KR102625737B1 - Ti-soluble polymer complex pellet for 3D printer - Google Patents

Ti-soluble polymer complex pellet for 3D printer Download PDF

Info

Publication number
KR102625737B1
KR102625737B1 KR1020210172382A KR20210172382A KR102625737B1 KR 102625737 B1 KR102625737 B1 KR 102625737B1 KR 1020210172382 A KR1020210172382 A KR 1020210172382A KR 20210172382 A KR20210172382 A KR 20210172382A KR 102625737 B1 KR102625737 B1 KR 102625737B1
Authority
KR
South Korea
Prior art keywords
pva
tih2
polyvinyl alcohol
titanium
weight
Prior art date
Application number
KR1020210172382A
Other languages
Korean (ko)
Other versions
KR20230083923A (en
Inventor
신은주
한별
이선희
Original Assignee
동아대학교 산학협력단
(주)에스지신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단, (주)에스지신소재 filed Critical 동아대학교 산학협력단
Priority to KR1020210172382A priority Critical patent/KR102625737B1/en
Publication of KR20230083923A publication Critical patent/KR20230083923A/en
Application granted granted Critical
Publication of KR102625737B1 publication Critical patent/KR102625737B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium

Abstract

본 발명은 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛에 관한 것이다. 본 발명에 따른 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛은 10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말; 및 상기 TiH₂ 합금분말과 Ti-OH 결합을 형성하는 폴리비닐알코올(PVA; polyvinyl alcohol)을 포함하며, 폴리비닐알코올은 제1 PVA 및 제2 PVA로 이루어지며, 제1 PVA는 분자량(Mw) 20,000 ~ 25,000, 수용액 농도 18 ~ 22 wt%이고, 상기 제2 PVA는 분자량(Mw) 146,000 ~ 186,000, 수용액 농도 5 ~ 7.5 wt%으로서 폴리비닐알코올(PVA; polyvinyl alcohol) 100 중량부에 대하여, 제1 PVA는 25 내지 35 중량부이고 제2 PVA 65 내지 75 중량부이다. 본 발명에서 TiH₂ 합금분말 및 상기 폴리비닐알코올(PVA; polyvinyl alcohol)의 중량비는 40 : 60 내지 50 대 50이다. 또한 본 발명의 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛의 제조방법은 분쇄단계; 혼합단계; 압출단계; 건조단계로서, 구체적으로 TiH₂ 분말을 에탄올 용매 하에서 지르코니아 볼로 10 내지 50 ㎛ 크기로 분쇄하는 분쇄단계; 분쇄된 TiH₂ 분말을 폴리비닐알코올(PVA; polyvinyl alcohol)과 혼합하여 TiH₂/PVA 슬러리를 형성하는 혼합단계; 상기 TiH₂/PVA 슬러리를 메탄올 응고욕에서 습식압출하는 압출단계; 습식압출된 TiH₂/PVA 압출물에서 메탄올 응고욕을 제거하기 위하여 50~70 ℃에서, 1~3 시간 동안 건조하는 건조단계; 를 포함한다.
본 발명에 따른 티타늄 기반 3D 프린터용 소재는 분산제나 커플링제, 윤활제 등 다른 첨가제 없이 티타늄 및 고분자 바인더만으로도 제조 가능하고, 3D 프린터 출력시 연속적인 공급이 가능하며 출력물의 표면이 균일한 효과가 있다. 본 발명의 제조방법에 따르면 탈지 공정시간을 줄이고 유해 물질을 사용하지 않는 친환경적인, 티타늄 기반 3D 프린터용 소재를 제조할 수 있다.
The present invention relates to titanium-water-soluble polymer composite pellets for 3D printers. The titanium-water-soluble polymer composite pellet for 3D printer according to the present invention includes hydrogenated TiH₂ alloy powder with a size of 10 to 50 μm; and polyvinyl alcohol (PVA) that forms a Ti-OH bond with the TiH₂ alloy powder. The polyvinyl alcohol is composed of first PVA and second PVA, and the first PVA has a molecular weight (Mw) of 20,000. ~ 25,000, an aqueous solution concentration of 18 to 22 wt%, and the second PVA has a molecular weight (Mw) of 146,000 to 186,000 and an aqueous solution concentration of 5 to 7.5 wt%, based on 100 parts by weight of polyvinyl alcohol (PVA). PVA is 25 to 35 parts by weight and the second PVA is 65 to 75 parts by weight. In the present invention, the weight ratio of TiH₂ alloy powder and polyvinyl alcohol (PVA) is 40:60 to 50:50. In addition, the method for producing titanium-water-soluble polymer composite pellets for 3D printers of the present invention includes a grinding step; mixing step; Extrusion step; As a drying step, specifically, a pulverizing step of pulverizing TiH₂ powder with zirconia balls in an ethanol solvent to a size of 10 to 50 ㎛; A mixing step of mixing pulverized TiH₂ powder with polyvinyl alcohol (PVA) to form TiH₂/PVA slurry; An extrusion step of wet extruding the TiH₂/PVA slurry in a methanol coagulation bath; A drying step of drying at 50-70°C for 1-3 hours to remove the methanol coagulation bath from the wet-extruded TiH₂/PVA extrudate; Includes.
The titanium-based 3D printer material according to the present invention can be manufactured using only titanium and a polymer binder without any other additives such as dispersants, coupling agents, or lubricants. Continuous supply is possible during 3D printer printing, and the surface of the output is uniform. According to the manufacturing method of the present invention, it is possible to manufacture an eco-friendly, titanium-based 3D printer material that reduces the degreasing process time and does not use harmful substances.

Description

3D 프린터용 티타늄-수용성 고분자 복합체 펠렛 및 이의 제조방법 {Ti-soluble polymer complex pellet for 3D printer}Titanium-water-soluble polymer complex pellet for 3D printer and manufacturing method thereof {Ti-soluble polymer complex pellet for 3D printer}

본 발명은 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛에 관한 것이다.The present invention relates to titanium-water-soluble polymer composite pellets for 3D printers.

현재 3차원 형상 데이터를 기반으로 2차원 단면 데이터를 생성하여 소재를 적층하는 방식으로 물체를 제작하는 3D프린팅 기술은 급속도로 발전하고 있으며, 다양한 산업에서 수요가 증가하고 있다. 주로 기업용 프로토 타입 제작 등에 제한적으로 사용되었던 3D프린터 시장이 최근에는 우주항공, 의료, 자동차, 기계, 건축, 완구, 패션 등 다양한 산업에서도 사용이 되고 있다. Currently, 3D printing technology, which produces objects by creating two-dimensional cross-sectional data based on three-dimensional shape data and stacking materials, is developing rapidly, and demand is increasing in various industries. The 3D printer market, which was mainly used to produce prototypes for companies, has recently been used in various industries such as aerospace, medical, automobile, machinery, architecture, toys, and fashion.

3D프린팅 기술과 산업이 커짐에 따라 소재에 대한 시장 형성 또한 기대되고 있다. 특히 3D프린팅 소재 중 최근 각광을 받고 있는 티타늄 분말(Ti Powder)은 다양한 구조기능성을 가지고 있으며, 고부가가치 산업에서 사용 되는 소재이다. 비강도가 우수하고, 내부식성 및 저열변형, 인체 친화적인 특성을 가지고 있는 티타늄은 3D프린터와 결합이 될 만한 매우 중요한 산업적 가치를 가지고 있다. 3D프린팅 분말 소재로 사용이 되기 위해서는 입자의 형상이 구형에 가깝고 입자 크기의 공차가 적을수록 적층 시 우수한 출력물을 제조할 수 있다. 티타늄 분말도 마찬가지이며 최적의 적층 공정을 가지기 위한 분말의 조건은 10~60μm(D50: 45μm) 크기이며, 구형의 입도형상, 고른 입자 분포형성, Tap density(밀도분포) 65%이상의 조건을 가져야 한다. As 3D printing technology and industry grow, the formation of a market for materials is also expected. In particular, titanium powder (Ti Powder), which has recently been in the spotlight among 3D printing materials, has various structural functions and is a material used in high value-added industries. Titanium, which has excellent specific strength, corrosion resistance, low heat deformation, and human-friendly characteristics, has very important industrial value that can be combined with 3D printers. To be used as a 3D printing powder material, the closer the particle shape is to a spherical shape and the smaller the particle size tolerance, the more excellent output can be produced during lamination. The same applies to titanium powder, and the powder conditions for an optimal lamination process must be 10 to 60 μm (D50: 45 μm) in size, spherical particle size, even particle distribution, and tap density of 65% or more. .

기존의 Kroll process에서 제조되는 티타늄 스폰지를 재용해하여 분말을 만드는 방법은 고품질의 티타늄 분말을 제조할 수 있으나 고가의 제조비용이 발생되는 단점이 있다. 최근에는 제련기술 발달에 따라 원광석에서 티타늄 분말을 제조할 수 있는 신기술들이 소개되고 있다.The method of making powder by re-dissolving titanium sponge manufactured in the existing Kroll process can produce high-quality titanium powder, but has the disadvantage of incurring high manufacturing costs. Recently, with the development of smelting technology, new technologies have been introduced to produce titanium powder from raw ore.

Armstrong법은 저온에서 연속적으로 환원하며 제조할 수 있기에 가격 경쟁력이 있으며, 산소 함유량도 500ppm 수준으로 관리할 수 있는 특징이 있다. 또한 티타늄 원광석 직접환원법인 고온 염욕제련법(Molten Calcium Chloride)은 약 1000°에서 티타늄 스폰지와 분말을 제조하는 방법으로 산화물의 환원과 합금을 동시에 이룰 수 있고 산소 함유량도 100ppm 이하로 관리할 수 있는 특징을 가지고 있다.
(문헌 1)
손호상, Production Technology of Titanium by Kroll Process, 한국자원리싸이클링학회, Volume 29 Issue 4, Pages.3-14, 2020
The Armstrong method is cost-competitive because it can be manufactured through continuous reduction at low temperatures, and has the feature of being able to control the oxygen content to 500 ppm. In addition, high-temperature salt bath smelting (Molten Calcium Chloride), a direct reduction method of titanium ore, is a method of producing titanium sponge and powder at about 1000°, and has the characteristics of being able to achieve reduction and alloying of oxides at the same time and managing the oxygen content to less than 100ppm. Have.
(Document 1)
Ho-Sang Son, Production Technology of Titanium by Kroll Process, Korea Resource Recycling Society, Volume 29 Issue 4, Pages.3-14, 2020

본 발명의 목적은 분산제나 커플링제, 윤활제 등 다른 첨가제 없이 티타늄 및 고분자 바인더 만으로도 제조 가능하고, 3D 프린터 출력시 연속적인 공급이 가능하며 출력물의 표면이 균일한 티타늄 기반 3D 프린터용 소재를 제공하는 데에 있다. The purpose of the present invention is to provide a titanium-based 3D printer material that can be manufactured using only titanium and a polymer binder without other additives such as dispersants, coupling agents, or lubricants, can be continuously supplied during 3D printer printing, and has a uniform surface of the output. It is in

본 발명의 다른 목적은 탈지 공정시간을 줄이고 유해 물질을 사용하지 않는 친환경적인, 티타늄 기반 3D 프린터용 소재의 제조방법을 제공하는 데에 있다.Another object of the present invention is to provide an eco-friendly method of manufacturing a titanium-based 3D printer material that reduces the degreasing process time and does not use harmful substances.

본 발명에 따른 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛은 10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말; 및 상기 TiH₂ 합금분말과 Ti-OH 결합을 형성하는 폴리비닐알코올(PVA; polyvinyl alcohol)을 포함한다.The titanium-water-soluble polymer composite pellet for 3D printer according to the present invention includes hydrogenated TiH₂ alloy powder with a size of 10 to 50 μm; and polyvinyl alcohol (PVA) that forms a Ti-OH bond with the TiH₂ alloy powder.

폴리비닐알코올은 제1 PVA 및 제2 PVA로 이루어지며, 제1 PVA는 분자량(Mw) 20,000 ~ 25,000, 수용액 농도 18 ~ 22 wt%이고, 상기 제2 PVA는 분자량(Mw) 146,000 ~ 186,000, 수용액 농도 5 ~ 7.5 wt%으로서 폴리비닐알코올(PVA; polyvinyl alcohol) 100 중량부에 대하여, 제1 PVA는 25 내지 35 중량부이고 제2 PVA 65 내지 75 중량부이다.Polyvinyl alcohol is composed of first PVA and second PVA, where the first PVA has a molecular weight (Mw) of 20,000 to 25,000 and an aqueous solution concentration of 18 to 22 wt%, and the second PVA has a molecular weight (Mw) of 146,000 to 186,000 and an aqueous solution. At a concentration of 5 to 7.5 wt%, based on 100 parts by weight of polyvinyl alcohol (PVA), the first PVA is 25 to 35 parts by weight and the second PVA is 65 to 75 parts by weight.

본 발명에서 TiH₂ 합금분말 및 상기 폴리비닐알코올(PVA; polyvinyl alcohol)의 중량비는 40 : 60 내지 50 대 50이다.In the present invention, the weight ratio of TiH₂ alloy powder and polyvinyl alcohol (PVA) is 40:60 to 50:50.

또한 본 발명의 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛의 제조방법은 분쇄단계; 혼합단계; 압출단계; 건조단계로서, 구체적으로In addition, the method for producing titanium-water-soluble polymer composite pellets for 3D printers of the present invention includes a grinding step; mixing step; Extrusion step; As a drying step, specifically

TiH₂ 분말을 에탄올 용매 하에서 지르코니아 볼로 10 내지 50 ㎛ 크기로 분쇄하는 분쇄단계;A pulverizing step of pulverizing TiH₂ powder with zirconia balls in an ethanol solvent to a size of 10 to 50 ㎛;

분쇄된 TiH₂ 분말을 폴리비닐알코올(PVA; polyvinyl alcohol)과 혼합하여 TiH₂/PVA 슬러리를 형성하는 혼합단계;A mixing step of mixing pulverized TiH₂ powder with polyvinyl alcohol (PVA) to form TiH₂/PVA slurry;

상기 TiH₂/PVA 슬러리를 메탄올 응고욕에서 습식압출하는 압출단계;An extrusion step of wet extruding the TiH₂/PVA slurry in a methanol coagulation bath;

습식압출된 TiH₂/PVA 압출물에서 메탄올 응고욕을 제거하기 위하여 50~70 ℃에서, 1~3 시간 동안 건조하는 건조단계; 를 포함한다.A drying step of drying at 50-70°C for 1-3 hours to remove the methanol coagulation bath from the wet-extruded TiH₂/PVA extrudate; Includes.

본 발명에 따른 티타늄 기반 3D 프린터용 소재는 분산제나 커플링제, 윤활제 등 다른 첨가제 없이 티타늄 및 고분자 바인더 만으로도 제조 가능하고, 3D 프린터 출력시 연속적인 공급이 가능하며 출력물의 표면이 균일한 효과가 있다. The titanium-based 3D printer material according to the present invention can be manufactured using only titanium and a polymer binder without any other additives such as dispersants, coupling agents, or lubricants. Continuous supply is possible during 3D printer printing, and the surface of the output is uniform.

본 발명의 제조방법에 따르면 탈지 공정시간을 줄이고 유해 물질을 사용하지 않는 친환경적인, 티타늄 기반 3D 프린터용 소재를 제조할 수 있다.According to the manufacturing method of the present invention, it is possible to manufacture an eco-friendly, titanium-based 3D printer material that reduces the degreasing process time and does not use harmful substances.

도 1은 본 발명에 따른 10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말을 600, 2000, 4000배율로 확대한 사진이다.
도 2는 TiH₂ 분말 대비 PVA의 중량비에 따라 제조된 펠렛의 사진이다.
도 3은 제1 PVA 대비 제2 PVA의 중량비에 따라 제조된 펠렛의 사진이다.
도 4는 본 발명의 일 실시예에 따라 TiH₂: PVA = 43cc : 57cc 중량비를 갖는 슬러리의 점도를 측정하여 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따라 제1 PVA : 제2 PVA= 3 : 7 중량비를 갖는 슬러리의 점도를 측정하여 나타낸 그래프이다.
도 6은 본 발명에 따른 TiH₂/PVA 슬러리에 대한 온도에 따른 endo 에너지를 나타낸 그래프이다.
도 7은 본 발명에 따른 TiH₂/PVA 슬러리에 대한 온도에 따른 중량비를 나타낸 그래프이다.
도 8의 (a)는 슬러리의 파장에 따른 강도를 나타낸 그래프이고, (b)는 각 피크별 결합을 표시한 이미지이다.
Figure 1 is a photograph of hydrogenated TiH₂ alloy powder with a size of 10 to 50 μm according to the present invention at magnifications of 600, 2000, and 4000.
Figure 2 is a photograph of pellets manufactured according to the weight ratio of PVA to TiH₂ powder.
Figure 3 is a photograph of pellets manufactured according to the weight ratio of the second PVA to the first PVA.
Figure 4 is a graph showing the viscosity of a slurry having a weight ratio of TiH₂: PVA = 43cc: 57cc according to an embodiment of the present invention.
Figure 5 is a graph showing the viscosity of a slurry having a weight ratio of 1st PVA:2nd PVA=3:7 according to an embodiment of the present invention.
Figure 6 is a graph showing endo energy according to temperature for TiH₂/PVA slurry according to the present invention.
Figure 7 is a graph showing the weight ratio according to temperature for the TiH₂/PVA slurry according to the present invention.
Figure 8 (a) is a graph showing the intensity according to the wavelength of the slurry, and (b) is an image showing the binding for each peak.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the attached drawings. Prior to this, the terms or words used in this specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventor should appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle of definability.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configuration shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent the entire technical idea of the present invention, and therefore, various equivalents that can replace them at the time of filing the present application It should be understood that variations and variations may exist.

본 발명은 티타늄 금속 소재를 출력할 수 있는 3D 프린터의 소재인 티타늄-수용성 고분자 복합체 펠렛에 관한 것이다 (이하 3D 프린터용 복합체 펠렛 이라고 한다). 본 발명의 3D 프린터용 복합체 펠렛은 티타늄 소재인 수소화 처리된 TiH₂ 합금분말과 수용성 고분자 바인더로서 폴리비닐알코올(PVA; polyvinyl alcohol)을 포함한다.The present invention relates to titanium-water-soluble polymer composite pellets, which are materials for 3D printers capable of printing titanium metal materials (hereinafter referred to as composite pellets for 3D printers). The composite pellet for a 3D printer of the present invention contains hydrogenated TiH₂ alloy powder, a titanium material, and polyvinyl alcohol (PVA) as a water-soluble polymer binder.

본 발명에서 티타늄 금속 소재로서 10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말을 제공한다. 티타늄 분말을 수소화 처리한 TiH₂ 합금분말은 분쇄 및 미세화가 용이하고 소결 과정에서 수소 환원이 일어나 고순도의 Ti 입자 결합이 가능하다. 또한 수용성 고분자 바인더와 혼합 시 흐름성이 없는 슬러리의 제조가 가능하여 슬러리를 노즐을 통해 방사함으로써 펠렛 형태로 제조가 가능하다. 수소화 처리된 TiH₂ 합금분말의 크기는 10~50 μm가 바람직하며 10 μm 미만이면 분말 알갱이들의 응집이 일어나 불필요한 재 교반 공정이 추가적으로 수행해야하며 폴리비닐알코올 등 다른 물질들과 균일하게 혼합되지 못한다. 반면 수소화 처리된 TiH₂ 합금분말의 크기가 50 μm 초과이면 폴리비닐알코올과 Ti-OH 결합을 할 수 있는 분말 알갱이의 단위 면적이 감소하여 Ti-OH 결합 비율이 낮아질 수 있다. The present invention provides hydrogenated TiH₂ alloy powder with a size of 10 to 50 μm as a titanium metal material. TiH₂ alloy powder obtained by hydrogenation of titanium powder is easy to grind and refine, and hydrogen reduction occurs during the sintering process, enabling high purity Ti particles to be combined. In addition, when mixed with a water-soluble polymer binder, it is possible to produce a slurry that does not flow, so it can be produced in the form of pellets by spinning the slurry through a nozzle. The size of the hydrogenated TiH₂ alloy powder is preferably 10 to 50 μm. If it is less than 10 μm, agglomeration of powder grains occurs, an unnecessary re-stirring process must be performed additionally, and it cannot be mixed uniformly with other materials such as polyvinyl alcohol. On the other hand, if the size of the hydrogenated TiH₂ alloy powder exceeds 50 μm, the unit area of the powder grains that can form a Ti-OH bond with polyvinyl alcohol decreases, which may lower the Ti-OH bonding ratio.

본 발명에서 TiH₂ 합금분말과 Ti-OH 결합을 형성하는 수용성 고분자 바인더는 폴리비닐알코올(PVA; polyvinyl alcohol)이다. 폴리비닐알코올(PVA; polyvinyl alcohol)은 친수성 고분자로 프린팅 후 수용성 탈지가 가능하며 무독성으로 친환경적이다. TiH₂ 합금분말 대비 폴리비닐알코올의 중량비는 40 : 60 내지 50 대 50 인 것이 바람직하다. 다시 말하면 TiH₂ 합금분말 대비 폴리비닐알코올(PVA; polyvinyl alcohol)의 중량비는 40~50 : 60~50 인 것이 바람직하다. TiH₂ 합금분말의 중량비가 40 미만이고 폴리비닐알코올의 중량비가 60 초과인 경우 TiH₂/PVA 슬러리의 흐름성은 좋지만 점도가 낮아 압출물의 형태가 유지되지 않는 문제점이 있고, 반면 TiH₂ 합금분말의 중량비가 50 초과이고 폴리비닐알코올의 중량비가 50 미만인 경우 TiH₂/PVA 슬러리의 흐름성이 좋지 않을 뿐 아니라 점도가 높아 방사, 압출이 되지 않아 고압이 필요하거나 상압에서 출력 자체가 불가능한 문제가 있다.In the present invention, the water-soluble polymer binder that forms TiH₂ alloy powder and Ti-OH bond is polyvinyl alcohol (PVA). Polyvinyl alcohol (PVA) is a hydrophilic polymer that allows water-soluble degreasing after printing and is non-toxic and environmentally friendly. The weight ratio of polyvinyl alcohol to TiH₂ alloy powder is preferably 40:60 to 50:50. In other words, the weight ratio of polyvinyl alcohol (PVA) to TiH₂ alloy powder is preferably 40~50:60~50. If the weight ratio of the TiH₂ alloy powder is less than 40 and the weight ratio of polyvinyl alcohol is more than 60, the flowability of the TiH₂/PVA slurry is good, but there is a problem in that the shape of the extrudate is not maintained due to low viscosity. On the other hand, the weight ratio of the TiH₂ alloy powder is more than 50. If the weight ratio of polyvinyl alcohol is less than 50, not only is the flowability of the TiH₂/PVA slurry not good, but the viscosity is high, so spinning and extrusion are not possible, so high pressure is required or printing at normal pressure is impossible.

본 발명에서 수용성 고분자 바인더는 두 종류의 폴리비닐알코올(PVA; polyvinyl alcohol)을 사용하며, 제1 PVA와 제2 PVA로 호칭한다. 제1 PVA와 제2 PVA는 분자량과 수용액 농도에 따라 구분될 수 있으며, 제1 PVA는 비교적 분자량이 낮은 PVA로서 분자량(Mw) 20,000 ~ 25,000, 수용액 농도 18 ~ 22 wt%이고, 제2 PVA는 비교적 분자량이 높은 PVA로서 분자량(Mw) 146,000 ~ 186,000, 수용액 농도 5 ~ 7.5 wt%이다. In the present invention, the water-soluble polymer binder uses two types of polyvinyl alcohol (PVA) and is referred to as first PVA and second PVA. First PVA and second PVA can be classified according to molecular weight and aqueous solution concentration. First PVA is a relatively low molecular weight PVA with a molecular weight (Mw) of 20,000 ~ 25,000 and aqueous solution concentration of 18 ~ 22 wt%, and second PVA is PVA with a relatively low molecular weight. PVA has a relatively high molecular weight, with a molecular weight (Mw) of 146,000 to 186,000 and an aqueous solution concentration of 5 to 7.5 wt%.

본 발명에서 제1 PVA와 제2 PVA의 비는 폴리비닐알코올(PVA; polyvinyl alcohol)을 100 중량부로 하였을 때 제1 PVA는 25 내지 35 중량부이고 제2 PVA 65 내지 75 중량부인 것이 바람직하다. 다시 말하면 제1 PVA 대비 제2 PVA의 비는 25~35 : 65~75 인 것이 바람직하다. 제1 PVA의 함량이 25 중량부 미만이고 제2 PVA의 함량이 75 중량부 초과인 경우, 상대적으로 분자량이 낮은 제1 PVA의 함량이 적어 TiH₂/PVA 슬러리의 점도가 높아 방사, 즉 습식압출이 어렵고 따라서 펠렛의 형상을 갖출 수 없다. 반면 제1 PVA의 함량이 35 중량부 초과이고 제2 PVA의 함량이 65 중량부 미만인 경우, 상대적으로 분자량이 낮은 제1 PVA의 함량이 높아 TiH₂/PVA 슬러리가 팽윤하게 되어 펠렛의 형태가 불규칙해지는 문제가 있다.In the present invention, the ratio between the first PVA and the second PVA is preferably 25 to 35 parts by weight for the first PVA and 65 to 75 parts by weight for the second PVA, based on 100 parts by weight of polyvinyl alcohol (PVA). In other words, the ratio of the second PVA to the first PVA is preferably 25 to 35:65 to 75. When the content of the first PVA is less than 25 parts by weight and the content of the second PVA is more than 75 parts by weight, the content of the first PVA with a relatively low molecular weight is small, so the viscosity of the TiH₂/PVA slurry is high, so spinning, that is, wet extrusion, is possible. It is difficult and therefore cannot take the shape of a pellet. On the other hand, when the content of the first PVA is more than 35 parts by weight and the content of the second PVA is less than 65 parts by weight, the TiH₂/PVA slurry swells due to the high content of the first PVA, which has a relatively low molecular weight, and the shape of the pellet becomes irregular. there is a problem.

본 발명의 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛은 TiH₂ 분말 의 분쇄단계; TiH₂/PVA 슬러리를 형성하기 위하여 분쇄된 TiH₂와 PVA를 혼합하는 단계(혼합단계); TiH₂/PVA 슬러리를 압출하는 단계(압출단계); 압출과정에서 사용된 응고욕을 제거하는 단계(건조단계)를 포함한다. The titanium-water-soluble polymer composite pellet for 3D printer of the present invention includes the steps of grinding TiH₂ powder; Mixing pulverized TiH₂ and PVA to form TiH₂/PVA slurry (mixing step); Extruding the TiH₂/PVA slurry (extrusion step); It includes a step of removing the coagulation bath used in the extrusion process (drying step).

구체적으로 분쇄단계는 300 ㎛의 TiH₂ 분말을 에탄올 용매 하에서 지르코니아 볼로 10 내지 50 ㎛ 크기로 분쇄한다. 도 1은 TiH₂분말을 10mm의 지르코니아 볼에서 1 대 1의 부피비로 (TiH₂분말 250ml, 지르코니아 볼 250ml) 속도 204 rpm에서 1일(24 시간) 동안 분쇄한 결과물을 600, 2000, 4000배율로 확대한 사진이다. 이렇게 제조된 10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말을 본 발명의 발명자는 MTIG 분말이라고 호칭한다. Specifically, in the pulverizing step, 300 ㎛ TiH₂ powder is pulverized to a size of 10 to 50 ㎛ with zirconia balls in an ethanol solvent. Figure 1 shows the result of grinding TiH₂ powder in 10 mm zirconia balls at a volume ratio of 1 to 1 (250 ml of TiH₂ powder, 250 ml of zirconia balls) at a speed of 204 rpm for 1 day (24 hours), magnified at 600, 2000, and 4000 times. It's a photo. The inventor of the present invention refers to the hydrogenated TiH₂ alloy powder with a size of 10 to 50 μm produced in this way as MTIG powder.

분쇄된 TiH₂ 분말을 습식 압출이 가능한 슬러리로 형성하기 위하여 폴리비닐알코올(PVA; polyvinyl alcohol)과 혼합한다. 혼합 시에는 공자전 믹서기를 사용하며 1200 rpm 내지 2000 rpm에서 1분 내지 10분 동안 수행하며 혼합물의 함량과 온습도 등에 따라 약간의 편차를 조절한다.The pulverized TiH₂ powder is mixed with polyvinyl alcohol (PVA) to form a slurry that can be wet extruded. When mixing, a revolving mixer is used and performed at 1200 rpm to 2000 rpm for 1 to 10 minutes, with slight deviations adjusted depending on the content of the mixture, temperature and humidity, etc.

제조된 TiH₂/PVA 슬러리는 습식압출 방식으로 압출하는데 TiH₂/PVA 슬러리를 주사기 또는 압출기 등으로 응고욕 안에서 압출하며, 이 때에 응고욕은 4 ℃ 내외의 메탄올인 것이 바람직하다. The prepared TiH₂/PVA slurry is extruded using a wet extrusion method. The TiH₂/PVA slurry is extruded in a coagulation bath using a syringe or extruder. At this time, the coagulation bath is preferably methanol at around 4°C.

압출된 TiH₂/PVA 압출물에서 응고욕을 제거하기 위하여 50~70 ℃에서, 1~3 시간 동안 건조한다. 이 때에 CONVECTION OVEN을 사용할 수 있다. To remove the coagulation bath from the extruded TiH₂/PVA extrudate, dry it at 50~70℃ for 1~3 hours. At this time, CONVECTION OVEN can be used.

실시예. 티타늄-수용성 고분자 복합체 펠렛의 제조Example. Preparation of titanium-water-soluble polymer composite pellets

(1) TiH₂ 분말의 분쇄(1) Grinding of TiH₂ powder

300 ㎛의 TiH₂ 분말 250ml을 에탄올 용매 하에서 지르코니아 볼 250ml로 속도 204 rpm에서 1일(24 시간) 동안 분쇄하였다. 도 1은 분쇄한 결과물을 600, 2000, 4000배율로 확대한 사진이다. 250 ml of 300 ㎛ TiH₂ powder was ground with 250 ml of zirconia balls in ethanol solvent at a speed of 204 rpm for 1 day (24 hours). Figure 1 is a photograph of the pulverized result enlarged at 600, 2000, and 4000 times.

(2) TiH₂ 분말 대비 PVA의 중량비에 따른 펠렛의 제조(2) Manufacturing of pellets according to the weight ratio of PVA to TiH₂ powder

분쇄된 TiH₂ 분말과 제1 PVA 대 제2 PVA 3 : 7인 PVA를 혼합한 슬러리를 주사기(10 ml/cc)에 담아 4 ℃의 메탄올 응고욕에서 일정한 두께로 압출한 후 CONVECTION OVEN에서 60 ℃, 2시간 동안 건조시켜 펠렛을 완성하였다.A slurry mixed with pulverized TiH₂ powder and PVA (1st PVA to 2nd PVA 3:7) was placed in a syringe (10 ml/cc) and extruded to a certain thickness in a methanol coagulation bath at 4°C, then heated in a CONVECTION OVEN at 60°C. The pellet was completed by drying for 2 hours.

TiH₂ 분말 대비 PVA의 중량비는 아래 표에 따라 sample 6 내지 sample 9를 준비하였다(sample 8은 본 발명에 따른 일 실시예에 해당한다). 도 2는 아래 표에 따라 제조된 펠렛의 사진을 함께 나타내었다.Samples 6 to 9 were prepared for the weight ratio of PVA to TiH₂ powder according to the table below (sample 8 corresponds to an example according to the present invention). Figure 2 shows a photograph of pellets manufactured according to the table below.

TiH₂ 분말 대비 PVA의 중량비Weight ratio of PVA to TiH₂ powder sample 6sample 6 sample 7sample 7 sample 8sample 8 sample 9sample 9 22 : 7822:78 33 : 6733:67 43 : 5743:57 53 : 4753:47

* Low PVA(제1 PVA) : High PVA(제2 PVA) (aqueous solution) = 3 : 7 * Low PVA (1st PVA): High PVA (2nd PVA) (aqueous solution) = 3: 7

(3) 제1 PVA 대비 제2 PVA의 중량비에 따른 펠렛의 제조(3) Production of pellets according to the weight ratio of the second PVA to the first PVA

분쇄된 TiH₂ 분말 43 cc와 수용액 상태의 PVA 57 cc를 혼합한 슬러리를 주사기(10 ml/cc)에 담아 4 ℃의 메탄올 응고욕에서 일정한 두께로 압출한 후 CONVECTION OVEN에서 60 ℃, 2시간 동안 건조시켜 펠렛을 완성하였다.A slurry mixed with 43 cc of crushed TiH₂ powder and 57 cc of PVA in aqueous solution was placed in a syringe (10 ml/cc) and extruded to a certain thickness in a methanol coagulation bath at 4 ℃, then dried in a control oven at 60 ℃ for 2 hours. The pellets were completed.

수용액 상태의 PVA는 아래 표에 따라 sample 1 내지 sample 5를 준비하였다(sample 4는 본 발명에 따른 일 실시예에 해당한다). 도 3은 아래 표에 따라 제조된 펠렛의 사진을 함께 나타내었다.For PVA in an aqueous solution, samples 1 to 5 were prepared according to the table below (sample 4 corresponds to an example according to the present invention). Figure 3 shows a photograph of pellets manufactured according to the table below.

제1 PVA 대비 제2 PVA의 중량비Weight ratio of second PVA to first PVA sample 1sample 1 sample 2sample 2 sample 3sample 3 sample 4sample 4 sample 5sample 5 10 : 010:0 7 : 37:3 5 : 55:5 3 : 73:7 0 : 100:10

* TiH₂: PVA (aqueous solution) = 43cc : 57cc* TiH₂: PVA (aqueous solution) = 43cc: 57cc

확인예. Confirm yes.

(1) TiH₂/PVA 슬러리 점도(1) TiH₂/PVA slurry viscosity

도 4는 본 발명의 일 실시예에 따라 TiH₂: PVA = 43cc : 57cc 중량비를 갖는 슬러리의 점도를 측정하여 나타낸 그래프이다. 도 5는 본 발명의 일 실시예에 따라 제1 PVA : 제2 PVA= 3 : 7 중량비를 갖는 슬러리의 점도를 측정하여 나타낸 그래프이다. Figure 4 is a graph showing the viscosity of a slurry having a weight ratio of TiH₂: PVA = 43cc: 57cc according to an embodiment of the present invention. Figure 5 is a graph showing the viscosity of a slurry having a weight ratio of 1st PVA:2nd PVA=3:7 according to an embodiment of the present invention.

또한 TiH₂ 분말 대비 PVA의 중량비 및 제1 PVA(저분자량) 대비 제2 PVA(고분자량)의 중량비에 따른 TiH₂/PVA 슬러리의 흐름성을 측정한 결과를 아래 표에 나타내었다.In addition, the results of measuring the flowability of the TiH₂/PVA slurry according to the weight ratio of PVA to TiH₂ powder and the weight ratio of the second PVA (high molecular weight) to the first PVA (low molecular weight) are shown in the table below.

저PVA : 고PVA
(제1 PVA : 제2 PVA)
Low PVA: High PVA
(1st PVA: 2nd PVA)
Shear rate (1/s) (단위 Viscosity:cP) 25℃Shear rate (1/s) (Unit Viscosity:cP) 25℃
1010 5050 100100 150150 0 : 100:10 30153015 19621962 15181518 13271327 1 : 091:09 24972497 17441744 13441344 11341134 2 : 082:08 18441844 13181318 975975 791791 3 : 073:07 15351535 12261226 10511051 942942 4 : 064:06 14691469 541541 390390 323323 5 : 055:05 12511251 783783 574574 532532 7 : 037:03 10921092 725725 649649 591591 10 : 0010:00 867867 181181 114114 8181

TiH2:PVA(aq)TiH 2 :PVA(aq) Shear rate (1/s) (단위 Viscosity:cP)Shear rate (1/s) (Unit Viscosity:cP) 1010 5050 100100 150150 50cc : 50cc50cc : 50cc 59645964 27202720 17341734 13981398 40cc : 60cc40cc : 60cc 15161516 12311231 10641064 965965 30cc : 70cc30cc : 70cc 747747 262262 162162 129129 20cc : 80cc20cc : 80cc 479479 145145 111111 9595

(2) 온도에 따른 TiH₂/PVA 슬러리의 상태에너지(2) State energy of TiH₂/PVA slurry according to temperature

도 6은 TiH₂/PVA 슬러리에 대한 온도에 따른 endo 에너지를 나타낸 그래프이고, 도 7은 TiH₂/PVA 슬러리에 대한 온도에 따른 중량비를 나타낸 그래프이다. Figure 6 is a graph showing endo energy according to temperature for TiH₂/PVA slurry, and Figure 7 is a graph showing weight ratio according to temperature for TiH₂/PVA slurry.

도 6을 살펴보면, 고분자와 저분자량의 PVA 혼합비가 동일할 때, TiH₂함량비가 증가할수록 펠렛의 용융점이 높은 것을 확인할 수 있고, TiH₂와 PVA 혼합비가 동일할 때, 고분자량 PVA함량비가 증가할수록 펠렛의 용융점이 높은 것을 확인할 수 있다. 이로부터 펠렛의 용융점은 3D 필라멘트 압출온도를 결정하는 것을 알 수 있다. Looking at Figure 6, it can be seen that when the mixing ratio of high molecular weight and low molecular weight PVA is the same, the melting point of the pellets increases as the TiH₂ content ratio increases, and when the mixing ratio of TiH₂ and PVA is the same, the higher the high molecular weight PVA content ratio increases, the higher the melting point of the pellets becomes. It can be seen that the melting point is high. From this, it can be seen that the melting point of the pellet determines the 3D filament extrusion temperature.

도 7을 살펴보면, 온도가 증가함에 따라 PVA는 분해되어 증발되고 TiH₂ 남는 것을 확인할 수 있다. 또한 TiH₂ 함량비가 증가할수록 500도 이상에서 남는 ash(재)의 양이 많은 것을 확인할 수 있다. 500 이상에서 무게가 증가하는 이유는 Titanium nitride이 되기 때문이다.Looking at Figure 7, it can be seen that as the temperature increases, PVA decomposes and evaporates, leaving behind TiH₂. In addition, it can be seen that as the TiH₂ content ratio increases, the amount of ash remaining above 500 degrees increases. The reason the weight increases above 500 is because it becomes titanium nitride.

(3) TiH₂ 합금분말과 Ti-OH 결합 확인(3) Confirmation of TiH₂ alloy powder and Ti-OH bonding

도 8의 (a)는 TiH₂/PVA 슬러리의 파장에 따른 강도를 나타낸 그래프이고, (b)는 각 피크별 결합을 표시한 이미지이다. 도 8을 살펴보면, 세 가지 샘플 모두에서 -OH, -CH, KBr, -Ti-O-Ti- 결합이 형성된 것을 확인할 수 있고, 특히 PVA의 측쇄 OH기가 TiH₂ 합금분말과 Ti-OH 결합이 형성된 것을 ④ 번 피크를 통해 유추할 수 있다. Figure 8 (a) is a graph showing the intensity according to the wavelength of TiH₂/PVA slurry, and (b) is an image showing the bond for each peak. Looking at Figure 8, it can be seen that -OH, -CH, KBr, and -Ti-O-Ti- bonds were formed in all three samples, and in particular, the side chain OH group of PVA formed a Ti-OH bond with the TiH₂ alloy powder. It can be inferred through peak ④.

이상의 설명은 본 발명을 예시적으로 설명한 것이고, 명세서에 게시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술사상을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 그러므로 본 발명의 보호범위는 청구범위에 기재된 사항에 의해 해석되고, 그와 균등한 범위 내에 있는 기술적 사항도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is an illustrative description of the present invention, and the embodiments published in the specification are not intended to limit the technical idea of the present invention, but are for illustrative purposes, so those skilled in the art will be familiar with the present invention. Various modifications and variations will be possible without departing from the technical idea of . Therefore, the scope of protection of the present invention should be interpreted based on the matters stated in the claims, and technical matters within the equivalent scope thereof should also be interpreted as being included in the scope of rights of the present invention.

Claims (8)

10~50 μm 크기의 수소화 처리된 TiH₂ 합금분말; 및
상기 TiH₂ 합금분말과 Ti-OH 결합을 형성하는 폴리비닐알코올(PVA;
polyvinyl alcohol)을 포함하고,
상기 폴리비닐알코올은 제1 PVA 및 제2 PVA로 이루어지고,
상기 제1 PVA는 분자량(Mw) 20,000 ~ 25,000, 수용액 농도 18 ~ 22 wt%이고, 상기 제2 PVA는 분자량(Mw) 146,000 ~ 186,000, 수용액 농도 5 ~ 7.5 wt%이고,
상기 폴리비닐알코올(PVA; polyvinyl alcohol) 100 중량부에 대하여, 제1 PVA는 25 내지 35 중량부이고 제2 PVA 65 내지 75 중량부인
3D 프린터용 티타늄-수용성 고분자 복합체 펠렛.
Hydrogenated TiH₂ alloy powder with a size of 10~50 μm; and
Polyvinyl alcohol (PVA; forming a Ti-OH bond with the TiH₂ alloy powder)
polyvinyl alcohol),
The polyvinyl alcohol consists of first PVA and second PVA,
The first PVA has a molecular weight (Mw) of 20,000 to 25,000 and an aqueous solution concentration of 18 to 22 wt%, and the second PVA has a molecular weight (Mw) of 146,000 to 186,000 and an aqueous solution concentration of 5 to 7.5 wt%,
With respect to 100 parts by weight of polyvinyl alcohol (PVA), the first PVA is 25 to 35 parts by weight and the second PVA is 65 to 75 parts by weight.
Titanium-water-soluble polymer composite pellets for 3D printers.
제 1 항에 있어서,
상기 TiH₂ 합금분말 및 상기 폴리비닐알코올(PVA; polyvinyl alcohol)의 중량비는 40 : 60 내지 50 대 50 인 것을 특징으로 하는 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛.
According to claim 1,
A titanium-water-soluble polymer composite pellet for a 3D printer, characterized in that the weight ratio of the TiH₂ alloy powder and the polyvinyl alcohol (PVA) is 40:60 to 50:50.
삭제delete 삭제delete TiH₂ 분말을 에탄올 용매 하에서 지르코니아 볼로 10 내지 50 ㎛ 크기로 분쇄하는 분쇄단계;
분쇄된 TiH₂ 분말을 폴리비닐알코올(PVA; polyvinyl alcohol)과 혼합하여 TiH₂/PVA 슬러리를 형성하는 혼합단계;
상기 TiH₂/PVA 슬러리를 메탄올 응고욕에서 습식압출하는 압출단계;
습식압출된 TiH₂/PVA 압출물에서 메탄올 응고욕을 제거하기 위하여 50~70
℃에서, 1~3 시간 동안 건조하는 건조단계; 를 포함하고,
상기 폴리비닐알코올은 제1 PVA 및 제2 PVA로 이루어지고,
상기 제1 PVA는 분자량(Mw) 20,000 ~ 25,000, 수용액 농도 18 ~ 22 wt%이고, 상기 제2 PVA는 분자량(Mw) 146,000 ~ 186,000, 수용액 농도 5 ~ 7.5 wt%이고,
상기 폴리비닐알코올(PVA; polyvinyl alcohol) 100 중량부에 대하여, 제1 PVA는 25 내지 35 중량부이고 제2 PVA 65 내지 75 중량부인 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛의 제조방법.
A pulverizing step of pulverizing TiH₂ powder with zirconia balls in an ethanol solvent to a size of 10 to 50 ㎛;
A mixing step of mixing pulverized TiH₂ powder with polyvinyl alcohol (PVA) to form TiH₂/PVA slurry;
An extrusion step of wet extruding the TiH₂/PVA slurry in a methanol coagulation bath;
50~70 to remove the methanol coagulation bath from the wet extruded TiH₂/PVA extrudate.
A drying step of drying at ℃ for 1 to 3 hours; Including,
The polyvinyl alcohol consists of first PVA and second PVA,
The first PVA has a molecular weight (Mw) of 20,000 to 25,000 and an aqueous solution concentration of 18 to 22 wt%, and the second PVA has a molecular weight (Mw) of 146,000 to 186,000 and an aqueous solution concentration of 5 to 7.5 wt%,
A method for producing a titanium-water-soluble polymer composite pellet for a 3D printer in which the first PVA is 25 to 35 parts by weight and the second PVA is 65 to 75 parts by weight, based on 100 parts by weight of polyvinyl alcohol (PVA).
제 5 항에 있어서,
상기 분쇄된 TiH₂ 분말 및 상기 폴리비닐알코올(PVA; polyvinyl alcohol)의 중량비는 40 : 60 내지 50 대 50인 것을 특징으로 하는 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛의 제조방법.
According to claim 5,
A method for producing a titanium-water-soluble polymer composite pellet for a 3D printer, characterized in that the weight ratio of the pulverized TiH₂ powder and the polyvinyl alcohol (PVA) is 40:60 to 50:50.
삭제delete 제 5 항에 있어서,
상기 분쇄단계는 속도 204 rpm, 24 시간 동안 수행하는 것을 특징으로 하는 3D 프린터용 티타늄-수용성 고분자 복합체 펠렛의 제조방법.
According to claim 5,
A method for producing a titanium-water-soluble polymer composite pellet for a 3D printer, characterized in that the grinding step is performed at a speed of 204 rpm for 24 hours.
KR1020210172382A 2021-12-03 2021-12-03 Ti-soluble polymer complex pellet for 3D printer KR102625737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210172382A KR102625737B1 (en) 2021-12-03 2021-12-03 Ti-soluble polymer complex pellet for 3D printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210172382A KR102625737B1 (en) 2021-12-03 2021-12-03 Ti-soluble polymer complex pellet for 3D printer

Publications (2)

Publication Number Publication Date
KR20230083923A KR20230083923A (en) 2023-06-12
KR102625737B1 true KR102625737B1 (en) 2024-01-17

Family

ID=86770301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210172382A KR102625737B1 (en) 2021-12-03 2021-12-03 Ti-soluble polymer complex pellet for 3D printer

Country Status (1)

Country Link
KR (1) KR102625737B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772473A (en) 2015-04-03 2015-07-15 北京工业大学 Preparation method of fine-particle spherical titanium powder for three-dimensional (3D) printing
JP2016172429A (en) 2015-03-18 2016-09-29 株式会社リコー Powder material for three-dimensional molding, three-dimensional molding kit, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
JP2017520678A (en) * 2014-05-13 2017-07-27 ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション Production of substantially spherical metal powder
JP2018178195A (en) 2017-04-13 2018-11-15 株式会社ノリタケカンパニーリミテド Powder for molding laminate, and laminate molded article
CN112692287A (en) 2021-01-14 2021-04-23 昆明理工大学 Preparation method of ordered porous titanium in three-dimensional communicated latticed distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520678A (en) * 2014-05-13 2017-07-27 ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション Production of substantially spherical metal powder
JP2016172429A (en) 2015-03-18 2016-09-29 株式会社リコー Powder material for three-dimensional molding, three-dimensional molding kit, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
CN104772473A (en) 2015-04-03 2015-07-15 北京工业大学 Preparation method of fine-particle spherical titanium powder for three-dimensional (3D) printing
JP2018178195A (en) 2017-04-13 2018-11-15 株式会社ノリタケカンパニーリミテド Powder for molding laminate, and laminate molded article
CN112692287A (en) 2021-01-14 2021-04-23 昆明理工大学 Preparation method of ordered porous titanium in three-dimensional communicated latticed distribution

Also Published As

Publication number Publication date
KR20230083923A (en) 2023-06-12

Similar Documents

Publication Publication Date Title
Lamnini et al. Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters-A review
CA3023075C (en) Method for obtaining ceramic slurry for the production of filaments for 3d fdm printing, slurry obtained using said method and ceramic filaments
JPH06506165A (en) Method and apparatus for continuous extrusion of solid articles
CN111454067B (en) Transparent ceramic orthodontic bracket and preparation method thereof
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
CN115304389B (en) Silicon carbide ceramic matrix composite slurry for direct-writing forming 3D printing and preparation method thereof
KR102625737B1 (en) Ti-soluble polymer complex pellet for 3D printer
JP2012509408A (en) Method of manufacturing cemented carbide or cermet products
CN112723902A (en) Slurry direct-writing forming method of diamond tool
JP2012518090A (en) Manufacturing method of cemented carbide products
CN114436657A (en) 3D printing molding composite material based on powder fused deposition method and preparation method thereof
US20200207983A1 (en) Composite material and its use in additive manufacturing methods
CN113681024A (en) Method for preparing tungsten metal part based on feeding printing
WO2020069351A2 (en) Additive manufacturing techniques
CN106367652B (en) A kind of hard alloy particle and preparation method thereof and hard alloy and preparation method thereof
RU2718946C1 (en) Method of producing granular metal-particle composition (feedstock) and composition obtained using said method
Fan et al. Ceramic feedstocks for additive manufacturing
JP2021050381A (en) Powder for lamination molding, method for manufacturing lamination molded article and method for manufacturing sintered body of lamination molded article
KR102571635B1 (en) Feedstock for extrusion type 3D printing process, method of fabricating of the same, and 3D printing process using the same
CN115340400B (en) Ceramic green body and preparation method and application thereof
JP2949130B2 (en) Method for producing porous metal filter
CN116947524B (en) Laser curing forming method of ceramic bond fine-grained diamond honeycomb grinding block
WO2009080560A2 (en) Method for producing preforms for metal-matrix composites
CN117226723A (en) Preparation method of 3D printing resin binder diamond tool
KR20230061426A (en) Powder compositions for lamination processes and printed parts thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right