KR102630830B1 - 전사필름을 이용한 미세유체장비의 제조방법 - Google Patents

전사필름을 이용한 미세유체장비의 제조방법 Download PDF

Info

Publication number
KR102630830B1
KR102630830B1 KR1020210106241A KR20210106241A KR102630830B1 KR 102630830 B1 KR102630830 B1 KR 102630830B1 KR 1020210106241 A KR1020210106241 A KR 1020210106241A KR 20210106241 A KR20210106241 A KR 20210106241A KR 102630830 B1 KR102630830 B1 KR 102630830B1
Authority
KR
South Korea
Prior art keywords
substrate
wax
transfer film
transfer
manufacturing
Prior art date
Application number
KR1020210106241A
Other languages
English (en)
Other versions
KR20230024113A (ko
Inventor
이창수
정성근
Original Assignee
주식회사 에이아이더뉴트리진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이아이더뉴트리진 filed Critical 주식회사 에이아이더뉴트리진
Priority to KR1020210106241A priority Critical patent/KR102630830B1/ko
Priority to PCT/KR2022/004688 priority patent/WO2023017948A1/ko
Priority to CN202210948208.0A priority patent/CN115893300A/zh
Priority to US17/883,271 priority patent/US20230049054A1/en
Publication of KR20230024113A publication Critical patent/KR20230024113A/ko
Application granted granted Critical
Publication of KR102630830B1 publication Critical patent/KR102630830B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은 친수성 다공성 기재의 형상과 무관하게 왁스를 사용하여 한 장의 기재 내에 원하는 형상의 유로를 정밀하게 형성할 수 있는 미세유체장비의 제작방법에 관한 것으로, 보다 상세하게는 한 장의 친수성 다공성 기재 내에 왁스에 의한 미세유로가 형성된 미세유체장비의 제조방법에 있어서, 미세유로 형성을 위한 왁스 패턴의 거울상이 형성된 전사필름과 상기 기재를 적층한 후 열처리하는 단계를 포함하는 것을 특징으로 하는 미세유체장비의 제조방법에 관한 것이다.

Description

전사필름을 이용한 미세유체장비의 제조방법{Method for Fabrication of Microfluidic Device Using Transfer Film}
본 발명은 친수성 다공성 기재의 형상과 무관하게 왁스를 사용하여 한 장의 기재 내에 원하는 형상의 유로를 정밀하게 형성할 수 있는 미세유체장비의 제작방법에 관한 것이다.
종이는 다공성/섬유질 구조로서 화학물질을 저장 또는 고정시킬 수 있으며, 별도의 펌프가 없이도 모세관 현상에 의해 유체를 이동시킬 수 있어 미세유체의 이동을 필요로 하는 미세유체장비로 사용될 수 있다. 본 명세서에서 "종이"라는 대표적인 용어로 기술하기는 하지만, 이는 친수성 다공성 재질로 모세관 현상에 의해 유체의 측방 유동이 가능한 재질이라면 모두 소수성의 왁스를 이용한 동일한 기술이 적용될 수 있으며, 예를 들면 종이, 다공성 금속 매쉬, 부직포, 셀룰로오스, 키토산, PLA(폴리 락틱산)과 같은 친수성 고분자 멤브레인, 스펀지, 직물 등의 재질을 포함하지만 이에 한정되는 것은 아님은 당연하다.
종이는 인쇄·코팅·함침 등의 방법에 의해 다양하게 변형이 가능하므로 하나의 칩에서 동시에 다중 분석이 가능하도록 시료를 분리된 여러 공간으로 분배할 수 있다. 또한, 기계적인 유연성이 있고, 수십~수백 마이크로미터의 두께로 인해 적은 부피의 시료를 사용하여도 분석이 가능하며, 가볍고 이동이 용이하여 휴대성이 우수하므로 현장 적용에 적합할 뿐 아니라 소각에 의해 폐기가 가능하여 위험 폐기물을 손쉽게 제거할 수 있다. 무엇보다도 저비용으로 제작이 가능하여 초저가형 분석장비의 이상적인 플랫폼으로 주목받고 있다. 이에 건강진단, 환경 모니터링, 면역분석, 식품 안전 분석을 포함한 다양한 분야에서 응용이 가능하다.
종이기반 진단장비로 종이를 시료에 담가 색의 변화를 관측하는 딥스틱 형태는 1960년대 처음 상용화되어 대표적으로 요검사에 널리 이용되고 있다. 다공성 특성에 기인한 측방유동을 이용한 종이기반 미세유체장비는 이보다 늦은 1980년대 면역분석을 이용한 임신진단에 활용되기 시작한 이래, 식품, 환경 분야로 빠르게 확장되어 이용되고 있다.
종이기반 미세유체장비는 유체의 진행 방향에 따라 유체가 한쪽 방향으로만 이동하도록 고안된 1D 미세유체장비와, 수평방향인 동일 평면 내의 여러 방향으로 이동하도록 고안된 2D 미세유체장비, 수평방향 뿐 아니라 수직방향으로도 이동하는 3D 미세유체장비로 나눌 수 있다(도 1). 3D 미세유체장비는 1D 및 2D 미세유체장비에 비해 복잡한 구조의 유로를 형성하는 것이 가능하므로, 집약된 공간에서 동시다중분석이 가능하며, 더 진보된 비색분석법에 의한 정량분석이 가능하다. 진보된 비색분석법은 용액 내에서 검출하고자 하는 물질의 농도를 색이 변하는 점의 개수로 나타내는 분석법이다. 종래의 비색분석법은 정성적인 분석 또는 대략적인 양의 가늠만이 가능하여 정량분석을 위해서는 시약의 색의 변화를 정밀하게 분석하기 위해서 외부 전자분석장비가 필수였던 것에 반해, 진보된 비색분석법은 외부 전자분석장비 없이도 정량적인 분석이 가능하기 때문에 디지털 분석 장비로의 활용성을 배가시킬 수 있다.
종이기반 미세유체장비는 리소그라피나 왁스 프린팅, 에칭 등을 이용하여 종이위에 소수성 영역과 친수성 영역의 패턴을 형성하는 것에 의해 제작된다. 공개특허 제10-2010-0127301호는 종이와 양면 테이프를 사용한 3D 종이기반 미세유체장비의 제작방법을 게시하였다. 제작과정을 도 2를 참조하여 설명하면 다음과 같다. 먼저 복수의 종이를 적층하였을 때 원하는 채널 형상을 갖도록 각각의 종이에 소수성 영역과 친수성 영역의 패턴을 형성한다(210). 패턴의 형성은 2차원 종이기반 미세유체장비와 마찬가지로 리소그라피나 왁스 프린팅 등의 방법을 적절히 사용할 수 있다. 패턴이 형성된 각 층의 종이는 소수성의 양면 접착테이프를 사용하여 연결되게 되는데, 먼저 각 층의 종이가 접착되면 각 층의 친수성 영역(종이)를 따라 유체가 흐를 수 있도록 양면 접착테이프에 구멍을 뚫어준다(230). 이 때 양면 접착테이프에 형성된 구멍은 각 층의 종이의 접착 시 빈 공간으로 남아있게 되어 유체의 상하 이동(특히 상방향으로의 이동)을 방해한다. 따라서, 이들 구멍을 메워줄 친수성 물질(종이 또는 셀룰로오스 파우더 등)을 별도로 준비한다(250). 이후, 상기의 과정에서 준비된 구성요소를 정렬한 후 접착하는 것에 의해 3D 종이기반 미세유체장비를 완성한다. 상기 방법에 의해 3D 종이기반 미세유체장비를 제작할 수 있으나, 공정이 복잡하고, 많은 시간과 노동력을 필요로 하며, 각 층의 종이 및 접착테이프 층을 정밀하게 제어해야만 하며 이는 곧 생산 비용의 증가로 이어진다.
이러한 문제를 해결하기 위하여 본 발명자들은 등록특허 제10-1493051호에서 도 3에 도시된 바와 같이 한 장의 종이에 왁스를 양면 인쇄하고, 이를 열처리하는 것에 의해 3D 종이기반 미세유체장비를 제작하는 방법을 제안하였다. 상기 방법은 종래 방법에 비해 매우 단순화된 방법으로 3D 종이기반 미세유체장비를 간편하고 경제적으로 제조할 수 있다는 점에서 혁신적인 방법이다. 그러나 양면 인쇄를 한다고 하더라도 앞뒷면의 왁스 인쇄 패턴을 정교하게 정렬하기 어려우며, 3차원 구조물의 형상이 복잡해질수록 정렬 오차로 인한 불량이 문제가 된다. 더구나 종이자체가 직사각형이 아닌 비정형 형상을 갖는 경우에는 양면에 왁스 패턴을 인쇄하는 자체가 어렵다는 문제가 있다.
공개특허 제10-2010-0127301호(2010. 12. 03) 등록특허 제10-1493051호(2015. 02. 06.)
본 발명은 친수성 다공성 기재 내에 소수성 왁스를 사용하여 유로를 형성한 미세유체장비의 제작상의 문제를 해소하기 위한 것으로, 비정형 기재 상에도 원하는 형상의 유로를 형성할 수 있는 미세유체장비의 제조방법을 제공하는 것을 목적으로 한다.
특히 본 발명은 3차원 미세유체장비의 제조 시 앞뒷면의 왁스 패턴의 정렬이 어긋나 불량률이 높은 문제를 해소할 수 있는 미세유체장비의 제조방법을 제공하는 것을 목적으로 한다.
더 나아가 본 발명의 목적은 장비의 경계면에서의 왁스 패턴 형상을 간편하게 제어할 수 있는 미세유체장비의 제조방법을 제공하는 것이다.
전술한 목적을 달성하기 위한 본 발명은 친수성 다공성 기재 내에 왁스에 의한 미세유로가 형성된 미세유체장비의 제조방법에 있어서, 미세유로 형성을 위한 왁스 패턴의 거울상이 형성된 전사필름과 상기 기재를 적층한 후 열처리하는 단계를 포함하는 것을 특징으로 하는 미세유체장비의 제조방법에 관한 것이다.
본 발명의 미세유체장비 제조방법은 특히 3차원 미세유체장비의 제조 시 더욱 유용하게 적용될 수 있다. 구체적으로 본 발명의 미세유체장비의 제조방법은 3차원 미세유체장비의 제조 시 투명한 두 장의 전사필름으로부터 상기 기재의 양면에 각각 왁스 패턴을 열전사하여 한 장의 기재 내에 3차원 미세유로를 형성하는 것을 특징으로 하여, 양면의 왁스 패턴의 정렬 문제를 해결할 수 있다. 본 발명에서 "열전사"라 함은 전사필름의 왁스가 형성된 면과 기재가 맞닿은 상태로 열을 가하여, 용융된 왁스가 기재로 전사되는 것을 의미한다. 본 열전사 과정에서 왁스는 기재 표면으로 전사될 뿐 아니라 기재의 기공 내로 일부 침투하여 기재 내에 소수성 왁스를 계면으로 하는 미세유로를 형성한다.
상기 기재는 종이, 다공성 금속 매쉬, 부직포, 친수성 고분자 멤브레인, 스펀지 또는 직물일 수 있으며, 소정의 2차원 형상을 가질 수 있다. 통상 특정 규격의 직사각형 형상의 기재에는 왁스 프린터를 사용하여 비교적 쉽게 왁스 패턴을 인쇄할 수 있으나, 직사각형이 아닌 비정형 형상의 기재나 비유연성 기재는 프린터에 의한 인쇄가 어려우며 특히 양면 패턴을 정렬하여 인쇄하는 것은 더욱 어렵다. 본 발명은 특히 상기 기재가 2차원 비정형 형상을 갖는 경우, 더욱 유용하게 사용될 수 있다.
상기 비정형의 2차원 형상을 갖는 기재에는 기재의 경계면에서 왁스에 의해 형성되는 유로의 단면형상을 조절할 수 있다.
이상과 같이 전사에 의한 본 발명의 미세유체장비 제조방법에 의하면, 기재의 형상과 무관하게 왁스 패턴에 따른 미세유로의 형성이 가능하고, 기재의 경계면에서의 단면 형상을 용이하게 제어할 수 있다.
본 발명의 미세유체장비 제조방법은 투명한 전사필름을 사용하는 경우 종이 양면에 인쇄되는 왁스 패턴의 정렬이 용이하여 3차원 미세유체장비의 제작 시 불량률을 크게 낮출 수 있고 더욱 정밀한 미세유로를 형성할 수 있으므로 구조가 복잡한 진단, 분석 장치나 미세로봇 등 3차원 미세유체장비의 제조에 유용하게 이용할 수 있다.
특히 본 발명의 미세유체장비 제조방법은 기재의 형상이 비정형 형상인 경우, 기재를 미리 소정 형상으로 가공한 다음에도 왁스 패턴의 정렬이 용이하여 3차원 미세유체장비의 응용 분야를 확대할 수 있다.
도 1은 1차원, 2차원 및 3차원 미세유체장비의 모식도.
도 2 및 도 3은 종래기술에 의한 3차원 미세유체장비의 제조과정을 보여주는 도면.
도 4는 본 발명의 일양태에 의한 3차원 미세유체장비의 제조과정을 보여주는 순서도.
도 5는 도 4의 방법에 따른 미세유체장비의 제조과정을 보여주는 모식도.
도 6은 본 발명의 다른 일양태에 의한 3차원 미세유체장비의 제조과정을 보여주는 순서도.
도 7은 도 5의 방법에 따른 미세유체장비의 제조과정을 보여주는 모식도.
도 8 및 도 9는 본 발명의 일 실시예에 의한 특정 구조의 미세유로의 형성 과정을 보여주는 모식도.
이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 이러한 설명은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. 또한, 발명을 설명함에 있어서 발명과 관련된 공지 기술에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
전술한 바와 같이 본 발명은 한 장의 친수성 다공성 기재에 왁스에 의한 미세유로가 형성된 미세유체장비의 제조방법에 관한 것이다. 상기 미세유체장비는 기재의 다공성 특성으로 인하여 유체의 측방유동이 가능하며, 소수성인 왁스는 미세유체장비 내 미세유로의 경계를 형성한다.
종래 본 발명자들의 등록특허 제10-1493051호에서 미세유로 형성을 위한 왁스 패턴의 형성이 왁스 프린터를 통한 인쇄와 그에 이은 열처리에 의해 이루어지던 것과 달리, 본 발명은 왁스 패턴의 거울상이 형성된 전사필름과 상기 기재를 적층한 후 열처리하는 단계를 포함하여 제조되는 것을 특징으로 한다. 열처리 과정에서 기재 상에 전사필름으로부터 기재로 왁스가 전사되는 동시에, 기재의 기공 내로 녹아들어가게 된다. 동일한 전사 과정동안 기공 내로 침투되는 깊이는, 왁스의 용융점도의 영향을 받으며 이를 이용하여 유로의 깊이를 조절할 수 있어 용융점도가 다른 다양한 왁스를 사용하는 것에 의해 보다 복잡한 구조의 미세유체장비를 제조할 수 있다. 이에 대해서는 본 발명자들의 등록특허 제10-1662802호에 기재되어 있으므로 상세한 설명은 생략한다. 전사필름은 종래기술에서 전사되는 소재에 따라 이미 다양한 재질과 특성 등이 연구되어 왔으므로, 왁스의 전사에 적절한 필름을 선택하는 것은 당업자에게 용이할 것이다. 본 발명은 전사필름 그 자체에 관한 것이 아니라, 전사를 통한 미세유체장비의 제조방법에 관한 것이므로 전사필름 자체에 대한 상세한 설명 역시 생략한다.
전사를 통한 본 발명의 미세유체장비의 제조방법은 먼저 3차원 미세유체장비의 제조방법에 유용하게 사용될 수 있다. 등록특허 제10-1493051호의 방법에 의하면 기재의 양면에 미세유로 형성을 위한 왁스 패턴을 각각 인쇄한 후 열처리하는 방법으로 간단하게 미세유체장비를 제작할 수 있다. 그러나 기재의 양면 상응하는 위치에 정확하게 패턴을 정렬하여 인쇄하는 것은 쉽지 않으며, 양면이 동시에 인쇄되는 양면인쇄 방식을 사용하더라도 정렬 오차로 인한 불량이 발생하였다. 본 발명은 이러한 문제를 해결하기 위한 것으로, 투명한 두 장의 전사필름으로부터 상기 기재의 양면에 각각 왁스 패턴을 열전사하여 한 장의 기재 내에 3차원 미세유로를 형성하는 것을 특징으로 한다. 투명필름은 왁스 패턴의 정렬을 용이하게 하여 불량의 발생을 방지할 수 있다.
투명 전사필름을 사용한 3차원 미세유로가 형성된 미세유체장비의 제조방법은 예를 들어, 미리 두 장의 투명필름을 정렬한 후 고정하고 기재를 그 사이에 배치하여 열처리하는 도 4의 방법을 사용할 수 있다. 구체적으로 도 4의 방법은 (A) 3차원 유로 형성을 위하여 기재의 양면에 전사될 왁스 패턴의 거울상이 각각 형성되어 있는 투명한 전사필름을 준비하는 전사필름 준비 단계; (B) 왁스 형성면이 대향되도록 상기 전사필름을 정렬하고, 고정시키는 전사필름 정렬 및 고정 단계; (C) 상기 전사필름의 사이에 친수성의 다공성 기재를 배치하여 층상구조물을 형성하는 기재 배치 단계; (D) 상기 층상구조물에 열을 가하여, 왁스를 전사하는 동시에 기재에 3차원 미세유로를 형성하는 열처리 단계; 및 (E) 층상 구조물로부터 전사필름을 제거하는 전사필름 제거 단계;를 포함한다.
이하, 각 단계를 보다 구체적으로 설명한다.
먼저, (A) 전사필름 준비 단계는 3차원 유로 형성을 위한 전사필름 한 세트를 준비하는 단계이다. 3차원 유로 형성을 위해서는 먼저 기재의 양면에 각각 형성될 왁스 패턴을 디자인하여야 한다. 종래에는 디자인될 왁스 패턴을 바로 기재의 양면에 인쇄하였던 것에 비해, 본 발명에서는 두 장의 전사필름으로부터 각각 기재의 양면으로 전사할 것이므로 왁스 패턴의 거울성상 두 장의 전사필름에 각각 형성되어 있는 전사필름을 준비한다. 이때, 상기 전사필름은 투명한 것을 특징으로 한다.
(B) 전사필름 정렬 및 고정 단계는 상기 한 세트의 전사필름을 왁스가 형성된 면이 대향되도록 정렬하고, 고정시키는 단계이다.
본 발명에서는 전사필름이 투명하기 때문에 기재의 양면에 형성될 왁스 패턴의 거울상이 두 장의 전사필름에 각각 형성되어 있다고 하더라도, 이들을 정밀하게 정렬할 수 있다. 본 발명에서 투명하다는 것은, 필름이 적층된 상태에서 다른 층의 형상을 식별할 정도를 의미하는 것으로 반투명을 포함하는 의미이다. 예를 들어, 가시광선 영역에서 50% 이상의 투명도를 갖는다면 정렬에는 어려움이 없을 것이나, 투명도가 높을수록 정렬이 용이함은 당연하다. 또한 전체 가시광선 영역에서의 투명도가 50% 이하라고 하더라도 왁스의 색상에 해당되는 파장 영역의 투과도가 높아 식별이 용이하다면 본 발명의 취지에 부합한다.
본 발명에서 "정렬"한다고 함은 기재에 형성될 왁스 패턴의 위치가 서로 상응하도록 위치를 조정하는 것을 의미한다. 투명한 전사필름을 통하여 상대 전사필름에 형성되어 있는 왁스 패턴을 인식하는 것은 나안(裸眼)으로 할 수도 있으나, 더욱 정밀한 정렬이 필요하다면 현미경과 같은 기구를 사용할 수도 있다. 정렬이 완료되면 두 장의 전사필름은 정렬이 흐트러지지 않도록 고정된다. 고정은 가장 간단하게는 테이프나 핀, 집게 등을 사용할 수 있으며, 고정 방법이 한정되는 것은 아니다.
상기 (C) 단계는 기재 배치 단계로, 전사필름의 사이에 친수성의 다공성 기재를 끼워 넣어 배치하는 단계이다. 전사필름은 전 단계에서 이미 정렬된 상태로 고정되어 있으므로, 기재를 끼워 넣어도 정렬된 상태를 유지할 수 있다. 그러나 예를 들어 기재의 두께가 두꺼워 기재를 배치하였을 때 정렬이 어긋날 우려가 있다면, 본 단계에서 투명한 정렬용 필름을 사용할 수 있다. 즉, 두 장의 전사필름의 사이에 정렬용 필름을 끼워 넣은 전사필름-정렬용 필름-전사필름의 상태로 적층한 후 전사필름을 고정하고, 이후 기재로 정렬용 필름을 대체할 수 있다. 이때, 정렬용 필름의 두께는 기재의 두께와 유사한 것을 사용하는 것이 바람직하다. 정렬용 필름은 투명하기 때문에 전사필름의 정렬에 영향을 미치지 않으며, 정렬된 상태에서 기재를 배치하는 것에 의해 발생되는 정렬 오차를 방지한다.
만일 본 단계에서 형성된 층상구조물에 두 장의 전사필름이 직접 겹쳐지는 영역이 있다면, 즉, 기재가 중간에 없는 영역이 있다면, 해당 영역에 정렬마크를 표시할 수 있다. 정렬마크는 기재의 배치 시 정렬 오차의 발생 여부를 미리 판독할 수 있도록 한다.
정렬용 필름은 두 장의 전사필름의 사이에서 정렬 후 제거가 용이하도록 일측 방향이 상기 전사필름보다 길고, 전사필름의 고정이 용이하도록 타측 방향은 상기 전사필름보다 짧은 형태일 수 있다. 정렬용 필름이 짧은 쪽 방향의 양단에는 전사필름이 직접적으로 중첩되어 있으므로 전사필름 끼리만 고정할 수 있으며, 전사필름의 고정 후 정렬용 필름이 긴쪽을 잡고 당기는 것에 의해 정렬용 필름을 용이하게 제거할 수 있다. 또한 정렬용 필름이 긴 쪽 일 말단을 기재와 연결시켜 놓고, 타단을 잡고 당기면 정렬용 필름이 제거되면서 기재가 대신 그 자리로 대체될 수 있다. 정렬용 필름은 전사필름 사이의 간격을 유지할 만큼의 크기이면 충분하며, 기재의 크기에 대응하여야 하는 것은 아니다.
상기 (D) 열처리 단계는 전사필름-기재-전사필름의 층상구조물을 열처리하여 전사필름으로부터 기재로 왁스가 전사되고, 이어 전사된 왁스가 기재 내의 기공으로 침투되는 단계이다. 도 5는 본 (C) 단계 내지 하기 (E) 단계를 설명하는 도면으로, 열처리 과정에서 왁스가 기재 내부로 침투되며 왁스의 용융점도에 따라 침투 정도가 다를 수 있음을 보여준다. 양면에서 각각 전사된 왁스가 기재의 양면으로 침투하여 서로 만나게 된다면 기재 내에 미세유로의 벽이 형성되며, 양면에서 전사된 왁스가 기재의 양면으로 침투하되 만나지 않으면 기재의 단면에서 위아래에 왁스에 의한 벽이 형성되어 기재의 단면방향으로 유체가 이동하는 미세유로가 형성된다. 기재의 위 또는 아래에서만 왁스가 전사되어 기재로 침투하면 기재의 위 또는 아래에서 수직방향으로 유체가 이동하는 유로가 형성된다. 이외 여러 가지 응용형태가 있으나, 이는 미세유체장비의 형태에 따라 종래기술을 응용하여 적용할 수 있을 것이다.
(E)의 전사필름 제거 단계는 상기 (D)의 열처리 단계에서 전사필름(21)으로부터 기재(11)로 왁스(31)의 전사 및 기공으로 침투가 이루어져 왁스(31)로 인한 미세유로가 완성됨에 따라, 전사필름(21)을 제거하고 미세유체장비(1)를 수득하는 단계이다. 경우에 따라서는 전사필름이 붙은 상태로 미세유체장비를 보관 및 유통하며 사용 직전에 제거할 수도 있다. 이 경우 전사필름은 미세유체장비의 오염을 방지하는 보호층으로 작용할 수 있다.
경우에 따라서는 전사필름이 중간에 기재가 끼워져 있다고 하더라도 전사필름의 정렬에 영향을 미치지 않을 수 있다. 예를 들어, 기재가 투명하거나 혹은 왁스 패턴에 상응하는 형상을 갖고 있다면 기재가 가운데 있더라도 전사필름을 정렬하는데 영향을 미치지 않을 것이다. 이 경우에는 전사필름을 미리 정렬한 후 기재를 끼워넣는 것보다는, 처음부터 전사필름-기재-전사필름의 형태로 배치한 후 정렬하는 것이 더 효율적일 수 있다. 구체적으로는 도 6에 도시된 바와 같이 (A') 3차원 유로 형성을 위하여 기재의 양면에 전사될 왁스 패턴의 거울상이 각각 형성되어 있는 투명한 전사필름을 준비하는 전사필름 준비 단계; (B') 왁스 형성면이 대향되도록 배치된 전사필름 사이에 친수성 다공성 기재가 배치된 층상구조물을 정렬하여 고정하는 정렬 단계; (C') 상기 층상구조물에 열을 가하여, 왁스를 전사하는 동시에 기재에 3차원 미세유로를 형성하는 열처리 단계; 및 (D') 전사필름을 제거하는 단계;를 포함하여 미세유체장비를 제조할 수 있다. 상기 방법은 앞에서 설명한 예시적 방법에서 (B) 및 (C) 단계를 합쳐서 (B') 단계로 진행한 것으로, (A'), (C') 및 (D') 단계에 대한 상세한 설명은 상응하는 (A), (D) 및 (E) 단계의 설명을 마찬가지로 적용할 수 있다. 또한 상기 (B') 단계는 전사필름-기재-전사필름을 한꺼번에 정렬할 수도 있으나, (a) 전사필름 중 하나의 왁스 형성면 상에 친수성 다공성 기재를 정렬하여 고정하는 단계;와 (b) 상기 고정된 기재 상에 나머지 하나의 전사필름의 왁스면이 기재에 대향하도록 정렬하여 고정하는 단계를 포함하여 순차적으로 진행할 수 있음은 당연하다.
배경기술에 언급한 바와 같이 본 발명의 미세유체장비는 미세유로에서 공극을 통한 유체의 측방유동을 이용한 것으로, 기재로는 친수성과 다공성을 나타내는 것이라면 어떤 것이라도 사용할 수 있다. 기재의 대표적인 예는 종이이며, 다공성 금속 매쉬, 부직포, 친수성 고분자 멤프레인, 스펀지, 직물 등도 마찬가지로 사용할 수 있으나, 이에 한정되는 것은 아니다. 본 발명의 방법은 기존의 프린터를 이용한 인쇄가 종이와 같은 유연성 재질에 한정되는 것에 반해, 유연성 기재 뿐 아니라 비유연성 재질의 기재를 사용하는 경우에도 제한 없이 미세유체장비를 제조할 수 있다. 또한 비유연성 기재가 단일 평면상에 존재하지 않고 휘어져 있는 경우에도 유연성을 나타내는 전사필름을 사용하여 기재의 표면에 왁스 패턴을 형성시킬 수 있다.
상기 방법은 특히 기재가 소정의 비정형 2차원 형상을 가진 경우 유용하게 사용될 수 있다. 기재가 별도의 규격에 맞지 않더라도 정형화된 직사각형 형상인 경우에는 그나마 양면 인쇄를 사용한 정렬을 시도할 수 있으나, 직사각형이 아닌 비정형 형상을 갖는 경우에는 프린터를 사용한 인쇄 자체가 곤란할 수 있다. 일단 왁스 패턴을 형성한 후 원하는 형상으로 절단하는 경우에는 또 다시 해당 형상으로 절단 시의 정렬 문제가 발생한다. 따라서 일단은 예를 들어, 커팅 프린터를 이용하여 소정 형상으로 기재를 잘라 준비한 후 본 발명의 방법을 적용하여 왁스에 의한 미세유로를 형성하는 것에 의해 정렬에 따른 문제를 해소할 수 있다. 도 7은 비정형 기재에 상기 방법을 적용한 모식도를 보여준다. 도 7은 기재의 형상 일부가 하부 전사필름에 형성된 오일 패턴 형상과 일치하여 정렬이 용이하다. 기재가 비정형 형상을 갖는 경우에는 전사필름끼리 겹쳐지는 영역이 발생하므로, 추가적으로 전사필름에 정렬마크를 형성하여 정렬에 이용할 수 있다.
본 발명의 미세유체장비는 기재의 종단면 경계에서의 왁스 형상을 제어하는 데 사용할 수 있다. 프린터에 의한 왁스의 인쇄는 기재면에만 왁스 패턴을 형성시킬 수 있으며, 후속의 미세유로 형성은 기재에 형성된 왁스가 열처리에 의해 용융되어 기재 내로 침투하는 것에 의해 이루어진다. 반면 전사를 통한 미세유로 형성은 전사필름에 형성되어 있는 왁스층이 열처리 과정에서 기재로 용융하여 침투되는 것이므로, 왁스 패턴의 크기가 종이의 크기에 제한을 받지 않으며 이를 이용하면 기재의 종단면 경계에서의 왁스 형상을 제어할 수 있다.
예를 들어, 미세유체장비의 경계(끝부분)에 측벽을 만들기 위해서는 양면에 왁스 패턴을 형성하여 열처리에 따라 양면에서 기재로 침투된 왁스가 만나 측벽이 형성되도록 할 수 있다. 혹은 단면에 용융점도가 낮은 왁스로 패턴을 형성하여 열처리 시 기재의 하면까지 왁스가 침투하도록 하는 방법도 있으나 왁스의 용융점도가 너무 낮으면, 확산의 정도 역시 증가하므로 열처리에 따라 왁스 패턴 폭의 증가 정도 역시 커진다는 것을 고려하여야 한다. 본 발명은 전사필름의 왁스 패턴을 기재의 경계면 밖까지 형성하여, 기재의 경계에 왁스 측벽을 형성하는 방법을 제공한다. 도 8의 모식도에서 확인할 수 있듯이, 전사필름에 형성된 왁스는 열처리에 의해 용융되어 기재와의 접촉면을 통해 침투한다. 그러나, 기재의 바깥쪽에 부가적으로 형성된 왁스는 기재가 접촉되어 있지 않기 때문에 기재의 경계를 타고 흐르게 되며, 결과적으로는 기재의 경계에 측벽을 형성한다. 본 발명의 방법에 의하면 양면에 왁스 패턴을 형성하지 않고 한면에만 왁스 패턴을 인쇄하여도 기재의 경계에 측벽 형성이 가능하다는 장점이 있다.
도 5와 도 8의 모식도에서는 편의상 미세유체장비 내에서 왁스층의 형상이 정확하게 직사각형을 이루는 것으로 묘사하였다. 그러나 실제로는 도 3의 단면 이미지에서 확인할 수 있듯이 왁스가 기재로 용융 침투하면서 확산이 일어나기 때문에 패턴보다 약간 퍼진 상태로 끝부분이 직각이 아닌 곡률을 갖는다. 도 9의 (a)에 도시된 바와 같이 기재의 끝 부분에서 왁스가 기재의 경계에서 충분히 떨어져 있다면, 경계가 아닌 부분과 마찬가지의 곡률을 가진 단면이 형성될 것이나, 경계와 가까워지면 일부 곡률이 형성되거나, 혹은 너무 가깝다면 경계쪽에서 옆으로 확산되지 못한 왁스가 아래로 흘러내리게 된다. 특히 미세 로봇과 같은 경우에는 일직선의 말단 유로의 형상을 갖는 미세유체장비의 제조가 필요하다.
이에 본 발명은 커팅 갭을 이용한 기재의 경계에 직선 단면의 유로를 형성하는 방법을 제공한다. 도 9의 (b)를 참조하면, 기재의 A 영역과 B 영역 사이에 커팅 갭을 형성한 후 전사필름의 왁스 패턴을 커팅 갭을 포함하여 A 영역과 B 영역의 일부에 형성한 후 열처리한다. 커팅 갭이 충분히 작다면 왁스는 갭 사이로 흘러들어가지 않고 열처리 시 두 영역이 붙어 있는 것처럼 작용하므로 직선의 패턴 형성이 가능하다. 커팅 갭이 너무 크면 커팅 갭에 의해 A 영역과 B 영역은 별도의 영역으로 작용하기 때문에 (a)의 우측과 같은 형상의 유도가 생성될 수 있다. 따라서 커팅 갭의 폭은 0(커팅만 되고 실질적으로는 갭이 없는 상태) 내지 1 mm인 것이 바람직하다.
도 9의 (c)는 커팅 갭을 이용한 3차원 미세유체장비의 제작과정을 예시한 것으로, 먼저 커팅 갭이 형성된 기재를 사용하여 전사필름-기재-전사필름의 적층구조를 정렬하고, 열처리하여 왁스에 의한 유로를 형성시킨다. 이때 롤러를 사용하여 열처리하는 것으로 도시하였으나, 이는 하나의 예시일 뿐 이에 한정되는 것이 아님은 당연하다. 열처리에 의해 기재에 왁스가 침투하면 과잉 기재를 제거하는 것에 의해 미세유체장비를 제조할 수 있다.
1 : 미세유체장비
11 : 기재
21 : 전사필름
31 : 왁스

Claims (12)

  1. 한 장의 친수성 다공성 기재 내에 왁스에 의한 미세유로가 형성된 미세유체장비의 제조방법에 있어서,
    미세유로 형성을 위한 왁스 패턴의 거울상이 형성된 전사필름과 상기 기재를 적층한 후 열처리하는 단계를 포함하며,
    상기 기재의 경계에 0~1 mm의 커팅 갭을 형성하고,
    전사필름의 왁스 패턴을 기재의 경계면 밖까지 형성하며,
    전사 후 커팅 갭을 제거하는 것에 의해,
    기재의 경계에 직선 단면의 유로를 형성하는 것을 특징으로 하는 미세유체장비의 제조방법.
  2. 청구항 1에 있어서,
    투명한 두 장의 전사필름으로부터 상기 기재의 양면에 각각 왁스 패턴을 열전사하여 한 장의 기재 내에 3차원 미세유로를 형성하는 것을 특징으로 하는 미세유체장비의 제조방법.
  3. 청구항 2에 있어서,
    (A) 3차원 유로 형성을 위하여 기재의 양면에 전사될 왁스 패턴의 거울상이 각각 형성되어 있는 투명한 전사필름을 준비하는 전사필름 준비 단계;
    (B) 왁스 형성면이 대향되도록 상기 전사필름을 정렬하고, 고정시키는 전사필름 정렬 및 고정 단계;
    (C) 상기 전사필름의 사이에 친수성의 다공성 기재를 배치하여 층상구조물을 형성하는 기재 배치 단계;
    (D) 상기 층상구조물에 열을 가하여, 왁스를 전사하는 동시에 기재에 3차원 미세유로를 형성하는 열처리 단계; 및
    (E) 층상 구조물로부터 전사필름을 제거하는 전사필름 제거 단계;
    를 포함하는 것을 특징으로 하는 미세유체장비의 제조방법.
  4. 청구항 3에 있어서,
    상기 (C) 단계에서, 전사필름의 사이에 투명한 정렬용 필름을 끼운 채 정렬하고, 정렬용 필름을 제외한 전사필름만을 고정하며,
    상기 (D) 단계에서는 상기 기재로 상기 정렬용 필름을 대체하는 것을 특징으로 하는 3차원 미세유체장비의 제조방법.
  5. 청구항 4에 있어서,
    상기 정렬용 필름의 일측 방향은 상기 전사필름보다 길고, 타측 방향은 상기 전사필름보다 짧은 것을 특징으로 하는 3차원 미세유체장비의 제조방법.
  6. 청구항 2에 있어서,
    (A') 3차원 유로 형성을 위하여 기재의 양면에 전사될 왁스 패턴의 거울상이 각각 형성되어 있는 투명한 전사필름을 준비하는 전사필름 준비 단계;
    (B') 왁스 형성면이 대향되도록 배치된 전사필름 사이에 친수성 다공성 기재가 배치된 층상구조물을 정렬하여 고정하는 정렬 단계;
    (C') 상기 층상구조물에 열을 가하여, 왁스를 전사하는 동시에 기재에 3차원 미세유로를 형성하는 열처리 단계; 및
    (D') 전사필름을 제거하는 단계;
    를 포함하는 것을 특징으로 하는 미세유체장비의 제조방법.
  7. 청구항 6에 있어서,
    상기 (B') 단계는
    (a) 전사필름 중 하나의 왁스 형성면 상에 친수성 다공성 기재를 정렬하여 고정하는 단계;와
    (b) 상기 고정된 기재 상에 나머지 하나의 전사필름의 왁스면이 기재에 대향하도록 정렬하여 고정하는 단계를 포함하는 것을 특징으로 하는 미세유체장비의 제조방법.
  8. 청구항 3 내지 청구항 6 중 어느 한 항에 있어서,
    상기 층상구조물에서 두 장의 전사필름이 직접 겹쳐지는 영역이 있는 경우, 해당 영역에 정렬마크가 있는 것을 특징으로 하는 미세유체장비의 제조방법.
  9. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    상기 친수성 다공성 기재는 종이, 다공성 금속 매쉬, 부직포, 친수성 고분자 멤브레인, 스펀지 또는 직물인 것을 특징으로 하는 미세유체장비의 제조방법.
  10. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    상기 기재는 소정의 비정형 2차원 형상을 갖는 것을 특징으로 하는 미세유체장비의 제조방법.
  11. 청구항 10에 있어서,
    전사필름의 왁스 패턴을 기재의 경계면 밖까지 형성하여, 기재의 경계에 왁스 측벽을 형성하는 것을 특징으로 하는 미세유체장비의 제조방법.
  12. 삭제
KR1020210106241A 2021-08-11 2021-08-11 전사필름을 이용한 미세유체장비의 제조방법 KR102630830B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020210106241A KR102630830B1 (ko) 2021-08-11 2021-08-11 전사필름을 이용한 미세유체장비의 제조방법
PCT/KR2022/004688 WO2023017948A1 (ko) 2021-08-11 2022-04-01 전사필름을 이용한 미세유체장비의 제조방법
CN202210948208.0A CN115893300A (zh) 2021-08-11 2022-08-08 微流体设备的制造方法及由其制造的纸上实验室平台
US17/883,271 US20230049054A1 (en) 2021-08-11 2022-08-08 Method of manufacturing microfluidic device using transfer film and lab-on-paper platform manufactured by manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210106241A KR102630830B1 (ko) 2021-08-11 2021-08-11 전사필름을 이용한 미세유체장비의 제조방법

Publications (2)

Publication Number Publication Date
KR20230024113A KR20230024113A (ko) 2023-02-20
KR102630830B1 true KR102630830B1 (ko) 2024-01-29

Family

ID=85176298

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210106241A KR102630830B1 (ko) 2021-08-11 2021-08-11 전사필름을 이용한 미세유체장비의 제조방법

Country Status (4)

Country Link
US (1) US20230049054A1 (ko)
KR (1) KR102630830B1 (ko)
CN (1) CN115893300A (ko)
WO (1) WO2023017948A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493051B1 (ko) * 2014-03-07 2015-02-16 충남대학교산학협력단 3차원 종이기반 미세유체장비의 제작방법
CN105903502A (zh) 2016-05-16 2016-08-31 南京工业大学 基于热转移蜡亲疏水图案微流控纸芯片的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180004B2 (ja) * 1995-06-27 2001-06-25 松下電工株式会社 露光フィルムの整合方法及び整合装置
US6858290B2 (en) * 2002-05-29 2005-02-22 3M Innovative Properties Company Fluid repellent microporous materials
US20070275193A1 (en) * 2004-02-13 2007-11-29 Desimone Joseph M Functional Materials and Novel Methods for the Fabrication of Microfluidic Devices
CN102016595B (zh) 2008-03-27 2014-08-06 哈佛学院院长等 三维微流体装置
US20120009099A1 (en) * 2010-07-06 2012-01-12 Xerox Corporation Microfluidic devices
KR101652294B1 (ko) * 2014-12-03 2016-08-30 광운대학교 산학협력단 종이 기반 농축 방법, 농축 장치 및 그 제조 방법
KR101652629B1 (ko) * 2015-03-06 2016-08-31 한양대학교 에리카산학협력단 유체흐름 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493051B1 (ko) * 2014-03-07 2015-02-16 충남대학교산학협력단 3차원 종이기반 미세유체장비의 제작방법
CN105903502A (zh) 2016-05-16 2016-08-31 南京工业大学 基于热转移蜡亲疏水图案微流控纸芯片的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lu등. Patterned paper as a low-cost, flexible substrate for rapid prototyping of PDMS microdevices via liquid molding. Analytical Chemistry. 2011, 83, 1830-1835 1부.*

Also Published As

Publication number Publication date
KR20230024113A (ko) 2023-02-20
US20230049054A1 (en) 2023-02-16
CN115893300A (zh) 2023-04-04
WO2023017948A1 (ko) 2023-02-16

Similar Documents

Publication Publication Date Title
US10526645B2 (en) Microarray based sample detection system
CN110975952B (zh) 一种纸基微流体芯片及其制备方法与应用
AU2010221117A1 (en) Methods of micropatterning paper-based microfluidics
DE112015001180T5 (de) Wellenlängenkonversionselement, lichtemittierende Halbleiterkomponente, die ein Wellenlängenkonversionselement umfasst, Verfahren zum Herstellen eines Wellenlängenkonversionselements und Verfahren zum Herstellen einer lichtemittierenden Halbleiterkomponente, die ein Wellenlängenkonversionselement umfasst
KR101493051B1 (ko) 3차원 종이기반 미세유체장비의 제작방법
DE19753850A1 (de) Probennahmevorrichtung
KR102567398B1 (ko) 물 분산성 분석
JP2019528184A (ja) マイクロ流体デバイス
DE112014000462B4 (de) Herstellung einer Mikrofluidchip-Packung oder -Baugruppe mit trennbaren Chips
CN105269915A (zh) 用于形成粘结衬底的系统和方法
KR102630830B1 (ko) 전사필름을 이용한 미세유체장비의 제조방법
DE112017004280B4 (de) Mikrofluidik-Chip mit Perlenintegrationssystem
Kumawat et al. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process
KR20180039737A (ko) 미세유체 디바이스용 수동형 펌프
EP2589435A1 (en) A component for use in a three-dimensional microfluidic device, a three-dimensional microfluidic device, and a method for manufacturing a three-dimensional microfluidic device
Yang et al. Fabrication of paper micro-devices with wax jetting
EP2548645A1 (en) Device for handling microfluids and method for manufacturing a device suitable for handling microfluids
Wu et al. 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification
EP2011630A1 (de) Verfahren zur Herstellung eines Analyseelementes
US9017995B2 (en) Liquid-transport and analytical test device
KR20130111802A (ko) 마이크로 유체 채널 제조 방법 및 그 방법으로 제조되는 마이크로 유체 채널
TWI655427B (zh) 紙基微流體晶片與其製造方法
Kasetsirikul et al. Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm® Hot Pressing. Micromachines 2022, 13, 48
US20110262304A1 (en) Method of fluid control in medical diagnostic media
WO2024008526A1 (de) HERMETISCH VERSCHLOSSENE UMHÄUSUNG UND VERFAHREN ZUR AUSLEGUNG DER SCHWEIßVERBINDUNG FÜR EINE SOLCHE UMHÄUSUNG

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant