KR102642479B1 - Manufacturing method of antibacterial and antiviral film - Google Patents

Manufacturing method of antibacterial and antiviral film Download PDF

Info

Publication number
KR102642479B1
KR102642479B1 KR1020210119338A KR20210119338A KR102642479B1 KR 102642479 B1 KR102642479 B1 KR 102642479B1 KR 1020210119338 A KR1020210119338 A KR 1020210119338A KR 20210119338 A KR20210119338 A KR 20210119338A KR 102642479 B1 KR102642479 B1 KR 102642479B1
Authority
KR
South Korea
Prior art keywords
antibacterial
water
heating
film
silicic acid
Prior art date
Application number
KR1020210119338A
Other languages
Korean (ko)
Other versions
KR20230036454A (en
Inventor
한승훈
이지현
Original Assignee
119케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 119케이 주식회사 filed Critical 119케이 주식회사
Priority to KR1020210119338A priority Critical patent/KR102642479B1/en
Publication of KR20230036454A publication Critical patent/KR20230036454A/en
Application granted granted Critical
Publication of KR102642479B1 publication Critical patent/KR102642479B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 항균 및 항바이러스성 필름의 제조방법에 관한 것으로, 더욱 상세하게는 합성수지 펠릿에 수용성 규산혼합물을 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물을 건조하는 건조단계, 상기 건조단계를 통해 건조된 혼합물을 압출하여 필름으로 성형하는 성형단계 및 상기 성형단계를 통해 제조된 성형물 냉각하고 권취하는 냉각권취단계로 이루어진다.
상기의 과정을 통해 제조되는 필름은 수용성 규산혼합물이 함유되어 우수한 항균 및 항바이러스성을 나타낼 뿐만 아니라, 원적외선 방사효과가 우수하여 세균이나 곰팡이의 증식이 억제되기 때문에 내용물의 변질을 억제하는 효과를 나타낸다.
The present invention relates to a method for manufacturing an antibacterial and antiviral film, and more specifically, a raw material mixing step of mixing a water-soluble silicic acid mixture with synthetic resin pellets, a drying step of drying the mixture prepared through the raw material mixing step, and the drying step. It consists of a molding step in which the dried mixture is extruded and formed into a film, and a cooling and winding step in which the molded product manufactured through the molding step is cooled and wound.
The film manufactured through the above process not only exhibits excellent antibacterial and antiviral properties because it contains a water-soluble silicic acid mixture, but also has an excellent far-infrared radiation effect, suppressing the growth of bacteria and mold, thereby suppressing the deterioration of the contents. .

Description

항균 및 항바이러스성 필름의 제조 방법 {MANUFACTURING METHOD OF ANTIBACTERIAL AND ANTIVIRAL FILM}Method for manufacturing antibacterial and antiviral film {MANUFACTURING METHOD OF ANTIBACTERIAL AND ANTIVIRAL FILM}

본 발명은 항균 및 항바이러스성 필름의 제조 방법에 관한 것으로, 더욱 상세하게는 수용성 규산혼합물이 함유되어 우수한 항균 및 항바이러스성을 나타낼 뿐만 아니라, 원적외선 방사효과가 우수하여 세균이나 곰팡이 등의 미생물 증식이 억제되기 때문에 내용물의 변질을 억제하는 효과를 나타내는 항균 및 항바이러스성 필름의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an antibacterial and antiviral film. More specifically, it not only exhibits excellent antibacterial and antiviral properties by containing a water-soluble silicic acid mixture, but also has an excellent far-infrared radiation effect, preventing the growth of microorganisms such as bacteria and mold. This relates to a method for manufacturing an antibacterial and antiviral film that has the effect of suppressing deterioration of the contents.

종래에는 플라스틱 제품에 대해 다양한 방법으로 항균성을 부여하는 시도가 이루어졌는데, 주로 유기계 항균제나, 은 이온(silver ion), 아연 이온 등과 같은 무기계 항균제 및 생물 추출물이나 키토산(chitosan) 등의 천연성분을 사용하는 천연계 항균제 등을 적용하였다.Previously, attempts were made to impart antibacterial properties to plastic products in various ways, mainly using organic antibacterial agents, inorganic antibacterial agents such as silver ions and zinc ions, and natural ingredients such as biological extracts or chitosan. Natural antibacterial agents were applied.

유기계 항균제는 항균성이 강하다는 측면이 있지만, 일반적으로 용출속도가 빠르기 때문에 효과의 지속성이 낮고, 인체에 유해한 성분들로 이루어져 소비자의 안전성을 중시하는 최근의 경향에는 적합하지 못할 뿐만 아니라, 합성수지로 이루어진 원료에 백탁현상을 유발하거나, 광택 등을 저하시켜 제품의 품질을 저하시키는 문제점이 있었다.Organic antibacterial agents have strong antibacterial properties, but because they generally have a fast dissolution rate, the sustainability of the effect is low. They are made of ingredients harmful to the human body, so they are not suitable for the recent trend of emphasizing consumer safety, and they are made of synthetic resins. There was a problem of deteriorating the quality of the product by causing white turbidity in the raw materials or reducing gloss, etc.

또한, 은 이온이나 아연 이온을 이용한 무기계 항균제는 비교적 안전성이 높고, 광범위 세균에 대하여 항균성을 발휘하므로, 다양한 형태의 각종 합성수지 제품에 사용되고 있지만, 상기의 성분으로 이루어진 무기계 항균제가 함유된 합성수지는 투명성 저하, 변색 및 열화 현상이 비교적 빈번하게 발생하며 제조 비용이 지나치게 증가하는 문제점이 있었다.In addition, inorganic antibacterial agents using silver ions or zinc ions are relatively safe and exhibit antibacterial properties against a wide range of bacteria, so they are used in various types of synthetic resin products. However, synthetic resins containing inorganic antibacterial agents composed of the above components have lower transparency. , discoloration and deterioration occurred relatively frequently, and manufacturing costs increased excessively.

상기의 문제점을 해소하기 위해, 미분체 항균제를 알코올 등의 용매로 분산시키고, 성형품 표면에 분무, 도포하거나, 항균제를 포함하는 표면 코팅층으로 형성하는 등의 항균성 부여 방법이 제안되고 있지만 합성수지 성형품을 항균제로 표면코팅시킬 경우 성형품의 표면에 흠집이 생기거나, 시간이 경과하면 항균 성능이 급격하게 저하되는 문제점이 있었다,In order to solve the above problems, methods for imparting antibacterial properties have been proposed, such as dispersing a fine powder antibacterial agent in a solvent such as alcohol, spraying or applying it to the surface of a molded product, or forming a surface coating layer containing an antibacterial agent. However, synthetic resin molded products are not treated with an antibacterial agent. When surface coating was done, there was a problem that scratches appeared on the surface of the molded product or the antibacterial performance deteriorated rapidly over time.

이에, 본 발명자들은 상기 문제점을 해결하기 위해 합성수지 펠릿에 수용성 규산혼합물을 혼합하면 항균력이 우수할 뿐만 아니라, 원적외선이 방출되어 우수한 항균 및 항바이러스성을 나타내기 때문에, 내용물의 변질을 억제할 수 있는 항균필름을 제공할 수 있다는 것을 확인하여 본 발명을 완성하게 되었다.Accordingly, in order to solve the above problem, the present inventors found that mixing a water-soluble silicic acid mixture with a synthetic resin pellet not only has excellent antibacterial activity, but also emits far-infrared rays to exhibit excellent antibacterial and antiviral properties, thereby preventing deterioration of the contents. The present invention was completed by confirming that an antibacterial film could be provided.

한국특허등록 제10-0654185호(2006.11.29.)Korean Patent Registration No. 10-0654185 (2006.11.29.) 한국특허등록 제10-1007180호(2011.01.10.)Korean Patent Registration No. 10-1007180 (2011.01.10.)

본 발명의 목적은 수용성 규산혼합물이 함유되어 우수한 항균 및 항바이러스성을 나타낼 뿐만 아니라, 원적외선 방사효과가 우수하여 세균이나 곰팡이의 증식이 억제되기 때문에 내용물의 변질을 억제하는 효과를 나타내는 항균 및 항바이러스성 필름의 제조방법을 제공하는 것이다.The purpose of the present invention is to provide an antibacterial and antiviral product that not only exhibits excellent antibacterial and antiviral properties by containing a water-soluble silicic acid mixture, but also has an excellent far-infrared radiation effect, suppressing the growth of bacteria and mold, thereby suppressing the deterioration of the contents. The purpose is to provide a method for manufacturing a film.

본 발명의 목적은 합성수지 펠릿에 수용성 규산혼합물을 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물을 건조하는 건조단계, 상기 건조단계를 통해 건조된 혼합물을 압출하여 필름으로 성형하는 성형단계, 및 상기 성형단계를 통해 제조된 성형물을 냉각하고 권취하는 냉각권취단계로 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법을 제공함에 의해 달성된다.The purpose of the present invention is to include a raw material mixing step of mixing a water-soluble silicic acid mixture into synthetic resin pellets, a drying step of drying the mixture prepared through the raw material mixing step, and a molding step of extruding the dried mixture through the drying step and forming it into a film. This is achieved by providing a method for manufacturing an antibacterial and antiviral film, characterized in that it consists of a cooling and winding step of cooling and winding the molded product manufactured through the molding step.

본 발명의 바람직한 특징에 따르면, 상기 원료혼합단계는 합성수지 펠릿 100 중량부에 수용성 규산혼합물 0.1 내지 1 중량부를 혼합하여 이루어지는 것으로 한다.According to a preferred feature of the present invention, the raw material mixing step is performed by mixing 0.1 to 1 part by weight of a water-soluble silicic acid mixture with 100 parts by weight of synthetic resin pellets.

본 발명의 더 바람직한 특징에 따르면, 상기 합성수지 펠릿은 폴리에틸렌, 폴리프로필렌, 폴리우레탄 및 아크릴로니트릴부타디엔스티렌 공중합체로 이루어진 그룹에서 선택된 하나로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the synthetic resin pellet is made of one selected from the group consisting of polyethylene, polypropylene, polyurethane, and acrylonitrile butadiene styrene copolymer.

본 발명의 더욱 바람직한 특징에 따르면, 상기 수용성 규산혼합물은 SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것으로 한다.According to a more preferred feature of the present invention, the water-soluble silicic acid mixture contains at least one selected from the group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 ·10H 2 O.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 수용성 규산혼합물은 규산염 광물을 가열하여 용융하는 가열용융단계, 상기 가열용융단계를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계, 및 상기 숙성단계를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계를 통해 제조되는 것으로 한다.According to an even more preferred feature of the present invention, the water-soluble silicic acid mixture includes a heating and melting step of heating and melting the silicate mineral, a maturing step of maturing the silicate mineral melted through the heating and melting step to obtain silicate crystals, and the maturing process. It is manufactured through a mixing and heating step in which purified water is mixed with the silicate crystals obtained through the step and heated.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 가열용융단계는 규산염 광물을 1500 내지 2000℃의 온도로 10 내지 20시간 동안 가열하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the heating and melting step is performed by heating the silicate mineral at a temperature of 1500 to 2000° C. for 10 to 20 hours.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 숙성단계는 10 내지 20일 동안 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the ripening step is carried out for 10 to 20 days.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 혼합가열단계는 상기 숙성단계를 통해 수득된 규산염 결정체 100 중량부에 정제수 5000 내지 15000 중량부를 혼합하고 500 내지 1000℃의 온도로 가열하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the mixing and heating step is performed by mixing 5000 to 15000 parts by weight of purified water with 100 parts by weight of the silicate crystals obtained through the aging step and heating to a temperature of 500 to 1000°C.

본 발명에 따른 항균 및 항바이러스성 필름의 제조방법은 수용성 규산혼합물이 함유되어 우수한 항균 및 항바이러스성을 나타낼 뿐만 아니라, 원적외선 방사효과가 우수하여 세균이나 곰팡이의 증식이 억제되기 때문에 내용물의 변질을 억제하는 효과를 나타내는 항균 및 항바이러스성 필름을 제공하는 탁월한 효과를 나타낸다.The method of manufacturing an antibacterial and antiviral film according to the present invention not only exhibits excellent antibacterial and antiviral properties by containing a water-soluble silicic acid mixture, but also has excellent far-infrared ray radiation effect to suppress the growth of bacteria and mold, thereby preventing deterioration of the contents. It has an excellent effect of providing an antibacterial and antiviral film that has an inhibitory effect.

도 1은 본 발명에 따른 항균 및 항바이러스성 필름의 제조방법을 나타낸 순서도이다.
도 2는 본 발명에 사용되는 수용성 규산혼합물의 제조과정을 나타낸 순서도이다.
도 3 내지 4는 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물을 FE-SEM으로 촬영하여 나타낸 사진이다.
도 5는 본 발명의 실시예 1 및 비교예 1에 의해 제조된 필름의 항균 효과를 관찰한 사진이다.
도 6은 본 발명의 실시예 1에 의해 제조된 필름의 원적외선 방사 효과를 측정한 결과를 나타낸 사진이다.
Figure 1 is a flowchart showing a method for manufacturing an antibacterial and antiviral film according to the present invention.
Figure 2 is a flowchart showing the manufacturing process of the water-soluble silicic acid mixture used in the present invention.
Figures 3 and 4 are photographs taken by FE-SEM of the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention.
Figure 5 is a photograph observing the antibacterial effect of the film prepared in Example 1 and Comparative Example 1 of the present invention.
Figure 6 is a photograph showing the results of measuring the far-infrared radiation effect of the film prepared in Example 1 of the present invention.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Below, preferred embodiments of the present invention and the physical properties of each component are described in detail, but are intended to be described in detail so that those skilled in the art can easily practice the invention. This does not mean that the technical idea and scope of the present invention are limited.

본 발명에 따른 항균 및 항바이러스성 필름의 제조방법은 합성수지 펠릿에 수용성 규산혼합물을 혼합하는 원료혼합단계(S101), 상기 원료혼합단계(S101)를 통해 제조된 혼합물을 건조하는 건조단계(S103), 상기 건조단계(S103)를 통해 건조된 혼합물을 압출하여 필름으로 성형하는 성형단계(S105), 및 상기 성형단계(S105)를 통해 제조된 성형물을 냉각하고 권취하는 냉각권취단계(S107)로 이루어진다.The method for producing an antibacterial and antiviral film according to the present invention includes a raw material mixing step (S101) of mixing a water-soluble silicic acid mixture with synthetic resin pellets, and a drying step (S103) of drying the mixture prepared through the raw material mixing step (S101). , a molding step (S105) of extruding the dried mixture through the drying step (S103) and forming it into a film, and a cooling and winding step (S107) of cooling and winding the molded product manufactured through the molding step (S105). .

상기 원료혼합단계(S101)는 합성수지 펠릿에 수용성 규산혼합물을 혼합하는 단계로, 합성수지 펠릿 100 중량부에 수용성 규산혼합물 0.1 내지 1 중량부를 혼합하고 100rpm의 속도로 3시간 동안 교반하여 이루어지는데, 이때 상기 합성수지 펠릿은 필름으로 성형될 수 있는 합성수지라면 특별히 한정되지 않고 어떠한 것이든 사용가능하나, 필름의 물성을 고려했을 때, 폴리에틸렌, 폴리프로필렌, 폴리우레탄 및 아크릴로니트릴부타디엔스티렌 공중합체로 이루어진 그룹에서 선택된 하나로 이루어지는 것이 바람직하다.The raw material mixing step (S101) is a step of mixing a water-soluble silicic acid mixture with synthetic resin pellets, and is achieved by mixing 0.1 to 1 part by weight of a water-soluble silicic acid mixture with 100 parts by weight of synthetic resin pellets and stirring at a speed of 100 rpm for 3 hours. Synthetic resin pellets are not particularly limited and any synthetic resin that can be molded into a film can be used. However, considering the physical properties of the film, it is selected from the group consisting of polyethylene, polypropylene, polyurethane, and acrylonitrile butadiene styrene copolymer. It is desirable to have it done as one.

상기 수용성 규산혼합물은 본 발명을 통해 제조되는 필름에 항균 및 항바이러스성 뿐만 아니라, 원적외선 방사효과를 부여하는 역할을 하는데, SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상을 포함여 이루어진다.The water-soluble silicic acid mixture serves to provide not only antibacterial and antiviral properties but also far-infrared radiation effects to the film produced through the present invention, and is a group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 ·10H 2 O It consists of one or more selected from.

또한, 상기 수용성 규산혼합물은 규산염 광물을 가열하여 용융하는 가열용융단계(S201), 상기 가열용융단계(S201)를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계(S203), 및 상기 숙성단계(S203)를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계(S205)를 통해 제조된다.In addition, the water-soluble silicic acid mixture includes a heating and melting step (S201) of heating and melting the silicate mineral, a maturing step (S203) of maturing the silicate mineral melted through the heating and melting step (S201) to obtain a silicate crystal, and the above It is manufactured through a mixing heating step (S205) in which purified water is mixed with the silicate crystals obtained through the maturation step (S203) and heated.

상기 수용성 규산혼합물의 원료물질인 규산염 광물은 규산염으로 이루어진 광물로 규소와 산소가 주성분이며, 여기서 규소(Si, Silicon)는 인체에 필수적인 50여종 중에 가장 중요한 필수 미네랄로 자연 상태에서는 규소만이 독립적으로 존재하지 않고 이산화규소(SiO2) 상태로 존재하며 규소의 순도가 100%이면 수정이 되고, 그렇지 않으면 석영이 되며, 다른 광물이 많이 함유되면 규석(차돌)이 된다. 물에 녹지 않기 때문에 식용으로 사용이 부적합하므로 산업용으로 사용되는 것이 일반적이다. 이러한 규산염 광물은 결합과 배열상태에 따라 네소 규산염 광물, 소로 규산염 광물, 사이클로 규산염 광물, 이노 규산염 광물, 필로 규산염 광물, 텍토 규산염 광물로 구분될 수 있으며, 본 발명에서는 규산염 광물로 감람석, 석류석, 지르콘, 홍주석, 겔레나이트, 홍렴석, 녹주석, 전기석, 단사휘석, 사방각섬석, 사문석, 카올리나이트, 정장석, 및 사장석으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.Silicate mineral, which is the raw material of the water-soluble silicic acid mixture, is a mineral composed of silicates and its main components are silicon and oxygen. Here, silicon (Si, Silicon) is the most important essential mineral among the 50 types of minerals essential to the human body. In the natural state, only silicon is independently present. It does not exist, but exists in the form of silicon dioxide (SiO 2 ). If the purity of silicon is 100%, it becomes quartz. If it does not, it becomes quartz. If it contains a lot of other minerals, it becomes silica (marble). Because it is insoluble in water, it is unsuitable for human consumption, so it is generally used for industrial purposes. These silicate minerals can be classified into nesosilicate minerals, sorosilicate minerals, cyclosilicate minerals, inosilicate minerals, phyllosilicate minerals, and tectosilicate minerals depending on their bonding and arrangement states. In the present invention, silicate minerals include olivine, garnet, and zircon. , orthosite, gellenite, angiospermite, beryl, tourmaline, monoclinic pyroxene, rhombic hornblende, serpentine, kaolinite, orthosite, and plagioclase can be used.

상기 규산염 광물은 하기 후술할 가열용융단계(S201) 또는 숙성단계(S203)에 영향을 미치지 않도록 표면에 존재하는 이물질을 흐르는 물에 수차례 수세하여 준비할 수 있다. 또한, 볼 밀(Ball mill), 아크리션 밀(Attrition mill), 제트 밀(Jet mill), 회전밀(Rotary mill) 및 진동 밀(Vibration mill) 중 선택되는 어느 하나의 장비로 분쇄하여 준비하여도 무방하다.The silicate mineral can be prepared by washing foreign substances on the surface several times with running water so as not to affect the heating and melting step (S201) or the maturation step (S203), which will be described later. In addition, it is prepared by grinding with any equipment selected from a ball mill, attrition mill, jet mill, rotary mill, and vibration mill. It's okay too.

상기 가열용융단계(S201)는 규산염 광물을 1500 내지 2000℃의 온도로 10 내지 20시간 동안 가열하여 이루어지는데, 더욱 상세하게는 규산염 광물을 용광로에서 1500 내지 2000℃, 바람직하게는 1600 내지 1700℃의 온도로 10 내지 20시간, 바람직하게는 12 내지 15 시간 동안 가열하여 액체상태로 용융시키는 단계다.The heating and melting step (S201) is performed by heating the silicate mineral at a temperature of 1500 to 2000°C for 10 to 20 hours. More specifically, the silicate mineral is heated in a furnace at a temperature of 1500 to 2000°C, preferably 1600 to 1700°C. This is the step of melting into a liquid state by heating at a temperature of 10 to 20 hours, preferably 12 to 15 hours.

이때, 상기 가열온도가 1500℃ 미만이면, 규산염 광물이 유동성 및 점성을 갖는 액체상태로 용융되기 어려울 수 있고, 상기 가열온도가 2000℃를 초과하게 되면 과잉 온도 공급에 따른 상승 효과는 그다지 크지 않으며, 에너지 소비량만 증가되므로 바람직하지 못하다.At this time, if the heating temperature is less than 1500°C, it may be difficult for the silicate mineral to melt into a liquid state with fluidity and viscosity, and if the heating temperature exceeds 2000°C, the synergistic effect due to excess temperature supply is not very significant, This is undesirable because it only increases energy consumption.

또한, 가열시간이 10시간 미만이면, 규산염 광물이 충분히 용융되기 어려울 수 있고, 가열시간이 20시간을 초과하게 되면, 필요 이상의 열처리 시간에 따른 상승 효과는 그다지 크지 않으므로 상기에 기재된 가열시간을 유지하는 것이 바람직하다.In addition, if the heating time is less than 10 hours, it may be difficult to sufficiently melt the silicate mineral, and if the heating time exceeds 20 hours, the synergistic effect due to the heat treatment time longer than necessary is not so great, so it is necessary to maintain the heating time described above. It is desirable.

상기 숙성단계(S203)는 10 내지 20일 동안 이루어지는데, 상기 가열용융단계(S201)를 통해 용융된 규산염 광물을 10 내지 20일, 바람직하게는 12 내지 15일 동안 숙성시켜 규산염 결정체를 수득하는 단계다.The aging step (S203) is performed for 10 to 20 days, and the silicate mineral melted through the heating and melting step (S201) is aged for 10 to 20 days, preferably 12 to 15 days to obtain silicate crystals. all.

이때, 상기 숙성시간이 10일 미만이면, 규산염 결정체의 수득이 어렵고, 상기 숙성시간이 20일을 초과하게 되면 입자크기가 규산염 결정체의 입자크기가 1.0 내지 4.0 나노미터로 비대하게 커질 수 있으므로 바람직하지 못하다.At this time, if the maturation time is less than 10 days, it is difficult to obtain silicate crystals, and if the maturation time exceeds 20 days, the particle size of the silicate crystals may increase significantly to 1.0 to 4.0 nanometers, so it is not desirable. Can not do it.

즉, 상기와 같은 숙성시간을 거치게 되면, 거의 기체상태의 물질로 이온화된 0.2 내지 0.6 나노미터의 입자크기를 나타내는 규산염 결정체가 수득된다.In other words, when the maturation time is as described above, silicate crystals with a particle size of 0.2 to 0.6 nanometers that are ionized into an almost gaseous substance are obtained.

상기 혼합가열단계(S205)는 상기 숙성단계(S203)를 통해 수득된 규산염 결정체를 정제수와 혼합하고 가열하는 단계로, 상기 숙성단계(S203)를 통해 수득된 규산염 결정체 100 중량부에 정제수 5000 내지 15000 중량부를 혼합하고 500 내지 1000℃의 온도로 가열하여 이루어진다.The mixing and heating step (S205) is a step of mixing and heating the silicate crystals obtained through the aging step (S203) with purified water, and 5,000 to 15,000 parts by weight of purified water per 100 parts by weight of the silicate crystals obtained through the aging step (S203). This is done by mixing parts by weight and heating to a temperature of 500 to 1000°C.

상기 가열 온도가 500℃ 미만이면 규산염 결정체가 용출되지 않을 수 있고, 상기 가열온도가 1000℃를 초과하게 되면 규산염 결정체가 증발되어 규산염 결정체의 회수율이 저감될 수 있다.If the heating temperature is less than 500°C, the silicate crystals may not elute, and if the heating temperature exceeds 1000°C, the silicate crystals may evaporate and the recovery rate of the silicate crystals may be reduced.

상기와 같은 과정을 통해 제조되는 수용성 규산혼합물은 물에 대한 용해가 90% 이상을 나타낸다.The water-soluble silicic acid mixture prepared through the above process has a water solubility of more than 90%.

상기의 과정을 통해 제조되는 수용성 규산혼합물의 함량이 0.1 중량부 미만이면 제조된 필름에 항균 및 항바이러스성과 원적외선 방사성능이 미미하며, 상기 수용성 규산혼합물의 함량이 1 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 필름의 투명도나 기계적 강도와 같은 물성이 저하될 수 있다.If the content of the water-soluble silicic acid mixture prepared through the above process is less than 0.1 part by weight, the antibacterial, antiviral and far-infrared radiation performance of the produced film is minimal, and if the content of the water-soluble silicic acid mixture exceeds 1 part by weight, the above effects While not significantly improved, physical properties such as transparency or mechanical strength of the film may be reduced.

이때, 상기 수용성 규산혼합물은 수용액 상태의 수용성 규산혼합물을 건조시켜 분말상태로 전환한 후에 3 내지 4㎛로 분쇄한 후에 적용할 수도 있으며, 이 경우 상기 합성수지 펠릿 100 중량부 대비 3 내지 4 중량부가 혼합되는 것이 바람직하다. At this time, the water-soluble silicic acid mixture may be applied after drying the water-soluble silicic acid mixture in an aqueous solution state, converting it to a powder state, and pulverizing it to 3 to 4㎛. In this case, 3 to 4 parts by weight are mixed compared to 100 parts by weight of the synthetic resin pellet. It is desirable to be

상기 건조단계(S103)는 상기 원료혼합단계(S101)를 통해 제조된 혼합물을 건조하는 단계로, 상기 원료혼합단계(S101)를 통해 제조된 혼합물을 45 내지 60℃의 온도에서 5 내지 7시간 동안 건조하여 이루어진다.The drying step (S103) is a step of drying the mixture prepared through the raw material mixing step (S101), and the mixture prepared through the raw material mixing step (S101) is dried at a temperature of 45 to 60 ° C. for 5 to 7 hours. It is made by drying.

상기의 건조단계(S103)를 통해 수분이 제거되면서, 합성수지 펠릿의 표면에 수용성 규산혼합물의 도포되게 된다.As moisture is removed through the drying step (S103), the water-soluble silicic acid mixture is applied to the surface of the synthetic resin pellet.

상기 성형단계(S105)는 상기 건조단계(S103)를 통해 건조된 혼합물을 압출하여 필름으로 성형하는 단계로, 상기 건조단계(S103)를 통해 건조된 혼합물을 압출기로 압출하여 이루어지는데, 상기 압출기에 구비된 호퍼를 통해 혼합물에 함유된 수분을 제거한 후에, 수분이 제거된 혼합물을 실린더와 스크류 및 다이가 구비된 압출기를 통해 용융압출하는 과정으로 이루어진다.The forming step (S105) is a step of extruding the mixture dried through the drying step (S103) and forming it into a film. It is performed by extruding the mixture dried through the drying step (S103) with an extruder. After removing the moisture contained in the mixture through a provided hopper, the mixture from which the moisture has been removed is melted and extruded through an extruder equipped with a cylinder, screw, and die.

이때, 상기 수용성규산염이 상기에 기재된 것과 같이 분말상태로 전환한 후에 3 내지 4㎛로 분쇄한 후에 적용되는 경우에는 압출기로 압출하는 방법 외에, 사출기를 이용하여 사출성형하는 과정이 적용될 수도 있다.At this time, when the water-soluble silicate is applied after being converted to a powder state as described above and then pulverized to 3 to 4㎛, a process of injection molding using an injection machine may be applied in addition to the method of extruding with an extruder.

상기 냉각권취단계(S107)는 상기 성형단계(S105)를 통해 제조된 성형물을 냉각하고 권취하는 단계로, 상기 성형단계(S105)를 통해 제조된 필름 성형물을 공기 냉각하여 40 내지 60℃로 냉각한 후 회전롤러로 통과시켜 두께 등을 조절하고 권취하는 과정으로 이루어진다.The cooling and winding step (S107) is a step of cooling and winding the molded product manufactured through the forming step (S105). The film molded product manufactured through the forming step (S105) is cooled to 40 to 60° C. by air cooling. It is then passed through a rotating roller to adjust the thickness and winding.

상기 냉각권취단계에서 냉각온도가 40℃ 미만이면 상기 회전롤러를 통해 두께조절이 용이하지 못하며, 상기 냉각온도가 60℃를 초과하게 되면 회전롤러에 성형물이 달라붙거나, 권취시 필름간에 융착현상이 발생할 수 있기 때문에 바람직하지 못하다.If the cooling temperature in the cooling and winding step is less than 40°C, it is not easy to control the thickness through the rotating roller. If the cooling temperature exceeds 60°C, the molded product may stick to the rotating roller or a fusion phenomenon may occur between films during winding. This is not desirable because it can occur.

이하에서는, 본 발명에 따른 항균 및 항바이러스성 필름의 제조방법 및 그 제조방법으로 제조된 필름의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, the manufacturing method of the antibacterial and antiviral film according to the present invention and the physical properties of the film manufactured by the manufacturing method will be described using examples.

<제조예 1> 수용성 규산혼합물의 제조<Preparation Example 1> Preparation of water-soluble silicic acid mixture

규산염 광물의 표면에 존재하는 이물질을 제거한 후 용광로에서 1650℃의 온도로 13시간 동안 가열하여 용융시킨 후, 용융된 규산염 광물을 13일 동안 숙성시켜 규산염 결정체를 수득하고, 수득된 규산염 결정체 100 중량부를 정제수 10000 중량부와 혼합한 후에 800℃의 온도로 가열하여 액상형태의 수용성 규산혼합물을 제조하였다.After removing foreign substances present on the surface of the silicate mineral, it was melted by heating in a furnace at a temperature of 1650°C for 13 hours, and then the molten silicate mineral was aged for 13 days to obtain silicate crystals, and 100 parts by weight of the obtained silicate crystals was added. After mixing with 10,000 parts by weight of purified water, it was heated to a temperature of 800°C to prepare a water-soluble silicic acid mixture in liquid form.

상기 제조예 1을 통해 제조된 수용성 규산혼합물을 FE-SEM으로 촬영하여 아래 도 3 내지 4에 나타내었다. 아래 도 3 내지 4에 나타낸 것처럼, 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물은 구형의 규소입자가 무질서하게 분포된 비정질 상태인 것을 알 수 있다.The water-soluble silicic acid mixture prepared in Preparation Example 1 was photographed with FE-SEM and shown in Figures 3 and 4 below. As shown in Figures 3 and 4 below, it can be seen that the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention is in an amorphous state in which spherical silicon particles are randomly distributed.

<비교예 1> 수용성 규산혼합물의 제조<Comparative Example 1> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 용융된 규산염을 8 시간 동안 숙성시켜 수용성 규산혼합물을 제조하였다.Proceed in the same manner as Preparation Example 1, but the molten silicate was aged for 8 hours to prepare a water-soluble silicic acid mixture.

<비교예 2> 수용성 규산혼합물의 제조<Comparative Example 2> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 용융된 규산염을 5 시간 동안 숙성시켜 수용성 규산혼합물을 제조하였다.Proceed in the same manner as Preparation Example 1, but the molten silicate was aged for 5 hours to prepare a water-soluble silicic acid mixture.

<비교예 3> 수용성 규산혼합물의 제조<Comparative Example 3> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 규산염 결정체를 정제수와 혼합한 후에 가열하지 않고 수용성 규산혼합물을 제조하였다.Proceed in the same manner as Preparation Example 1, but after mixing the silicate crystals with purified water, a water-soluble silicic acid mixture was prepared without heating.

상기 제조예 1 및 비교예 1 내지 3을 통해 제조된 수용성 규산혼합물의 항균성을 측정하여 아래 표 1에 나타내었다.The antibacterial properties of the water-soluble silicic acid mixtures prepared through Preparation Example 1 and Comparative Examples 1 to 3 were measured and shown in Table 1 below.

{단, 항균성은 페이퍼디스크 확산법(Paper disk diffusion assay)을 이용하여 다음과 같이 실험을 실시하였다.{However, antibacterial properties were tested using the paper disk diffusion assay as follows.

시험균주 Escherichia coli ATCC 25922, 및 Pseudomonas aeruginosa ATCC 15442를 각각 희석하여 106 CFU/mL로 맞추고, 희석된 시험균주들을 MHA 플레이트에 각각 100μL씩 접종한 후 멸균한 면봉을 이용하여 도포하였다. 멸균한 집게로 페이퍼 디스크 (paper disk, 8 mm)를 플레이트에 올려놓고 제조예 1 및 비교에 1 내지 3의 수용성 규산(Na2SiO3·10H2O)을 50 μL씩 흡수시킨 후 37 ℃로 설정된 인큐베이터에서 24 시간 동안 배양하였다. 대조군으로는 증류수를 사용하였다.}The test strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 15442 were each diluted to 10 6 CFU/mL, and 100 μL of each diluted test strain was inoculated onto the MHA plate and applied using a sterilized cotton swab. Place a paper disk (8 mm) on the plate using sterilized forceps, absorb 50 μL of the water-soluble silicic acid (Na 2 SiO 3 ·10H 2 O) of Preparation Example 1 and Comparison 1 to 3, and then cool to 37°C. Cultured for 24 hours in a set incubator. Distilled water was used as a control.}

시험항목Test Items 시험결과Test result 초기농도Initial concentration 24시간 후 농도Concentration after 24 hours 세균감소율(%)Bacterial reduction rate (%) 대장균에 의한
항균시험
caused by E. coli
antibacterial test
대조군control group 424424 28632863 --
제조예 1Manufacturing Example 1 424424 1One 99.899.8 비교예 1Comparative Example 1 424424 187187 44.144.1 비교예 2Comparative Example 2 424424 205205 48.348.3 비교예 3Comparative Example 3 424424 221221 52.152.1 녹농균에 의한
항균시험
caused by Pseudomonas aeruginosa
Antibacterial test
대조군control group 437437 29572957 --
제조예 1Manufacturing Example 1 437437 1One 99.899.8 비교예 1Comparative Example 1 437437 177177 40.540.5 비교예 2Comparative Example 2 437437 196196 44.844.8 비교예 3Comparative Example 3 437437 214214 48.948.9

상기 표 1에 나타낸 것처럼, 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물은 우수한 항균성을 나타내는 것을 알 수 있다.As shown in Table 1, it can be seen that the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention exhibits excellent antibacterial properties.

<실시예 1><Example 1>

합성수지(폴리에틸렌) 펠릿 100 중량부에 상기 제조예 1을 통해 제조된 수용성 규산혼합물 0.4 중량부를 혼합하고 100rpm의 속도로 3시간 동안 교반한 후에 52℃의 온도에서 6시간 동안 건조하여 수용성 규산혼합물이 도포된 합성수지 펠릿을 제조한 후에, 압출기에 구비된 호퍼를 통해 혼합물에 함유된 수분을 제거한 후에, 수분이 제거된 혼합물을 실린더와 스크류 및 다이가 구비된 압출기를 통해 용융압출하고, 압출된 성형물을 공기 냉각시킨 후 회전롤러로 통과시켜 두께를 0.01 밀리미터로 조절한 후에 권취하여 항균 및 항바이러스성 필름을 제조하였다.100 parts by weight of synthetic resin (polyethylene) pellets were mixed with 0.4 parts by weight of the water-soluble silicic acid mixture prepared in Preparation Example 1, stirred at a speed of 100 rpm for 3 hours, dried at a temperature of 52°C for 6 hours, and the water-soluble silicic acid mixture was applied. After manufacturing the synthetic resin pellets, the moisture contained in the mixture is removed through a hopper provided in the extruder, and then the moisture-removed mixture is melt-extruded through an extruder equipped with a cylinder, screw, and die, and the extruded molded product is exposed to air. After cooling, it was passed through a rotating roller to adjust the thickness to 0.01 millimeter and then wound to produce an antibacterial and antiviral film.

<비교예 1><Comparative Example 1>

합성수지(폴리에틸렌) 펠릿을 압출기에 구비된 호퍼를 통해 혼합물에 함유된 수분을 제거한 후에, 수분이 제거된 혼합물을 실린더와 스크류 및 다이가 구비된 압출기를 통해 용융압출하고, 압출된 성형물을 공기 냉각시킨 후 회전롤러로 통과시켜 두께를 0.01 밀리미터로 조절한 후에 권취하여 필름을 제조하였다.After removing the moisture contained in the synthetic resin (polyethylene) pellets through a hopper provided in the extruder, the moisture-removed mixture is melt-extruded through an extruder equipped with a cylinder, screw, and die, and the extruded molded product is cooled in air. It was then passed through a rotating roller to adjust the thickness to 0.01 millimeter and then wound to produce a film.

상기 실시예 1을 통해 제조된 항균 및 항바이러스성 필름과 상기 비교예 1을 통해 제조된 필름의 항균성을 측정하여 아래 도 5에 나타내었다.The antibacterial and antiviral properties of the antibacterial and antiviral film prepared in Example 1 and the film prepared in Comparative Example 1 were measured and shown in Figure 5 below.

(단, 항균성은 제조된 필름으로 크림빵을 포장하고 상온에서 21일 경과 후에 곰팡이 발생여부를 촬영하는 방법을 이용하였다.)(However, antibacterial properties were determined by packaging cream bread with manufactured film and photographing mold growth after 21 days at room temperature.)

아래 도 5에 나타낸 것처럼, 본 발명의 실시예 1을 통해 제조된 항균 및 항바이러스 필름으로 포장된 식품은 21일이 경과하더라도 곰팡이가 발생되지 않은 것을 알 수 있다.As shown in Figure 5 below, it can be seen that the food packaged with the antibacterial and antiviral film prepared in Example 1 of the present invention did not develop mold even after 21 days.

또한, 상기 실시예 1을 통해 제조된 항균 및 항바이러스성 필름의 원적외선 방사효과를 한국원적외선현회의 의뢰하여 아래 도 6에 시험성적서로 나타내었다.In addition, the far-infrared radiation effect of the antibacterial and antiviral film prepared in Example 1 was requested by the Korea Far-Infrared Ray Society and is shown in a test report in Figure 6 below.

{단, 원적외선 방사효과는 제조된 필름을 방사율과 방사에너지로 나타내었으며, KFIA-FI-1005의 시험방법을 이용하되, 37℃의 온도에서 FT-IR Spectrometer를 이용한 BLACK BODY 대비 측정결과를 나타낸 것이다.}{However, the far-infrared radiation effect is expressed by the emissivity and radiation energy of the manufactured film, and the test method of KFIA-FI-1005 is used, and the measurement results are shown compared to BLACK BODY using a FT-IR Spectrometer at a temperature of 37℃. .}

아래 도 6에 나타낸 것처럼, 본 발명의 실시예 1을 통해 제조된 항균 및 항바이러스성 필름은 원적외선 방사효과가 우수한 것을 알 수 있다.As shown in Figure 6 below, it can be seen that the antibacterial and antiviral film prepared through Example 1 of the present invention has excellent far-infrared radiation effect.

따라서, 본 발명에 따른 항균 및 항바이러스성 필름의 제조방법은 수용성 규산혼합물이 함유되어 우수한 항균 및 항바이러스성을 나타낼 뿐만 아니라, 원적외선 방사효과가 우수하여 세균이나 곰팡이의 증식이 억제되기 때문에 내용물의 변질을 억제하는 효과를 나타내는 항균 및 항바이러스성 필름을 제공한다.Therefore, the method for producing an antibacterial and antiviral film according to the present invention not only exhibits excellent antibacterial and antiviral properties by containing a water-soluble silicic acid mixture, but also has excellent far-infrared radiation effect to suppress the growth of bacteria and mold, thereby suppressing the growth of bacteria and mold. Provides an antibacterial and antiviral film that has the effect of suppressing deterioration.

S101 ; 원료혼합단계
S103 ; 건조단계
S105 ; 성형단계
S107 ; 냉각권취단계
S201 ; 가열용융단계
S203 ; 숙성단계
S205 ; 혼합가열단계
S101 ; Raw material mixing stage
S103 ; drying stage
S105 ; Molding stage
S107 ; Cooling winding step
S201 ; Heating and melting step
S203 ; Ripening stage
S205 ; Mixed heating step

Claims (8)

합성수지 펠릿에 수용성 규산혼합물을 혼합하는 원료혼합단계;
상기 원료혼합단계를 통해 제조된 혼합물을 건조하는 건조단계;
상기 건조단계를 통해 건조된 혼합물을 압출하여 필름으로 성형하는 성형단계; 및
상기 성형단계를 통해 제조된 성형물을 냉각하고 권취하는 냉각권취단계;로 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법으로,
상기 수용성 규산혼합물은 규산염 광물을 가열하여 용융하는 가열용융단계; 상기 가열용융단계를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계; 및 상기 숙성단계를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계;를 통해 제조되는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
A raw material mixing step of mixing a water-soluble silicic acid mixture into synthetic resin pellets;
A drying step of drying the mixture prepared through the raw material mixing step;
A molding step of extruding the dried mixture through the drying step and forming it into a film; and
A method for producing an antibacterial and antiviral film, characterized in that it consists of a cooling and winding step of cooling and winding the molded product manufactured through the molding step,
The water-soluble silicic acid mixture includes a heating and melting step of heating and melting the silicate mineral; A maturing step of maturing the molten silicate mineral through the heating and melting step to obtain silicate crystals; and a mixing heating step of mixing purified water with the silicate crystals obtained through the aging step and heating them.
청구항 1에 있어서,
상기 원료혼합단계는 합성수지 펠릿 100 중량부에 수용성 규산혼합물 0.1 내지 1 중량부를 혼합하여 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1,
The raw material mixing step is a method of producing an antibacterial and antiviral film, characterized in that it is achieved by mixing 0.1 to 1 part by weight of a water-soluble silicic acid mixture with 100 parts by weight of synthetic resin pellets.
청구항 1 또는 2에 있어서,
상기 합성수지 펠릿은 폴리에틸렌, 폴리프로필렌, 폴리우레탄 및 아크릴로니트릴부타디엔스티렌 공중합체로 이루어진 그룹에서 선택된 하나로 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1 or 2,
A method for producing an antibacterial and antiviral film, characterized in that the synthetic resin pellet is made of one selected from the group consisting of polyethylene, polypropylene, polyurethane, and acrylonitrile butadiene styrene copolymer.
청구항 1에 있어서,
상기 수용성 규산혼합물은 SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1,
The water-soluble silicic acid mixture is a method of producing an antibacterial and antiviral film, characterized in that it includes one or more selected from the group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 ·10H 2 O.
삭제delete 청구항 1에 있어서,
상기 가열용융단계는 규산염 광물을 1500 내지 2000℃의 온도로 10 내지 20시간 동안 가열하여 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1,
The heating and melting step is a method of producing an antibacterial and antiviral film, characterized in that the silicate mineral is heated at a temperature of 1500 to 2000 ° C. for 10 to 20 hours.
청구항 1에 있어서,
상기 숙성단계는 10 내지 20일 동안 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1,
A method for producing an antibacterial and antiviral film, characterized in that the ripening step is performed for 10 to 20 days.
청구항 1에 있어서,
상기 혼합가열단계는 상기 숙성단계를 통해 수득된 규산염 결정체 100 중량부에 정제수 5000 내지 15000 중량부를 혼합하고 500 내지 1000℃의 온도로 가열하여 이루어지는 것을 특징으로 하는 항균 및 항바이러스성 필름의 제조방법.
In claim 1,
The mixing heating step is performed by mixing 5000 to 15000 parts by weight of purified water with 100 parts by weight of the silicate crystals obtained through the aging step and heating to a temperature of 500 to 1000° C. A method of producing an antibacterial and antiviral film.
KR1020210119338A 2021-09-07 2021-09-07 Manufacturing method of antibacterial and antiviral film KR102642479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210119338A KR102642479B1 (en) 2021-09-07 2021-09-07 Manufacturing method of antibacterial and antiviral film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210119338A KR102642479B1 (en) 2021-09-07 2021-09-07 Manufacturing method of antibacterial and antiviral film

Publications (2)

Publication Number Publication Date
KR20230036454A KR20230036454A (en) 2023-03-14
KR102642479B1 true KR102642479B1 (en) 2024-02-29

Family

ID=85502733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210119338A KR102642479B1 (en) 2021-09-07 2021-09-07 Manufacturing method of antibacterial and antiviral film

Country Status (1)

Country Link
KR (1) KR102642479B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968198B1 (en) * 2018-07-24 2019-04-12 주식회사 디엘피 Antimicrobial film using water-soluble minerals and method for producing the same
KR102228207B1 (en) * 2020-07-28 2021-03-17 주식회사 스마트 Antibacterial film for light guide panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654185B1 (en) 2004-11-08 2006-12-06 (주)월드팬시 Sterilized micro nano-silver film having nonpoisonous and the process thereof
KR101007180B1 (en) 2009-11-16 2011-01-18 이재춘 Antibacterial film using inorganic bactericides dispersions and making process of antibacterial film
KR101529251B1 (en) * 2013-11-20 2015-06-17 한국식품연구원 Preparing method of composites for antimicrobial transparent polymer films, and composites for antimicrobial transparent polymer films prepared therefrom
KR102127450B1 (en) * 2018-03-30 2020-06-26 주식회사 엘비씨 Method of preparing water-soluble silicate, and water treatment agent and feed additive including the water-soluble silicate prepared by the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968198B1 (en) * 2018-07-24 2019-04-12 주식회사 디엘피 Antimicrobial film using water-soluble minerals and method for producing the same
KR102228207B1 (en) * 2020-07-28 2021-03-17 주식회사 스마트 Antibacterial film for light guide panel

Also Published As

Publication number Publication date
KR20230036454A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
CN107746499B (en) Biaxial stretching ventilated membrane
US8753657B2 (en) Antibacterial resin composition derived from a masterbatch, antibacterial fiber, antibacterial film and method for manufacturing the antibacterial resin composition derived from a master batch
CN106954636A (en) A kind of graphene nano silver composite material and its preparation method and application
CN107955252A (en) A kind of nanometer fruits and vegetables antifog film and preparation method thereof
CN106146990A (en) A kind of antibacterial food packaging material with sustained release performance and preparation method thereof
CN106117732A (en) A kind of membrane product and preparation method thereof, application
KR102642479B1 (en) Manufacturing method of antibacterial and antiviral film
KR100865117B1 (en) Method of preparing plastic articles with excellent antibacterial and antifungal properies
KR20150067466A (en) Antibiotic composition comprising surface-modified tetrapod ZnO and Preparation method thereof
KR100939633B1 (en) Method for manufacturing artificial nail having antimicrobial and colorless function with nano metal particles treated
US2669764A (en) Manufacture of micaceous insulating materials
KR101991647B1 (en) Method of manufacturing anti-biotic film for packaging food using shellfish shell and anti-biotic film manufactured by the method
CN1257932C (en) Anti-virus thin film and biaxial tension technique
KR19990014476A (en) Antibacterial plastic resin film and its manufacturing method
CN110698982B (en) Intelligent temperature-adjusting non-woven fabric, intelligent temperature-adjusting coating and intelligent temperature-adjusting disposable hygienic product
KR102232460B1 (en) Fruit and vegetable freshness-keeping film containing illite and manufacturing method thereof
KR102373265B1 (en) Polypropylene resin composition comprising bamboo and bentonite and molded article obtained therefrom
KR101951009B1 (en) Plastic goods including plant fatty acid and the manufacturing method thereof
JPH0655836B2 (en) Master Badge
KR102616186B1 (en) Tile composition with excellent antibacterial and far-infrared radiation effect and manufacturing method thereof
CN115636590B (en) Antibacterial glass powder, preparation method thereof and plastic antibacterial material
KR101740656B1 (en) Preparation method of thermoplastic resin composition and thermoplastic resin composition prepared thereby
CN116285096B (en) Long-acting antibacterial polypropylene container and manufacturing method thereof
KR102232457B1 (en) Freshness-keeping film containing illite and manufacturing method thereof
CN114031886B (en) Anti-aging sole material and preparation process thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant