KR102645119B1 - Fire resistant and heat resistant alkoxy silicone sealant composition - Google Patents

Fire resistant and heat resistant alkoxy silicone sealant composition Download PDF

Info

Publication number
KR102645119B1
KR102645119B1 KR1020230150088A KR20230150088A KR102645119B1 KR 102645119 B1 KR102645119 B1 KR 102645119B1 KR 1020230150088 A KR1020230150088 A KR 1020230150088A KR 20230150088 A KR20230150088 A KR 20230150088A KR 102645119 B1 KR102645119 B1 KR 102645119B1
Authority
KR
South Korea
Prior art keywords
weight
parts
resistant
fire
sealant composition
Prior art date
Application number
KR1020230150088A
Other languages
Korean (ko)
Inventor
박규태
박기선
Original Assignee
(주)지에스모아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지에스모아 filed Critical (주)지에스모아
Priority to KR1020230150088A priority Critical patent/KR102645119B1/en
Application granted granted Critical
Publication of KR102645119B1 publication Critical patent/KR102645119B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1078Fire-resistant, heat-resistant materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0239Oxides, hydroxides, carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0243Silica-rich compounds, e.g. silicates, cement, glass
    • C09K2200/0247Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0273Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/068Containing also other elements than carbon, oxygen or nitrogen in the polymer main chain
    • C09K2200/0685Containing silicon

Abstract

본 발명은 내화 및 내열 알콕시 실리콘 실란트 조성물에 관한 것으로, 더욱 상세하게는 하이드로 터미네이트된 폴리실록산(Siloxanes and Silicones, di-Me, hydroxy-terminated) 100중량부, 디메틸폴리실록산(Dimethyl silicones and siloxanes) 20~70중량부, 실란 경화제 5~35중량부, 무기 충전제 50~100중량부, 가교제 2~20중량부, 산화철 10~30중량부, 수산화알루미늄 50~100중량부, 실리카 에어로겔 분말 10~20중량부 및 나노 그래핀 플레이크 10~20중량부를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 방화성능이 요구되는 건축용 내, 외장재, 복층유리의 실링재, 글레이징 등으로 사용되어 건축 구조물의 방화성능을 월등히 향상시킬 수 있다는 장점이 있다. The present invention relates to a fire-resistant and heat-resistant alkoxy silicone sealant composition, and more specifically, to a composition comprising 100 parts by weight of hydro-terminated polysiloxane (Siloxanes and Silicones, di-Me, hydroxy-terminated) and 20 to 20 parts by weight of dimethyl polysiloxane (Dimethyl silicones and siloxanes). 70 parts by weight, 5 to 35 parts by weight of silane curing agent, 50 to 100 parts by weight of inorganic filler, 2 to 20 parts by weight of crosslinker, 10 to 30 parts by weight of iron oxide, 50 to 100 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of silica airgel powder. And it is characterized in that it contains 10 to 20 parts by weight of nano graphene flakes. According to the present invention, it has the advantage of being able to significantly improve the fire prevention performance of building structures by being used as interior and exterior materials for buildings requiring fire prevention performance, sealing materials for double-layer glass, and glazing.

Description

내화 및 내열 알콕시 실리콘 실란트 조성물{FIRE RESISTANT AND HEAT RESISTANT ALKOXY SILICONE SEALANT COMPOSITION}Fire-resistant and heat-resistant alkoxy silicone sealant composition {FIRE RESISTANT AND HEAT RESISTANT ALKOXY SILICONE SEALANT COMPOSITION}

본 발명은 내화 및 내열 알콕시 실리콘 실란트 조성물에 관한 것으로, 더욱 상세하게는 산화철, 수산화알루미늄, 실리카 에어로겔 분말 및 나노 그래핀 플레이크 등을 포함하는 실란트 조성물을 제조함으로써, 내열 및 내화성이 향상되어 방화성이 개선되는 내화 및 내열 알콕시 실리콘 실란트 조성물에 관한 것이다.The present invention relates to a fire-resistant and heat-resistant alkoxy silicone sealant composition, and more specifically, by manufacturing a sealant composition containing iron oxide, aluminum hydroxide, silica airgel powder, nano-graphene flake, etc., heat resistance and fire resistance are improved, and fire resistance is improved. It relates to a fire-resistant and heat-resistant alkoxy silicone sealant composition.

일상생활에서 사용되고 있는 거의 모든 내·외장용 건축자재는 난연성이나 방화 특성을 요구하고 있다.Almost all interior and exterior building materials used in daily life require flame retardancy or fire prevention properties.

내외장용 건축자재로서, 흡음, 단열, 내화, 결로방지 등의 목적으로 가장 널리 사용되는 내·외장재용의 구성원료는 유리면, 암면, 세라믹 파이버, 셀룰로오스 등의 섬유상 물질과 목분을 이용한 합성목재, 기타 복합건축자재 등 그 종류가 매우 다양하며, 조립식 건축자재로 사용되는 패널로는 EPS, 우레탄, MDF, 그라스울, 콘크리트 PC, ALC 패널 등이 있다. 그러나 상기와 같은 건축자재의 내·외장재는 각각 환경오염, 화재에 대한 취약성, 연소에 의한 유독가스 발생 등의 문제점이 있는바, 이를 해소하기 위한 여러 소재가 개발되고 있다. As interior and exterior building materials, the most widely used interior and exterior building materials for the purposes of sound absorption, insulation, fire resistance, and condensation prevention are fibrous materials such as glass wool, rock wool, ceramic fiber, and cellulose, synthetic wood using wood flour, and others. There are many different types of composite building materials, and panels used as prefabricated building materials include EPS, urethane, MDF, glass wool, concrete PC, and ALC panels. However, the interior and exterior construction materials mentioned above each have problems such as environmental pollution, vulnerability to fire, and generation of toxic gases due to combustion, and various materials are being developed to solve these problems.

한편, 각종 접합부나 갈라진 틈에 대한 수밀, 기밀을 유지하기 위하여 충진되는 물질을 일반적으로 실링재라고 말하며, 이는 어느 정도 강도 및 탄성을 가지고 부재를 고정시켜 건축물의 내구성을 증진시키는 목적으로 사용된다. 그리고 실링재 중 특히 탄성 실링재를 실란트라고 한다.Meanwhile, materials filled to maintain watertightness and airtightness of various joints or cracks are generally referred to as sealing materials, and are used to improve the durability of buildings by fixing members with a certain degree of strength and elasticity. And among sealing materials, especially elastic sealing materials are called sealants.

이러한 실란트는 수밀, 기밀의 기능적인 목적만을 추구하였는바, 최근 이러한 실란트 역시 방화성능이 요구되며, 실링에 의한 유독가스 및 열기에 대한 확실한 차단 효과가 요구되고 있는 실정이다.These sealants have pursued only the functional purpose of watertightness and airtightness, but recently, these sealants are also required to have fire prevention performance and are required to have a reliable blocking effect against toxic gases and heat caused by sealing.

내화성 실란트의 선행문헌으로는 대한민국 등록특허 제10-0674035호 및 등록특허 제10-2039767호가 게시되어 있다. Prior literature on fire-resistant sealants includes Republic of Korea Patent No. 10-0674035 and Patent No. 10-2039767.

상기 대한민국 등록특허 제10-0674035호는 교차결합 유기규소 화합물, 규회석 등을 포함하여 내화성을 개선하였고, 상기 대한민국 등록특허 제10-2039767호에서는 팽창 흑연, 난연제를 포함하여 방화재용 실란트 조성물을 제조하였다.Republic of Korea Patent No. 10-0674035 improved fire resistance by including cross-linked organosilicon compounds, wollastonite, etc., and Republic of Korea Patent No. 10-2039767 manufactured a sealant composition for fire retardants including expanded graphite and flame retardants. .

그러나 선행문헌들의 어디에서도 실리카 에어로겔을 이용하여 내열성 및 내화성을 개선한 예는 없었다.However, nowhere in the prior literature was there an example of improving heat resistance and fire resistance using silica airgel.

KRKR 10-0674035 10-0674035 B1B1 KRKR 10-2039767 10-2039767 B1B1

따라서, 본 발명의 목적은 실리카 에어로겔 및 나노 그래핀 플레이크를 포함하여 우수한 접착성, 기밀성을 가지면서도, 내열성 및 내화성이 우수하여 방화성능이 개선된 내화 및 내열 알콕시 실리콘 실란트 조성물을 제공하는 데 있다. Therefore, the purpose of the present invention is to provide a fire-resistant and heat-resistant alkoxy silicone sealant composition containing silica airgel and nano-graphene flakes, which has excellent adhesion and airtightness, and has excellent heat resistance and fire resistance, thereby improving fire prevention performance.

상기한 목적을 달성하기 위한 본 발명의 내화 및 내열 알콕시 실리콘 실란트 조성물은, 하이드로 터미네이트된 폴리실록산(Siloxanes and Silicones, di-Me, hydroxy-terminated) 100중량부, 디메틸폴리실록산(Dimethyl silicones and siloxanes) 20~70중량부, 실란 경화제 5~35중량부, 무기 충전제 50~100중량부, 가교제 2~20중량부, 산화철 10~30중량부, 수산화알루미늄 50~100중량부, 실리카 에어로겔 분말 10~20중량부 및 나노 그래핀 플레이크 10~20중량부를 포함하는 것을 특징으로 한다.The fire-resistant and heat-resistant alkoxy silicone sealant composition of the present invention for achieving the above object is 100 parts by weight of hydroterminated polysiloxane (Siloxanes and Silicones, di-Me, hydroxy-terminated) and 20 parts by weight of dimethylpolysiloxane (Dimethyl silicones and siloxanes). ~70 parts by weight, 5 to 35 parts by weight of silane curing agent, 50 to 100 parts by weight of inorganic filler, 2 to 20 parts by weight of crosslinker, 10 to 30 parts by weight of iron oxide, 50 to 100 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of silica airgel powder. It is characterized in that it contains 10 to 20 parts by weight of nano graphene flakes.

붕소처리된 티타늄 10~20중량부를 더 포함하는 것을 특징으로 한다.It is characterized in that it further contains 10 to 20 parts by weight of boron-treated titanium.

벤즈이미다졸론계 화합물 1~20중량부 및 반응촉매 0.1~5중량부를 더 포함하는 것을 특징으로 한다. It is characterized in that it further contains 1 to 20 parts by weight of a benzimidazolone-based compound and 0.1 to 5 parts by weight of a reaction catalyst.

상기 실리카 에어로겔 분말은, 실리카 에어로겔 분말을 플라즈마 처리하고, 이를 인산염 수용액에 20~30℃의 온도에서 30~40분간 침지한 후, 건조하고 0.1~100㎛로 분쇄한 것임을 특징으로 한다.The silica airgel powder is characterized in that the silica airgel powder is plasma treated, immersed in an aqueous phosphate solution at a temperature of 20 to 30° C. for 30 to 40 minutes, dried, and ground to 0.1 to 100 μm.

상기 나노 그래핀 플레이크는, 상기 나노 그래핀 플레이크를 플라즈마 처리하고, 이를, n-아미노에틸-아미노프로필트리메톡시 실란 에멀션에 20~30℃의 온도에서 30~40분간 침지한 후, 건조하고 10~1000nm로 분쇄한 것임을 특징으로 한다.The nano graphene flakes were plasma treated, immersed in n-aminoethyl-aminopropyltrimethoxy silane emulsion at a temperature of 20 to 30°C for 30 to 40 minutes, dried, and 10 It is characterized by being pulverized to ~1000 nm.

본 발명의 내화 및 내열 알콕시 실리콘 실란트 조성물에 의하면, 방화성능이 요구되는 건축용 내, 외장재, 복층유리의 실링재, 글레이징 등으로 사용되어 건축 구조물의 방화성능을 월등히 향상시킬 수 있다는 장점이 있다. According to the fire-resistant and heat-resistant alkoxy silicone sealant composition of the present invention, it has the advantage of being able to significantly improve the fire prevention performance of building structures by being used as interior and exterior materials for construction that require fire prevention performance, sealing materials for double-layer glass, and glazing.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 내화 및 내열 알콕시 실리콘 실란트 조성물은, 내화 및 내열 첨가제로 산화철, 수산화알루미늄, 실리카 에어로겔 분말, 나노 그래핀 플레이크 등을 투입하여 실란트 조성물을 제조함으로써, 우수한 접착성 및 기밀성을 가지면서도 내화성이 향상되어, 방화성능이 요구되는 각종 건축 구조물, 복층유리 등에 실링재로서 사용될 수 있다는 데 가장 큰 특징이 있다.The fire-resistant and heat-resistant alkoxy silicone sealant composition of the present invention is manufactured by adding iron oxide, aluminum hydroxide, silica airgel powder, nano graphene flake, etc. as fire-resistant and heat-resistant additives, thereby having excellent adhesion and airtightness while being fire resistant. The biggest feature is that it can be used as a sealing material in various building structures and double-layer glass that require improved fire prevention performance.

구체적으로 본 발명에 의한 내화 및 내열 알콕시 실리콘 실란트 조성물은, 하이드로 터미네이트된 폴리실록산(Siloxanes and Silicones, di-Me, hydroxy-terminated) 100중량부, 디메틸폴리실록산(Dimethyl silicones and siloxanes) 20~70중량부, 실란 경화제 5~35중량부, 무기 충전제 50~100중량부, 가교제 2~20중량부, 산화철 10~30중량부, 수산화알루미늄 50~100중량부, 실리카 에어로겔 분말 10~20중량부 및 나노 그래핀 플레이크 10~20중량부를 포함하는 것을 특징으로 한다.Specifically, the fire-resistant and heat-resistant alkoxy silicone sealant composition according to the present invention contains 100 parts by weight of hydroterminated polysiloxane (Siloxanes and Silicones, di-Me, hydroxy-terminated) and 20 to 70 parts by weight of dimethylpolysiloxane (Dimethyl silicones and siloxanes). , 5 to 35 parts by weight of silane curing agent, 50 to 100 parts by weight of inorganic filler, 2 to 20 parts by weight of crosslinker, 10 to 30 parts by weight of iron oxide, 50 to 100 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of silica airgel powder, and nanograph. It is characterized in that it contains 10 to 20 parts by weight of pin flakes.

먼저, 상기 하이드로 터미네이트된 폴리실록산(Siloxanes and Silicones, di-Me, hydroxy-terminated, cas no. 70131-67-8)과 디메틸폴리실록산(Dimethyl silicones and siloxanes, cas no. 63148-62-9)은 실란트 조성물을 구성하는 주재료로서, 이 기술이 속하는 분야에서 이미 공지된 성분이다. 이하, 조성물 내 '중량부'는 하이드로 터미네이트된 폴리실록산 100중량부를 기준으로 한다.First, the hydro-terminated polysiloxane (Siloxanes and Silicones, di-Me, hydroxy-terminated, cas no. 70131-67-8) and dimethylpolysiloxane (Dimethyl silicones and siloxanes, cas no. 63148-62-9) are sealants. As the main material constituting the composition, it is a component already known in the field to which this technology belongs. Hereinafter, 'parts by weight' in the composition is based on 100 parts by weight of hydroterminated polysiloxane.

상기 디메틸폴리실록산은 실란트 조성물의 물성을 고려하여, 조성물 내 20~70중량부로 포함된다. Considering the physical properties of the sealant composition, the dimethylpolysiloxane is included in an amount of 20 to 70 parts by weight in the composition.

상기 실란 경화제는 실란트 조성물의 경화를 위한 것으로, 예컨데 트리메톡시비닐실란(Trimethoxyvinylsilane, cas no. 2768-02-07) 및 트리메톡시메틸실란(Trimethoxymethylsilane, cas no. 1185-55-3)를 1종 또는 2종을 조합하여 사용할 수 있다.The silane curing agent is for curing the sealant composition, for example, trimethoxyvinylsilane (cas no. 2768-02-07) and trimethoxymethylsilane (cas no. 1185-55-3). One type or two types can be used in combination.

상기 실란 경화제는 실란트 조성물의 물성을 고려하여, 조성물 내 5~35중량부로 포함된다. The silane curing agent is included in 5 to 35 parts by weight in the composition, considering the physical properties of the sealant composition.

상기 무기 충전제는 실란트의 강도, 경도 등을 적절하게 조절해주는 물질로서, 칼슘 카보네이트(Calcium carbonate)를 사용함이 바람직하다. 상기 칼슘 카보네이트는 실란트 조성물의 내화 특성을 개선하면서도, 결합력을 높여주는 역할을 한다. The inorganic filler is a material that appropriately adjusts the strength and hardness of the sealant, and calcium carbonate is preferably used. The calcium carbonate plays a role in improving the fire resistance properties of the sealant composition and increasing bonding strength.

상기 무기 충전제는 조성물 내 50~100중량부로 포함됨이 바람직한데, 그 함량이 너무 적으면 물성의 향상 효과가 미미하고, 과량이 되면 전체적인 접착력이 저하되는 등의 문제가 있기 때문이다. The inorganic filler is preferably included in the composition in an amount of 50 to 100 parts by weight. If the content is too small, the effect of improving the physical properties is minimal, and if the content is excessive, there is a problem such as a decrease in overall adhesion.

상기 가교제는 폴리머의 가교 반응을 위한 것으로, 이 기술이 속하는 분야에서 공지된 것이라면 모두 사용 가능하며, 예시적으로 Bis(ethyl 3-oxobutanoatoO1',O3)bis(2-propanolato)titanium(cas no. 27858-32-8)를 사용할 수 있다.The cross-linking agent is for the cross-linking reaction of polymers, and any agent known in the art can be used, for example Bis(ethyl 3-oxobutanoatoO1',O3)bis(2-propanolato)titanium (cas no. 27858) -32-8) can be used.

상기 가교제는 조성물 내 2~20중량부로 포함될 수 있는바, 그 함량이 너무 적거나 많으면 실란트 조성물의 물성이 저하되기 때문이다.The crosslinking agent may be included in an amount of 2 to 20 parts by weight in the composition, because if the content is too small or too large, the physical properties of the sealant composition deteriorate.

상기 산화철은 내열 첨가제로서, 조성물의 내열성을 현저히 개선해주는 역할을 한다. 상기 산화철로는 산화철(Ⅱ), 산화철(Ⅲ), 사산화삼철로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있으며, 그 종류를 제한하지 않는다. 본 발명에서 상기 산화철의 입도는 0.1~500㎛인 것이 바람직하다.The iron oxide is a heat resistance additive and serves to significantly improve the heat resistance of the composition. The iron oxide may be one or more selected from the group consisting of iron (II) oxide, iron (III) oxide, and triferon tetroxide, and the type is not limited. In the present invention, the particle size of the iron oxide is preferably 0.1 to 500 μm.

상기 산화철은 조성물 내 10~30중량부로 포함됨이 바람직한데, 그 함량이 너무 적으면 내열성의 향상이 어렵고, 과량이 되면 전체적인 물성이 저하되기 때문이다. The iron oxide is preferably included in the composition in an amount of 10 to 30 parts by weight. If the content is too small, it is difficult to improve heat resistance, and if the content is excessive, the overall physical properties deteriorate.

상기 수산화알루미늄(aluminium trihyroxide)은 열에 의해 분해될 때 수증기를 배출하여 일부 연소 가스를 희석하고, 열을 흡수하는 성질을 포함하고 있어 연소의 확산을 방지하는 역할을 하기 때문에 내화 첨가제로서 사용된다. Aluminum hydroxide (aluminum trihyroxide) releases water vapor when decomposed by heat, diluting some combustion gases, and has the property of absorbing heat, thereby preventing the spread of combustion, so it is used as a fire-retardant additive.

상기 수산화알루미늄은 조성물 내 50~100중량부로 포함됨이 바람직한데, 그 함량이 상기한 범위를 벗어날 경우 충분한 내화성의 확보가 어렵거나, 실란트 조성물의 물성을 저해하기 때문이다.The aluminum hydroxide is preferably included in the composition in an amount of 50 to 100 parts by weight, because if the content exceeds the above range, it is difficult to secure sufficient fire resistance or the physical properties of the sealant composition are impaired.

상기 실리카 에어로겔 분말은 조성물의 내화 및 내열 특성을 개선해주는 것으로, 일반적으로 물유리 또는 TEOS(Tetra Ethyl Ortho Silicate), TMOS(Tetra Methyl Ortho Silicate)와 같은 알콕사이드(alkoxide)를 원료로 초임계 건조 및 상압 건조와 같은 에어로겔 합성 공정에 따라 제조된 것을 사용할 수 있으며, 공지된 다양한 제조방법에 의해 제조된 것을 모두 적용할 수 있다. 이때, 그 압도는 0.1~100㎛의 범위이고, 무정형 실리카 에어로겔 분말인 것이 바람직하나, 이를 반드시 제한하는 것은 아니다.The silica airgel powder improves the fire resistance and heat resistance properties of the composition, and is generally made of water glass or an alkoxide such as TEOS (Tetra Ethyl Ortho Silicate) or TMOS (Tetra Methyl Ortho Silicate), and is dried by supercritical drying and normal pressure. Those manufactured according to airgel synthesis processes such as can be used, and those manufactured by various known manufacturing methods can all be applied. At this time, the pressure is in the range of 0.1 to 100㎛, and it is preferable that it is amorphous silica airgel powder, but this is not necessarily limited.

상기 실리카 에어로겔 분말은 조성물 내 10~20중량부로 포함됨이 바람직한데, 그 함량이 상기한 범위를 벗어날 경우 충분한 내화성의 확보가 어렵거나, 실란트 조성물의 물성을 저해하기 때문이다.The silica airgel powder is preferably included in the composition in an amount of 10 to 20 parts by weight, because if the content exceeds the above range, it is difficult to secure sufficient fire resistance or the physical properties of the sealant composition are impaired.

아울러, 상기 실리카 에어로겔 분말은, 실리카 에어로겔 분말을 플라즈마 처리하고, 이를 인산염 수용액에 침지한 후, 건조하고 분쇄한 것을 사용하는 것이 더욱 바람직한바, 이러한 실리카 에어로겔 분말을 사용할 경우 그 내화 특성이 더욱 개선되는 것은 물론, 실란트 조성물의 전체적인 물성 저하가 없기 때문이다.In addition, it is more preferable to use the silica airgel powder by plasma treating the silica airgel powder, immersing it in an aqueous phosphate solution, drying and pulverizing it. When using this silica airgel powder, the fire resistance properties are further improved. Of course, this is because there is no deterioration in the overall physical properties of the sealant composition.

더욱 구체적으로, 실리카 에어로겔 분말에 공기, 산소, 질소 또는 이들을 결합한 가스를 1~20cc/min으로 주입하고, 50~100W의 전압을 인가하여 0.1~5분간 플라즈마 처리하고, 이를 2~3부피배의 인산염 수용액에 20~30℃ 정도의 온도에서 30~40분간 침지한 후, 건조하고, 0.1~100㎛로 분쇄한 것을 사용함이 바람직하다. 이때, 상기 인산염 수용액으로는 3~10중량% 농도의 인산암모늄 수용액을 사용하면 족한바, 인산염의 종류 및 농도를 제한하지 않는다.More specifically, air, oxygen, nitrogen, or a combination thereof is injected into the silica airgel powder at a rate of 1 to 20 cc/min, a voltage of 50 to 100 W is applied, plasma treatment is performed for 0.1 to 5 minutes, and the mixture is treated with 2 to 3 volumes of the silica airgel powder. It is preferable to use a product that is immersed in an aqueous phosphate solution at a temperature of about 20 to 30°C for 30 to 40 minutes, dried, and ground to 0.1 to 100㎛. At this time, it is sufficient to use an ammonium phosphate aqueous solution with a concentration of 3 to 10% by weight as the aqueous phosphate solution, and the type and concentration of the phosphate are not limited.

상기 나노 그래핀 플레이크는 연기 발생을 억제하고, 절연층으로 작용하여 열의 이동을 방해하여 난연성을 확보하는 것은 물론, 실란트 조성물의 강도 및 내열성을 개선하는 역할을 한다. 상기 나노 그래핀 플레이크를 제조하는 방법은 이 기술이 속하는 분야에서 공지이므로, 이에 대한 추가 설명은 생략한다.The nano graphene flakes suppress the generation of smoke, act as an insulating layer to prevent heat movement, ensure flame retardancy, and improve the strength and heat resistance of the sealant composition. Since the method for producing the nano graphene flakes is well known in the field to which this technology belongs, further description thereof will be omitted.

상기 나노 그래핀 플레이크는 조성물 내 10~20중량부로 포함됨이 바람직한데, 그 함량이 상기한 범위를 벗어날 경우 충분한 내화성의 확보가 어렵거나, 실란트 조성물의 물성을 저해하기 때문이다.The nano graphene flakes are preferably included in the composition in an amount of 10 to 20 parts by weight, because if the content exceeds the above range, it is difficult to secure sufficient fire resistance or the physical properties of the sealant composition are impaired.

다만, 상기 나노 그래핀 플레이크를 그대로 사용할 경우 실란트 조성물의 접착성이 저하된다는 문제가 있다.However, when the nano graphene flakes are used as is, there is a problem that the adhesiveness of the sealant composition is reduced.

이를 위하여 본 발명에서는 상기 나노 그래핀 플레이크를 플라즈마 처리하고, 이를 n-아미노에틸-아미노프로필트리메톡시 실란 에멀션에 침지한 후, 건조하고, 분쇄한 것을 사용함이 바람직하다.For this purpose, in the present invention, it is preferable to use the nano graphene flakes after plasma treatment, immersion in n-aminoethyl-aminopropyltrimethoxy silane emulsion, drying, and pulverization.

더욱 구체적으로, 실리카 에어로겔 분말에 공기, 산소, 질소 또는 이들을 결합한 가스를 1~20cc/min으로 주입하고, 50~100W의 전압을 인가하여 0.1~5분간 플라즈마 처리하고, 이를 2~3부피배의 n-아미노에틸-아미노프로필트리메톡시 실란 에멀션에 20~30℃ 정도의 온도에서 30~40분간 침지한 후, 건조하고, 10~1000nm의 입도로 분쇄한 것을 사용하는 것이다. More specifically, air, oxygen, nitrogen, or a combination thereof is injected into the silica airgel powder at a rate of 1 to 20 cc/min, a voltage of 50 to 100 W is applied, plasma treatment is performed for 0.1 to 5 minutes, and the mixture is treated with 2 to 3 volumes of the silica airgel powder. It is used by immersing in n-aminoethyl-aminopropyltrimethoxy silane emulsion at a temperature of 20-30°C for 30-40 minutes, drying, and pulverizing to a particle size of 10-1000 nm.

이때, 상기 n-아미노에틸-아미노프로필트리메톡시 실란 에멀션으로는 n-아미노에틸-아미노프로필트리메톡시 실란 5~70중량%, 에멀션화제 0.1~1중량% 및 잔부의 물을 균질기로 5,000~10,000rpm으로 30~60분간 교반하여서 되는 것을 사용한다. 상기 에멀션 내 n-아미노에틸-아미노프로필트리메톡시 실란의 직경은 0.1~1㎛일 수 있다. 그리고 상기 에멀션화제는 폴리옥시에틸렌 알킬 에테르, 폴리옥시에틸렌 알킬아릴 에테르, 폴리옥시에틸렌-옥시프로필렌 블록 공중합체, 소르비탄 지방산 에스테르, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 소르비톨 지방산 에스테르, 글리세린 지방산 에스테르, 폴리옥시에틸렌 지방산 에스테르, 폴리옥시에틸렌알킬아민, 플루오로-함유 비이온성 에멀션화제, 알킬아민염, 4차 암모늄염, 알킬 피리디늄염, 알킬베타인, 알킬아민 산화물 및 포스파티딜클로린 중 1종 이상을 사용할 수 있다.At this time, the n-aminoethyl-aminopropyltrimethoxy silane emulsion includes 5 to 70% by weight of n-aminoethyl-aminopropyltrimethoxy silane, 0.1 to 1% by weight of emulsifier, and the remaining water at 5,000 ~ Use the mixture that can be stirred at 10,000 rpm for 30 to 60 minutes. The diameter of n-aminoethyl-aminopropyltrimethoxy silane in the emulsion may be 0.1 to 1 μm. And the emulsifier is polyoxyethylene alkyl ether, polyoxyethylene alkylaryl ether, polyoxyethylene-oxypropylene block copolymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid. One or more of esters, polyoxyethylene fatty acid esters, polyoxyethylenealkylamines, fluoro-containing nonionic emulsifiers, alkylamine salts, quaternary ammonium salts, alkyl pyridinium salts, alkyl betaines, alkylamine oxides and phosphatidylchlorine. can be used.

아울러, 본 발명의 실란트 조성물은 반응촉매로서 아미노실란화합물 0.1~5중량부를 더 포함할 수 있다. 상기 아미노실란화합물로는 보다 구체적으로 N-(3- (Trimethoxysilyl)propyl)ethylenediamine(cas no. 1760-24-3)를 사용할 수 있다. In addition, the sealant composition of the present invention may further include 0.1 to 5 parts by weight of an aminosilane compound as a reaction catalyst. More specifically, N-(3- (Trimethoxysilyl)propyl)ethylenediamine (cas no. 1760-24-3) can be used as the aminosilane compound.

본 발명의 실란트 조성물은 내화 및 방열 특성의 향상을 위해 붕소처리된 티타늄 10~20중량부를 더 포함하는 것이 바람직하다. 이때, 상기 붕소처리된 티타늄은, 티타늄을 용융시킨 후, 이에 붕소 또는 액상 붕소를 1:0.4~0.6 중량비로 혼합한 후, 실온 냉각하여 분쇄한 것인바, 우수한 내화 및 방열 특성을 갖는다. The sealant composition of the present invention preferably further contains 10 to 20 parts by weight of boron-treated titanium to improve fire resistance and heat dissipation properties. At this time, the boron-treated titanium is obtained by melting titanium, mixing it with boron or liquid boron at a weight ratio of 1:0.4 to 0.6, cooling to room temperature, and pulverizing, and has excellent fire resistance and heat dissipation properties.

또한, 본 발명의 실란트 조성물은 벤즈이미다졸론계 화합물 1~20중량부를 더 포함함이 바람직하다. In addition, the sealant composition of the present invention preferably further includes 1 to 20 parts by weight of a benzimidazolone-based compound.

상기 벤즈이미다졸론계 화합물 고온에서 발생하는 열라디칼 등의 열분해의 원인이 되는 물질을 이 화합물이 흡수하거나, 억제함으로써, 우수한 내열 및 내화 특성을 나타낸다. The benzimidazolone-based compound exhibits excellent heat resistance and fire resistance properties by absorbing or suppressing substances that cause thermal decomposition, such as thermal radicals generated at high temperatures.

상기 벤즈이미다졸론계 화합물은, 그 골격에 벤즈이미다졸론 부위를 포함하고 있으면 되고, 벤즈이미다졸론계 화합물에는 벤즈이미다졸론계 안료도 포함된다. 벤즈이미다졸론계 안료로서는, 영국 염료 염색 학회 및 미국 섬유 과학 기술·염색 기술협회가 공동으로 존율하고 있는 컬러인덱스(CI)명과 번호로 나타내는, Pigment Yellow 120(이하 PY), PY151, PY154, PY175, PY180, PY181, PY194, Pigment Orange 36(이하 PO), PO60, PO62, PO72, Pigment Red 171, PR175, PR176, PR185, PR208, Pigment Violet 32, Pigment Brown 25 등을 예로 들 수 있다. 일례로서 Pigment Yellow 181는 4'-카르바모일-4-[1-(2,3-디하이드로-2-옥소-1H-벤즈이미다졸-5-일카르바모일)아세토닐아조]벤즈아닐리드로 나타내는 화합물이다. The benzimidazolone-based compound may contain a benzimidazolone moiety in its skeleton, and the benzimidazolone-based compound also includes a benzimidazolone-based pigment. As benzimidazolone-based pigments, Pigment Yellow 120 (hereinafter PY), PY151, PY154, and PY175 are indicated by the color index (CI) name and number jointly maintained by the British Dyeing Society and the American Textile Science and Dyeing Technology Association. , PY180, PY181, PY194, Pigment Orange 36 (hereinafter PO), PO60, PO62, PO72, Pigment Red 171, PR175, PR176, PR185, PR208, Pigment Violet 32, Pigment Brown 25, etc. As an example, Pigment Yellow 181 is 4'-carbamoyl-4-[1-(2,3-dihydro-2-oxo-1H-benzimidazol-5-ylcarbamoyl)acetonylazo]benzanilide. It is a compound that represents

한편, 본 발명에서 별다른 설명은 생략되었다면, 각 분말 재료의 입자 크기는 실란트 조성물의 물성을 고려할 때 0.1~500㎛ 정도임이 바람직하다. Meanwhile, if further explanation is omitted in the present invention, the particle size of each powder material is preferably about 0.1 to 500 ㎛ considering the physical properties of the sealant composition.

상기와 같이 구성된 본 발명의 내열 및 내화 실란트 조성물은, 내열 및 내화 특성이 우수하여, 방화성능이 요구되는 건축용 내, 외장재의 2차 실링재, 글레이징 등으로 사용되어 건축 구조물의 방화성능을 월등히 향상시킬 수 있다는 장점이 있다. The heat-resistant and fire-resistant sealant composition of the present invention, composed as described above, has excellent heat-resistant and fire-resistant properties, and can be used as a secondary sealant, glazing, etc. for interior and exterior construction materials requiring fire protection performance, thereby significantly improving the fire protection performance of building structures. There is an advantage in that it can be done.

이하, 본 발명을 구체적인 실시예를 통해 상세히 설명한다. Hereinafter, the present invention will be described in detail through specific examples.

(실시예 1)(Example 1)

하기 표 1과 같은 조성비로 통상의 방법에 따라 실란트 조성물을 제조하였다.A sealant composition was prepared according to a conventional method with the composition ratio shown in Table 1 below.

실시예 1 조성비Example 1 Composition ratio 구분division Cas No.Cas No. 조성비(중량부)Composition ratio (parts by weight) Siloxanes and Silicones, di-Me, hydroxy-terminatedSiloxanes and Silicones, di-Me, hydroxy-terminated 70131-67-870131-67-8 100100 Dimethyl silicones and siloxanesDimethyl silicones and siloxanes 63148-62-963148-62-9 5050 VinyltrimethoxysilaneVinyltrimethoxysilane 2768-02-072768-02-07 1010 MethyltrimethoxysilaneMethyltrimethoxysilane 1185-55-31185-55-3 1010 Calcium carbonateCalcium carbonate 1317-65-31317-65-3 7070 Bis(ethyl 3-oxobutanoatoO1',O3)bis(2-propanolato)titaniumBis(ethyl 3-oxobutanoatoO1',O3)bis(2-propanolato)titanium 27858-32-827858-32-8 1010 N-(3- (Trimethoxysilyl)propyl)ethylenediamineN-(3-(Trimethoxysilyl)propyl)ethylenediamine 1760-24-31760-24-3 1One Fe2O3Fe2O3 68186-94-768186-94-7 2020 Aluminium hydroxideAluminum hydroxide 21645-51-221645-51-2 7070 실리카 에어로겔 분말 Silica Airgel Powder 1010 나노 그래핀 플레이크 nano graphene flakes 1010

여기서, 상기 실리카 에에로겔 분말은 물유리와 증류수를 혼합하여 5중량% 농도의 물유리 용액을 제조한 후, 아세트산과 에탄올을 각각 물유리 용액의 부피 기준으로 7부피%가 되도록 첨가하여, 혼합 용액을 제조하였다. 상기 혼합 용액의 부피 기준으로 헥산을 100부피%로 첨가하였고, 계면활성제 솔리탄 모노올리에이트(SPAN80)를 혼합 용액의 중량 기준으로 5중량% 첨가한 후 교반함으로써, 혼합 물유리 용액의 액적이 헥산에 균일하게 분산된 물유리/헥산 에멀션을 제조하였다. 상기 에멀션을 60℃로 가열하여 물유리 용액의 액적을 겔화하였고, 겔화가 완료된 습윤겔은 에탄올 중에 정치하여 용매를 치환하였다. 용매가 치환된 습윤겔을 110℃의 오븐에서 건조함으로써, 0.1~100㎛ 입도의 실리카 에어로겔 분말을 제조하였다.Here, the silica airgel powder is mixed with water glass and distilled water to prepare a water glass solution with a concentration of 5% by weight, and then acetic acid and ethanol are each added to 7% by volume based on the volume of the water glass solution to prepare a mixed solution. did. Hexane was added at 100% by volume based on the volume of the mixed solution, and 5% by weight of the surfactant solitan monooleate (SPAN80) was added based on the weight of the mixed solution and stirred, so that the droplets of the mixed water glass solution were added to the hexane. A uniformly dispersed water glass/hexane emulsion was prepared. The emulsion was heated to 60°C to gel the droplets of the water glass solution, and the fully gelated wet gel was left standing in ethanol to replace the solvent. Silica airgel powder with a particle size of 0.1 to 100 μm was prepared by drying the solvent-replaced wet gel in an oven at 110°C.

또한, 상기 나노 그래핀 플레이크는 그 입도가 100~1000nm인 것을 사용하였다.In addition, the nano graphene flakes were used with a particle size of 100 to 1000 nm.

(실시예 2)(Example 2)

실시예 1과 동일하게 실시하되, 붕소처리된 티타늄 10중량부를 더 포함하는 실란트 조성물을 제조하였다. A sealant composition was prepared in the same manner as in Example 1, but further comprising 10 parts by weight of boron-treated titanium.

상기 붕소처리된 티타늄은 티타늄을 1700℃로 용융한 후, 이에 붕소를 1:0.5중량비로 투입하고, 실온 냉각하여 1~500㎛로 분쇄하여 제조하였다.The boron-treated titanium was manufactured by melting titanium at 1700°C, adding boron at a weight ratio of 1:0.5, cooling to room temperature, and pulverizing to 1~500㎛.

(실시예 3)(Example 3)

실시예 2와 동일하게 실시하되, 벤즈이미다졸론계 화합물로서, Pigment Yellow 181 10중량부를 더 포함하는 실란트 조성물을 제조하였다.A sealant composition was prepared in the same manner as in Example 2, but further comprising 10 parts by weight of Pigment Yellow 181 as a benzimidazolone-based compound.

(실시예 4)(Example 4)

실시예 1과 동일하게 실시하되, 실리카 에어로겔 분말은, 제조된 실리카 에어로겔 분말에 공기를 1~20cc/min으로 주입하고, 60W의 전압을 인가하여 3분간 플라즈마 처리한 후, 이를 3부피배의 인산염 수용액에 25℃의 온도에서 30분간 침지한 후, 40℃로 건조하고, 0.1~100㎛로 분쇄하여 제조하였다. The same procedure as in Example 1 was carried out, except that the silica airgel powder was injected with air at 1 to 20 cc/min into the prepared silica airgel powder, applied with a voltage of 60 W, plasma treated for 3 minutes, and then mixed with 3 volumes of phosphate. It was prepared by immersing it in an aqueous solution at a temperature of 25°C for 30 minutes, drying it at 40°C, and pulverizing it to 0.1~100㎛.

또한, 나노 그래핀 플레이크는, 나노 그래핀 플레이크에 공기를 1~20cc/min으로 주입하고, 60W의 전압을 인가하여 3분간 플라즈마 처리한 후, 이를 3부피배의 n-아미노에틸-아미노프로필트리메톡시 실란 에멀션에 25℃의 온도에서 30분간 침지한 후, 40℃로 건조하고, 10~1000nm로 분쇄하여 제조하였다. In addition, for nano graphene flakes, air was injected into the nano graphene flakes at 1 to 20 cc/min, a voltage of 60 W was applied, plasma was treated for 3 minutes, and then the nano graphene flakes were mixed with 3 volumes of n-aminoethyl-aminopropyltri. It was prepared by immersing it in a methoxy silane emulsion at a temperature of 25°C for 30 minutes, drying it at 40°C, and pulverizing it to 10-1000 nm.

여기서, 상기 에멀션은 n-아미노에틸-아미노프로필트리메톡시 실란 30중량%, 에멀션화제 0.5중량% 및 잔부의 물을 균질기로 10,000rpm으로 60분간 교반하여 제조하였으며, 에멀션화제로는 폴리옥시에틸렌알킬아민과 알킬베타인을 1:1 중량비로 사용하였다.Here, the emulsion was prepared by stirring 30% by weight of n-aminoethyl-aminopropyltrimethoxy silane, 0.5% by weight of emulsifier, and the remaining water with a homogenizer at 10,000 rpm for 60 minutes, and the emulsifier was polyoxyethylene alkyl. Amine and alkylbetaine were used in a 1:1 weight ratio.

(비교예 1)(Comparative Example 1)

실시예 1과 동일하게 실시하되, 실리카 에어로겔 분말과 나노 그래핀 플레이크를 사용하지 않았다.The same procedure as Example 1 was performed, but silica airgel powder and nano graphene flakes were not used.

(시험예 1)(Test Example 1)

3장의 5mm 유리와 2층의 공간이 있는 복층 강화유리에 실란트 조성물을 7mm의 두께로 주입하고, 실온에서 10시간 경화시켜 방화유리 조립체를 제작하였다.The sealant composition was injected to a thickness of 7 mm into three sheets of 5 mm glass and two layers of spaced double-layer tempered glass, and cured at room temperature for 10 hours to produce a fire-resistant glass assembly.

그리고 KS F 2845:2013에 따라 내화시험을 실시하였다. 차염성 및 차열성의 시험시간 기준은 60분이며, 60분에 시험이 자동 종료되므로 60분 미만이면 성능미달임을 의미한다. 그 결과는 하기 표 2에 나타내었다.And a fire resistance test was conducted according to KS F 2845:2013. The standard test time for flame and heat insulation is 60 minutes, and since the test automatically ends at 60 minutes, anything less than 60 minutes means insufficient performance. The results are shown in Table 2 below.

내화시험 결과Fire resistance test results 구분division 차염성(60분)Cha Yeom-seong (60 minutes) 차열성(60분)Heat insulation (60 minutes) 실시예 1Example 1 60분60 minutes 60분60 minutes 실시예 2Example 2 60분60 minutes 60분60 minutes 실시예 3Example 3 60분60 minutes 60분60 minutes 실시예 4Example 4 60분60 minutes 60분60 minutes 비교예 1Comparative Example 1 41분41 minutes 38분38 minutes

상기 표 2에서와 같이, 본 발명의 실시예 1 내지 4는 모두 차염성 및 차열성 평가기준인 60분을 초과하여 그 성능이 우수하나, 비교예 1은 평가기준에 도달하지 못함을 확인하였다.As shown in Table 2, it was confirmed that Examples 1 to 4 of the present invention all had excellent performance by exceeding 60 minutes, which is the evaluation standard for flame blocking and heat insulation, but Comparative Example 1 did not meet the evaluation standard.

(시험예 2)(Test Example 2)

그리고 실시예 1 내지 4 및 비교예 1의 인장 강도, 접착성을 테스트하고, 그 결과를 하기 표 3에 나타내었다.Then, the tensile strength and adhesion of Examples 1 to 4 and Comparative Example 1 were tested, and the results are shown in Table 3 below.

접착강도: 전착강판(폭 25 mm, 길이 150 mm) 두 장 사이에 실란트를 폭과 넓이를 각각 25mm 두께를 3mm로 하여 실온에서 7일간 경화한 후 만능인장시험기(UTM)로 접착강도를 구하였다.Adhesive strength: A sealant was placed between two electrodeposited steel plates (width 25 mm, length 150 mm) with a width and width of 25 mm and a thickness of 3 mm. After curing at room temperature for 7 days, the adhesive strength was determined using a universal tensile tester (UTM). .

인장강도: 실란트의 두께를 3mm로 하여 실온에서 7일간 경화한 후 아령형 3 호로 시험편을 만들고, 만능인장시험기(UTM)로 인장강도를 구하였다.Tensile strength: The thickness of the sealant was set to 3 mm and cured at room temperature for 7 days. A test piece was made using a dumbbell type No. 3, and the tensile strength was determined using a universal tensile tester (UTM).

물성 측정 결과Physical property measurement results 구분division 인장 강도(kg/㎠)Tensile strength (kg/㎠) 접착성(kg/㎠)Adhesiveness (kg/㎠) 실시예 1Example 1 3535 2626 실시예 2Example 2 3737 2626 실시예 3Example 3 3737 2626 실시예 4Example 4 4040 3030 비교예 1Comparative Example 1 2828 2727

상기 표 3에서와 같이, 본 발명의 실시예 1 내지 4는 비교예 1에 비해 인장강도가 우수함을 확인할 수 있었다. 다만, 접착성에 있어서는 큰 차이는 없었으나, 상대적으로 실시예 1 내지 3에 비하여 실시예 4의 접착성이 우수하였다. As shown in Table 3, it was confirmed that Examples 1 to 4 of the present invention had superior tensile strength compared to Comparative Example 1. However, there was no significant difference in adhesiveness, but the adhesiveness of Example 4 was relatively superior to that of Examples 1 to 3.

(시험예 3)(Test Example 3)

TGA(Thermo-Gravimetric Analysis)를 이용하여 실시예 1 내지 4 및 비교예 1의 내열성을 평가하였다. 열분해 온도는 초기 무게의 5%가 감소되는 온도를 초기 분해온도로 하여 중량 감소율을 비교하였으며, 그 결과는 하기 표 4에 나타내었다.The heat resistance of Examples 1 to 4 and Comparative Example 1 was evaluated using TGA (Thermo-Gravimetric Analysis). The weight loss rate was compared by setting the temperature at which 5% of the initial weight is reduced as the initial decomposition temperature, and the results are shown in Table 4 below.

내열성 시험 결과Heat resistance test results 구분division TGA 중량감소율(%)TGA weight reduction rate (%) 실시예 1Example 1 0.11240.1124 실시예 2Example 2 0.10510.1051 실시예 3Example 3 0.10240.1024 실시예 4Example 4 0.11010.1101 비교예 1Comparative Example 1 0.15420.1542

상기 표 4에서와 같이, 본 발명의 실시예 1 내지 4는 비교예 1에 비해 내열성이 우수함을 확인할 수 있었다.As shown in Table 4, it was confirmed that Examples 1 to 4 of the present invention had superior heat resistance compared to Comparative Example 1.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.Through the above-described content, those skilled in the art will be able to see that various changes and modifications can be made without departing from the technical idea of the present invention. Therefore, the technical scope of the present invention should not be limited to what is described in the detailed description of the specification, but should be determined by the scope of the patent claims.

Claims (5)

하이드로 터미네이트된 폴리실록산(Siloxanes and Silicones, di-Me, hydroxy-terminated) 100중량부, 디메틸폴리실록산(Dimethyl silicones and siloxanes) 20~70중량부, 실란 경화제 5~35중량부, 무기 충전제 50~100중량부, 가교제 2~20중량부, 산화철 10~30중량부, 수산화알루미늄 50~100중량부, 실리카 에어로겔 분말 10~20중량부 및 나노 그래핀 플레이크 10~20중량부를 포함하는 것을 특징으로 하는 내화 및 내열 알콕시 실리콘 실란트 조성물.
Hydroterminated polysiloxanes (Siloxanes and Silicones, di-Me, hydroxy-terminated) 100 parts by weight, dimethyl polysiloxane (Dimethyl silicones and siloxanes) 20 to 70 parts by weight, silane curing agent 5 to 35 parts by weight, inorganic filler 50 to 100 parts by weight 2 to 20 parts by weight of a crosslinking agent, 10 to 30 parts by weight of iron oxide, 50 to 100 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of silica airgel powder, and 10 to 20 parts by weight of nano graphene flakes. Heat-resistant alkoxy silicone sealant composition.
제1항에 있어서,
붕소처리된 티타늄 10~20중량부를 더 포함하는 것을 특징으로 하는 내화 및 내열 알콕시 실리콘 실란트 조성물.
According to paragraph 1,
A fire-resistant and heat-resistant alkoxy silicone sealant composition further comprising 10 to 20 parts by weight of boron-treated titanium.
제1항에 있어서,
벤즈이미다졸론계 화합물 1~20중량부 및 반응촉매 0.1~5중량부를 더 포함하는 것을 특징으로 하는 내화 및 내열 알콕시 실리콘 실란트 조성물.
According to paragraph 1,
A fire-resistant and heat-resistant alkoxy silicone sealant composition further comprising 1 to 20 parts by weight of a benzimidazolone-based compound and 0.1 to 5 parts by weight of a reaction catalyst.
제1항에 있어서,
상기 실리카 에어로겔 분말은,
실리카 에어로겔 분말을 플라즈마 처리하고, 이를 인산염 수용액에 20~30℃의 온도에서 30~40분간 침지한 후, 건조하고 0.1~100㎛로 분쇄한 것임을 특징으로 하는 내화 및 내열 알콕시 실리콘 실란트 조성물.
According to paragraph 1,
The silica airgel powder is,
A fire-resistant and heat-resistant alkoxy silicone sealant composition, characterized in that silica airgel powder is plasma treated, immersed in an aqueous phosphate solution for 30 to 40 minutes at a temperature of 20 to 30 ° C., dried, and ground to a size of 0.1 to 100 ㎛.
제1항에 있어서,
상기 나노 그래핀 플레이크는,
상기 나노 그래핀 플레이크를 플라즈마 처리하고, 이를, n-아미노에틸-아미노프로필트리메톡시 실란 에멀션에 20~30℃의 온도에서 30~40분간 침지한 후, 건조하고 10~1000nm로 분쇄한 것임을 특징으로 하는 내화 및 내열 알콕시 실리콘 실란트 조성물.

According to paragraph 1,
The nano graphene flakes,
The nano graphene flakes were plasma treated, immersed in an n-aminoethyl-aminopropyltrimethoxy silane emulsion at a temperature of 20 to 30°C for 30 to 40 minutes, dried, and ground to 10 to 1000 nm. A fire-resistant and heat-resistant alkoxy silicone sealant composition.

KR1020230150088A 2023-11-02 2023-11-02 Fire resistant and heat resistant alkoxy silicone sealant composition KR102645119B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230150088A KR102645119B1 (en) 2023-11-02 2023-11-02 Fire resistant and heat resistant alkoxy silicone sealant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230150088A KR102645119B1 (en) 2023-11-02 2023-11-02 Fire resistant and heat resistant alkoxy silicone sealant composition

Publications (1)

Publication Number Publication Date
KR102645119B1 true KR102645119B1 (en) 2024-03-11

Family

ID=90248860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230150088A KR102645119B1 (en) 2023-11-02 2023-11-02 Fire resistant and heat resistant alkoxy silicone sealant composition

Country Status (1)

Country Link
KR (1) KR102645119B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674035B1 (en) 1999-02-02 2007-01-24 다우 코닝 코포레이션 Fire resistant sealant composition
KR102039767B1 (en) 2015-12-29 2019-11-01 (주)탑프라 Sealant composition for fireproofing materials and the manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674035B1 (en) 1999-02-02 2007-01-24 다우 코닝 코포레이션 Fire resistant sealant composition
KR102039767B1 (en) 2015-12-29 2019-11-01 (주)탑프라 Sealant composition for fireproofing materials and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN109370288B (en) Intumescent water-based fireproof flame-retardant coating for wood material and preparation method thereof
CN112961528B (en) Environment-friendly fireproof coating and preparation method thereof
CN104130671A (en) Aqueous ultrathin expansion-type fireproof coating for steel structure and preparation method thereof
KR20050091743A (en) Flame retardant polymer compositions
CN103740231A (en) Water-based expansive type nano fireproof coating for cable and preparation method thereof
KR100791052B1 (en) Fireproof Paint Composition and Manufacturing Method of using thereof for Fireproof Paint
KR102113031B1 (en) Method for manufacturing inorganic thermal insulation paint compositon with anti-condensation furction comprising aerogel, and inorganic thermal insulation paint compositon with anti-condensation furction comprising aerogel manufactured by the same
CN110551397B (en) Aerogel-containing heat-insulating silicone rubber foam material and preparation method thereof
CN113122124B (en) Expansion type flame-retardant heat-insulating fireproof coating and preparation method thereof
CN108795302B (en) Novel fire-resistant and flame-retardant silicone rubber self-adhesive tape
CN110066638A (en) A kind of fire prevention silicone sealant of high temperature resistant ablation and preparation method thereof
CN109867948A (en) A kind of spring high-efficient fire-proof plugging sheet material and preparation method thereof
KR102645119B1 (en) Fire resistant and heat resistant alkoxy silicone sealant composition
CN115029029A (en) Low-smoke flame-retardant water-based epoxy fireproof coating as well as preparation method and application thereof
KR102645121B1 (en) Fire resistant and heat resistant modified silicone sealant composition
KR101489583B1 (en) Non-Flammable composite for expanded polystyrene foam and manufacturing method thereof
KR102623765B1 (en) Method for making enviromental heat insulating resin
CN103602070B (en) A kind of silicon rubber composite material and preparation method thereof
KR102645123B1 (en) Fire resistant and heat resistant urethane sealant composition
CN112876947A (en) Expansion type coating for steel structure
KR101448253B1 (en) Intumescence fireproof coating composition with ligneous cellulose fiber
KR102025428B1 (en) Semi-incombustible cement base materials
CN116120814A (en) Environment-friendly organosilicon modified intumescent fireproof coating
CN114591557B (en) Flame-retardant low-density polyethylene composite material and preparation method thereof
CN105038243A (en) Flame retardant based on organic silicon resin

Legal Events

Date Code Title Description
GRNT Written decision to grant