KR102653503B1 - An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof - Google Patents

An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof Download PDF

Info

Publication number
KR102653503B1
KR102653503B1 KR1020210125167A KR20210125167A KR102653503B1 KR 102653503 B1 KR102653503 B1 KR 102653503B1 KR 1020210125167 A KR1020210125167 A KR 1020210125167A KR 20210125167 A KR20210125167 A KR 20210125167A KR 102653503 B1 KR102653503 B1 KR 102653503B1
Authority
KR
South Korea
Prior art keywords
dur
strain
gene
makgeolli
gzf3
Prior art date
Application number
KR1020210125167A
Other languages
Korean (ko)
Other versions
KR20230041483A (en
Inventor
서승오
정진영
김근형
백광림
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to KR1020210125167A priority Critical patent/KR102653503B1/en
Publication of KR20230041483A publication Critical patent/KR20230041483A/en
Application granted granted Critical
Publication of KR102653503B1 publication Critical patent/KR102653503B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/02Preparation of other alcoholic beverages by fermentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

본 발명은 아르기나아제(Arginase) 생성량이 줄어들도록 CAR1를 결손시키고, DUR1, DUR2 및 DUR3 유전자 발현을 억제하는 GZF3 유전자를 결손시킨 것을 특징으로 하는 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)에 관한 것으로, 본 발명을 통해 에틸 카바메이트(Ethyl carbamate) 함유량이 줄어든 발효주를 제조할 수 있다.The present invention is a recombinant Saccharomyces cerevisiae characterized by deleting CAR1 to reduce arginase production and deleting the GZF3 gene, which suppresses DUR 1, DUR 2, and DUR 3 gene expression. ), it is possible to produce fermented liquor with reduced ethyl carbamate content through the present invention.

Description

에틸카바메이트가 저감화된 막걸리 제조용 개량 효모 균주 및 이를 이용한 막걸리의 제조 방법{An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof}Improved yeast strain for manufacturing makgeolli with reduced ethyl carbamate and manufacturing method of makgeolli using the same {An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using the same}

본 발명은 사카로미세스 세리비지애(saccharomyces cerevisiae)를 유전자 재조합하여 에틸 카바메이트(Ethyl carbamate) 생성량이 저감화된 재조합 균주에 관한 것이다.The present invention relates to a recombinant strain in which ethyl carbamate production is reduced by genetically recombining Saccharomyces cerevisiae .

에틸 카바메이트(Ethyl carbamate)는 발효 음료나 발효 식품에서 자연적으로 발생되는 물질로 사람에게 발암물질로 알려져 있다. 소량 섭취 시 어지러움, 구통 등을 유발하고 과량 섭취 시 장의 건강을 악화시키고 암을 유발한다. 이러한 에틸 카바메이트(Ethyl carbamate)는 알코올 음료의 발효, 저장 중에 지속적으로 생성되기 때문에, 줄이려는 노력이 필요하다. Ethyl carbamate is a naturally occurring substance in fermented beverages and foods and is known to be carcinogenic to humans. When consumed in small amounts, it causes dizziness and mouth pain, and when consumed in excessive amounts, it worsens intestinal health and causes cancer. Ethyl carbamate is continuously produced during fermentation and storage of alcoholic beverages, so efforts are needed to reduce it.

미국의 경우 에틸 카바메이트(Ethyl carbamate) 함유량이 테이블 와인은 15ppb이하, 강화 와인은 60ppb 이하로 권고하고 있으며, 한국의 경우 식품의약품안전처에서 2011년 ‘주류 중 에틸 카바메이트 저감화 매뉴얼’을 발간하여 에틸 카바메이트(Ethyl carbamate) 저감화에 힘쓰고 있다.In the United States, the ethyl carbamate content is recommended to be less than 15ppb for table wine and less than 60ppb for fortified wine, and in Korea, the Ministry of Food and Drug Safety published the 'Manual for Reduction of Ethyl Carbamate in Alcoholic Beverages' in 2011. Efforts are being made to reduce ethyl carbamate.

그동안 에틸 카바메이트(Ethyl carbamate) 저감화를 위해서 CAR1 유전자가 결손된 효모사용, 발효 온도 조절, 주류 발효 재료의 아르기닌 또는 요소 제한 등의 방법을 사용했다. 하지만 이와 같은 방법으로는 저감효과가 적어 새롭게 발효능이 뛰어난 주조용 효모를 동정하여 사용할 때, 에틸 카바메이트(Ethyl carbamate) 생성량이 높은 균주일 경우, 실제 주류 발효에 사용하지 못한다는 문제점이 있다.In order to reduce ethyl carbamate, methods such as using yeast with a defective CAR1 gene, controlling fermentation temperature, and limiting arginine or urea in mainstream fermentation materials were used. However, this method has a small reduction effect, so when identifying and using a new brewing yeast with excellent fermentation ability, there is a problem that if the strain is a strain with a high production of ethyl carbamate, it cannot be used for actual mainstream fermentation.

대한민국 공개특허 제10-2015-0045687호(공개일자: 2015.04.29)에는, 발효주의 에틸 카바메이트 저감방법에 관한 것으로, 우레아제 첨가 및 반응 조건의 조정을 통하여 발효주 중의 에틸 카바메이트의 함량을 최소화시킬 수 있는 방법이 기재되어 있다.Republic of Korea Patent Publication No. 10-2015-0045687 (publication date: 2015.04.29) relates to a method of reducing ethyl carbamate in fermented liquor, which minimizes the content of ethyl carbamate in fermented liquor by adding urease and adjusting reaction conditions. A possible method is described. 대한민국 등록특허 제10-1813050호(공개일자:2017.12.21)에는, 에틸 카바메이트의 농도가 저감된 매실주의 제조방법에 관한 것으로, 매실침출액을 일정 조건에서 감압증류하여 매실증류액으로 제조한 뒤, 희석하여 매실주를 제조하는 방법을 이용하면 에틸 카바메이트의 농도가 저감된 매실주를 만들 수 있음이 기재되어 있다.Republic of Korea Patent No. 10-1813050 (publication date: December 21, 2017) relates to a method for producing plum wine with a reduced concentration of ethyl carbamate, in which plum leachate is distilled under reduced pressure under certain conditions to produce plum distillate. , it is described that plum wine with a reduced concentration of ethyl carbamate can be produced by using a method of producing plum wine by dilution.

본 발명은 효모인 사카로미세스 세리비지애(saccharomyces cerevisiae)를 유전자 재조합하여 에틸 카바메이트(Ethyl carbamate) 생성량을 저감화 시킬 수 있는 재조합 사카로미세스 세리비지애(saccharomyces cerevisiae)를 제공하고, 상기 균주를 이용하여 에틸 카바메이트 함유량이 줄어든 발효주를 제공하고자 한다.The present invention provides a recombinant Saccharomyces cerevisiae that can reduce the amount of ethyl carbamate produced by genetically recombining the yeast Saccharomyces cerevisiae , and the strain is The aim is to provide fermented liquor with reduced ethyl carbamate content.

본 발명은 아르기나아제(Arginase) 활성을 줄이고자 CAR1 유전자를 결손시키고, DUR1, DUR2 및 DUR3 유전자 발현의 억제를 해소하고자 GZF3 유전자를 결손시킨 것을 특징으로 하는 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 제공한다. 한편, 상기 GZF3 유전자의 결손으로 말미암아, 바람직하게 DUR1, DUR2 및 DUR3 유전자 발현이 증가하는 특징을 가질 수 있다. 또한, DUR1, DUR2 유전자 발현의 증가로 말미암아, 바람직하게 균체 내에 축적된 요소가 분해되며, DUR3 유전자 발현의 증가로 말미암아 균체 외의 요소가 균체 내부로 유입되어 균체 외부에 존재하는 요소의 양이 줄어드는 특징을 가질 수 있다.The present invention is a recombinant Saccharomyces cerevisiae characterized by deleting the CAR1 gene to reduce arginase activity and deleting the GZF3 gene to relieve inhibition of DUR 1, DUR 2, and DUR 3 gene expression. ( Saccharomyces cerevisiae ) is provided. On the other hand, due to the deletion of the GZF3 gene, the expression of DUR 1, DUR 2, and DUR 3 genes may preferably be increased. In addition, due to the increase in DUR 1 and DUR 2 gene expression, the elements accumulated in the bacterium are decomposed, and due to the increase in DUR 3 gene expression, elements other than the bacterium are introduced into the bacterium, increasing the amount of elements present outside the bacterium. It may have this decreasing characteristic.

본 발명은 상기 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 발효 균주로 이용하는 것을 특징으로 하는 발효주의 제조방법을 제공한다. 한편, 상기 발효주는, 바람직하게 쌀을 기질로 이용하고 정치배양하여 제조한 막걸리일 수 있다.The present invention provides a method for producing fermented liquor, characterized by using the recombinant Saccharomyces cerevisiae as a fermentation strain. Meanwhile, the fermented liquor may be makgeolli, preferably manufactured by using rice as a substrate and culturing it statically.

본 발명은 상기 발효주의 제조방법에 의해 제조된 막걸리를 제공한다. 한편, 상기 막걸리는, 바람직하게 에틸 카바메이트(Ethyl carbamate) 함유량이 줄어든 것을 특징으로 할 수 있다.The present invention provides makgeolli produced by the above fermented liquor production method. Meanwhile, the makgeolli may preferably be characterized by reduced ethyl carbamate content.

본 발명에 따르면, 효모인 사카로미세스 세리비지애(saccharomyces cerevisiae) 균주를 유전자 재조합하여 에틸 카바메이트(Ethyl carbamate) 생성량이 저감화된 재조합 균주를 통해 에틸 카바메이트(Ethyl carbamate) 함유량이 저감화된 발효주를 제조할 수 있다.According to the present invention, a fermented liquor with a reduced ethyl carbamate content is produced through genetic recombination of the yeast Saccharomyces cerevisiae strain and a recombinant strain with reduced ethyl carbamate production. It can be manufactured.

도 1은 CAR1 및 GZF3 유전자가 균주에서 에틸 카바메이트(Ethyl carbamate) 형성에 어떻게 작용하고 있는지를 나타낸다.
도 2는 본 발명 재조합 균주를 제조하는 방법을 설명한 모식도이다.
도 3은 염색체 수가 1개인 1N 균주로 알려진 사카로미세스 세리비지애(Saccharomyces cerevisiae) BY4742 균주와 본 발명에서 사용하는 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6 균주를 유세포분석기를 이용하여 염색체 수를 비교하여 확인한 결과이다.
도 4는 본 발명 재조합 균주에 결손이 잘 일어났는지 확인하기 위한 colony PCR 결과이다.
도 5는 본 발명 재조합 균주의 발효액 성분 함량 비교 결과이다.
도 6은 본 발명 재조합 균주의 RNA 발현량 비교 결과이다.
도 7은 본 발명 재조합 균주를 이용한 막걸리의 에탄올 함량 비교 결과이다.
도 8은 본 발명 재조합 균주를 이용한 막걸리의 에틸 카바메이트(Ethyl carbamate) 함량 비교 결과이다.
도 9는 본 발명 재조합 균주를 이용한 막걸리의 비교 사진이다.
Figure 1 shows how CAR1 and GZF3 genes function in forming ethyl carbamate in the strain.
Figure 2 is a schematic diagram explaining the method for producing the recombinant strain of the present invention.
Figure 3 shows the chromosome number of the Saccharomyces cerevisiae BY4742 strain, known as a 1N strain with one chromosome, and the Saccharomyces cerevisiae GRL6 strain used in the present invention using a flow cytometer. This is the result of comparison.
Figure 4 shows the results of colony PCR to confirm whether the defect occurred in the recombinant strain of the present invention.
Figure 5 is a comparison result of the content of fermentation broth components of the recombinant strain of the present invention.
Figure 6 shows the results of comparison of RNA expression levels of the recombinant strains of the present invention.
Figure 7 shows the results of comparing the ethanol content of makgeolli using the recombinant strain of the present invention.
Figure 8 shows the results of comparing the ethyl carbamate content of makgeolli using the recombinant strain of the present invention.
Figure 9 is a comparative photograph of makgeolli using the recombinant strain of the present invention.

에틸 카바메이트(Ethyl carbamate)는 효모가 배출하는 요소(Urea) 및 외부에 존재하고 있던 요소(Urea)가 효모의 발효 시 생산되는 에탄올과 결합하여 자연적으로 생성된다고 알려져 있다. It is known that ethyl carbamate is naturally produced when urea excreted by yeast and urea present outside combine with ethanol produced during yeast fermentation.

한편, 아르기나아제(Arginase)는 아르기닌(Arginine)을 분해하는 효소인데, 아르기닌(Arginine)이 분해되면 요소(Urea)가 생성된다. 균체 내에 생성된 요소의 분해 및 배출과 관련된 대표적 유전자로는 DUR1, DUR2 유전자 및 DUR3 유전자가 있다 (도 1). 이중 DUR1 및 DUR2 유전자는 세포 내에 존재하는 요소(Urea)를 분해하는 유전자이고, DUR3 유전자는 세포 외 요소(Urea)를 흡수하는 유전자로 알려져 있다. 그런데, DUR1, DUR2 유전자 및 DUR3 유전자는 GZF3 유전자에 의해 그 발현이 조절되는데, 통상적인 환경에서는 DUR1, DUR2 유전자 및 DUR3 유전자의 발현이 억제되는 것으로 알려져 있다.Meanwhile, arginase is an enzyme that decomposes arginine, and when arginine is decomposed, urea is produced. Representative genes related to the decomposition and excretion of elements produced within the bacterial cell include the DUR 1, DUR 2 genes, and DUR 3 genes (Figure 1). Among them, the DUR 1 and DUR 2 genes are known to be genes that decompose urea (Urea) present within cells, and the DUR 3 gene is known to be a gene that absorbs extracellular urea (Urea). However, the expression of the DUR 1, DUR 2, and DUR 3 genes is regulated by the GZF3 gene, and it is known that the expression of the DUR 1, DUR 2, and DUR 3 genes is suppressed under normal circumstances.

본 발명에서는 균체 내에 생성되는 요소의 양을 줄이고, 생성된 요소도 분해를 하여 균체 외에 존재하는 요소의 양을 줄이고자 하였다. 이를 위해 3단계의 전략을 사용하였다. 첫째로는 균체 내에 생성되는 요소의 양을 줄이고자 하는 것인데, 아르기나아제(Arginase)를 암호화는 것으로 알려진 CAR1 유전자 (Arginase 효소를 암호화 함)를 결손시켜 아르기나아제의 활성을 줄여보고자 하였다. 두번째로는 균체 내에 존재하는 요소를 암모니아와 이산화탄소로 분해하고자 DUR1, DUR2 유전자의 발현을 증가시키고자 하였다. 셋째로는 배지에 존재하는 요소를 균체 내로 유입하고자(유입 후에는 암모니아와 이산화탄소로 분해됨) DUR3 유전자 발현을 증가시키고자 하였다. 이때, DUR1, DUR2 유전자와 DUR3 유전자는 GZF3 유전자가 발현하는 단백질(transcriptional inhibitor)에 의해 그 발현이 억제되도록 조절되는데, 본 발명에서는 GZF3 유전자를 결손시킴으로 야생형 대비 DUR1, DUR2 및 DUR3 유전자 발현량을 증가시킬 수 있었다. 이를 통해 균체 내에 존재하는 요소의 생성을 줄일 수 있었고 또한 균체 내에 존재하는 요소의 분해도 촉진할 수 있었다, 아울러 배지 중 존재하는 요소(Urea)를 균체 내로 유입시켜 분해할 수도 있었다. 이를 통해 궁극적으로 균체 외 배지(예로서, 막걸리)에 존재하는 에틸 카바메이트(Ethyl carbamate) 생성을 감소시킬 수 있었다.In the present invention, an attempt was made to reduce the amount of elements produced within the bacterial cells and to reduce the amount of elements existing outside the bacterial cells by decomposing the produced elements. For this purpose, a three-step strategy was used. First, we wanted to reduce the amount of elements produced within the bacterial cell. We tried to reduce the activity of arginase by deleting the CAR1 gene (encoding the arginase enzyme), which is known to encode arginase. Second, we attempted to increase the expression of DUR 1 and DUR 2 genes to decompose urea present in the bacterial cells into ammonia and carbon dioxide. Third, we attempted to increase the expression of the DUR 3 gene in order to introduce elements present in the medium into the bacterial cells (after introduction, they are decomposed into ammonia and carbon dioxide). At this time, the expression of the DUR 1, DUR 2, and DUR 3 genes is regulated to be suppressed by a protein (transcriptional inhibitor) expressed by the GZF3 gene. In the present invention, by deleting the GZF3 gene, DUR 1, DUR 2, and DUR compared to the wild type 3 Gene expression levels were able to be increased. Through this, it was possible to reduce the production of urea present in the bacterial cells and also promote the decomposition of the urea present in the bacterial cells. In addition, urea present in the medium could be introduced into the bacterial cells and decomposed. Through this, it was ultimately possible to reduce the production of ethyl carbamate present in the extracellular medium (e.g., makgeolli).

따라서, 본 발명은 아르기나아제(Arginase) 활성을 줄이고자 CAR1 유전자를 결손시키고, DUR1, DUR2 및 DUR3 유전자 발현의 억제를 해소하고자 GZF3 유전자를 결손시킨 것을 특징으로 하는 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 제공한다. 하기 실험예에 의하면, 본 발명의 재조합 균주의 CAR1 유전자가 거의 발현되지 않고, DUR1, DUR2 및 DUR3 유전자 발현량이 증가하는 것을 확인할 수 있다. 또한, 에틸 카바메이트(Ethyl carbamate) 생성량이 적어진 것을 볼 수 있는데, 이에 따라, 요소(Urea) 분비량이 적어진 것으로 판단할 수 있다. Therefore, the present invention is a recombinant Saccharomyces seri characterized by deleting the CAR1 gene to reduce arginase activity and deleting the GZF3 gene to relieve the inhibition of DUR 1, DUR 2, and DUR 3 gene expression. Provides Saccharomyces cerevisiae . According to the following experimental example, it can be seen that the CAR1 gene of the recombinant strain of the present invention is hardly expressed, and the expression levels of DUR 1, DUR 2, and DUR 3 genes increase. In addition, it can be seen that the amount of ethyl carbamate produced has decreased, and accordingly, it can be determined that the amount of urea secreted has decreased.

한편, 상기 사카로미세스 세리비지애(Saccharomyces cerevisiae)는 특별한 것으로 한정되는 것은 아니고, 기존 공지되거나 새롭게 분리한 것을 사용할 수 있는데, 본 발명에서는 누룩에서 분리한 것을 사용하였다.Meanwhile, the Saccharomyces cerevisiae is not limited to a specific one, and existing known or newly isolated ones can be used. In the present invention, those isolated from yeast were used.

본 발명은 상기 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 발효 균주로 이용하는 것을 특징으로 하는 발효주의 제조방법을 제공한다. 한편, 상기 발효주는 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 사용하여 발효하는 주류 중 무엇이든 해당할 수 있는데, 일 예로, 와인, 맥주, 청주, 탁주, 약주로 제조할 수 있다.The present invention provides a method for producing fermented liquor, characterized by using the recombinant Saccharomyces cerevisiae as a fermentation strain. Meanwhile, the fermented liquor may correspond to any alcoholic beverage fermented using Saccharomyces cerevisiae . For example, it can be produced from wine, beer, Cheongju, Takju, and Yakju.

바람직하게는 쌀을 기질로 이용하고 정치배양하여 막걸리로 제조할 수 있는데, 더욱 바람직하게 첫 22 내지 26시간 동안 24 내지 26℃에서 정치 배양하고, 이후에 150 내지 180시간까지 19 내지 21℃에서 정치 배양하여 막걸리를 제조할 수 있다. 하기 실험예에 따르면, 본 발명의 재조합 균주 및 쌀을 기질로 이용하고 정치배양하여 막걸리를 제조하였을 경우 기존 야생형 균주와 비교하여 에탄올 생산성에 유의적인 차이를 보이지 않았고, 색, 향 및 맛이 모두 유사한 것을 확인할 수 있었다. 또한, 에틸 카바메이트(Ethyl carbamate) 함유량이 우수하게 저감화된 것을 확인할 수 있었다.Preferably, rice can be used as a substrate and cultured statically to produce makgeolli, more preferably cultured at 24 to 26°C for the first 22 to 26 hours, and then cultured at 19 to 21°C for 150 to 180 hours. Makgeolli can be produced by culturing. According to the following experimental example, when makgeolli was produced by using the recombinant strain and rice of the present invention as a substrate and culturing it statically, there was no significant difference in ethanol productivity compared to the existing wild-type strain, and the color, aroma, and taste were all similar. could be confirmed. In addition, it was confirmed that the ethyl carbamate content was significantly reduced.

이하, 본 발명의 내용을 하기 실시예 및 실험예를 통하여 보다 상세하게 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예, 실험예에만 한정되는 것은 아니고 그와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the contents of the present invention will be described in more detail through the following examples and experimental examples. However, the scope of the present invention is not limited to the following examples and experimental examples, but also includes modifications of the technical idea equivalent thereto.

본 발명의 실시예 및 실험예에서 사용된 균주를 하기 표 1, 플라스미드를 하기 표 2, 프라이머를 하기 표 3 및 표 4에 나타내었다.The strains used in the examples and experimental examples of the present invention are shown in Table 1, the plasmids are shown in Table 2, and the primers are shown in Tables 3 and 4.

본 발명의 실시예 및 실험예에서 사용된 균주Strains used in the examples and experimental examples of the present invention 균주 이름strain name 관련특징Related features 출처source S. cerevisiae GRL6 S. cerevisiae GRL6 Industrial yeast strain (unknown genotype)Industrial yeast strain (unknown genotype) 본 발명this invention ΔCAR1ΔCAR1 S. cerevisiae GRL6 ΔCAR1 S. cerevisiae GRL6ΔCAR1 본 발명this invention ΔGZF3ΔGZF3 S. cerevisiae GRL6 ΔGZF3 S. cerevisiae GRL6ΔGZF3 본 발명this invention ΔCAR1ΔGZF3ΔCAR1ΔGZF3 S. cerevisiae GRL6 ΔCAR1 ΔGZF3 S. cerevisiae GRL6 ΔCAR1 ΔGZF3 본 발명this invention E. coli TOP10 E. coli TOP10 F-mcrA (mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupGF-mcrA (mrr-hsdRMS-mcrBC) ϕ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG Invitrogen
(CA, USA)
Invitrogen
(CA, USA)

본 발명의 실시예 및 실험예에서 사용된 플라스미드Plasmids used in the examples and experimental examples of the present invention 플라스미드 이름plasmid name 관련특징Related features 출처source pRS42K-gDNA-HXK2pRS42K-gDNA-HXK2 HXK2 guide RNA expression plasmid, Geneticin markerHXK2 guide RNA expression plasmid, Geneticin marker Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae
Seung-Oh Seo, 2017, Ph.D. Thesis, University of Illinois at Urbana-Champaign
Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae
Seung-Oh Seo, 2017, Ph.D. Thesis, University of Illinois at Urbana-Champaign
pRS42K-gRNA-CAR1pRS42K-gRNA-CAR1 Replacement of gRNA cassette for deletion of HXK2 with gRNA cassette for deletion of CAR1Replacement of gRNA cassette for deletion of HXK2 with gRNA cassette for deletion of CAR1 본 발명this invention pRS42K-gRNA-GZF3pRS42K-gRNA-GZF3 Replacement of gRNA cassette for deletion of HXK2 with gRNA cassette for deletion of GZF3Replacement of gRNA cassette for deletion of HXK2 with gRNA cassette for deletion of GZF3 본 발명this invention pCas9-NATpCas9-NAT Cas9 expression plasmid, Nourseothricin markerCas9 expression plasmid, Nourseothricin marker Addgene (#43802)Addgene (#43802) pRS42HpRS42H Yeast episomal plasmid, Hygromycin B markerYeast episomal plasmid, Hygromycin B marker System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
Christof Taxis and Michael Knop
BioTechniques 2006 40:1, 73-78
System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
Christof Taxis and Michael Knop
BioTechniques 2006 40:1, 73-78
pCas9-HygpCas9-Hyg Replacement of Nourseothricin marker with Hygromycin B markerReplacement of Nourseothricin marker with Hygromycin B marker 본 발명this invention

본 발명의 실시예 1에서 사용된 프라이머Primers used in Example 1 of the present invention 프라이머 명칭Primer name 서열번호sequence number ITS1ITS1 서열번호 1SEQ ID NO: 1 ITS4ITS4 서열번호 2SEQ ID NO: 2 SDM-gRNA-CAR1-FSDM-gRNA-CAR1-F 서열번호 3SEQ ID NO: 3 SDM-gRNA-CAR1-RSDM-gRNA-CAR1-R 서열번호 4SEQ ID NO: 4 SDM-gRNA-GZF3-FSDM-gRNA-GZF3-F 서열번호 5SEQ ID NO: 5 SDM-gRNA-GZF3-RSDM-gRNA-GZF3-R 서열번호 6SEQ ID NO: 6 Hyg-insert-FHyg-insert-F 서열번호 7SEQ ID NO: 7 Hyg-insert-RHyg-insert-R 서열번호 8SEQ ID NO: 8 Cas9-NAT-backbone-FCas9-NAT-backbone-F 서열번호 9SEQ ID NO: 9 Cas9-NAT-backbone-RCas9-NAT-backbone-R 서열번호 10SEQ ID NO: 10 Donor-CAR1-FDonor-CAR1-F 서열번호 11SEQ ID NO: 11 Donor-CAR1-RDonor-CAR1-R 서열번호 12SEQ ID NO: 12 Donor-GZF3-FDonor-GZF3-F 서열번호 13 SEQ ID NO: 13 Donor-GZF3-RDonor-GZF3-R 서열번호 14SEQ ID NO: 14 Check-CAR1-FCheck-CAR1-F 서열번호 15SEQ ID NO: 15 Check-CAR1-RCheck-CAR1-R 서열번호 16 SEQ ID NO: 16 Check-GZF3-FCheck-GZF3-F 서열번호 17 SEQ ID NO: 17 Check-GZF3-RCheck-GZF3-R 서열번호 18 SEQ ID NO: 18

본 발명의 실험예 2에서 사용된 프라이머Primers used in Experimental Example 2 of the present invention 프라이머 명칭Primer name 서열번호sequence number DUR1, 2-FDUR1, 2-F 서열번호 19SEQ ID NO: 19 DUR1, 2-RDUR1, 2-R 서열번호 20SEQ ID NO: 20 DUR3-FDUR3-F 서열번호 21SEQ ID NO: 21 DUR3-RDUR3-R 서열번호 22SEQ ID NO: 22 CAR1-FCAR1-F 서열번호 23SEQ ID NO: 23 CAR1-RCAR1-R 서열번호 24SEQ ID NO: 24 ACT1-FACT1-F 서열번호 25SEQ ID NO: 25 ACT1-RACT1-R 서열번호 26SEQ ID NO: 26

[실시예 1 : 본 발명의 재조합 사카로미세스 세리비지애([Example 1: Recombinant Saccharomyces cerevisiae of the present invention ( Saccharomyces cerevisiaeSaccharomyces cerevisiae ) 제작]) produce]

1) 개요1) Overview

본 실시예에서는 CAR1 및 GZF3 유전자를 결손시킨 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 제작하고자 했다. 상기 유전자들이 에틸 카바메이트(Ethyl carbamate) 생성에 어떻게 작용하는지 도 1에 나타내었고, 재조합 균주를 제작하는 모식도를 도 2에 나타내었다. In this example, we attempted to produce recombinant Saccharomyces cerevisiae with deletion of CAR1 and GZF3 genes. Figure 1 shows how the genes function to produce ethyl carbamate, and Figure 2 shows a schematic diagram of producing a recombinant strain.

2) 균주 분리2) Strain isolation

본 발명에서는 누룩으로부터 효모를 분리하여 사용하였다. 분리된 효모에 ITS1, ITS4 프라이머를 이용하여 Colony PCR한 후 서열 결정을 통해 분리한 균주가 주류 제조에 흔히 쓰는 사카로미세스 세리비지애(Saccharomyces cerevisiae) 균주임을 동정할 수 있었다. 본 실험에서 분리한 균주는 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6로 명명하였다. 이후 유세포 분석기를 통하여 동정한 균주의 염색체 수를 확인하고자 했다. 염색체 수가 1개인 1N 균주로 알려진 S. cerevisiae BY4742 균주와 누룩에서 동정한 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6 균주를 동시에 프로피디움 요오드화물(Propidium Iodide) 염색약으로 염색한 후 유세포분석기를 이용하여 형광의 세기를 측정하였다. 이에 따른 결과를 도 3에 나타내었다. 유세포분석기를 이용하여 두 균주의 형광량을 비교한 결과 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6의 형광량이 사카로미세스 세리비지애(Saccharomyces cerevisiae) BY4742 형광량의 2배인 것을 확인하였다. 결과적으로 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6는 염색체가 2개인 2N 균주임을 알 수 있었다. In the present invention, yeast was separated from nuruk and used. After performing colony PCR on the isolated yeast using ITS1 and ITS4 primers, it was identified through sequence determination that the isolated strain was a Saccharomyces cerevisiae strain commonly used in the manufacture of alcoholic beverages. The strain isolated in this experiment was named Saccharomyces cerevisiae GRL6. Afterwards, we attempted to confirm the chromosome number of the identified strain using flow cytometry. S. cerevisiae BY4742 strain, known as a 1N strain with one chromosome, and Saccharomyces cerevisiae GRL6 strain identified from yeast were simultaneously stained with propidium iodide dye and then analyzed using flow cytometry. The intensity of fluorescence was measured. The results are shown in Figure 3. As a result of comparing the fluorescence of the two strains using a flow cytometer, it was confirmed that the fluorescence of Saccharomyces cerevisiae GRL6 was twice that of Saccharomyces cerevisiae BY4742. As a result, it was found that Saccharomyces cerevisiae GRL6 is a 2N strain with two chromosomes.

3) 플라스미드 제작3) Plasmid production

효모에서 Cas9 단백질을 발현하기 위한 pCas-Hyg 플라스미드를 제작하고자 했다. 기존 pCas-NAT 플라스미드의 경우 Nourseothricin을 마커로 이용하였는데, Nourseothricin 항생제는 비용이 높기 때문에, 보다 효율적이고 경제적인 실험을 위하여 Hygromycin B 항생제를 마커로 사용하는 pCas-Hyg 플라스미드를 제작하고자 했다. pRS42H 플라스미드에서 Hyg-insert 프라이머를 통해 Hygromycin B 유전자를 PCR하였으며, pCas-NAT 플라스미드에서 Cas9-NAT-backbone 프라이머를 통해 Nourseothricin 관련 유전자를 제외한 모든 부분을 PCR하였다. 자세한 실험방법은 Gibson Assembly Kit 프로토콜을 따라 제작하였다.We attempted to construct pCas-Hyg plasmid to express Cas9 protein in yeast. In the case of the existing pCas-NAT plasmid, Nourseothricin was used as a marker. Since the Nourseothricin antibiotic is expensive, we attempted to create a pCas-Hyg plasmid using Hygromycin B antibiotic as a marker for more efficient and economical experiments. The Hygromycin B gene was PCR performed using the Hyg-insert primer in the pRS42H plasmid, and all parts except the Nourseothricin-related gene were PCR performed using the Cas9-NAT-backbone primer in the pCas-NAT plasmid. The detailed experimental method was produced according to the Gibson Assembly Kit protocol.

한편, 결손시킬 CAR1, GZF3 유전자를 타겟하는 gRNA 발현을 위한 pRS42K-gRNA-CAR1, pRS42K-gRNA-GZF3 플라스미드를 제작하고자 했다. NEB (MA, USE)사의 Q5 Site-Directed Mutagenesis Kit를 사용하여 pRS42K-gRNA-HXK2 플라스미드에서 HXK2 유전자를 타겟으로 하는 20bp의 gRNA 서열부분을 CAR1 또는 GZF3 유전자에 맞게 변경하는 방식을 이용하였다. pRS42K-gRNA-HXK2 플라스미드와 SDM-gRNA-CAR1-R, SDM-gRNA-CAR1-B 프라이머를 이용하여 PCR을 통해 pRS42K-gRNA-CAR1 플라스미드를 제작하였고, pRS42K-gRNA-HXK2 플라스미드와 SDM-gRNA-GZF3-F와 SDM-gRNA-GZF3-R 프라이머를 이용하여 PCR을 통해 pRS42K-gRNA-GZF3 플라스미드를 제작하였다. 자세한 실험방법은 Q5 Site-Directed Mutagenesis Kit 프로토콜을 따라 제작하였다.Meanwhile, we attempted to create pRS42K-gRNA-CAR1 and pRS42K-gRNA-GZF3 plasmids to express gRNA targeting the CAR1 and GZF3 genes to be deleted. NEB (MA, USE)'s Q5 Site-Directed Mutagenesis Kit was used to change the 20bp gRNA sequence targeting the HXK2 gene in the pRS42K-gRNA-HXK2 plasmid to match the CAR1 or GZF3 gene. The pRS42K-gRNA-CAR1 plasmid was created through PCR using the pRS42K-gRNA-HXK2 plasmid and SDM-gRNA-CAR1-R and SDM-gRNA-CAR1-B primers, and the pRS42K-gRNA-HXK2 plasmid and SDM-gRNA- pRS42K-gRNA-GZF3 plasmid was created through PCR using primers GZF3-F and SDM-gRNA-GZF3-R. The detailed experimental method was prepared according to the Q5 Site-Directed Mutagenesis Kit protocol.

한편, 상기 모든 플라스미드의 cloning과 복제에는 E.coli TOP10 균주를 사용했다.Meanwhile, E. coli TOP10 strain was used for cloning and replication of all the above plasmids.

4) Donor DNA제작4) Donor DNA production

Cas9과 gRNA를 이용하여 타겟 유전자를 절단한 후 상동 재조합을 일으키기 위한 Donor DNA를 제작하고자 했다. 유전자 당 90 bp의 Donor DNA를 제작하였으며, 사용한 프라이머는 Donor-CAR1-F, Donor-CAR1-R, Donor-GZF3-F, Donor-GZF3-R 이다. 각각의 60 bp의 forward, reverse 프라이머는 서로 상보적인 30 bp의 상응하는 부위가 있으며 2회 PCR을 통해 이중 가닥의 Donor DNA를 제작하였다.After cutting the target gene using Cas9 and gRNA, we attempted to create donor DNA to cause homologous recombination. Donor DNA of 90 bp per gene was prepared, and the primers used were Donor-CAR1-F, Donor-CAR1-R, Donor-GZF3-F, and Donor-GZF3-R. Each 60 bp forward and reverse primer has a corresponding 30 bp complementary region, and double-stranded donor DNA was produced through two PCRs.

5) 재조합 균주 제작5) Recombinant strain production

효모의 유전자 결손을 위한 CRISPR/Cas9을 실시하였다. 정확한 유전자 절단을 위한 Cas9 단백질을 발현하는 pCas-Hyg 플라스미드와 CAR1, GZF3 유전자를 타겟팅을 위한 gRNA를 발현하는 pRS42K-gRNA-CAR1 및 pRS42K-gRNA-GZF3 플라스미드를 절단 하고, 상동 재조합을 일으키기 위한 CAR1, GZF3 유전자 Donor DNA를 준비한 후 형질전환을 시도하였다. 형질 전환은 방법은 'High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method'(R Daniel Gietz & Robert H Schiestl, 2007, NATURE PROTOCOLS)를 따랐다. CRISPR/Cas9 was performed for gene deletion in yeast. pCas-Hyg plasmid and CAR1 expressing Cas9 protein for precise gene cutting, pRS42K-gRNA-CAR1 and pRS42K-gRNA-GZF3 plasmid expressing gRNA for targeting GZF3 gene, CAR1 to cause homologous recombination, After preparing GZF3 gene donor DNA, transformation was attempted. The transformation method followed 'High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method' (R Daniel Gietz & Robert H Schiestl, 2007, NATURE PROTOCOLS).

형질전환 후에는 colony PCR을 통하여 유전자 결손을 확인하였다. Colony PCR에는 Check-CAR1-R, Check-CAR1-B, Check-GZF3-R, Check-GZF3-B 프라이머를 사용하였고, 이에 따른 결과를 도 4에 나타내었다. 도 4의 1~4번 라인은 CAR1 유전자를 확인 하기 위한 colony PCR 결과이고, 5~8번 레인은 GZF3 유전자를 확인 하기 위한 colony PCR 결과이다. 각각 같은 프라이머를 사용하여 colony PCR한 결과로 야생형 균주에 비해 밴드 사이즈가 감소한 것을 확인할 수 있다. 이를 통해, 본 발명의 재조합 균주의 CAR1 GZF3 유전자가 성공적으로 결손됐다는 것을 확인하였다.After transformation, gene deletion was confirmed through colony PCR. Primers Check-CAR1-R, Check-CAR1-B, Check-GZF3-R, and Check-GZF3-B were used in colony PCR, and the results are shown in Figure 4. Lines 1 to 4 in Figure 4 are the colony PCR results to confirm the CAR1 gene, and lanes 5 to 8 are the colony PCR results to confirm the GZF3 gene. As a result of colony PCR using the same primers, it can be seen that the band size is reduced compared to the wild type strain. Through this, it was confirmed that the CAR1 and GZF3 genes of the recombinant strain of the present invention were successfully deleted.

[실험예 1: 야생형 균주 및 재조합 균주의 발효산물 비교][Experimental Example 1: Comparison of fermentation products of wild-type strain and recombinant strain]

재조합 균주의 발효산물 비교를 위하여 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6의 야생형 균주, CAR1 유전자가 결손된 ΔCAR1 균주, GZF3 유전자가 결손된 ΔGZF3 균주, CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3 균주, 이렇게 총 4가지 균주를 동시에 같은 조건에서 발효하였다. 발효는 8% 포도당(glucose), 50 mg/L 요소(Urea), 50 mM 아르기닌(arginine)이 포함된 YP배지를 사용하였으며, 초기 접종 O.D600은 0.2로 맞춰 실시하였고, 30℃, 200 rpm으로 진행하였다. 발효액은 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, 168 h에 수집하여 -80℃에서 보관하였다. 이후 수집한 발효액을 HPLC와 GC/MS 측정을 통하여 분석하였다. 측정은 3회 반복실험하였고 평균값을 표기하여 도 5, 표 5 및 표 6에 나타내었다. 도 5는 각 균주 발효액의 포도당(Glucose), 글리세롤(Glycerol), 에탄올(Ethanol), 아세테이트(Acetate) 농도 및 O.D600 값을 보여주는 그래프이다. 이 중 12 h에 수집된 발효액의 값을 하기 표 5에 나타내었다. 표 6은 0 h, 24 h 및 168 h에 수집된 발효액의 에틸 카바메이트(Ethyl carbamate) 농도를 보여준다.For comparison of fermentation products of recombinant strains, wild-type strain of Saccharomyces cerevisiae GRL6, ΔCAR1 strain with a deletion of the CAR1 gene, ΔGZF3 strain with a deletion of the GZF3 gene, ΔCAR1ΔGZF3 strain with both the CAR1 gene and GZF3 gene deletion, A total of four strains were fermented simultaneously under the same conditions. Fermentation was performed using YP medium containing 8% glucose, 50 mg/L urea, and 50 mM arginine, and the initial inoculation OD 600 was set to 0.2, at 30°C and 200 rpm. proceeded. Fermentation broth was collected at 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, and 168 h and stored at -80°C. Afterwards, the collected fermentation broth was analyzed through HPLC and GC/MS measurements. The measurement was repeated three times, and the average values are shown in Figure 5, Table 5, and Table 6. Figure 5 is a graph showing the glucose, glycerol, ethanol, and acetate concentrations and OD 600 values of the fermentation broth of each strain. Among these, the values of the fermentation broth collected at 12 h are shown in Table 5 below. Table 6 shows the ethyl carbamate concentration of fermentation broth collected at 0 h, 24 h and 168 h.

균주 이름strain name O.D600 OD 600 에탄올(g/L)Ethanol (g/L) 에탄올 수율
(g 에탄올/g 포도당)
Ethanol yield
(g ethanol/g glucose)
에탄올 생산성
(g/L/h)
ethanol productivity
(g/L/h)
S. cerevisiae GRL6 S. cerevisiae GRL6 39.9±1.039.9±1.0 34.19 ± 0.2434.19 ± 0.24 0.45 ± 0.0010.45 ± 0.001 2.85 ± 0.022.85 ± 0.02 ΔCAR1ΔCAR1 41.3 ± 0.741.3 ± 0.7 34.42 ± 0.0734.42 ± 0.07 0.44 ± 0.0070.44 ± 0.007 2.87 ± 0.0052.87 ± 0.005 ΔGZF3ΔGZF3 40.7 ± 0.640.7 ± 0.6 34.47 ± 0.6334.47 ± 0.63 0.47 ± 0.020.47 ± 0.02 2.87 ± 0.052.87 ± 0.05 ΔCAR1ΔGZF3ΔCAR1ΔGZF3 41.4 ± 0.341.4 ± 0.3 34.34 ± 0.1434.34 ± 0.14 0.44 ± 0.020.44 ± 0.02 2.86 ± 0.012.86 ± 0.01

상기 표 5는 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6의 야생형 균주, CAR1 유전자가 결손된 ΔCAR1 균주, GZF3 유전자가 결손된 ΔGZF3 균주, CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3 균주의 12 h 발효 후 O.D600 값, 에탄올 농도, 에탄올 수율, 에탄올 생산성을 보여준다. 상기 항목에서 4가지 균주 모두 유의적인 차이가 나타나지 않은 것을 확인할 수 있었다. 이를 통해, 야생형 균주에 CAR1GZF3 유전자를 결손시키더라도 균주의 성장과 에탄올 생성에서 차이가 나지 않는 것을 확인하였다.Table 5 shows the wild-type strain of Saccharomyces cerevisiae GRL6, the ΔCAR1 strain lacking the CAR1 gene, the ΔGZF3 strain lacking the GZF3 gene, and the ΔCAR1ΔGZF3 strain lacking both the CAR1 gene and GZF3 gene after 12 h of fermentation. It shows OD 600 value, ethanol concentration, ethanol yield, and ethanol productivity. In the above items, it was confirmed that there was no significant difference among all four strains. Through this, it was confirmed that there was no difference in the growth and ethanol production of the strain even if the CAR1 and GZF3 genes were deleted in the wild type strain.

에틸 카바메이트 농도(μg/L)Ethyl carbamate concentration (μg/L) 상대적인 농도 값relative concentration value 균주 이름strain name 0 h0 h 24 h24h 168 h168h 0 h0h 24 h24h 168 h168h S. cerevisiae GRL6 S. cerevisiae GRL6 13.2 ± 1.213.2 ± 1.2 41.2 ± 5.241.2 ± 5.2 56.9 ± 1.856.9 ± 1.8 100100 100100 100100 ΔCAR1ΔCAR1 13.1 ± 1.513.1 ± 1.5 28.0 ± 2.728.0 ± 2.7 42.1 ± 0.942.1 ± 0.9 99.399.3 67.967.9 73.973.9 ΔGZF3ΔGZF3 13.0 ± 0.813.0 ± 0.8 34.2 ± 2.934.2 ± 2.9 48.2 ± 3.848.2 ± 3.8 98.398.3 83.183.1 84.784.7 ΔCAR1ΔGZF3ΔCAR1ΔGZF3 12.9 ± 1.212.9 ± 1.2 19.7 ± 5.119.7 ± 5.1 37.6 ± 2.137.6 ± 2.1 98.098.0 47.947.9 66.166.1

상기 표 6은 사카로미세스 세리비지애(Saccharomyces cerevisiae) GRL6의 야생형 균주, CAR1 유전자가 결손된 ΔCAR1 균주, GZF3 유전자가 결손된 ΔGZF3 균주, CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3 균주의 0 h, 24 h 및 168 h 발효액의 에틸 카바메이트(Ethyl carbamate) 농도 및 비교량을 보여준다. 24 h부터 4가지 균주 모두 서로 유의적인 차이를 보였다. ΔCAR1 균주는 야생형 균주 대비 67.9% 수준을 보이며 감소했고 ΔGZF3 균주는 야생형 균주 대비 83.1% 수준으로 감소했으며, ΔCAR1ΔGZF3 균주는 야생형 균주 대비 47.9% 수준을 보이며 감소했다. 또한, 168 h에서도 상기 4가지 균주는 모두 서로 유의적인 차이를 보였다. ΔCAR1 균주는 야생형 균주 대비 73.9% 수준을 보이며 감소했고 ΔGZF3 균주는 야생형 균주 대비 84.7% 수준으로 감소했으며, ΔCAR1ΔGZF3 균주는 야생형 균주 대비 66.1% 수준을 보이며 감소했다. CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3가 가장 낮은 에틸 카바메이트 농도를 보여주는데, 이를 통해 본 발명 재조합 균주의 우수한 에틸 카바메이트(Ethyl carbamate) 저감화 효과를 확인하였다.Table 6 shows the wild-type strain of Saccharomyces cerevisiae GRL6, the ΔCAR1 strain lacking the CAR1 gene, the ΔGZF3 strain lacking the GZF3 gene, and the ΔCAR1ΔGZF3 strain lacking both the CAR1 gene and the GZF3 gene at 0 h, 24 It shows the concentration and comparative amount of ethyl carbamate in the fermentation broth for 168 h and 168 h. From 24 h, all four strains showed significant differences from each other. The ΔCAR1 strain decreased to 67.9% compared to the wild type strain, the ΔGZF3 strain decreased to 83.1% compared to the wild type strain, and the ΔCAR1ΔGZF3 strain decreased to 47.9% compared to the wild type strain. In addition, even at 168 h, all four strains showed significant differences from each other. The ΔCAR1 strain decreased to 73.9% compared to the wild type strain, the ΔGZF3 strain decreased to 84.7% compared to the wild type strain, and the ΔCAR1ΔGZF3 strain decreased to 66.1% compared to the wild type strain. ΔCAR1ΔGZF3, which is defective in both CAR1 and GZF3 genes, shows the lowest ethyl carbamate concentration, confirming the excellent ethyl carbamate reduction effect of the recombinant strain of the present invention.

[실험예 2: 야생형 균주 및 재조합 균주의 RNA 발현량 확인][Experimental Example 2: Confirmation of RNA expression level of wild-type strain and recombinant strain]

본 실험예에서는 야생형 균주, CAR1 유전자가 결손된 ΔCAR1 균주, GZF3 유전자가 결손된 ΔGZF3 균주, CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3 균주의 에틸 카바메이트(Ethyl carbamate) 생성관련 유전자 RNA 발현량을 확인하고자 했다. RNA 발현량의 확인하기 위하여 상기 실험예 1에서 수집한 발효액 중 6 h의 효모를 취하여 qRT-PCR을 실시했으며, 항상 일정하게 발현된다고 알려진 ACT1 유전자를 기준으로 CAR1, DUR1, DUR2 DUR3 유전자의 상대적인 발현량을 계산하였고 이에 따른 결과를 도 6에 나타내었다. In this experimental example, the purpose was to confirm the RNA expression level of genes related to ethyl carbamate production in the wild-type strain, the ΔCAR1 strain with a deletion of the CAR1 gene, the ΔGZF3 strain with a deletion of the GZF3 gene, and the ΔCAR1ΔGZF3 strain with both the CAR1 gene and the GZF3 gene. did. To confirm the amount of RNA expression, qRT-PCR was performed on 6 h of yeast from the fermentation broth collected in Experimental Example 1, and the relative expression of CAR1 , DUR1 , DUR2 , and DUR3 genes was determined based on the ACT1 gene, which is known to be always expressed consistently. The expression level was calculated, and the results are shown in Figure 6.

도 6의 결과를 보면, CAR1 유전자의 발현량 경우 ΔCAR1, ΔCAR1ΔGZF3 균주에서는 발현이 되지 않았으며, ΔGZF3 균주에서는 야생형 균주와 유의적으로 차이가 없는 발현량을 보였다. DUR1 DUR2 유전자의 경우 ΔCAR1는 야생형 균주와 유의적으로 차이가 없었으며, ΔGZF3와 ΔCAR1ΔGZF3 균주는 야생형 균주와 비교하여 유의적으로 발현량이 증가하였다. DUR1DUR2 유전자의 발현량은 야생형 균주 대비 ΔGZF3 균주는 2.12배 증가하였으며, ΔCAR1ΔGZF3 균주는 1.92배 증가하였다. DUR3 유전자의 경우 ΔCAR1균주는 야생형 균주와 유의적으로 차이가 없었으며, ΔGZF3과 ΔGZF3 균주는 야생형 균주와 비교하여 유의적으로 발현량이 증가하였다. DUR3 유전자의 발현량은 야생형 균주 대비 ΔGZF3 균주는 1.41배 증가하였으며, ΔCAR1ΔGZF3 균주는 1.31배 증가하였다. 이를 통해, 본 발명의 재조합 균주가 의도한 대로 에틸 카바메이트(Ethyl carbamate) 생성량이 적어지도록 잘 재조합 된 것을 확인하였다.Looking at the results in Figure 6, the expression level of the CAR1 gene was not expressed in the ΔCAR1 and ΔCAR1ΔGZF3 strains, and the expression level of the ΔGZF3 strain was not significantly different from that of the wild type strain. In the case of DUR1 and DUR2 genes, ΔCAR1 was not significantly different from the wild type strain, and the expression level of ΔGZF3 and ΔCAR1ΔGZF3 strains was significantly increased compared to the wild type strain. The expression levels of DUR1 and DUR2 genes increased 2.12-fold in the ΔGZF3 strain and 1.92-fold in the ΔCAR1ΔGZF3 strain compared to the wild type strain. In the case of the DUR3 gene, the ΔCAR1 strain was not significantly different from the wild type strain, and the expression level of the ΔGZF3 and ΔGZF3 strains was significantly increased compared to the wild type strain. The expression level of the DUR3 gene increased 1.41-fold in the ΔGZF3 strain and 1.31-fold in the ΔCAR1ΔGZF3 strain compared to the wild type strain. Through this, it was confirmed that the recombinant strain of the present invention was well recombined to reduce the amount of ethyl carbamate produced as intended.

[실험예 3: 야생형 균주 및 재조합 균주를 이용한 막걸리 비교][Experimental Example 3: Comparison of makgeolli using wild-type strain and recombinant strain]

본 실험예에서는 실제 주류에서도 재조합 균주 및 야생형 균주의 에틸 카바메이트 생성량 차이가 있는지 확인하기 위해 막걸리를 쌀 100 g, 황국균 가루 10 g, 물 300 ml를 섞고 각 균주의 세포를 O.D600 = 50 만큼 회수하여 접종하는 방법으로 제조하였다. 야생형 균주, CAR1 유전자가 결손된 ΔCAR1 균주, GZF3 유전자가 결손된 ΔGZF3 균주, CAR1 유전자 및 GZF3 유전자 모두 결손된 ΔCAR1ΔGZF3 균주를 이용해 막걸리를 제조하였으며, 첫 24시간 동안 25℃에서 정치 배양했으며, 이후에 168시간까지 20℃에서 정치 배양하였다. 각 균주마다 0 h, 24 h, 168 h에 배양액을 수집하고, HPLC와 GC/MS 측정을 통하여 에틸 카바메이트 및 에탄올 생성량을 분석하였다. 에탄올 측정량을 도 7에 나타내었고, 에틸 카바메이트(Ethyl carbamate) 측정량을 도 8에 나타내었다. 도 7의 결과를 보면, 에탄올 함량에 유의적인 차이가 없는 것을 확인할 수 있다. 도 8의 결과를 보면, 본 발명에 따른 재조합 균주가 우수하게 막걸리의 에틸 카바메이트(Ethyl carbamate) 함량을 저감화 시킨 것을 확인할 수 있다.In this experimental example, to determine whether there was a difference in the amount of ethyl carbamate production between the recombinant strain and the wild-type strain in actual liquor, makgeolli was mixed with 100 g of rice, 10 g of Chrysanthemum fungus powder, and 300 ml of water, and the cells of each strain were recovered at an OD of 600 = 50. It was prepared by inoculating. Makgeolli was prepared using the wild-type strain, the ΔCAR1 strain with a deletion of the CAR1 gene, the ΔGZF3 strain with a deletion of the GZF3 gene, and the ΔCAR1ΔGZF3 strain with both the CAR1 and GZF3 genes, and were incubated at 25°C for the first 24 hours, and then cultured at 25°C for the first 24 hours. The culture was incubated at 20°C until the end of time. Culture fluid was collected for each strain at 0 h, 24 h, and 168 h, and ethyl carbamate and ethanol production were analyzed through HPLC and GC/MS measurements. The measured amount of ethanol is shown in Figure 7, and the measured amount of ethyl carbamate is shown in Figure 8. Looking at the results in Figure 7, it can be seen that there is no significant difference in ethanol content. Looking at the results in Figure 8, it can be seen that the recombinant strain according to the present invention excellently reduced the ethyl carbamate content of makgeolli.

이후 상기 168 h에 수집된 배양액의 막걸리를 색, 맛 향을 비교하였다. 맛과 향의 경우 시음 및 시향을 통하여 비교하였고, 맛과 향 모두 유의적인 차이를 나타내지 않았다. 또한, 도 9를 보면, 막걸리의 색에서도 유의적인 차이를 나타내지 않은 것을 확인할 수 있다.Afterwards, the color, taste and aroma of makgeolli from the culture solution collected at 168 h were compared. Taste and aroma were compared through tasting and tasting, and both taste and aroma showed no significant differences. Additionally, looking at Figure 9, it can be seen that there was no significant difference in the color of the makgeolli.

<110> THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof <130> YP-21-119 <160> 26 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ITS1 <400> 1 tccgtaggtg aacctgcgg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ITS4 <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-CAR1-F <400> 3 ggtttgaaca gttttagagc tagaaatagc 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-CAR1-R <400> 4 cattaggaat gatcatttat ctttcactgc 30 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-GZF3-F <400> 5 gaacgtaagt gatcatttat ctttcactg 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-GZF3-R <400> 6 ccaagttata gttttagagc tagaaatag 29 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Hyg-insert-F <400> 7 atcgacagag attgtactga gagtgcag 28 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Hyg-insert-R <400> 8 cggccagcct ccttacgcat ctgtgc 26 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Cas9-NAT-backbone-F <400> 9 taaggaggct ggccgggtga cccgg 25 <210> 10 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Cas9-NAT-backbone-R <400> 10 agtacaatct ctgtcgattc gatactaacg ccgccatcc 39 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-CAR1-F <400> 11 gaaacaacaa caacaactat atcaataaca ataactacta tcaagtttat atcatcatcc 60 60 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-CAR1-R <400> 12 ataaaaagag aatgcttatt ttgataaaag ggatgatgat ataaacttga tagtagttat 60 60 <210> 13 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-GZF3-F <400> 13 gagaacatat tgcaagcggt tgaagctata atactagata tacgaatgta tgcatatata 60 60 <210> 14 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-GZF3-R <400> 14 gttttgcaac tgattatgct actatgtatt tatatatgca tacattcgta tatctagtat 60 60 <210> 15 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Check-CAR1-F <400> 15 catcagggtt atgagcc 17 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Check-CAR1-R <400> 16 ggataacgta ccagtgg 17 <210> 17 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Check-GZF3-F <400> 17 agctcgttcc cgtca 15 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Check-GZF3-R <400> 18 ctgctttagt aaaaatcaat 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DUR1, 2-F <400> 19 ggtgtcccta ttgctgttaa g 21 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DUR1, 2-R <400> 20 ccgtgtgccg actaatcc 18 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DUR3-F <400> 21 actgcctgtg ggtgttgttg 20 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DUR3-R <400> 22 cgtctactgg atgcctcttg g 21 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAR1-F <400> 23 gctgtcccgt gtcattcc 18 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CAR1-R <400> 24 gaccttcacc gtttgtttct g 21 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> ACT1-F <400> 25 ttattgataa cggttctggt atg 23 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ACT1-R <400> 26 ccttggtgtc ttggtctac 19 <110> THE CATHOLIC UNIVERSITY OF KOREA INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using it <130> YP-21-119 <160> 26 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ITS1 <400> 1 tccgtaggtg aacctgcgg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ITS4 <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-CAR1-F <400> 3 ggtttgaaca gttttagagc tagaaatagc 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-CAR1-R <400> 4 cattaggaat gatcatttat ctttcactgc 30 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-GZF3-F <400> 5 gaacgtaagt gatcatttat ctttcactg 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> SDM-gRNA-GZF3-R <400> 6 ccaagttata gttttagagc tagaaatag 29 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Hyg-insert-F <400> 7 atcgacagag attgtactga gagtgcag 28 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Hyg-insert-R <400> 8 cggccagcct ccttacgcat ctgtgc 26 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Cas9-NAT-backbone-F <400> 9 taaggaggct ggccgggtga cccgg 25 <210> 10 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Cas9-NAT-backbone-R <400> 10 agtacaatct ctgtcgattc gatactaacg ccgccatcc 39 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-CAR1-F <400> 11 gaaacaacaa caacaactat atcaataaca ataactacta tcaagtttat atcatcatcc 60 60 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-CAR1-R <400> 12 ataaaaagag aatgcttatt ttgataaaag ggatgatgat ataaacttga tagtagttat 60 60 <210> 13 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-GZF3-F <400> 13 gagaacatat tgcaagcggt tgaagctata atactagata tacgaatgta tgcatatata 60 60 <210> 14 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Donor-GZF3-R <400> 14 gttttgcaac tgattatgct actatgtatt tatatatgca tacattcgta tatctagtat 60 60 <210> 15 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Check-CAR1-F <400> 15 catcagggtt atgagcc 17 <210> 16 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Check-CAR1-R <400> 16 ggataacgta ccagtgg 17 <210> 17 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Check-GZF3-F <400> 17 agctcgttcc cgtca 15 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Check-GZF3-R <400> 18 ctgctttagt aaaaatcaat 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DUR1, 2-F <400> 19 ggtgtcccta ttgctgttaa g 21 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DUR1, 2-R <400> 20 ccgtgtgccg actaatcc 18 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DUR3-F <400> 21 actgcctgtg ggtgttgttg 20 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> DUR3-R <400> 22 cgtctactgg atgcctcttg g 21 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CAR1-F <400> 23 gctgtcccgt gtcattcc 18 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CAR1-R <400> 24 gaccttcacc gtttgtttct g 21 <210> 25 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> ACT1-F <400> 25 ttattgataa cggttctggt atg 23 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ACT1-R <400> 26 ccttggtgtc ttggtctac 19

Claims (7)

아르기나아제(Arginase) 활성을 줄이고자 CAR1 유전자를 결손시키고,
DUR1, DUR2 및 DUR3 유전자 발현의 억제를 해소하고자 GZF3 유전자를 결손시킨 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 발효 균주로 이용하여 제조한 것을 특징으로 하는 막걸리.
To reduce arginase activity, the CAR1 gene was deleted,
Makgeolli, characterized in that it was manufactured using a recombinant Saccharomyces cerevisiae with a deletion of the GZF3 gene as a fermentation strain to relieve the inhibition of DUR 1, DUR 2 and DUR 3 gene expression.
제1항에 있어서,
상기 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)는,
GZF3 유전자의 결손으로 말미암아, DUR1, DUR2 및 DUR3 유전자 발현이 증가된 것을 특징으로 하는 막걸리.
According to paragraph 1,
The recombinant Saccharomyces cerevisiae ,
Makgeolli characterized by increased DUR 1, DUR 2, and DUR 3 gene expression due to a deletion of the GZF3 gene.
제2항에 있어서,
상기 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)는,
DUR1, DUR2 유전자 발현의 증가로 말미암아 균체 내에 축적된 요소가 분해되고, DUR3 유전자 발현의 증가로 말미암아 균체 외부의 요소(urea)가 균체 내부로 유입되어 균체 외부에 존재하는 요소의 양이 줄어든 것을 특징으로 하는 막걸리.
According to paragraph 2,
The recombinant Saccharomyces cerevisiae ,
Due to the increase in DUR 1 and DUR 2 gene expression, the elements accumulated in the bacterial cell are decomposed, and due to the increase in DUR 3 gene expression, urea from outside the bacterial cell flows into the bacterial cell, increasing the amount of urea present outside the bacterial cell. Makgeolli characterized by reduction.
아르기나아제(Arginase) 활성을 줄이고자 CAR1 유전자를 결손시키고, DUR1, DUR2 및 DUR3 유전자 발현의 억제를 해소하고자 GZF3 유전자를 결손시킨 재조합 사카로미세스 세리비지애(Saccharomyces cerevisiae)를 발효균주를 이용하여 에틸 카바메이트(Ethyl carbamate) 함유량이 줄어든 막걸리를 제조하는 방법.
A fermentation strain using recombinant Saccharomyces cerevisiae , in which the CAR1 gene was deleted to reduce arginase activity, and the GZF3 gene was deleted to relieve the inhibition of DUR 1, DUR 2, and DUR 3 gene expression. A method of producing makgeolli with reduced ethyl carbamate content.
삭제delete 삭제delete 제1항에 있어서,
상기 막걸리는,
에틸 카바메이트(Ethyl carbamate) 함유량이 줄어든 것을 특징으로 하는 막걸리.
According to paragraph 1,
The makgeolli,
Makgeolli characterized by reduced ethyl carbamate content.
KR1020210125167A 2021-09-17 2021-09-17 An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof KR102653503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210125167A KR102653503B1 (en) 2021-09-17 2021-09-17 An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210125167A KR102653503B1 (en) 2021-09-17 2021-09-17 An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof

Publications (2)

Publication Number Publication Date
KR20230041483A KR20230041483A (en) 2023-03-24
KR102653503B1 true KR102653503B1 (en) 2024-04-02

Family

ID=85872395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210125167A KR102653503B1 (en) 2021-09-17 2021-09-17 An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof

Country Status (1)

Country Link
KR (1) KR102653503B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127050A1 (en) * 2008-04-14 2009-10-22 The University Of British Columbia Functional enhancement of yeast to minimize production of ethyl carbamate via modified transporter expression
KR20150045687A (en) 2013-10-21 2015-04-29 롯데칠성음료주식회사 Method for Reducing Ethyl Carbamate in Fermented Liquor
KR101813050B1 (en) 2015-11-11 2017-12-28 롯데칠성음료주식회사 A method for producing of plum wine containing reduced ethyl carbamate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Agricultural and Food Chemistry, 2018, 66, pp. 10881-10889.(pp. 1-31)*
Molecules, 2020, 25, 3580.

Also Published As

Publication number Publication date
KR20230041483A (en) 2023-03-24

Similar Documents

Publication Publication Date Title
DE69822142T2 (en) TRANSFORMATION OF MOLDES BY AGROBACTERIUM, ESPECIALLY OF THE GENUS ASPERGILLUS
AU2019250216A1 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
Pretorius et al. The impact of yeast genetics and recombinant DNA technology on the wine industry-a review
WO1990014423A1 (en) Microorganism transformation
Shimizu Killer yeasts
US20190390157A1 (en) High camp yielding yeast strain and use thereof
CN113621630A (en) 3-ketoacyl-CoA thiolase gene RkACAA1-1 and application thereof
EP2256194A1 (en) Flocculent yeast and method for production thereof
DD265426A5 (en) Method for increasing the rate of carbon dioxide and ethanol production of yeast
KR102653503B1 (en) An engineered yeast reducing ethyl carbamate in makgeolli and a preparation method of makgeolli using thereof
US20120034654A1 (en) Method for transforming schizosaccharomyces pombe, transformant of schizosaccharomyces pombe and method for producing heterologous protein
AU754951B2 (en) Yeast transformation cassette
EP0511108A1 (en) Baker&#39;s yeast strains, their process of obtention, corresponding fresh and dry yeasts
EP3228707A1 (en) Vector containing centromere dna sequence and use thereof
CN116515649B (en) Transgenic method for improving heat stress resistance of beauveria bassiana
JP2009034036A (en) Yeast for transformation, transformation method, and method of producing substance
CN101473035B (en) Method for reinforcing secretion efficiency of recombination exogenous protein in sprout fungi expression system
JP2001321159A (en) Yeast mutant for producing alcoholic beverage and method for producing alcoholic beverage using the same
JP2005532055A (en) Fermentation process with the presence of genetically modified microorganisms and the presence of aggregates controlled by plasmid and medium changes
EP2792740B1 (en) Yeast having freezing stress resistance
EP1242603B1 (en) Vectors and method for producing recombinant proteins in fungi
CN108203697B (en) Yeast engineering bacterium of fish natural killer cell enhancement factor and application thereof
US20210309982A1 (en) Materials and methods for creating strains of saccharomyces cerevisiae that exhibit an increased ability to ferment oligosaccharides into ethanol
EP0792933A2 (en) Enzyme having LeuDH activity, nucleotide sequence coding therefor and process for the preparation of this enzyme
KR102510304B1 (en) Saccharomyces cerevisiae strain with improved ethyl carbamate degradation and uses thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant