KR102621765B1 - Mobile energy storage system and battery charging method - Google Patents

Mobile energy storage system and battery charging method Download PDF

Info

Publication number
KR102621765B1
KR102621765B1 KR1020220019765A KR20220019765A KR102621765B1 KR 102621765 B1 KR102621765 B1 KR 102621765B1 KR 1020220019765 A KR1020220019765 A KR 1020220019765A KR 20220019765 A KR20220019765 A KR 20220019765A KR 102621765 B1 KR102621765 B1 KR 102621765B1
Authority
KR
South Korea
Prior art keywords
pack
iron phosphate
lithium iron
battery pack
phosphate battery
Prior art date
Application number
KR1020220019765A
Other languages
Korean (ko)
Other versions
KR20230123099A (en
Inventor
김영래
윤영찬
Original Assignee
디와이이노베이트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디와이이노베이트 주식회사 filed Critical 디와이이노베이트 주식회사
Priority to KR1020220019765A priority Critical patent/KR102621765B1/en
Publication of KR20230123099A publication Critical patent/KR20230123099A/en
Application granted granted Critical
Publication of KR102621765B1 publication Critical patent/KR102621765B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

이동형 에너지저장시스템 및 배터리 충전 방법이 개시된다. 이동형 에너지저장시스템은 바퀴를 포함하는 본체와, 본체 내에 존재하는 울트라캐패시터팩 및 리튬인산철배터리팩과, 충전커넥터를 포함하고, 울트라캐패시터팩과 리튬인산철배터리팩 중 어느 하나를 선택하여 충전커넥터를 통해 전력을 출력하도록 제어한다.A portable energy storage system and battery charging method are disclosed. The mobile energy storage system includes a main body including wheels, an ultra capacitor pack and a lithium iron phosphate battery pack within the main body, and a charging connector, and a charging connector is provided by selecting one of the ultra capacitor pack and the lithium iron phosphate battery pack. Controls power output through .

Description

이동형 에너지저장시스템 및 배터리 충전 방법{Mobile energy storage system and battery charging method}Mobile energy storage system and battery charging method {Mobile energy storage system and battery charging method}

본 발명의 실시 예는 이동형 에너지저장시스템(ESS) 및 배터리 충전 방법에 관한 것이다. Embodiments of the present invention relate to a mobile energy storage system (ESS) and a battery charging method.

전기차 또는 전기오토바이 등과 같이 배터리의 전력을 이용하여 구동되는 다양한 장치가 존재한다. 전기차 등은 배터리 충전을 위하여 배터리 충전소를 방문하여야 하는 불편함이 존재한다. 또한 전기차 등의 배터리의 잔량을 잘 살피지 않으면 주행 중에 배터리가 방전될 수도 있다. 따라서 전기차 등의 배터리를 장소에 구애받지 않고 자유롭게 충전할 수 있는 이동형 에너지저장시스템이 필요하다.There are various devices that are driven using battery power, such as electric vehicles or electric motorcycles. For electric vehicles, there is the inconvenience of having to visit a battery charging station to charge the battery. Also, if you do not carefully check the remaining battery capacity of electric vehicles, etc., the battery may discharge while driving. Therefore, a portable energy storage system that can freely charge batteries such as electric vehicles is needed regardless of location.

본 발명의 실시 예가 이루고자 하는 기술적 과제는, 고속충전과 일반충전이 모두 가능한 이동형 에너지저장시스템(ESS) 및 배터리 충전 방법을 제공하는 데 있다.The technical problem to be achieved by embodiments of the present invention is to provide a mobile energy storage system (ESS) and a battery charging method capable of both high-speed charging and general charging.

상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 이동형 에너지저장시스템(ESS)의 일 예는, 바퀴를 포함하는 본체; 상기 본체 내에 존재하는 울트라캐패시터팩; 상기 본체 내에 존재하는 리튬인산철배터리팩; 충전커넥터; 및 상기 울트라캐패시터팩과 상기 리튬인산철배터리팩 중 어느 하나를 선택하여 상기 충전커넥터를 통해 전력을 출력하도록 제어하는 제어부;를 포함한다.In order to achieve the above technical problem, an example of a mobile energy storage system (ESS) according to an embodiment of the present invention includes a main body including wheels; Ultra capacitor pack present in the main body; A lithium iron phosphate battery pack present in the main body; charging connector; and a control unit that selects one of the ultra capacitor pack and the lithium iron phosphate battery pack and controls it to output power through the charging connector.

상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 배터리 충전 방법의 일 예는, 울트라캐패시터팩과 리튬인산철배터리팩을 포함하는 이동형 에너지저장시스템의 배터리 충전 방법에 있어서, 상기 울트라캐패시터팩의 잔존용량을 파악하는 단계; 상기 리튬인산철배터리팩의 잔존용량을 파악하는 단계; 및 상기 울트라캐패시터팩의 잔존용량이 기 정의된 제1 기준값 미만이고, 상기 리튬인산철배터리팩의 잔존용량이 기 정의된 제2 기준값 이상이면, 상기 리튬인산철배터리팩의 전력으로 상기 울트라캐패시터팩을 충전하는 단계;를 포함한다.In order to achieve the above technical problem, an example of a battery charging method according to an embodiment of the present invention is a battery charging method of a portable energy storage system including an ultracapacitor pack and a lithium iron phosphate battery pack, wherein the ultracapacitor Determining the remaining capacity of the pack; Determining the remaining capacity of the lithium iron phosphate battery pack; And if the remaining capacity of the ultracapacitor pack is less than a predefined first reference value and the remaining capacity of the lithium iron phosphate battery pack is more than a predefined second reference value, the ultracapacitor pack is supplied with the power of the lithium iron phosphate battery pack. It includes; charging.

본 발명의 실시 예에 따르면, 이동형 에너지저장시스템을 이용하여 장소에 구애받지 않고 전기차 등을 충전할 수 있다. 또한 상황에 따라 고속충전 또는 일반충전을 선택하여 사용할 수 있다. According to an embodiment of the present invention, electric vehicles, etc. can be charged regardless of location using a portable energy storage system. Additionally, you can select fast charging or normal charging depending on the situation.

도 1은 본 발명의 실시 예에 따른 이동형 에너지저장시스템의 일 예의 구성을 도시한 도면,
도 2는 본 발명의 실시 예에 따른 울트라캐패시터팩의 충전 방법의 일 예를 도시한 도면, 그리고,
도 3은 본 발명의 실시 예에 따른 이동형 에너지저장시스템을 이용한 외부 기기의 충전 방법의 일 예를 도시한 도면이다.
1 is a diagram showing the configuration of an example of a portable energy storage system according to an embodiment of the present invention;
Figure 2 is a diagram showing an example of a charging method for an ultracapacitor pack according to an embodiment of the present invention, and
Figure 3 is a diagram illustrating an example of a method of charging an external device using a portable energy storage system according to an embodiment of the present invention.

이하에서, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 이동형 에너지저장시스템(ESS) 및 배터리 충전 방법에 대해 상세히 살펴본다.Hereinafter, a mobile energy storage system (ESS) and a battery charging method according to an embodiment of the present invention will be examined in detail with reference to the attached drawings.

도 1은 본 발명의 실시 예에 따른 이동형 에너지저장시스템의 일 예의 구성을 도시한 도면이다.1 is a diagram showing the configuration of an example of a mobile energy storage system according to an embodiment of the present invention.

도 1을 참조하면, 이동형 에너지저장시스템(100)(이하, '이동형 ESS'라 함)은 본체, 리튬인산철배터리팩(110), 울트라캐패시터팩(120), 충전커넥터(170), 제어회로(150) 등으로 구성된 제어부를 포함한다. 실시 예에 따라 이들 구성 중 일부를 생략되거나 다른 구성을 더 포함하여 구현할 수 있다.Referring to Figure 1, the mobile energy storage system 100 (hereinafter referred to as 'mobile ESS') includes a main body, a lithium iron phosphate battery pack 110, an ultra capacitor pack 120, a charging connector 170, and a control circuit. It includes a control unit consisting of (150) and the like. Depending on the embodiment, some of these configurations may be omitted or other configurations may be further included.

본체는 바퀴를 포함하여 이동 가능한 구조로 구현된다. 실시 예에 다른 본체는 차량 등에 연결할 수 있는 트레일러 형태로 구현되거나 사용자가 끌고 다닐 수 있는 카트형태로 구현될 수 있다. 본체의 크기와 모양은 실시 예에 따라 다양하게 변형될 수 있다.The main body is implemented as a movable structure including wheels. In some embodiments, the main body may be implemented in the form of a trailer that can be connected to a vehicle, etc., or in the form of a cart that can be dragged by a user. The size and shape of the main body may vary depending on the embodiment.

배터리의 급속 충방전은 배터리의 수명에 영향을 미치며 또한 발열 문제가 발생할 수 있다. 이에 본 실시 예는 급속충전에 효율적인 울트라캐패시터팩(120)과 대용량의 전력 저장에 효율적인 리튬인산철배터리팩(110)을 포함한다. 울트라캐패시터팩(120)는 저장용량은 작지만 충방전 속도가 빠르며 높은 출력 전류의 특성을 갖는다. 이에 반해 리튬인산철배터리팩(110)은 울트라캐패시터팩(120)에 비해 저장용량은 크지만 충반전 속도가 느리다. 따라서 울트라캐패시터팩(120)은 긴급 상황에서 빠른 속도로 일정량의 배터리 충전이 필요한 경우에 사용할 수 있으며, 리튬인산철배터리팩(110)은 다량의 전력을 충전시킬 때 사용할 수 있다.Rapid charging and discharging of the battery affects the lifespan of the battery and may also cause heating problems. Accordingly, this embodiment includes an ultra capacitor pack 120 that is efficient for rapid charging and a lithium iron phosphate battery pack 110 that is efficient in storing large amounts of power. The ultracapacitor pack 120 has a small storage capacity, but has a fast charging and discharging speed and high output current. On the other hand, the lithium iron phosphate battery pack 110 has a larger storage capacity than the ultra capacitor pack 120, but the charging and discharging speed is slow. Therefore, the ultra capacitor pack 120 can be used when a certain amount of battery charging is required at a high speed in an emergency situation, and the lithium iron phosphate battery pack 110 can be used when charging a large amount of power.

리튬인산철배터리팩(110)은 완속충전기 또는 급속충전기를 통해 충전될 수 있다. 예를 들어, 제어회로(150) 등으로 구현되는 제어부는 외부로부터 200VAC 전력을 공급받으면 220VAC완속충전기(180)를 통해 리튬인산철배터리팩(110)을 충전하고, 380VAC 전력을 공급받으면 380VAC급속충전기(190)를 통해 리튬인산철배터리팩(110)을 충전할 수 있다. 일 실시 예로, 리튬인산철배터리팩(110)의 용량은 울트라캐패시터팩(120)의 용량보다 수~수십 배 이상 클 수 있다. The lithium iron phosphate battery pack 110 can be charged through a slow charger or a fast charger. For example, when the control unit implemented as the control circuit 150 receives 200VAC power from the outside, it charges the lithium iron phosphate battery pack 110 through the 220VAC slow charger 180, and when 380VAC power is supplied, it charges the lithium iron phosphate battery pack 110 through the 380VAC fast charger. The lithium iron phosphate battery pack (110) can be charged through (190). In one embodiment, the capacity of the lithium iron phosphate battery pack 110 may be several to dozens of times larger than the capacity of the ultracapacitor pack 120.

울트라캐패시터팩(120)은 외부전력으로부터 직접 충전되는 것이 아니라 실시간 필요에 따라 빠르게 충전이 될 수 있도록 리튬인산철배터리팩(110)의 전력으로 충전된다. 예를 들어, 제어부는 리튬인산철배터리팩(110)의 전력을 DC/DC컨버터(130)를 통해 울트라캐패시터팩(120)으로 공급하여 충전할 수 있다. 제어부는 울트라캐패시터팩(120)의 충전 조건을 설정하여 충전 조건에 해당하는 경우에만 충전을 수행할 수 있으며 이에 대해서는 도 2에서 다시 살펴본다.The ultra capacitor pack 120 is not charged directly from external power, but is charged with the power of the lithium iron phosphate battery pack 110 so that it can be charged quickly according to real-time needs. For example, the control unit can charge the lithium iron phosphate battery pack 110 by supplying power to the ultra capacitor pack 120 through the DC/DC converter 130. The control unit can set the charging conditions of the ultracapacitor pack 120 and perform charging only when the charging conditions are met. This will be discussed again in FIG. 2.

제어부는 충전커넥터(170)를 통해 울트라캐패시터팩(120) 또는 리튬인산철배터리팩(110)의 전력을 외부로 출력하여 외부 장치(예를 들어, 전기차나 전기오토바이 등)를 충전할 수 있다. 예를 들어, 제어판(195)을 통해 사용자로부터 고속충전모드 또는 일반충전모드를 선택받으면, 제어부는 선택된 충전모드에 따라 울트라캐패시터팩(120) 또는 리튬인산철배터리팩(110)의 전력을 출력할 수 있다. 이에 대해서는 도 3에서 다시 살펴본다.The control unit can output power from the ultra capacitor pack 120 or the lithium iron phosphate battery pack 110 to the outside through the charging connector 170 to charge an external device (for example, an electric car or an electric motorcycle, etc.). For example, when the user selects the fast charging mode or the normal charging mode through the control panel 195, the control unit outputs the power of the ultra capacitor pack 120 or the lithium iron phosphate battery pack 110 according to the selected charging mode. You can. This will be looked at again in Figure 3.

도 2는 본 발명의 실시 예에 따른 울트라캐패시터팩의 충전 방법의 일 예를 도시한 도면이다.Figure 2 is a diagram showing an example of a charging method for an ultracapacitor pack according to an embodiment of the present invention.

도 1 및 도 2를 함께 참조하면, 제어부는 울트라캐패시터팩(120)의 제1 잔존용량(SOC, State of Charge)을 파악한다(S200). 또한 제어부는 리튬인산철배터리팩(110)의 제2 잔존용량을 파악한다(S210). 예를 들어, 제어부는 배터리관리시스템(Battery Management System)으로부터 각 배터리의 잔존용량을 CAN(Controller Area Network) 통신을 통해 수신할 수 있는 통신모듈(160)을 포함할 수 있다. 다른 실시 예로, 제어부는 각 배터리의 잔존용량 등을 제어판(195) 등에 표시할 수 있다.Referring to FIGS. 1 and 2 together, the control unit determines the first remaining capacity (SOC, State of Charge) of the ultracapacitor pack 120 (S200). Additionally, the control unit determines the second remaining capacity of the lithium iron phosphate battery pack 110 (S210). For example, the control unit may include a communication module 160 that can receive the remaining capacity of each battery from a battery management system through CAN (Controller Area Network) communication. In another embodiment, the control unit may display the remaining capacity of each battery on the control panel 195, etc.

제어부는 제1 잔존용량이 기 정의된 제1 기준값(예를 들어, SOC 95% 등) 이하이고(S200), 제2 잔존용량이 기 정의된 제2 기준값(예를 들어, SOC 20% 등)이상이면, 리튬인산철배터리팩(110)의 전력으로 울트라캐패시터팩(120)을 충전할 수 있다(S240). 제1 기준값 및 제2 기준값은 실시 예에 따라 다양하게 설정될 수 있다. 예를 들어, 제2 기준값은 리튬인산철배터리팩(110)과 울트라캐패시터팩(120)의 용량에 따라 결정될 수 있다. 리튬인산철배터리팩(110)의 용량이 울트라캐패시터팩(120)의 10배이면, 리튬이산철배터리팩(100)의 10% 용량으로 울트라캐패시터팩(120)을 충전시킬 수 있으므로 제2 기준값은 리튬인산철배터리팩(110)의 잔존용량 10%로 설정될 수 있다. 또 다른 실시 예로, 제어부는 충전율과 충전진행 메시지 등을 제어판(195) 등을 통해 표시할 수 있다. The control unit determines that the first remaining capacity is less than or equal to a predefined first reference value (e.g., SOC 95%, etc.) (S200), and the second remaining capacity is less than or equal to a predefined second reference value (e.g., SOC 20%, etc.). If it is above, the ultra capacitor pack 120 can be charged with the power of the lithium iron phosphate battery pack 110 (S240). The first reference value and the second reference value may be set in various ways depending on the embodiment. For example, the second reference value may be determined according to the capacities of the lithium iron phosphate battery pack 110 and the ultra capacitor pack 120. If the capacity of the lithium iron phosphate battery pack 110 is 10 times that of the ultra capacitor pack 120, the ultra capacitor pack 120 can be charged with 10% of the capacity of the lithium iron phosphate battery pack 100, so the second reference value is The remaining capacity of the lithium iron phosphate battery pack 110 may be set to 10%. In another embodiment, the control unit may display the charging rate and charging progress messages through the control panel 195, etc.

도 3은 본 발명의 실시 예에 따른 이동형 에너지저장시스템을 이용한 외부 기기의 충전 방법의 일 예를 도시한 도면이다. Figure 3 is a diagram illustrating an example of a method of charging an external device using a portable energy storage system according to an embodiment of the present invention.

도 1 및 도 3을 함께 참조하면, 제어부는 제어판(195) 등을 통해 충전모드를 선택받는다(S300). 충전모드가 급속충전인 경우에(S310), 제어부는 울트라캐패시터팩(120)의 잔존용량이 기 정의된 제1 기준값(예를 들어, 95% 이상) 이상이면(S320,S330), 울트라캐패시터팩(120)으로부터 기 정의된 크기의 제1 전력(예를 들어, 100kWh)을 DC-DC 컨버터(140)를 통해 출력하여 기 정의된 전력량(예를 들어, 5kWh) 만큼 외부 기기를 고속 충전한다. Referring to FIGS. 1 and 3 together, the control unit selects a charging mode through the control panel 195, etc. (S300). When the charging mode is fast charging (S310), the control unit controls the ultracapacitor pack 120 if the remaining capacity of the ultracapacitor pack 120 is greater than or equal to a predefined first reference value (e.g., 95% or more) (S320, S330). First power of a predefined size (e.g., 100 kWh) is output from 120 through the DC-DC converter 140 to fast charge an external device by a predefined amount of power (e.g., 5 kWh).

충전모드가 일반충전이면(S320), 제어부는 리튬인산철배터리팩(110)으로부터 기 정의된 크기의 제2 전력(예를 들어, 20kW)을 DC-DC 컨버터(140)를 통해 출력하여 외부 기기를 일반 속도로 충전한다(S360). If the charging mode is normal charging (S320), the control unit outputs the second power (for example, 20 kW) of a predefined size from the lithium iron phosphate battery pack 110 through the DC-DC converter 140 and outputs it to an external device. Charge at normal speed (S360).

이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

110: 리튬인산철배터리팩
120: 울트라캐패시터팩
110: Lithium iron phosphate battery pack
120: Ultra capacitor pack

Claims (6)

바퀴를 포함하는 본체;
상기 본체 내에 존재하는 울트라캐패시터팩;
상기 본체 내에 존재하는 리튬인산철배터리팩;
충전커넥터;
상기 울트라캐패시터팩과 상기 리튬인산철배터리팩 사이를 연결하는 DC-DC 컨버터; 및
상기 울트라캐패시터팩과 상기 리튬인산철배터리팩 중 어느 하나를 선택하여 상기 충전커넥터를 통해 외부 기기의 배터리에 전력을 출력하도록 제어하는 제어부;를 포함하고,
저장용량은 상기 리튬인산철배터리팩이 상기 울트라캐패시터팩보다 크고,
충방전속도는 상기 리튬인산철배터리팩이 상기 울트라캐패시터팩보다 느리고,
상기 제어부는, 상기 리튬인산철배터리팩의 전력을 이용하여 상기 울트라캐패시터팩을 충전하도록 제어하고,
상기 제어부는, 상기 울트라캐패시터팩의 잔존용량이 기 정의된 제1 기준값 미만이고, 상기 리튬인산철배터리팩의 잔존용량이 기 정의된 제2 기준값 이상이면, 상기 리튬인산철배터리팩의 전력으로 상기 울트라캐패시터팩을 충전하는 것을 특징으로 하는 이동형 에너지저장시스템.
a body including wheels;
Ultra capacitor pack present in the main body;
A lithium iron phosphate battery pack present in the main body;
charging connector;
A DC-DC converter connecting the ultracapacitor pack and the lithium iron phosphate battery pack; and
It includes a control unit that selects one of the ultracapacitor pack and the lithium iron phosphate battery pack and controls it to output power to the battery of an external device through the charging connector,
The storage capacity of the lithium iron phosphate battery pack is larger than the ultra capacitor pack,
The charge/discharge speed of the lithium iron phosphate battery pack is slower than the ultra capacitor pack,
The control unit controls to charge the ultra capacitor pack using the power of the lithium iron phosphate battery pack,
The control unit, if the remaining capacity of the ultracapacitor pack is less than a predefined first reference value and the remaining capacity of the lithium iron phosphate battery pack is more than a predefined second reference value, uses the power of the lithium iron phosphate battery pack. A portable energy storage system characterized by charging an ultracapacitor pack.
삭제delete 삭제delete 울트라캐패시터팩과 리튬인산철배터리팩을 포함하는 이동형 에너지저장시스템의 배터리 충전 방법에 있어서,
상기 울트라캐패시터팩의 잔존용량을 파악하는 단계;
상기 리튬인산철배터리팩의 잔존용량을 파악하는 단계;
상기 울트라캐패시터팩의 잔존용량이 기 정의된 제1 기준값 미만이고, 상기 리튬인산철배터리팩의 잔존용량이 기 정의된 제2 기준값 이상이면, 상기 리튬인산철배터리팩의 전력으로 상기 울트라캐패시터팩을 충전하는 단계;
충전모드를 선택받는 단계;
상기 충전모드가 급속충전이면, 상기 울트라캐패시터팩을 이용하여 기 정의된 제1 전력을 외부 기기로 출력하는 단계; 및
상기 충전모드가 일반충전이면, 상기 리튬인산철배터리팩을 이용하여 기 정의된 제2 전력을 상기 외부 기기로 출력하는 단계;를 포함하고,
저장용량은 상기 리튬인산철배터리팩이 상기 울트라캐패시터팩보다 크고,
충방전속도는 상기 리튬인산철배터리팩이 상기 울트라캐패시터팩보다 느리고,
상기 제1 전력이 상기 제2 전력보다 더 큰 것을 특징으로 하는 이동형 에너지저장시스템의 배터리 충전 방법.
In the battery charging method of a portable energy storage system including an ultracapacitor pack and a lithium iron phosphate battery pack,
Determining the remaining capacity of the ultracapacitor pack;
Determining the remaining capacity of the lithium iron phosphate battery pack;
If the remaining capacity of the ultracapacitor pack is less than a predefined first reference value and the remaining capacity of the lithium iron phosphate battery pack is more than a predefined second reference value, the ultracapacitor pack is operated with the power of the lithium iron phosphate battery pack. charging;
Selecting a charging mode;
If the charging mode is fast charging, outputting a predefined first power to an external device using the ultra capacitor pack; and
If the charging mode is normal charging, outputting predefined second power to the external device using the lithium iron phosphate battery pack,
The storage capacity of the lithium iron phosphate battery pack is larger than the ultra capacitor pack,
The charge/discharge speed of the lithium iron phosphate battery pack is slower than the ultra capacitor pack,
A battery charging method for a portable energy storage system, characterized in that the first power is greater than the second power.
삭제delete 제 4항에 있어서, 상기 제1 전력을 출력하는 단계는,
상기 울트라캐패시터팩의 잔존용량이 상기 제1 기준값 이상인 경우에 상기 급속충전모드를 수행하고 것을 특징으로 하는 이동형 에너지저장시스템의 배터리 충전 방법.
The method of claim 4, wherein outputting the first power comprises:
A battery charging method for a portable energy storage system, characterized in that the rapid charging mode is performed when the remaining capacity of the ultracapacitor pack is greater than or equal to the first reference value.
KR1020220019765A 2022-02-15 2022-02-15 Mobile energy storage system and battery charging method KR102621765B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220019765A KR102621765B1 (en) 2022-02-15 2022-02-15 Mobile energy storage system and battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220019765A KR102621765B1 (en) 2022-02-15 2022-02-15 Mobile energy storage system and battery charging method

Publications (2)

Publication Number Publication Date
KR20230123099A KR20230123099A (en) 2023-08-23
KR102621765B1 true KR102621765B1 (en) 2024-01-10

Family

ID=87849000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220019765A KR102621765B1 (en) 2022-02-15 2022-02-15 Mobile energy storage system and battery charging method

Country Status (1)

Country Link
KR (1) KR102621765B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045047B1 (en) 2019-05-03 2019-11-14 에이피이엘(주) Maximum capacity charging apparatus considering SOH unbalance of battery module and control method thereof
KR102308909B1 (en) 2020-08-19 2021-10-05 주식회사 피앤에이 Portable battery charger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150087694A (en) * 2014-01-22 2015-07-30 주식회사 볼타 Battery charging apparatus using ultra capacitor
KR102384811B1 (en) * 2020-05-26 2022-04-11 주식회사 미래이앤아이 Movable apparatus for battery charging of electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045047B1 (en) 2019-05-03 2019-11-14 에이피이엘(주) Maximum capacity charging apparatus considering SOH unbalance of battery module and control method thereof
KR102308909B1 (en) 2020-08-19 2021-10-05 주식회사 피앤에이 Portable battery charger

Also Published As

Publication number Publication date
KR20230123099A (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US20200247269A1 (en) Multiple chemistry battery systems for electric vehicles
US8803471B2 (en) Electric vehicle extended range hybrid battery pack system
US7859202B2 (en) Power management for multi-module energy storage systems in electric, hybrid electric, and fuel cell vehicles
EP3521098B1 (en) Motor-driven vehicle and control method for motor-driven vehicle
CN203984052U (en) AC-battery power source
JP2013165635A (en) Electric vehicle
JP7448113B2 (en) Battery system and battery system control method
KR20110137675A (en) Charge station
KR20160098863A (en) Portable battery pack
JP2006526376A (en) Energy supply system for vehicles
KR20120069859A (en) Mobile charge system
JP2007049828A (en) Battery quick charge process, battery quick charger, and battery quick recharging system
JP3960557B1 (en) Hybrid storage device for electric vehicle and electric vehicle
CN106864283A (en) Power type movable charging vehicle method of supplying power to, service ability computational methods
US11872904B2 (en) Control unit and a method for handling charging in an at least partly electric vehicle
KR20120063313A (en) Battery management apparatus for electric automobile and method thereof
KR101646342B1 (en) High-Efficiency charging Apparatus and Method for rechargeable battery
KR102621765B1 (en) Mobile energy storage system and battery charging method
KR101549173B1 (en) Apparatus and method for controlling about battery's charging amount
CN215153996U (en) Lithium battery mobile charging device
Xiaoliang et al. System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles
JP6178597B2 (en) Power system
JP6186845B2 (en) Auxiliary battery system
CN221272581U (en) Hydrogen-electricity hybrid power system and vehicle
KR20220123925A (en) Secondary battery charging and discharging device of energy storage type and secondary battery charging and discharging method using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant