251.22 46.5346.53 48.6948.69 55.3455.34 굴곡강도(MPa)Flexural strength (MPa) 75.3175.31 72.9572.95 74.2174.21 77.5977.59 열변형 온도(℃)Heat distortion temperature (℃) 97.797.7 92.492.4 94.694.6 99.999.9

비교예1Comparative Example 1 비교예2Comparative example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 중량비(재생 플라스틱:탄소섬유)Weight ratio (recycled plastic: carbon fiber) 1 : 01:0 1 : 0.81:0.8 1 : 1.01:1.0 1 : 1.51:1.5 인장강도(MPa)Tensile strength (MPa) 37.9137.91 56.3556.35 56.5656.56 56.8856.88 굴곡강도(MPa)Flexural strength (MPa) 67.967.9 77.9877.98 78.0678.06 78.2878.28 열변형 온도(℃)Heat distortion temperature (℃) 8282 102.5102.5 105.3105.3 107.9107.9

상기 표 1 ~ 2를 살펴보면, 실시예 1 ~ 실시예 4에서 제조된 재활용 탄소중합체는 우수한 물성을 가지는 것으로 나타났다.Looking at Tables 1 to 2 above, the recycled carbon polymers prepared in Examples 1 to 4 were found to have excellent physical properties.

반면에, 밀링(milling) 처리된 탄소섬유를 사용하지 않고 제조된 비교예 1의 ABS 수지는 탄소섬유를 첨가하여 제조된 실시예 1의 재활용 탄소복합체와 비교했을 때, 인장강도 및 굴곡강도가 현저히 낮은 것을 알 수 있었다.On the other hand, the ABS resin of Comparative Example 1 manufactured without milled carbon fiber had significantly lower tensile and flexural strengths compared to the recycled carbon composite of Example 1 manufactured by adding carbon fiber. It was found to be low.

또한, 밀링(milling) 처리된 탄소섬유를 0.70 중량비를 초과하여 제조된 비교예 2 ~ 비교예 4는 탄소섬유를 0.67 중량비로 포함하여 제조된 실시예 4와 비교했을 때, 인장강도 및 굴곡강도의 증가 정도가 미비한 것을 알 수 있었으며, 열변형 온도가 과도하게 높음에 따라 가공성이 떨어지는 것을 알 수 있었다.In addition, Comparative Examples 2 to 4, which were manufactured using milled carbon fibers exceeding a weight ratio of 0.70, had higher tensile strength and flexural strength when compared with Example 4, which was manufactured using carbon fibers at a weight ratio of 0.67. It was found that the degree of increase was slight, and as the heat distortion temperature was excessively high, processability was found to be poor.

본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily implemented by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (9)

재생 플라스틱 및 밀링(milling) 처리된 평균길이 20 ~ 500㎛의 탄소섬유(milled carbon fiber)을 1 : 0.10 ~ 1: 0.70의 중량비로 포함하는 용융 압출 사출물이며,
상기 재생 플라스틱은, 폴리프로필렌(Polyproplyene), 폴리에틸렌(Polyethylene), 내충격성 폴리스티렌(High impact polystyrene), 폴리아미드 6(Polyamide 6) 및 폴리아미드 66(Polyamide 66) 중에서 선택된 1종 이상을 포함하는 폐플라스틱을 재생시킨 플라스틱이고,
상기 밀링(milling) 처리된 탄소섬유는, 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유 폐기물 및 상용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유, 피치(Pitch)계 탄소섬유 및 레이온(Rayon)계 탄소섬유 중에서 선택된 하나 이상으로부터 유래된 것이며,
인장 강도 45 ~ 60Mpa 및 열변형 온도 85.0 ~ 101.0℃를 만족하는 것을 특징으로 하는 재활용 탄소복합체.
It is a melt extrusion injection product containing recycled plastic and milled carbon fiber with an average length of 20 to 500㎛ at a weight ratio of 1:0.10 to 1:0.70.
The recycled plastic is a waste plastic containing at least one selected from polypropylene, polyethylene, high impact polystyrene, polyamide 6, and polyamide 66. It is a recycled plastic,
The milled carbon fiber includes polyacrylonitrile (PAN)-based carbon fiber waste, commercial polyacrylonitrile (PAN)-based carbon fiber, pitch-based carbon fiber, and rayon (Rayon). ) is derived from one or more selected from carbon fibers,
A recycled carbon composite that satisfies a tensile strength of 45 to 60Mpa and a heat distortion temperature of 85.0 to 101.0°C.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 재활용 탄소복합체는 굴곡 강도가 68 ~ 80MPa인 것을 특징으로 하는 재활용 탄소복합체.
According to paragraph 1,
The recycled carbon composite is characterized in that the flexural strength is 68 to 80 MPa.
제1항에 있어서,
상기 재활용 탄소복합체는 펠렛형(pellet type)인 것을 특징으로 하는 재활용 탄소복합체.
According to paragraph 1,
The recycled carbon composite is a recycled carbon composite, characterized in that the recycled carbon composite is of pellet type.
재생 플라스틱을 준비하는 단계;
상기 재생 플라스틱 및 밀링(milling) 처리된 평균길이 20 ~ 500㎛의 탄소섬유를 1 : 0.10 ~ 1: 0.70의 중량비로 건식 배합하여 건식 배합물을 제조하는 단계;
상기 건식 배합물을 용융 압출하여 사출물을 제조하는 단계; 및
상기 사출물을 냉각하여 재활용 탄소복합체를 제조하는 단계;를 포함하는 공정을 수행하며,
상기 재생 플라스틱은, 폴리프로필렌(Polyproplyene), 폴리에틸렌(Polyethylene), 내충격성 폴리스티렌(High impact polystyrene), 폴리아미드 6(Polyamide 6) 및 폴리아미드 66(Polyamide 66) 중에서 선택된 1종 이상을 포함하는 폐플라스틱을 재생시킨 플라스틱이고,
상기 밀링(milling) 처리된 탄소섬유는, 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유 폐기물 및 상용 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 탄소섬유, 피치(Pitch)계 탄소섬유 및 레이온(Rayon)계 탄소섬유 중에서 선택된 하나 이상으로부터 유래된 것이며,
상기 재활용 탄소복합체는 인장 강도 45 ~ 60Mpa 및 열변형 온도 85.0 ~ 101.0℃를 만족하는 것을 특징으로 하는 재활용 탄소복합체 제조방법.
Preparing recycled plastic;
Preparing a dry blend by dry blending the recycled plastic and milled carbon fibers with an average length of 20 to 500 ㎛ at a weight ratio of 1:0.10 to 1:0.70;
Manufacturing an injection molded product by melt-extruding the dry mixture; and
Performing a process including manufacturing a recycled carbon composite by cooling the injection molded product,
The recycled plastic is a waste plastic containing at least one selected from polypropylene, polyethylene, high impact polystyrene, polyamide 6, and polyamide 66. It is a recycled plastic,
The milled carbon fiber includes polyacrylonitrile (PAN)-based carbon fiber waste, commercial polyacrylonitrile (PAN)-based carbon fiber, pitch-based carbon fiber, and rayon (Rayon). ) is derived from one or more selected from carbon fibers,
A method of manufacturing a recycled carbon composite, characterized in that the recycled carbon composite satisfies a tensile strength of 45 to 60Mpa and a heat distortion temperature of 85.0 to 101.0°C.
삭제delete 제7항에 있어서,
상기 재활용 탄소복합체를 가공하여 펠렛(pellet)으로 제조하는 단계를 더 포함하는 것을 특징으로 하는 재활용 탄소복합체 제조방법.
In clause 7,
A method for producing a recycled carbon composite, further comprising processing the recycled carbon composite to produce pellets.
KR1020200099964A 2020-08-10 2020-08-10 Recyling carboon complex and preparation method thereof KR102654692B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200099964A KR102654692B1 (en) 2020-08-10 2020-08-10 Recyling carboon complex and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200099964A KR102654692B1 (en) 2020-08-10 2020-08-10 Recyling carboon complex and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20220019492A KR20220019492A (en) 2022-02-17
KR102654692B1 true KR102654692B1 (en) 2024-04-04

Family

ID=80493346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200099964A KR102654692B1 (en) 2020-08-10 2020-08-10 Recyling carboon complex and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102654692B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036922A (en) * 2014-08-05 2016-03-22 株式会社タカトリ Carbon fiber, regeneration method of carbon fiber-containing resin, and carbon fiber pulverizer
CN107082952A (en) 2017-05-05 2017-08-22 安徽国登管业科技有限公司 Modified polypropene regenerated plastics and preparation method thereof
JP2019060046A (en) 2017-09-27 2019-04-18 東レ・デュポン株式会社 Aramid short fiber and resin composite material containing the same
KR102061759B1 (en) 2019-10-01 2020-01-02 노환 Manufacturing method of recycled plastic pellet for producing recycled plastic product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139927A (en) * 1996-11-13 1998-05-26 Asahi Chem Ind Co Ltd Recycled resin composition
JP2004042461A (en) 2002-07-12 2004-02-12 Matsushita Ecotechnology Center:Kk Separation method for waste plastic material, and separating device for waste plastic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036922A (en) * 2014-08-05 2016-03-22 株式会社タカトリ Carbon fiber, regeneration method of carbon fiber-containing resin, and carbon fiber pulverizer
CN107082952A (en) 2017-05-05 2017-08-22 安徽国登管业科技有限公司 Modified polypropene regenerated plastics and preparation method thereof
JP2019060046A (en) 2017-09-27 2019-04-18 東レ・デュポン株式会社 Aramid short fiber and resin composite material containing the same
KR102061759B1 (en) 2019-10-01 2020-01-02 노환 Manufacturing method of recycled plastic pellet for producing recycled plastic product

Also Published As

Publication number Publication date
KR20220019492A (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US5145891A (en) Polypropylene resin composition
CN110804282B (en) Modified flat glass fiber reinforced PBT (polybutylene terephthalate) composite material and preparation method thereof
EP2800781B1 (en) Long fiber thermoplastic formed with recycled and renewable content and process for its production
CN105623097A (en) Nanometer-material-compounded long-glass-fiber-reinforced polypropylene material and preparing method thereof
CN109456563B (en) Special material for UHMWPE alloy compatibilization toughening modified polypropylene corrugated pipe and preparation method thereof
CN106589844B (en) PBT/ASA alloy material and preparation method thereof
KR101383621B1 (en) Recycled polypropylene polymer composite materal composition with improved tensile strength and flexural rigidity and manufacturing method thereof
CN105820522A (en) Calcium sulfate whisker reinforced and toughened polylactic acid composite and preparation method thereof
CN102558679A (en) Novel bamboo fiber/polypropylene composite material and method for preparing same
CN109777025A (en) A kind of high rigidity, high tenacity, low-shrink polypropylene composite material and preparation method
CN108624016B (en) Aramid fiber modified carbon fiber reinforced polylactic acid thermoplastic composite material and preparation method thereof
CN111518334A (en) Method for recycling and preparing modified polypropylene composite material from waste polypropylene pipeline
CN111154248A (en) High-rigidity toughened flame-retardant PC/ABS material and preparation method thereof
CN113150450A (en) Recyclable nano-cellulose reinforced polypropylene material and preparation method and application thereof
KR102654692B1 (en) Recyling carboon complex and preparation method thereof
CN104231512A (en) Preparation method of degradable wood-plastic composite material and degradable wood-plastic composite material
KR101187193B1 (en) Recycled polypropylene material with improved impact strength and thermoplastic molded article comprising the same.
KR20180076041A (en) Composite and method for preparing the same
CN109486135A (en) One kind can be used in, the molding high performance PE T composite material and preparation method of low mould temperature rapid crystallization
KR20200058682A (en) Kenaf fiber and recycled polypropylene compounds and manufacturing method of the same
CN107540935B (en) Polypropylene reclaimed material composition and preparation method thereof
KR101240989B1 (en) Manufacturing Method of Polypropylene - Ethylene Propylene Rubber Composite by Repeated Melt Blend
CN114350129A (en) Full-bio-based high-degradation composite material and preparation method thereof
CN116063824A (en) High-strength carbon fiber modified polyester thermoplastic elastomer and preparation method thereof
CN107540938B (en) Modified polypropylene reclaimed material and preparation method thereof

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant