WO2009080560A2 - Method for producing preforms for metal-matrix composites - Google Patents

Method for producing preforms for metal-matrix composites Download PDF

Info

Publication number
WO2009080560A2
WO2009080560A2 PCT/EP2008/067410 EP2008067410W WO2009080560A2 WO 2009080560 A2 WO2009080560 A2 WO 2009080560A2 EP 2008067410 W EP2008067410 W EP 2008067410W WO 2009080560 A2 WO2009080560 A2 WO 2009080560A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
secondary phase
nanoscale
preform
particle size
Prior art date
Application number
PCT/EP2008/067410
Other languages
German (de)
French (fr)
Other versions
WO2009080560A3 (en
Inventor
Dirk Rogowski
Ilka Lenke
Michael Theil
Original Assignee
Ceramtec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec Ag filed Critical Ceramtec Ag
Priority to EP08863784A priority Critical patent/EP2225060A2/en
Publication of WO2009080560A2 publication Critical patent/WO2009080560A2/en
Publication of WO2009080560A3 publication Critical patent/WO2009080560A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0064Multimodal pore size distribution
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to a process for the production of preforms for metal matrix composites.
  • Metal-matrix composite is a composite of a metal matrix with one or more embedded secondary phases.
  • MMC metal matrix composite
  • CMC ceramic matrix composite
  • the preform should have high strength for infiltration with the liquid metal.
  • all particles or fibers which have a different composition than the metal matrix and are embedded in it are referred to as the secondary phase. Accordingly, the term storage phase is therefore used. Not meant here are the precipitation phases in alloys.
  • metals are suitable as metal matrix, but in particular those from the group of so-called light metals such as aluminum, magnesium or titanium. Considerable weight advantages can be achieved with these light metals compared with conventional construction materials such as cast iron or steel, for example, and the possible disadvantages with respect to mechanical, tribological or thermal properties can be partially or completely compensated for by homogenous incorporation of further phases into the metal matrix.
  • composites have, by virtue of their composition, positive acoustic properties with respect to the reduction of sound generation and the conduction of the sound.
  • the homogeneous distribution of the secondary phases in the metal matrix can be done either by in-situ formation during the manufacturing process, by mixing the secondary phase to the molten metal or by infiltration of a porous shaped body, a so-called preform, which consists of the secondary phase, with the molten metal.
  • the intercalation phases can be present as particles, as fibers or as a mixture of both in the preform and / or later in the composite.
  • the preforming technique is preferred due to the following advantages:
  • the molding process of the preform is independent of the shape of the component.
  • the shaping of the preform is carried out by conventional powder technology methods such as axial pressing, isostatic pressing, slip casting, filtration casting, extrusion.
  • a local limitation of the composite to the functional areas of the workpiece is possible.
  • the result is a monolithic connection of a local composite material with the rest of the component.
  • Temporary fillers may be used to pore the preform, that is to say substances which are removed from the preform by a thermal, chemical or physical process step. This results in a pore structure which corresponds in terms of proportion, size distribution and shape of the porosity agent.
  • Porosizing agents used are, for example, natural or synthetic organic powders. It can be used for certain applications and fibers.
  • nanoscale powders are possible in the aqueous phase as a dispersion only in high dilution and with dispersing aids, otherwise agglomeration of the particles occurs, as a result of which the desired properties are lost.
  • the shaping process involves solidification of the preform, which in ceramic hard materials as a secondary phase usually by a - A -
  • the temperatures must be selected to be so high, depending on the hard material used, that coarsening of the hard material particles already occurs. As a result, for example, the reinforcing effect is reduced. In addition, a rigid ceramic framework, whereby the ductility of the composite material is reduced.
  • the hardening of the preform after the shaping process by a temperature treatment occurs in many hard materials by forming bridges between the particles. This happens first where particles already touch.
  • the particle size of the particles used as the secondary phase for producing a composite advantageously exerts an influence on the composite properties.
  • Magnitudes in the nanometer range from 1 to 500 nanometers, also as
  • the number of contact points of the particles can be significantly increased.
  • the nanoparticles are more reactive because of their small size, so that the formation of the bridges already takes place at lower temperatures. Due to the high number of
  • the nanoparticles act as so-called inorganic binder between the coarser particles.
  • the preform strength may be the required temperature for solidification.
  • the sintering temperature is between 600 0 C and 1500 0 C.
  • An optimal fraction of a nanoscale secondary phase in the sintered preform is in the range of about 1% to 20% by weight. In this area, the danger that the nanoscale particles agglomerate during the mixing of the starting materials is not yet as great as with higher fractions or even preforms, which are produced exclusively from nanoscale secondary-phase powders.
  • the nanoparticles of the secondary phase can either be deposited directly on the porosity agent or formed in the preform, for example via a sol-gel process. This leads directly to a preform containing nanoparticles.
  • pretreated nanoparticles can be fixed on other secondary particles as well as on or in the porosity agent.
  • the spray granulation is suitable via an atomizer or a method for dry mixing and / or build-up granulation, for example by means of granulating, fluidized bed and the like.
  • a granulate is obtained which can be processed by conventional dry shaping methods.
  • the pore structure consists of temporary organic porosity agents, which are removed from the preform during a special process step, leaving corresponding pores with regard to quantity, size and shape.
  • pores are introduced into the preform via the processed granules by the shaping process.
  • the porosity agents and the inorganic base materials in the preparation of the granules are coordinated so that the desired multimodal pore structure is formed. It is advantageous to use as a porosity agent a mixture of different substances with different size distribution, shape and structure. Suitable natural organic substances such as starches, cellulose and other botanicals with particle sizes between 1 and 500 microns. But synthetic materials such as waxes and other polymers with matching structure are suitable.
  • An embodiment with a low proportion of nanoscale particles is presented.
  • Colloidal SiO 2 in the nanoscale area acts as a so-called inorganic binder.
  • the inorganic and organic base materials are mixed together.
  • microscale powder 1 to 3 microns
  • the water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
  • the heating of the binder and the porosity agent and the solidification was carried out up to a temperature of 1400 0 C with a holding time of 0.5 to 1 hour.
  • the proportion of the so-called inorganic binder, based on the inorganic components of the preform, was about 1 wt% after sintering.
  • the content of the inorganic binder may also be replaced or supplemented by a proportion of up to 10% by weight of other colloidal oxides, for example, alumina, having a particle size of 10 to 200 nanometers.
  • the proportion of nanoscale particles is greater. In the exemplary embodiment 2, it is about 5 wt%, based on the inorganic components of the sintered preform. As already stated, the required sintering temperature also drops correspondingly.
  • the water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
  • the plate was heated at about 50 K / h in air at 1250 0 C, held for 1 h at 1250 0 C and then cooled.
  • the resulting plate had a density of 1.71 g / cm 3 , which corresponds to a porosity of about 57%.
  • the plate was solid, sawed into small pieces.
  • the water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
  • the plate was heated at about 50 K / h in air to 1100 0 C, held for 1 h at 1100 0 C and then cooled.
  • the resulting plate had a density of 1.83 g / cm 3 , which corresponds to a porosity of about 57%.
  • the plate was solid, sawed into small pieces.
  • the sintering temperature decreases as the proportion of the nanoscale secondary phase increases in order to be able to produce a preform with a strength required for the infiltration process.
  • the temperature treatment can be stationary as a batch process or continuously in a roller furnace. Any required machining of the sintered preforms can be done by milling and drilling, as in the case of green bodies.

Abstract

The preform technology is preferred for the production of composite materials. The preform must have a high strength and the necessary porosity for the infiltration with the liquid metal. The invention comprises the properties of the preform being improved by an appropriate selection of the size and type of the fibers and/or the particles of the secondary phase and/or the implementation of a special pore structure. In particular, the strength of the preform is increased and/or the temperature for solidifying the preform can be reduced by the use of an additional secondary phase in the nanoscale range.

Description

Verfahren zur Herstellung von Preforms für Metal-Matrix-Composites Process for producing preforms for metal-matrix composites
Die Erfindung betrifft ein Verfahren zur Herstellung von Preforms für Metal- Matrix-Composites.The invention relates to a process for the production of preforms for metal matrix composites.
Als Metall-Matrix-Verbundwerkstoff, Metal-Matrix-Composite (MMC), wird ein Verbund einer Metallmatrix mit einer oder mehreren eingelagerten Sekundärphasen bezeichnet. Im strengen Sinn zählen zu den MMCs nur Verbundwerkstoffe mit einem Metallanteil > 50 Vol%. Verbundwerkstoffe mit geringeren Metallanteilen werden beispielsweise als Keramik-Matrix- Verbund Werkstoff, Ceramic-Matrix-Composite (CMC), bezeichnet. Diese Unterscheidung wird aber im allgemeinen nicht immer konsequent durchgeführt.Metal-matrix composite, metal matrix composite (MMC), is a composite of a metal matrix with one or more embedded secondary phases. In a strict sense, only composite materials with a metal content> 50% by volume belong to the MMCs. Composite materials with lower metal content are referred to, for example, as a ceramic matrix composite material, ceramic matrix composite (CMC). However, this distinction is generally not always carried out consistently.
Die Preform soll für die Infiltration mit dem flüssigen Metall eine hohe Festigkeit aufweisen. Als Sekundärphase werden im Folgenden alle die Teilchen oder Fasern bezeichnet, die eine andere Zusammensetzung haben als die Metallmatrix und in diese eingelagert sind. Entsprechend wird deshalb auch der Begriff Einlagerungsphase verwendet. Nicht gemeint sind hierbei die Ausscheidungsphasen bei Legierungen.The preform should have high strength for infiltration with the liquid metal. In the following, all particles or fibers which have a different composition than the metal matrix and are embedded in it are referred to as the secondary phase. Accordingly, the term storage phase is therefore used. Not meant here are the precipitation phases in alloys.
Als Metallmatrix kommen prinzipiell alle Metalle in Frage, insbesondere aber solche aus der Gruppe der sogenannten Leichtmetalle wie beispielsweise Aluminium, Magnesium oder Titan. Mit diesen Leichtmetallen können gegenüber den herkömmlichen Konstruktionswerkstoffen wie beispielsweise Gusseisen oder Stahl deutliche Gewichtsvorteile erreicht werden, wobei die eventuell auftretenden Nachteile bezüglich mechanischer, tribologischer oder thermischer Eigenschaften durch homogene Einlagerung weiterer Phasen in die Metallmatrix teilweise oder vollständig kompensiert werden können.In principle, all metals are suitable as metal matrix, but in particular those from the group of so-called light metals such as aluminum, magnesium or titanium. Considerable weight advantages can be achieved with these light metals compared with conventional construction materials such as cast iron or steel, for example, and the possible disadvantages with respect to mechanical, tribological or thermal properties can be partially or completely compensated for by homogenous incorporation of further phases into the metal matrix.
Als Einlagerungsphasen sind Elemente und Verbindungen möglich, die auf Grund ihrer Werkstoffkenngrößen dazu geeignet sind, einzelne Eigenschaften der Metallmatrix zu verbessern. Dies kann eine Verbesserung der mechanischen Eigenschaften sein wie beispielsweise der Festigkeit, der Tribologie, der Verschleißbeständigkeit oder des E-Moduls. In anderen Fällen kann eine Verbesserung der thermischen Eigenschaften wie beispielsweise eine Erhöhung der Wärmeleitfähigkeit oder Erniedrigung der thermischen Ausdehnung erreicht werden. Weiterhin haben Verbundwerkstoffe aufgrund ihrer Zusammensetzung positive akustische Eigenschaften bezüglich der Verminderung von Schallerzeugung und der Leitung des Schalls.As storage phases elements and compounds are possible, which are suitable due to their material characteristics to improve individual properties of the metal matrix. This can be an improvement mechanical properties such as strength, tribology, wear resistance or modulus of elasticity. In other cases, an improvement in the thermal properties, such as an increase in the thermal conductivity or lowering the thermal expansion can be achieved. Furthermore, composites have, by virtue of their composition, positive acoustic properties with respect to the reduction of sound generation and the conduction of the sound.
Die homogene Verteilung der Sekundärphasen in der Metallmatrix kann entweder durch in-situ-Bildung während des Herstellprozesses erfolgen, durch Zumischen der Sekundärphase zum schmelzflüssigen Metall oder durch die Infiltration eines porösen Formkörpers, einer sogenannten Preform, die aus der Sekundärphase besteht, mit der Metallschmelze. Die Einlagerungsphasen können als Teilchen, als Fasern oder als Mischung beider in der Preform und/oder später im Verbund vorliegen.The homogeneous distribution of the secondary phases in the metal matrix can be done either by in-situ formation during the manufacturing process, by mixing the secondary phase to the molten metal or by infiltration of a porous shaped body, a so-called preform, which consists of the secondary phase, with the molten metal. The intercalation phases can be present as particles, as fibers or as a mixture of both in the preform and / or later in the composite.
Zur Herstellung von Verbundwerkstoffen wird aufgrund folgender Vorteile die Preformtechnik bevorzugt:For the production of composite materials, the preforming technique is preferred due to the following advantages:
Das Formgebungsverfahren der Preform ist unabhängig von der Formgebung des Bauteils.The molding process of the preform is independent of the shape of the component.
Die Formgebung der Preform erfolgt nach gängigen pulvertechnologischen Verfahren wie beispielsweise axiales Pressen, isostatisches Pressen, Schlickerguss, Filtrationsguss, Extrudieren.The shaping of the preform is carried out by conventional powder technology methods such as axial pressing, isostatic pressing, slip casting, filtration casting, extrusion.
Es ist eine konturnahe Formgebung des Verbundwerkstoffes möglich.It is possible a contour near shaping of the composite material.
Eine lokale Begrenzung des Verbundwerkstoffs auf die Funktionsbereiche des Werkstücks ist möglich. Es entsteht eine monolithische Verbindung eines lokalen Verbundwerkstoffs mit dem übrigen Bauteil.A local limitation of the composite to the functional areas of the workpiece is possible. The result is a monolithic connection of a local composite material with the rest of the component.
Die Kombinationen verschiedener Verbundwerkstoffe in einem Bauteil ist möglich. Bei Bedarf besteht die Möglichkeit der anisotropen Orientierung der Sekundärphase im Verbund, wodurch insbesondere bei dem Einsatz von Fasern die Bauteileigenschaften gezielt beeinflusst werden können.The combinations of different composite materials in one component is possible. If necessary, there is the possibility of anisotropic orientation of the secondary phase in the composite, which can be specifically influenced, especially in the use of fibers, the component properties.
Die Herstellung von Gradienten Werkstoffen ist möglich. Die Zusammensetzung eines Preformwerkstoffs ist reproduzierbar.The production of gradient materials is possible. The composition of a preform material is reproducible.
Zur Porosierung der Preform können temporäre Füllstoffe eingesetzt werden, das heißt Stoffe, die durch einen thermischen, chemischen oder physikalischen Prozessschritt wieder aus der Preform entfernt werden. Dabei entsteht eine Porenstruktur, die bezüglich Anteil, Größenverteilung und Form dem Porosierungsmittel entspricht. Als Porosierungsmittel werden beispielsweise natürliche oder synthetische organische Pulver eingesetzt. Es können für bestimmte Anwendungsfälle auch Fasern eingesetzt werden.Temporary fillers may be used to pore the preform, that is to say substances which are removed from the preform by a thermal, chemical or physical process step. This results in a pore structure which corresponds in terms of proportion, size distribution and shape of the porosity agent. Porosizing agents used are, for example, natural or synthetic organic powders. It can be used for certain applications and fibers.
Bei der Formgebung der Preforms kann es durch Entmischungsvorgänge, Agglomerationen oder Sedimentationen, zu einer inhomogenen Verteilung der Teilchen in der Preform kommen. Eine solche Entmischung tritt insbesondere bei Teilchen im Nanometerbereich auf. Weiterhin können die Formgebungsverfahren häufig zu lokal unterschiedlicher Verdichtung und damit zu Dichtegradienten führen.During the shaping of the preforms, segregation processes, agglomeration or sedimentation can lead to an inhomogeneous distribution of the particles in the preform. Such segregation occurs especially with particles in the nanometer range. Furthermore, the shaping processes can often lead to locally different densification and thus to density gradients.
Die Verarbeitung von nanoskaligen Pulvern ist in der wässrigen Phase als Dispersion nur in starker Verdünnung und mit Dispergierhilfsmitteln möglich, da es sonst zu Agglomeration der Teilchen kommt, wodurch die gewünschten Eigenschaften verloren gehen.The processing of nanoscale powders is possible in the aqueous phase as a dispersion only in high dilution and with dispersing aids, otherwise agglomeration of the particles occurs, as a result of which the desired properties are lost.
Bei der Verarbeitung von Nanoteilchen als Pulver kommt es neben Problemen beim Handling ebenfalls zu Agglomerationen, und als Folge davon beispielsweise zu Eigenschaftsverschlechterungen durch Gefügefehler im Verbund.In the processing of nanoparticles as a powder it comes next to problems in handling also agglomerations, and as a result, for example, to property deterioration due to structural defects in the composite.
Zum Formgebungsprozess gehört eine Verfestigung der Preform, was bei keramischen Hartstoffen als Sekundärphase in der Regel durch einen - A -The shaping process involves solidification of the preform, which in ceramic hard materials as a secondary phase usually by a - A -
Sinterprozess erfolgt. Um eine für das Handling und die Infiltration ausreichende Preformfestigkeit zu erreichen, müssen je nach verwendetem Hartstoff die Temperaturen so hoch gewählt werden, dass es bereits zu einer Vergröberung der Hartstoffteilchen kommt. Dadurch wird beispielsweise die verstärkende Wirkung verringert. Außerdem entsteht ein starres Keramikgerüst, wodurch die Duktilität des Verbundmaterials reduziert wird.Sintering process takes place. In order to achieve sufficient preforming strength for handling and infiltration, the temperatures must be selected to be so high, depending on the hard material used, that coarsening of the hard material particles already occurs. As a result, for example, the reinforcing effect is reduced. In addition, a rigid ceramic framework, whereby the ductility of the composite material is reduced.
Es ist die Aufgabe der Erfindung, durch eine entsprechende Wahl der Größe und Art der Fasern und/oder der Teilchen der Sekundärphasen und der Porosierungsmittel die Eigenschaften der Preforms zu verbessern.It is the object of the invention to improve the properties of the preforms by an appropriate choice of the size and type of fibers and / or the particles of the secondary phases and the porosity.
Die Verfestigung der Preform nach dem Formgebungsprozess durch eine Temperaturbehandlung erfolgt bei vielen Hartstoffen durch Ausbildung von Brücken zwischen den Partikeln. Dies geschieht zunächst dort, wo sich Teilchen bereits berühren.The hardening of the preform after the shaping process by a temperature treatment occurs in many hard materials by forming bridges between the particles. This happens first where particles already touch.
Die Teilchengröße der Teilchen, die als Sekundärphase zur Herstellung eines Verbundwerkstoffes verwendet werden, üben in vorteilhafter Weise Einfluss auf die Verbundeigenschaften aus. Durch Zusatz von Teilchen mitThe particle size of the particles used as the secondary phase for producing a composite advantageously exerts an influence on the composite properties. By addition of particles with
Größenordnungen im Nanometerbereich von 1 bis 500 Nanometern, auch alsMagnitudes in the nanometer range from 1 to 500 nanometers, also as
Nanoteilchen oder Nanopartikel bezeichnet, kann die Anzahl der Berührpunkte der Teilchen deutlich gesteigert werden. Außerdem sind die Nanoteilchen wegen ihrer geringen Größe reaktiver, so dass die Ausbildung der Brücken bereits bei niedrigeren Temperaturen erfolgt. Durch die hohe Zahl derDesignated nanoparticles or nanoparticles, the number of contact points of the particles can be significantly increased. In addition, the nanoparticles are more reactive because of their small size, so that the formation of the bridges already takes place at lower temperatures. Due to the high number of
Kontaktstellen bilden sich dünnere Brücken. Dadurch steigert sich dieContact points form thinner bridges. This increases the
Duktilität und die Dehnfähigkeit des Verbundmaterials. Die Nanoteilchen wirken als so genannter anorganischer Binder zwischen den gröberen Teilchen.Ductility and ductility of the composite material. The nanoparticles act as so-called inorganic binder between the coarser particles.
Voraussetzung ist, dass die Teilchen als separate, nicht agglomerierte Teilchen vorliegen. Der Einfluss der Nanoteilchen beginnt bereits ab einem Anteil von etwa 1 Gewichtsprozent in der gesinterten Preform. Mit steigendem Anteil der Nanoteilchen steigt auch die Preformfestigkeit und desto geringer kann die erforderliche Temperatur zur Verfestigung sein. Je nach Anteil der nanoskaligen Teilchen liegt die Sintertemperatur zwischen 600 0C und 1500 0C.The prerequisite is that the particles are present as separate, non-agglomerated particles. The influence of the nanoparticles already starts from a proportion of about 1 percent by weight in the sintered preform. As the proportion of nanoparticles increases, so too does the preform strength may be the required temperature for solidification. Depending on the proportion of nanoscale particles, the sintering temperature is between 600 0 C and 1500 0 C.
Ein optimaler Anteil an einer Sekundärphase im nanoskaligen Bereich in der gesinterten Preform liegt im Bereich zwischen etwa 1 Gewichtsprozent und 20 Gewichtsprozent. In diesem Bereich ist die Gefahr, dass die nanoskaligen Teilchen während der Mischung der Ausgangswerkstoffe agglomerieren, noch nicht so groß wie bei höheren Anteilen oder gar Preforms, die ausschließlich aus Sekundärphasen-Pulvern im nanoskaligen Bereich hergestellt werden.An optimal fraction of a nanoscale secondary phase in the sintered preform is in the range of about 1% to 20% by weight. In this area, the danger that the nanoscale particles agglomerate during the mixing of the starting materials is not yet as great as with higher fractions or even preforms, which are produced exclusively from nanoscale secondary-phase powders.
Um bei einem hohen Anteil von nanoskaligen Teilchen ihre positiven Wirkungen zu erhalten und eine Agglomeration zu verhindern, ist eine definierte Ablagerung von Nanoteilchen auf andere als Träger fungierende Teilchen, weitere Sekundärphasen oder Porosierungsmittel erforderlich. Dann ist die Verarbeitung sogar als Pulver möglich, ohne dass es zu ungewollten Agglomerationen kommt.In order to maintain their positive effects and to prevent agglomeration in the case of a high proportion of nanoscale particles, a defined deposition of nanoparticles onto other carrier particles, further secondary phases or porosity agents is required. Then the processing is even possible as a powder, without causing unwanted agglomeration.
Zur Vermeidung von Entmischungsvorgängen innerhalb der Sekundärphase sowie zwischen Sekundärphase und Porosierungsmittel können die Nanoteilchen der Sekundärphase entweder direkt auf dem Porosierungsmittel abgeschieden oder in der Preform gebildet werden, beispielsweise über einen Sol-Gel-Prozess. Das führt direkt zu einer Preform, die Nanoteilchen enthält.To avoid segregation processes within the secondary phase and between the secondary phase and the porosity agent, the nanoparticles of the secondary phase can either be deposited directly on the porosity agent or formed in the preform, for example via a sol-gel process. This leads directly to a preform containing nanoparticles.
Weiterhin lassen sich vorbehandelte Nanoteilchen sowohl auf anderen Sekundärteilchen als auch auf oder in dem Porosierungsmittel fixieren. Hierzu ist beispielsweise die Sprühgranulation über einen Atomizer geeignet oder ein Verfahren zur Trockenmischung und/oder Aufbaugranulation, beispielsweise mittels Granuliertrommel, Wirbelschicht und ähnlichem. Durch geeignete Wahl der Abfolge der Komponentenzugabe und Hilfsstoffe sowie der thermischen und mechanischen Randbedingungen wird ein Granulat erhalten, das sich mit üblichen trockenen Formgebungsverfahren verarbeiten lässt. Die Porenstruktur entsteht zum einen aus temporären organischen Porosierungsmitteln, die während eines speziellen Prozessschrittes aus der Preform entfernt werden und dabei bezüglich Menge, Größe und Form entsprechende Poren hinterlassen. Zum anderen werden durch den Formgebungsprozess über das verarbeitete Granulat Poren in die Preform eingebracht.Furthermore, pretreated nanoparticles can be fixed on other secondary particles as well as on or in the porosity agent. For this purpose, for example, the spray granulation is suitable via an atomizer or a method for dry mixing and / or build-up granulation, for example by means of granulating, fluidized bed and the like. By suitable choice of the sequence of component addition and auxiliaries as well as the thermal and mechanical boundary conditions, a granulate is obtained which can be processed by conventional dry shaping methods. On the one hand, the pore structure consists of temporary organic porosity agents, which are removed from the preform during a special process step, leaving corresponding pores with regard to quantity, size and shape. On the other hand, pores are introduced into the preform via the processed granules by the shaping process.
Entsprechend der Erfindung werden die Porosierungsmittel und die anorganischen Basisstoffe bei der Herstellung des Granulats so aufeinander abgestimmt, dass die gewünschte multimodale Porenstruktur entsteht. Es ist vorteilhaft, als Porosierungsmittel eine Mischung verschiedener Stoffe mit unterschiedlicher Größenverteilung, Form und Struktur zu verwenden. Geeignet sind natürliche organische Stoffe wie beispielsweise Stärken, Cellulose und andere pflanzliche Stoffe mit Teilchengrößen zwischen 1 und 500 Mikrometern. Aber auch synthetische Stoffe wie beispielsweise Wachse und andere Polymere mit passender Struktur sind geeignet.According to the invention, the porosity agents and the inorganic base materials in the preparation of the granules are coordinated so that the desired multimodal pore structure is formed. It is advantageous to use as a porosity agent a mixture of different substances with different size distribution, shape and structure. Suitable natural organic substances such as starches, cellulose and other botanicals with particle sizes between 1 and 500 microns. But synthetic materials such as waxes and other polymers with matching structure are suitable.
Anhand von Ausführungsbeispielen wird die Erfindung näher erläutert:Reference to exemplary embodiments, the invention is explained in more detail:
Es wird ein Ausführungsbeispiel mit einem niedrigen Anteil an nanoskaligen Teilchen vorgestellt. Kolloidales SiO2 im nanoskaligen Bereich fungiert als so genannter anorganischer Binder. Entsprechend der nachfolgenden Zusammensetzung werden die anorganischen und die organischen Basiswerkstoffe miteinander gemischt. An embodiment with a low proportion of nanoscale particles is presented. Colloidal SiO 2 in the nanoscale area acts as a so-called inorganic binder. According to the following composition, the inorganic and organic base materials are mixed together.
Beispiel 1 :Example 1 :
42,4 wt% AI2O3, mikroskaliges Pulver 1 bis 3 μm42.4 wt% Al 2 O 3, microscale powder 1 to 3 microns
0,4 wt% kolloidales SiO2, 5 bis 50 nm, als anorganisches Bindemittel0.4 wt% colloidal SiO 2, 5 to 50 nm, as an inorganic binder
3,8 wt% Cellulosepulver3.8 wt% cellulose powder
1 ,9 wt% Ligninpulver1, 9 wt% lignin powder
0,7 wt% Dispergierhilfsmittel0.7 wt% dispersing agent
0,8 wt% organisches Bindemittel0.8 wt% organic binder
50,0 wt% Wasser50.0 wt% water
Das Wasser wurde in einem Behälter vorgelegt und die übrigen Komponenten mit einem schnelllaufenden Rührer homogen darin gelöst beziehungsweise dispergiert. Anschließend wurde der Schlicker über einen Atomizer zu einem Granulat sprühgetrocknet.The water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
Zur Formgebung wurden 6000 g des Granulats in einer Form mit den Maßen 400 mm x 250 mm bei 100 MPa axial verpresst werden. Es entstand eine Platte der obengenannten Abmessung mit einer Höhe von etwa 30 mm und einer Dichte von 1 ,88 g/cm3.For shaping, 6000 g of the granules were pressed axially in a mold measuring 400 mm × 250 mm at 100 MPa. The result was a plate of the above dimension with a height of about 30 mm and a density of 1.88 g / cm 3 .
Anschließend erfolgte das Ausheizen des Binders und der Porosierungsmittel und das Verfestigen bis zu einer Temperatur von 1400 0C bei einer Haltezeit von 0,5 bis 1 Stunde.Subsequently, the heating of the binder and the porosity agent and the solidification was carried out up to a temperature of 1400 0 C with a holding time of 0.5 to 1 hour.
Der Anteil des so genannten anorganischen Bindemittels, bezogen auf die anorganischen Komponenten der Preform, betrug nach dem Sintern etwa 1 wt%.The proportion of the so-called inorganic binder, based on the inorganic components of the preform, was about 1 wt% after sintering.
In der nachfolgenden Tabelle sind die wesentlichen Eigenschaften der erfindungsgemäßen Preform aus Beispiel 1 zusammengestellt.
Figure imgf000009_0001
The following table summarizes the essential properties of the preform according to the invention from example 1.
Figure imgf000009_0001
Bei dem vorliegenden Ausführungsbeispiel 1 kann der Anteil des anorganischen Binders auch durch einen Anteil von bis zu 10 Gewichtsprozent anderer kolloidalen Oxide, zum Beispiel Aluminiumoxid, mit einer Teilchengröße von 10 bis 200 Nanometern ersetzt oder ergänzt werden.In the present embodiment 1, the content of the inorganic binder may also be replaced or supplemented by a proportion of up to 10% by weight of other colloidal oxides, for example, alumina, having a particle size of 10 to 200 nanometers.
Bei den nachfolgenden Ausführungsbeispielen ist der Anteil der nanoskaligen Teilchen größer. Im Ausführungsbeispiel 2 beträgt er, bezogen auf die anorganischen Komponenten der gesinterten Preform, ca. 5 wt%. Wie bereits dargelegt, sinkt auch entsprechend die erforderliche Sintertemperatur. Beispiel 2:In the following embodiments, the proportion of nanoscale particles is greater. In the exemplary embodiment 2, it is about 5 wt%, based on the inorganic components of the sintered preform. As already stated, the required sintering temperature also drops correspondingly. Example 2:
40,6 wt% AI2O3, mikroskaliges Pulver, 1 bis 3 μm40.6 wt% Al 2 O 3 , microscale powder, 1 to 3 microns
2,2 wt% AI2O3, nanoskaliges Pulver 10 bis 100 nm als anorganisches Bindemittel 3,8 wt% Cellulosepulver2.2 wt% Al 2 O 3 , nanoscale powder 10 to 100 nm as an inorganic binder 3.8 wt% cellulose powder
1 ,9 wt% Ligninpulver1, 9 wt% lignin powder
0,7 wt% Dispergierhilfsmittel0.7 wt% dispersing agent
0,8 wt% organisches Bindemittel0.8 wt% organic binder
50,0 wt% Wasser50.0 wt% water
Das Wasser wurde in einem Behälter vorgelegt und die übrigen Komponenten mit einem schnelllaufenden Rührer homogen darin gelöst beziehungsweise dispergiert. Anschließend wurde der Schlicker über einen Atomizer zu einem Granulat sprühgetrocknet.The water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
Zur Formgebung wurden 6000 g des Granulats in einer Form mit den Maßen 400 mm x 250 mm bei 100 MPa axial verpresst werden. Es entstand eine Platte der obengenannten Abmessung mit einer Höhe von etwa 30 mm und einer Dichte von 1 ,89 g/cm3.For shaping, 6000 g of the granules were pressed axially in a mold measuring 400 mm × 250 mm at 100 MPa. The result was a plate of the above dimension with a height of about 30 mm and a density of 1.89 g / cm 3 .
Die Platte wurde mit etwa 50 K/h in Luft auf 1250 0C aufgeheizt, 1 h bei 1250 0C gehalten und danach abgekühlt. Die erhaltene Platte hatte eine Dichte von 1 ,71 g/cm3, was einer Porosität von etwa 57 % entspricht. Die Platte war fest, ließ sich in kleine Teile zersägen. The plate was heated at about 50 K / h in air at 1250 0 C, held for 1 h at 1250 0 C and then cooled. The resulting plate had a density of 1.71 g / cm 3 , which corresponds to a porosity of about 57%. The plate was solid, sawed into small pieces.
Beispiel 3:Example 3:
35,6 wt% TiO2, mikroskaliges Pulver, 0,5 bis 2 μm35.6 wt% TiO 2 , microscale powder, 0.5 to 2 μm
8,9 wt% TiO2, nanoskaliges Pulver, 5 bis 50 nm, als anorganisches8.9 wt% TiO 2 , nanoscale powder, 5 to 50 nm, as inorganic
Bindemittel 3,0 wt% CellulosepulverBinder 3.0 wt% cellulose powder
1 ,5 wt% Ligninpulver1, 5 wt% lignin powder
0,2 wt% Dispergierhilfsmittel0.2 wt% dispersing aid
0,8 wt% organisches Bindemittel0.8 wt% organic binder
50,0 wt% Wasser50.0 wt% water
Das Wasser wurde in einem Behälter vorgelegt und die übrigen Komponenten mit einem schnelllaufenden Rührer homogen darin gelöst beziehungsweise dispergiert. Anschließend wurde der Schlicker über einen Atomizer zu einem Granulat sprühgetrocknet.The water was placed in a container and the other components were dissolved or dispersed homogeneously in a high-speed stirrer. Subsequently, the slurry was spray dried over an atomizer to a granulate.
Zur Formgebung wurden 6000 g des Granulats in einer Form mit den Maßen 400 mm x 250 mm bei 100 MPa axial verpresst werden. Es entstand eine Platte der obengenannten Abmessung mit einer Höhe von etwa 30 mm und einer Dichte von 1 ,91 g/cm3.For shaping, 6000 g of the granules were pressed axially in a mold measuring 400 mm × 250 mm at 100 MPa. The result was a plate of the above dimension with a height of about 30 mm and a density of 1, 91 g / cm 3 .
Die Platte wurde mit etwa 50 K/h in Luft auf 1100 0C aufgeheizt, 1 h bei 1100 0C gehalten und danach abgekühlt. Die erhaltene Platte hatte eine Dichte von 1 ,83 g/cm3, was einer Porosität von etwa 57 % entspricht. Die Platte war fest, ließ sich in kleine Teile zersägen.The plate was heated at about 50 K / h in air to 1100 0 C, held for 1 h at 1100 0 C and then cooled. The resulting plate had a density of 1.83 g / cm 3 , which corresponds to a porosity of about 57%. The plate was solid, sawed into small pieces.
Wie anhand dieser Ausführungsbeispiele deutlich zu erkennen ist, sinkt mit zunehmendem Anteil der nanoskaligen Sekundärphase die Sintertemperatur, um eine Preform mit einer für den Infiltrationsprozess erforderlichen Festigkeit erzeugen zu können.As can be clearly seen from these exemplary embodiments, the sintering temperature decreases as the proportion of the nanoscale secondary phase increases in order to be able to produce a preform with a strength required for the infiltration process.
Die Temperaturbehandlung kann stationär als Batch-Verfahren oder kontinuierlich in einem Rollenofen erfolgen. Eine eventuell erforderliche Bearbeitung der gesinterten Preforms kann, vergleichbar wie bei Grünkörpern, durch Fräsen und Bohren erfolgen. The temperature treatment can be stationary as a batch process or continuously in a roller furnace. Any required machining of the sintered preforms can be done by milling and drilling, as in the case of green bodies.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Preforms für Metal-Matrix-Composites, dadurch gekennzeichnet, dass eine oder mehrere Sekundärphasen aus Metallen, Oxiden, Carbiden, Boriden, Nitriden, Suiziden sowie Kombinationen daraus eine Teilchengröße im Bereich von 1 bis 50 μm haben und mindestens eine der Sekundärphasen aus den genannten Werkstoffen eine Teilchengröße von 1 bis 500 Nanometer hat, dass der Anteil der Sekundärphase mit der nanoskaligen Teilchengröße einen Anteil von 1 bis 20 Gewichtsprozent an den gesinterten Preforms hat und dass diese nanoskaligen Teilchen als so genannte anorganische Binder eingesetzt werden.1. A process for the production of preforms for metal matrix composites, characterized in that one or more secondary phases of metals, oxides, carbides, borides, nitrides, suicides and combinations thereof have a particle size in the range of 1 to 50 microns and at least one the secondary phases of said materials has a particle size of 1 to 500 nanometers, that the proportion of the secondary phase with the nanoscale particle size has a proportion of 1 to 20 weight percent of the sintered preforms and that these nanoscale particles are used as so-called inorganic binder.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sekundärphase aus Teilchen im nanoskaligen Größenbereich aus Aluminiumoxid und/oder Siliziumdioxid besteht.2. The method according to claim 1, characterized in that the secondary phase consists of particles in the nanoscale size range of alumina and / or silica.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sekundärphase aus Teilchen im nanoskaligen Größenbereich aus Titandioxid besteht.3. The method according to claim 1, characterized in that the secondary phase consists of particles in the nanoscale size range of titanium dioxide.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Vorbehandlung einer oder mehrerer Sekundärphasen mit der Teilchengröße im Bereich von 1 bis 50 μm durch Beschichten der4. The method according to any one of claims 1 to 3, characterized in that a pretreatment of one or more secondary phases with the particle size in the range of 1 to 50 microns by coating the
Teilchen mit den nanoskaligen Teilchen mittels eines chemischen oder physikalischen Prozesses erfolgt, vorzugsweise einem Sol-Gel-Prozess.Particles with the nanoscale particles by means of a chemical or physical process, preferably a sol-gel process.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Unterstützung der Granulatherstellung und Formgebung abgestimmte organische Bindemittel mit abgestimmter unterschiedlicher5. The method according to any one of claims 1 to 4, characterized in that to support the granule production and shaping coordinated organic binder with coordinated different
Löslichkeit verwendet werden wie Polymere, vorzugsweise Polyvinylalkohol. Solubility can be used as polymers, preferably polyvinyl alcohol.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass organische temporäre Porosierungsmittel verwendet werden wie Stärken, Cellulose, Polymere.6. The method according to any one of claims 1 to 5, characterized in that organic temporary porosity agents are used such as starches, cellulose, polymers.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass Porosierungsmittel mit einer Teilchengröße von 1 μm bis zu 500 μm zugegeben werden.7. The method according to claim 6, characterized in that porosity agents are added with a particle size of 1 micron up to 500 microns.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass mindestens zwei in Größe und Morphologie unterschiedliche Porosierungsmittel kombiniert werden.8. The method according to any one of claims 6 or 7, characterized in that at least two different in size and morphology Porosierungsmittel be combined.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine selbstähnliche Porenstruktur erzeugt wird durch die Verwendung einer multimodalen, Mischung der Porosierungsmittel und/oder durch Kombination verschiedener Granulationsprozesse, vorzugsweise durch Aufbaugranulation oder Sprühgranulation.9. The method according to any one of claims 1 to 8, characterized in that a self-similar pore structure is produced by the use of a multimodal, mixing the porosity and / or by combining different granulation processes, preferably by build-up granulation or spray granulation.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Ausfällung beziehungsweise Bildung der Sekundärphase mit Teilchen im Nanometerbereich direkt bei der Herstellung des Granulats auf einer weiteren, gröberen Sekundärphase oder auf dem Porosierungsmittel erfolgt.10. The method according to any one of claims 1 to 9, characterized in that the precipitation or formation of the secondary phase is carried out with particles in the nanometer range directly in the production of the granules on a further, coarser secondary phase or on the Porosierungsmittel.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Ablagerung der Sekundärphase als Teilchen im Nanometerbereich auf einer gröberen Sekundärphase und/oder dem Porosierungsmittel durch einen Granulationsprozess erfolgt.11. The method according to any one of claims 1 to 10, characterized in that deposition of the secondary phase takes place as a particle in the nanometer range on a coarser secondary phase and / or the porosity by a granulation process.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Ausheizen der temporären Porosierungsmittel und das12. The method according to any one of claims 1 to 11, characterized in that the annealing of the temporary Porosierungsmittel and the
Verfestigen bei Temperaturen zwischen 600 0C und 1500 0C, vorzugsweise zwischen 1000 0C und 1500 0C, besonders bevorzugt zwischen 1000 0C und 1400 0C erfolgt Solidification at temperatures between 600 0 C and 1500 0 C, preferably between 1000 0 C and 1500 0 C, more preferably between 1000 0 C and 1400 0 C takes place
PCT/EP2008/067410 2007-12-21 2008-12-12 Method for producing preforms for metal-matrix composites WO2009080560A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08863784A EP2225060A2 (en) 2007-12-21 2008-12-12 Method for producing preforms for metal-matrix composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007055908 2007-12-21
DE102007055908.0 2007-12-21

Publications (2)

Publication Number Publication Date
WO2009080560A2 true WO2009080560A2 (en) 2009-07-02
WO2009080560A3 WO2009080560A3 (en) 2010-03-11

Family

ID=40690148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/067410 WO2009080560A2 (en) 2007-12-21 2008-12-12 Method for producing preforms for metal-matrix composites

Country Status (3)

Country Link
EP (1) EP2225060A2 (en)
DE (1) DE102008054561A1 (en)
WO (1) WO2009080560A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180258B1 (en) * 1997-06-04 2001-01-30 Chesapeake Composites Corporation Metal-matrix composites and method for making such composites
EP1433553A1 (en) * 2002-12-20 2004-06-30 Ceramtec AG Composite material and method for its manufacture
EP1811049A2 (en) * 2006-01-18 2007-07-25 Bayerische Motorenwerke Aktiengesellschaft Method of manufacturing dispersion-strenghtened metals
DE102007002833A1 (en) * 2007-01-19 2008-07-24 Robert Bosch Gmbh Ceramic preform for the production of metal-ceramic composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180258B1 (en) * 1997-06-04 2001-01-30 Chesapeake Composites Corporation Metal-matrix composites and method for making such composites
EP1433553A1 (en) * 2002-12-20 2004-06-30 Ceramtec AG Composite material and method for its manufacture
EP1811049A2 (en) * 2006-01-18 2007-07-25 Bayerische Motorenwerke Aktiengesellschaft Method of manufacturing dispersion-strenghtened metals
DE102007002833A1 (en) * 2007-01-19 2008-07-24 Robert Bosch Gmbh Ceramic preform for the production of metal-ceramic composites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Also Published As

Publication number Publication date
WO2009080560A3 (en) 2010-03-11
DE102008054561A1 (en) 2009-06-25
EP2225060A2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
EP1341739B1 (en) Open-celled silicon carbide foam ceramic and method for production thereof
DE102008042415B3 (en) Metallic semi-finished product, process for the production of materials and semi-finished products and their uses
WO2006072586A2 (en) Metallic powder mixtures
DE102006032561B3 (en) Metallic powder mixtures
EP1242642A1 (en) Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
DE102020109047A1 (en) SINTER CARBIDE POWDER FOR ADDITIVE MANUFACTURING
DE10111225A1 (en) Composite material based on silicon carbide and carbon, process for its production and its use
EP1433553B1 (en) Method for manufacture of composite material
EP2046522A1 (en) Metallic powder mixtures
EP0723529B1 (en) PROCESS FOR PRODUCING TiN SINTERED BODIES AND COATINGS
DE102011018607A1 (en) Granules for the production of composite components by injection molding
WO2008006800A1 (en) Metallic powder mixtures
WO2014044433A1 (en) Production of a refractory metal component
WO2009080560A2 (en) Method for producing preforms for metal-matrix composites
EP3395476A2 (en) Method for manufacturing a thermoplastic moulding powder
DE102007047874B4 (en) Porous shaped body of metal oxides and process for its preparation
EP1560799A2 (en) Ceramic-metal or metal-ceramic composite
DD302010A9 (en) Production of a Fiber Reinforced Ceramic Composite
DE102008062155A1 (en) Ceramic mass for producing a sintered body that is solidifiable in a pressureless thermal treatment, comprises hexagonal boron nitride, and nano-scale powder of silicon and aluminum based on oxides, hydroxides, oxyhydrates or compounds
DE102012020829B4 (en) Process for the production of composite components
EP1832357B1 (en) Mould or blank, casting moulding material mix and method for its manufacture
DE3149796C2 (en)
EP2748119B1 (en) Titanium diboride granules as erosion protection for cathodes
CN114855018A (en) Preparation method of nano hard alloy
EP0180924A2 (en) Material consisting of particles containing elementary silicon, which are reaction-bonded in the presence of carbon, and process for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008863784

Country of ref document: EP