KR102619096B1 - Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof - Google Patents

Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof Download PDF

Info

Publication number
KR102619096B1
KR102619096B1 KR1020210063240A KR20210063240A KR102619096B1 KR 102619096 B1 KR102619096 B1 KR 102619096B1 KR 1020210063240 A KR1020210063240 A KR 1020210063240A KR 20210063240 A KR20210063240 A KR 20210063240A KR 102619096 B1 KR102619096 B1 KR 102619096B1
Authority
KR
South Korea
Prior art keywords
type
dimensional compound
phototransistor
mimicking
compound
Prior art date
Application number
KR1020210063240A
Other languages
Korean (ko)
Other versions
KR20220155699A (en
Inventor
유호천
이현지
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to KR1020210063240A priority Critical patent/KR102619096B1/en
Publication of KR20220155699A publication Critical patent/KR20220155699A/en
Application granted granted Critical
Publication of KR102619096B1 publication Critical patent/KR102619096B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Neurology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 인공 시냅스 모방 이종 인터페이스 포토트랜지스터 및 이의 제조 방법에 관한 것으로, 광 에너지를 흡수하여 게이트 전극과 소스 및 드레인 전극에 의해 전류가 형성되는 광활성층을 포함하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터에서 광활성층이 N-type의 2차원 화합물과 P-type의 2차원 화합물이 이중구조로 구비되어 외부로부터 펄스(Pulse)형태로 인가되는 광 에너지 및 게이트 전극에 인가되는 전압 중 적어도 하나의 변동에 따른 전류 특성을 도출하여 도출된 전류 특성으로 뉴런의 시냅스 활동을 전기적으로 모사함에 따라 뇌신경 활동의 신뢰성과 정밀성을 향상시킬 수 있다.The present invention relates to an artificial synapse-mimicking heterogeneous interface phototransistor and a method of manufacturing the same. The present invention relates to an artificial synapse-mimicking heterogeneous interface phototransistor that absorbs light energy and includes a photoactive layer in which a current is formed by a gate electrode and source and drain electrodes. The layer has a dual structure of an N-type two-dimensional compound and a P-type two-dimensional compound, and the current is caused by a change in at least one of the light energy applied from the outside in the form of a pulse and the voltage applied to the gate electrode. By deriving the characteristics and electrically simulating the synaptic activity of neurons using the derived current characteristics, the reliability and precision of brain nerve activity can be improved.

Description

인공 시냅스 모방 이종 인터페이스 포토트랜지스터 및 이의 제조 방법{ARTIFICIAL SYNAPTIC-MIMICKING HETEROGENEOUS INTERFACE PHOTOTRANSISTOR AND MANUFACTURING METHOD THEREOF}Artificial synapse-mimicking heterogeneous interface phototransistor and manufacturing method thereof {ARTIFICIAL SYNAPTIC-MIMICKING HETEROGENEOUS INTERFACE PHOTOTRANSISTOR AND MANUFACTURING METHOD THEREOF}

본 발명은 인공 시냅스 모방 이종 인터페이스 포토트랜지스터 및 이의 제조 방법에 관한 것으로, 광학 펄스 및 게이트 전압을 이용하여 뉴런의 활동을 모사할 수 있도록 한 기술에 관한 것이다.The present invention relates to an artificial synapse-mimicking heterogeneous interface phototransistor and a method of manufacturing the same, and to a technology that allows simulating the activity of neurons using optical pulses and gate voltages.

사람들의 뇌는 1제곱 밀리미터(mm2) 당 약 10억 개의 시냅스가 상호 교류하며 특정 명령을 수행하기 위해 화학적 및 전기적 신호를 전달하여 순식간에 데이터를 처리한다. The human brain has approximately 1 billion synapses per square millimeter (mm 2 ) interacting with each other, transmitting chemical and electrical signals to carry out specific commands and processing data in an instant.

최근 이러한 뇌의 활동을 반도체 소자의 전기적 특성을 통해 직관적으로 관찰할 수 있는 연구에 대해 관심이 높아지고 있으며, 뇌 신경 구조를 모방해 하드웨어 크기와 전력 소모를 대폭 줄일 수 있는 차세대 뉴로모픽 소자가 주목받고 있다.Recently, there has been increasing interest in research that can intuitively observe brain activity through the electrical characteristics of semiconductor devices, and next-generation neuromorphic devices that can significantly reduce hardware size and power consumption by imitating brain neural structures are attracting attention. I'm receiving it.

시냅스의 활동을 전기적으로 모방하는 뉴로모픽 소자에 대한 연구는 학습과 기억 기능을 담당하는 생체 신경 시스템인 시냅스나 뉴런 등을 전자 소자의 형태로 구현하고 새로운 정보를 학습함으로써 인공 신경 컴퓨팅의 응용 기술 분야에서도 활용 가능성이 높은 기술 중 하나이다.Research on neuromorphic devices that electrically mimic the activity of synapses is an application technology for artificial neural computing by implementing synapses and neurons, biological nervous systems responsible for learning and memory functions, in the form of electronic devices and learning new information. It is one of the technologies with high potential for use in this field.

시냅스의 활동을 전기적으로 모사하기 위해서는 실제 뇌에서 일어나는 화학적 및 전기적 신호를 나타낼 수 있어야 한다.In order to electrically simulate synaptic activity, it must be possible to represent the chemical and electrical signals that occur in the actual brain.

그러나, 종래의 2단자 멤리스터는 시냅스의 통합을 위해 뉴로모픽 소자로 구현되었으나 작동 중 비선형적인 전류 특성과 노이즈로 인하여 뇌의 활동을 완벽히 모사하기에는 어려운 문제가 있다.However, the conventional two-terminal memristor was implemented as a neuromorphic device for synaptic integration, but it is difficult to perfectly simulate brain activity due to nonlinear current characteristics and noise during operation.

또한, 뇌의 전기적 신호를 모사하기에는 높은 작동 전압으로 인한 열 발생으로 에너지를 손실할 수 있고, 정보 전송 속도에 한계로 인하여 해결해야할 과제로 남아있다. In addition, simulating the brain's electrical signals may result in energy loss due to heat generation due to high operating voltage, and it remains a challenge to be solved due to limitations in information transmission speed.

3단자 트랜지스터로 뉴로모픽 소자의 경우, 뉴런의 전기적 스파이크 입력을 게이트 전압 펄스로 사용하여 시냅스 신호를 모사하였으나, 게이트 전압 펄스는 정보 전송 속도에서 한계가 있다.In the case of a neuromorphic device using a three-terminal transistor, a synaptic signal was simulated by using the electrical spike input of a neuron as a gate voltage pulse, but the gate voltage pulse has limitations in information transmission speed.

또한, 시냅스의 강화(Potentiation) 모사는 광학 펄스를 사용하더라도 시냅스의 억압(Depression)은 게이트 펄스를 사용하여 통합적으로 구현되지 못하는 문제가 있다.In addition, even if synaptic potentiation is simulated using optical pulses, synaptic depression cannot be integrated using gate pulses.

따라서, 이러한 문제를 해결하기 위해 뇌의 신호 전달 과정을 정밀히 모사하고, 뉴런 간 연결 강도를 나타내는 시냅스 가소성(Synaptic Plasticity)을 조정할 수 있는 시냅틱 트랜지스터의 개발이 시급하다.Therefore, in order to solve this problem, there is an urgent need to develop a synaptic transistor that can precisely simulate the signal transmission process in the brain and adjust synaptic plasticity, which indicates the strength of connections between neurons.

대한민국 등록특허 제10-2169913호 (2020.10.26 공고)Republic of Korea Patent No. 10-2169913 (announced on October 26, 2020)

본 발명은, 광학 펄스 및 게이트 전압을 이용하여 3단자 시냅틱 디바이스를 구현함으로써 다양한 시냅틱 거동을 모사를 할 수 있는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터 및 이의 제조 방법을 제공할 수 있다.The present invention can provide an artificial synapse-mimicking heterogeneous interface phototransistor that can simulate various synaptic behaviors by implementing a three-terminal synaptic device using optical pulses and gate voltage, and a method of manufacturing the same.

본 발명의 일 측면에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터는 광 에너지를 흡수하여 게이트 전극과 소스 및 드레인 전극에 의해 전류가 형성되는 광활성층을 포함할 수 있고, 상기 광활성층은, N-type의 2차원 화합물과 P-type의 2차원 화합물이 이종구조로 구비되고, 상기 포토트랜지스터는, 외부로부터 펄스(Pulse)형태로 인가되는 광 에너지 및 게이트 전극에 인가되는 전압 중 적어도 하나의 변동에 따른 전류 특성을 도출하여 도출된 전류 특성으로 뉴런의 시냅스 활동을 전기적으로 모사할 수 있다.The artificial synapse-mimicking heterogeneous interface phototransistor according to one aspect of the present invention may include a photoactive layer in which light energy is absorbed and current is formed by a gate electrode and source and drain electrodes, and the photoactive layer is of N-type. A two-dimensional compound and a P-type two-dimensional compound are provided in a heterogeneous structure, and the phototransistor generates a current according to a change in at least one of light energy applied from the outside in the form of a pulse and the voltage applied to the gate electrode. By deriving the characteristics, the synaptic activity of neurons can be electrically simulated using the derived current characteristics.

바람직하게는, 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물 각각은 서로 다른 에너지 밴드갭을 가질 수 있다.Preferably, the N-type two-dimensional compound and the P-type two-dimensional compound may each have different energy band gaps.

바람직하게는, 상기 광활성층은 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층됨에 따라 N-type 영역, P-type 영역, 및 오버랩 영역을 포함하고, 상기 N-type 영역, P-type 영역, 및 오버랩 영역 각각은 서로 다른 파장대의 광 에너지를 흡수할 수 있다. Preferably, the photoactive layer includes an N-type region, a P-type region, and an overlap region as the N-type two-dimensional compound and the P-type two-dimensional compound are stacked to have a predetermined overlap region. And, each of the N-type region, P-type region, and overlap region can absorb light energy of different wavelength bands.

바람직하게는, 상기 N-type의 2차원 화합물은 MoSe2 이고, P-type의 2차원 화합물은 WSe2 일 수 있다.Preferably, the N-type two-dimensional compound is MoSe 2 and the two-dimensional compound of P-type is WSe 2 It can be.

바람직하게는, 상기 뉴런의 시냅스 활동은 시냅스전 뉴런과 시냅스후 뉴런이 시냅스를 통해 신호를 전달하는 능력이 증가하는 장기 강화(Long-term Potentiation) 및 신호를 전달하는 능력이 감소하는 장기 억압(Long-term Depression) 중 하나일 수 있다.Preferably, the synaptic activity of the neuron is characterized by long-term potentiation, which increases the ability of the presynaptic neuron and postsynaptic neuron to transmit signals through the synapse, and long-term suppression, which decreases the ability to transmit signals. -term Depression).

본 발명의 다른 측면에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법은 광 에너지를 흡수하여 게이트 전극과 소스 및 드레인 전극에 의해 전류가 형성되는 광활성층을 포함할 수 있고, 결정질 실리콘, 금속, 및 금속 산화물 중 어느 하나로 게이트 전극이 형성되는 게이트 전극 형성 단계; 상기 게이트 전극 상에 게이트 절연층이 형성되는 게이트 절연층 형성 단계; 상기 게이트 절연층 상에 N-type의 2차원 화합물과 P-type의 2차원 화합물 중 적어도 하나가 형성되는 광활성층 형성 단계; 및 상기 광활성층 양단에 각각 소스 및 드레인 전극이 구비되는 소스 및 드레인 전극 형성 단계를 포함할 수 있다.A method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor according to another aspect of the present invention may include a photoactive layer in which light energy is absorbed and current is formed by a gate electrode and source and drain electrodes, crystalline silicon, metal, and A gate electrode forming step in which a gate electrode is formed of one of metal oxides; A gate insulating layer forming step of forming a gate insulating layer on the gate electrode; A photoactive layer forming step in which at least one of an N-type two-dimensional compound and a P-type two-dimensional compound is formed on the gate insulating layer; And it may include a source and drain electrode forming step in which source and drain electrodes are provided at both ends of the photoactive layer, respectively.

바람직하게는, 상기 광활성층 형성 단계는 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층됨에 따라 N-type 영역, P-type 영역, 및 오버랩 영역을 포함할 수 있다.Preferably, the photoactive layer forming step is performed by stacking the N-type two-dimensional compound and the P-type two-dimensional compound to have a predetermined overlap area, thereby forming an N-type area, a P-type area, and an overlap area. may include.

본 발명에 따르면, 광학 펄스 및 게이트 전압을 이용하여 도출되는 포토트랜지스터의 전류 특성으로 뉴런의 시냅스 활동을 모사함에 따라 뇌신경 활동의 신뢰성과 정밀성을 향상시킬 수 있다.According to the present invention, the reliability and precision of brain nerve activity can be improved by simulating the synaptic activity of neurons with the current characteristics of a phototransistor derived using optical pulses and gate voltage.

도 1은 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 구성도이다.
도 2는 일 실시예에 따른 광 펄스에 의한 전자와 정공의 이동을 나타낸 모식도이다.
도 3은 일 실시예에 따른 시냅스의 활동을 전기적으로 나타낸 그래프이다.
도 4는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 전류 특성을 나타낸 그래프이다.
도 5는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 적층 순서를 나타낸 모식도이다.
도 6는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법을 나타낸 흐름도이다.
Figure 1 is a configuration diagram of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.
Figure 2 is a schematic diagram showing the movement of electrons and holes by light pulses according to one embodiment.
Figure 3 is a graph electrically showing synapse activity according to one embodiment.
Figure 4 is a graph showing current characteristics of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.
Figure 5 is a schematic diagram showing the stacking sequence of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.
Figure 6 is a flowchart showing a method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.

이하에서는 본 발명에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터 및 이의 제조 방법을 첨부된 도면들을 참조하여 상세하게 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, the artificial synapse-mimicking heterogeneous interface phototransistor and its manufacturing method according to the present invention will be described in detail with reference to the attached drawings. In this process, the thickness of lines or sizes of components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are terms defined in consideration of functions in the present invention, and may vary depending on the operator's intention or custom. Therefore, definitions of these terms should be made based on the content throughout this specification.

본 발명의 목적 및 효과는 하기의 설명에 의해서 자연스럽게 이해되거나 보다 분명해질 수 있으며, 하기의 기재만으로 본 발명의 목적 및 효과가 제한되는 것은 아니다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.The purpose and effect of the present invention can be naturally understood or become clearer through the following description, and the purpose and effect of the present invention are not limited to the following description. Additionally, in describing the present invention, if it is determined that a detailed description of known techniques related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

도 1은 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 구성도이다.Figure 1 is a configuration diagram of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.

도 1에서 나타낸 바와 같이, 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터는 게이트 전극(110), 게이트 절연막(120), 광활성층(130), 및 소스 및 드레인 전극(140)을 포함할 수 있다.As shown in Figure 1, the artificial synapse-mimicking heterogeneous interface phototransistor according to one embodiment may include a gate electrode 110, a gate insulating film 120, a photoactive layer 130, and source and drain electrodes 140. there is.

게이트 전극(110)은 결정질 실리콘으로 구비될 수 있다. 결정질 실리콘은 기판으로 사용될 수 있으나 이에 한정되는 것은 아니고, 기판 상에 게이트 전극(110)을 형성할 수 있다. 예를 들어, 기판 상에 형성될 경우 기판은 유리(Glass), PET(Polyethylene terephthalate), PEN(Polyethylene naphthalate), PES(Polyethersulfone), PI(Polyimde), 및 CPI(Colorless Polyimde) 중 어느 하나가 선택적으로 사용될 수 있고, 기판 상에 ITO(Indium Tin Oxide), FTO(Fluorine-doped tin oxide), ZTO(Zinc Tin Oxide), IZO(Indium Zinc Oxide), AZO(Aluminum Zinc Oxide), SnO2(Stannous oxide), In2O3(Indium Oxide), ZnO(Zinc Oxide), MoO3(Molybdenum trioxide), CoO(Cobalt oxide), NiO(Nickel oxide), WoO3(Tungsten trioxide), TiO2(Titanium dioxide), IGZO(Indium Gallium Zinc Oxide), IZTO(Indium zinc-tin oxide), Al(Aluminum), Ag(Silver), 및 Au(Gold) 중에서 선택될 수 있으나, 소재가 반드시 상술한 물질에 한정되는 것은 아니다.The gate electrode 110 may be made of crystalline silicon. Crystalline silicon can be used as a substrate, but is not limited to this, and the gate electrode 110 can be formed on the substrate. For example, when formed on a substrate, the substrate is optionally one of glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimde (PI), and colorless polyimde (CPI). It can be used as ITO (Indium Tin Oxide), FTO (Fluorine-doped tin oxide), ZTO (Zinc Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum Zinc Oxide), and SnO 2 (Stannous oxide) on the substrate. ), In 2 O 3 (Indium Oxide), ZnO (Zinc Oxide), MoO 3 (Molybdenum trioxide), CoO (Cobalt oxide), NiO (Nickel oxide), WoO 3 (Tungsten trioxide), TiO 2 (Titanium dioxide), It may be selected from IGZO (Indium Gallium Zinc Oxide), IZTO (Indium zinc-tin oxide), Al (Aluminum), Ag (Silver), and Au (Gold), but the material is not necessarily limited to the above-mentioned materials.

게이트 절연막(120)은 실리콘 기판 상에 형성될 수 있다. 게이트 절연막(120)은 건식 또는 습식 산화 공정에 의해 형성될 수 있다. 산화 공정은 800~1200도의 고온에서 산소나 수증기를 결정질 실리콘 표면에 반응시켜 얇고 균일한 실리콘 산화막(SiOx)을 형성시킬 수 있다. The gate insulating film 120 may be formed on a silicon substrate. The gate insulating film 120 may be formed by a dry or wet oxidation process. The oxidation process can form a thin and uniform silicon oxide film (SiOx) by reacting oxygen or water vapor on the surface of crystalline silicon at a high temperature of 800 to 1,200 degrees.

게이트 절연막(120)은 회로와 회로 사이에 누설 전류가 흐르는 것을 차단해주는 역할을 한다. 이외에도 이온 주입 공정에서 확산을 방지하며, 식각 공정에서도 필요한 부분을 에칭(Etching)할 때 에칭되는 부분 이외의 영역을 보호하는 역할로 사용될 수 있다.The gate insulating film 120 serves to block leakage current from flowing between circuits. In addition, it prevents diffusion in the ion implantation process, and can also be used in the etching process to protect areas other than the etched area when etching necessary parts.

광활성층(130)은 게이트 절연막(120) 위에 형성될 수 있고, N-type의 2차원 화합물과 P-type의 2차원 화합물로 구비될 수 있고, N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131) 각각은 서로 다른 에너지 밴드갭일 수 있다. 2차원 화합물은 수 나노미터의 원자가 단일 층으로 이루어져 한 겹으로 배열돼 있는 물질로, 전기적 성질에 따라 도체, 반도체, 및 부도체로 나눌 수 있다. 여기서, N-type의 2차원 화합물은 MoSe2 이고, P-type의 2차원 화합물은 WSe2 일 수 있다.The photoactive layer 130 may be formed on the gate insulating film 120 and may be comprised of an N-type two-dimensional compound and a P-type two-dimensional compound, and an N-type two-dimensional compound 132 and a P-type compound. Each of the -type two-dimensional compounds (131) may have different energy band gaps. Two-dimensional compounds are materials in which atoms of several nanometers are arranged in a single layer, and can be divided into conductors, semiconductors, and insulators depending on their electrical properties. Here, the N-type two-dimensional compound is MoSe 2 and the two-dimensional compound of P-type is WSe 2 It can be.

2차원 화합물은 반데르 발스 이종접합구조(Van der Waals hetrostructure)가 가능하여 얇은 층으로도 잘 휘어지고 단단한 특성으로 물질 자체의 내구성을 가지고 있으며, 캐리어(Carrier) 이동도가 빠르다. Two-dimensional compounds have a Van der Waals heterojunction structure, so they bend easily even in thin layers, have hard properties, have durability of the material itself, and have fast carrier mobility.

또한, 2차원 화합물은 나노(nano) 단위의 두께를 가지기 때문에 반데르 발스 이종접합구조(Van der Waals hetrostructure)에 있는 각 TMD(Transistion Metal Dichalcogenides) 재료의 캐리어 밀도와 캐리어 유형(정공 혹은 전자)까지 게이트 바이어스(Bias)를 통해 효율적으로 조정될 수 있다.In addition, since two-dimensional compounds have a nanoscale thickness, the carrier density and carrier type (hole or electron) of each TMD (Transistion Metal Dichalcogenides) material in the Van der Waals heterojunction structure can be determined. It can be efficiently adjusted through gate bias.

이러한 특성을 가지는 2차원 화합물로서, 수소화 유도체, 할로겐화 유도체, 염화 유도체, 및 M0X, M2N, MX2, MY2, 및 MY3의 구조식의 화합물일 수 있다. 여기서, M0는 Ga 또는 In일 수 있고, M은 Ti, Zr, Hf, Nb, Mo, W, Re, Pd, 및 Pt 중 어느 하나일 수 있으며, X는 S, Se 및 Te 중 어느 하나일 수 있고, Y는 Cl, Br 및 I 중 어느 하나를 포함하는 전이 금속 칼 코게 나이드(Transition Metal Chalcogenides), 반 금속 칼 코게 나이드(semimetal chalcogenides), 전이 금속 할로겐화물(transition metal halides)일 수 있다. Two-dimensional compounds having these properties may be hydrogenated derivatives, halogenated derivatives, chlorinated derivatives, and compounds with the structural formulas MOX, M2N, MX2, MY2, and MY3. Here, M0 may be Ga or In, M may be any one of Ti, Zr, Hf, Nb, Mo, W, Re, Pd, and Pt, and X may be any one of S, Se, and Te. and Y may be transition metal chalcogenides, semimetal chalcogenides, or transition metal halides containing any one of Cl, Br, and I.

예를 들면, 2차원 화합물은 그래핀(Graphene), 그래판(Graphane), Fluorographene, chlorographene, Hexagonal Boron Nitride(h-BN), Graphene Oxide(GO), β-Silicene, Silicane, β-Germanene, Germanane, Fluorogermanene, Silicon Carbide(SiC), Boron Nitride(BN), Black Phosphorous(BP), Zinc Oxide(ZnO), Zinc sulfide(ZnS), Zinc selenide(ZnSe), Zinc telluride(ZnTe), Cadmium Oxide(CdO), Cadmium sulfide(CdS), Cadmium selenide(CdSe), Cadmium telluride(CaTe), Gallium sulfide(GaS), Gallium selenide(GaSe), Indium sulfide(InS), Indium selenide(InSe), Hafnium disulfide(HfS2), Hafnium diselenide(HfSe2), Hafnium ditelluride(HfTe2), Molybdenum disulfide(MoS2), Molybdenum diselenide(MoSe2), Molybdenum ditelluride(MoTe2), Niobium disulfide(NbS2), Niobium diselenide(NbSe2), Niobium ditelluride(NbTe2), Nickel disulfide(NiS2), Nickel diselenide(NiSe2), Nickel ditelluride(NiTe2), Palladium disulfide(PdS2), Palladium diselenide(PdSe2), Palladium ditelluride(PdTe2), Platinum disulfide(PtS2), Platinum diselenide(PtSe2), Platinum ditelluride(PtTe2), Rhenium disulfide(ReS2), Rhenium diselenide(ReSe2), Rhenium ditelluride(ReTe2), Tantalum disulfide(TaS2), Tantalum diselenide(TaSe2), Tantalum ditelluride(TaTe2), Titanium disulfide(TiS2), Titanium diselenide(TiSe2), Titanium ditelluride(TiTe2), Tungsten disulfide(WS2), Tungsten diselenide(WSe2), Tungsten ditelluride(WTe2), Zirconium disulfide(ZrS2), Zirconium diselenide(ZrSe2), Zirconium ditelluride(ZrTe2), Cobalt dichloride(CoCl2), Cobalt dibromide(CoBr2), Iron dichloride(FeCl2), Iron dibromide(FeBr2), Iron diiodide(FeI2), Hafnium dichloride(HfCl2), Hafnium dibromide(HfBr2), Hafnium diiodide(HfI2), Manganese dichloride(MnCl2), Manganese dibromide(MnBr2), Manganese diiodide(MnI2), Molybdenum dichloride(MoCl2), Molybdenum dibromide(MoBr2), Molybdenum diiodide(MoI2), Niobium dichloride(NbCl2), Niobium dibromide(NbBr2), Niobium diiodide(NbI2), Nickel dichloride(NiCl2), Nickel dibromide(NiBr2), Tantalum dichloride(TaCl2), Tantalum dibromide(TaBr2), Tantalum diiodide(TaI2), Titanium dichloride(TiCl2), Titanium dibromide(TiBr2), Titanium diiodide(TiI2), Vanadium dichloride(VCl2), Vanadium dibromide(VBr2), Vanadium diiodide(VI2), Tungsten dichloride(WCl2), Tungsten dibromide(WBr2), Tungsten diiodide(WI2), Zirconium dichloride(ZrCl2), Zirconium dibromide(ZrBr2), Zirconium diiodide(ZrI2), Arsenicum trichloride(AsCl3), Chromium trichloride(CrCl3), Chromium tribromide(CrBr3), Chromium triiodide(CrI3), Iron trichloride(FeCl3), Iron tribromide(FeBr3), Molybdenum trichloride(MoCl3), Molybdenum (MoBr3), Stibium trichloride(SbCl3), Scandium trichloride(ScCl3), Scandium tribromide(ScBr3), Titanium trichloride(TiCl3), Titanium tribromide(TiBr3), Vanadium trichloride(VCl3), Vanadium (VBr3), Yttrium trichloride(YCl3) and Zirconium trichloride(ZrCl3)일 수 있다. 또한, 2차원 화합물은 공유 유기 프레임 워크(Covalent Organic Frameworks; COFs)일 수 있다. 단, 반드시 상술한 물질에 한정되는 것은 아니다.For example, two-dimensional compounds include Graphene, Graphane, Fluorographene, chlorographene, Hexagonal Boron Nitride (h-BN), Graphene Oxide (GO), β-Silicene, Silicane, β-Germanene, Germanane. , Fluorogermanene, Silicon Carbide (SiC), Boron Nitride (BN), Black Phosphorous (BP), Zinc Oxide (ZnO), Zinc sulfide (ZnS), Zinc selenide (ZnSe), Zinc telluride (ZnTe), Cadmium Oxide (CdO) , Cadmium sulfide (CdS), Cadmium selenide (CdSe), Cadmium telluride (CaTe), Gallium sulfide (GaS), Gallium selenide (GaSe), Indium sulfide (InS), Indium selenide (InSe), Hafnium disulfide (HfS 2 ), Hafnium diselenide(HfSe 2 ), Hafnium ditelluride(HfTe 2 ), Molybdenum disulfide(MoS 2 ), Molybdenum diselenide(MoSe 2 ), Molybdenum ditelluride(MoTe 2 ), Niobium disulfide(NbS 2 ), Niobium diselenide(NbSe 2 ), Niobium ditelluride(NbTe 2 ), Nickel disulfide(NiS 2 ), Nickel diselenide(NiSe 2 ), Nickel ditelluride(NiTe 2 ), Palladium disulfide(PdS 2 ), Palladium diselenide(PdSe 2 ), Palladium ditelluride(PdTe 2 ), Platinum disulfide (PtS 2 ), Platinum diselenide(PtSe 2 ), Platinum ditelluride(PtTe 2 ), Rhenium diselenide(ReS 2 ), Rhenium diselenide(ReSe 2 ), Rhenium ditelluride(ReTe 2 ), Tantalum disulfide(TaS 2 ), Tantalum diselenide( TaSe 2 ), Tantalum ditelluride(TaTe 2 ), Titanium disulfide(TiS 2 ), Titanium diselenide(TiSe 2 ), Titanium ditelluride(TiTe 2 ), Tungsten disulfide(WS 2 ), Tungsten diselenide(WSe 2 ), Tungsten ditelluride(WTe) 2 ), Zirconium disulfide (ZrS 2 ), Zirconium diselenide (ZrSe 2 ), Zirconium ditelluride (ZrTe 2 ), Cobalt dichloride (CoCl 2 ), Cobalt dibromide (CoBr 2 ), Iron dichloride (FeCl 2 ), Iron dibromide (FeBr 2 ) ), Iron diiodide(FeI 2 ), Hafnium dichloride(HfCl 2 ), Hafnium dibromide(HfBr 2 ), Hafnium diiodide(HfI 2 ), Manganese dichloride(MnCl 2 ), Manganese dibromide(MnBr 2 ), Manganese diiodide(MnI 2 ) , Molybdenum dichloride(MoCl 2 ), Molybdenum dibromide(MoBr 2 ), Molybdenum diiodide(MoI 2 ), Niobium dichloride(NbCl 2 ), Niobium dibromide(NbBr 2 ), Niobium diiodide(NbI 2 ), Nickel dichloride(NiCl 2 ), Nickel dibromide(NiBr 2 ), Tantalum dichloride(TaCl 2 ), Tantalum dibromide(TaBr 2 ), Tantalum diiodide(TaI 2 ), Titanium dichloride(TiCl 2 ), Titanium dibromide(TiBr 2 ), Titanium diiodide(TiI 2 ), Vanadium dichloride(VCl 2 ), Vanadium dibromide(VBr 2 ), Vanadium diiodide(VI 2 ), Tungsten dichloride(WCl 2 ), Tungsten dibromide(WBr 2 ), Tungsten diiodide(WI 2 ), Zirconium dichloride(ZrCl 2 ), Zirconium dibromide (ZrBr 2 ), Zirconium diiodide(ZrI 2 ), Arsenicum trichloride(AsCl 3 ), Chromium trichloride(CrCl 3 ), Chromium tribromide(CrBr 3 ), Chromium triiodide(CrI 3 ), Iron trichloride(FeCl 3 ), Iron tribromide( FeBr 3 ), Molybdenum trichloride(MoCl 3 ), Molybdenum (MoBr 3 ), Stibium trichloride(SbCl 3 ), Scandium trichloride(ScCl 3 ), Scandium tribromide(ScBr 3 ), Titanium trichloride(TiCl 3 ), Titanium tribromide(TiBr 3 ) ), Vanadium trichloride (VCl 3 ), Vanadium (VBr 3 ), Yttrium trichloride (YCl 3 ) and Zirconium trichloride (ZrCl 3 ). Additionally, two-dimensional compounds may be Covalent Organic Frameworks (COFs). However, it is not necessarily limited to the above-mentioned substances.

여기서, 광활성층(130)은 빛을 흡수하여 전자와 정공을 생성하는 것으로, 반드시 2차원 화합물로만 구비되는 것은 아니다. 즉, 오가닉(Organic) 물질로 구비될 수 있다. 예를 들어, P-type 오가닉 화합물은 펜타센(Pentacene)구조로 5개의 선형 융합 벤젠고리로 이루어진 화합물일 수 있다. 더욱 상세하게는 Penetacene, DNTT(Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene), C8-BTBT(2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene), P3HT(Poly(3-hexylthiophene-2,5-diyl)), 및 TIPS-pentacene(6,13-Bis(triisopropylsilylethynyl)pentacene) 으로 형성될 수 있다. N-type 오가닉 화합물은 PTCDI-C13(N,N'-Ditridecyl-3,4,9,10-perylenetetracarboxylic Diimide), 및 F16CuPc(Copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine) 일 수 있다. 단, P-type 오가닉 화합물과 N-type 오가닉 화합물이 반드시 상술한 물질에 한정되는 것은 아니다.Here, the photoactive layer 130 absorbs light to generate electrons and holes, and is not necessarily made of a two-dimensional compound. In other words, it can be provided with organic materials. For example, a P-type organic compound may be a compound composed of five linear fused benzene rings in a pentacene structure. More specifically, Penetacene, DNTT(Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene), C8-BTBT(2,7-Dioctyl[1]benzothieno[3 ,2-b][1]benzothiophene), P3HT (Poly(3-hexylthiophene-2,5-diyl)), and TIPS-pentacene (6,13-Bis(triisopropylsilylethynyl)pentacene). N-type organic compounds include PTCDI-C13 (N,N'-Ditridecyl-3,4,9,10-perylenetetracarboxylic Diimide), and F16CuPc (Copper(II) 1,2,3,4,8,9,10, It may be 11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine). However, P-type organic compounds and N-type organic compounds are not necessarily limited to the above-mentioned substances.

광활성층(130)은 외부로부터 펄스(Pulse)형태로 인가되는 광 에너지에 의해 전하를 생성할 수 있으며, 생성되는 전하는 포토트랜지스터의 전류 특성에 영향을 미칠 수 있다. 이때, 게이트 전극(110)에 인가되는 전압을 변화시켜 트랜지스터 전류 특성에 대한 정보를 획득할 수 있다. 즉, 포토트랜지스터는 외부로부터 펄스(Pulse)형태로 인가되는 광 에너지 및 게이트 전극(110)에 인가되는 전압 중 적어도 하나의 변동에 따른 전류 특성을 도출하여 도출된 전류 특성으로 뉴런의 시냅스 활동을 전기적으로 모사할 수 있다.The photoactive layer 130 can generate charges by light energy applied from the outside in the form of pulses, and the generated charges can affect the current characteristics of the phototransistor. At this time, information about transistor current characteristics can be obtained by changing the voltage applied to the gate electrode 110. In other words, the phototransistor derives current characteristics according to changes in at least one of the light energy applied from the outside in the form of a pulse and the voltage applied to the gate electrode 110, and electrically displays the synaptic activity of the neuron with the derived current characteristics. It can be copied.

이때, N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131) 중 적어도 하나는 유기화합물 또는 무기화합물에 의해 도핑될 수 있으며, 도핑된 2차원 화합물은 전자와 정공을 더욱 빠르게 운송할 수 있다. 예를 들어, 도핑은 기체상태의 화합물을 전기적으로 분리시켜 분리된 이온들이 2차원 화합물 내부로 침투하도록 가속하여 이온 결합을 통해 도핑될 수 있다. 또한, 기체상태의 화합물을 2차원 화합물에 장시간 노출시켜 확산을 통해 도핑할 수 있다. 단, 2차원 화합물이 반드시 상술한 도핑 방법에 한정되는 것은 아니다.At this time, at least one of the N-type two-dimensional compound 132 and the P-type two-dimensional compound 131 may be doped with an organic compound or an inorganic compound, and the doped two-dimensional compound further generates electrons and holes. It can be transported quickly. For example, doping can be done by electrically separating gaseous compounds and accelerating the separated ions to penetrate into the two-dimensional compound through ionic bonding. Additionally, a gaseous compound can be doped through diffusion by exposing it to a two-dimensional compound for a long period of time. However, the two-dimensional compound is not necessarily limited to the doping method described above.

광활성층(130)은 N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131)이 소정의 오버랩 영역을 가지도록 적층됨에 따라 N-type 영역, P-type 영역, 및 오버랩 영역을 포함할 수 있으며, N-type 영역, P-type 영역, 및 오버랩 영역 각각은 서로 다른 파장대의 광 에너지를 흡수할 수 있다. 이때, N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131) 각각은 서로 다른 에너지 밴드갭으로 광 에너지에 따른 전류 특성을 도출하여 뉴런의 시냅스 활동을 더욱 세밀하게 모사할 수 있다.The photoactive layer 130 is formed by stacking the N-type two-dimensional compound 132 and the P-type two-dimensional compound 131 to have a predetermined overlap area, thereby forming an N-type area, a P-type area, and an overlap. It may include regions, and each of the N-type region, P-type region, and overlap region can absorb light energy of different wavelength bands. At this time, the N-type two-dimensional compound (132) and the P-type two-dimensional compound (131) each derive current characteristics according to light energy with different energy band gaps to more closely simulate the synaptic activity of neurons. You can.

여기서, 뉴런의 시냅스 활동은 시냅스전 뉴런과 시냅스후 뉴런이 시냅스를 통해 신호를 전달하는 능력이 증가하는 장기 강화(Long-term Potentiation) 및 신호를 전달하는 능력이 감소하는 장기 억압(Long-term Depression) 중 하나일 수 있다.Here, the synaptic activity of the neuron is characterized by long-term potentiation, which increases the ability of presynaptic neurons and postsynaptic neurons to transmit signals through the synapse, and long-term depression, which decreases the ability to transmit signals. ) may be one of the following.

상술한 N-type의 2차원 화합물(132)과 P-type의 이차원 화합물은 일 실시예를 설명하기 위한 것으로, 반드시 N-type의 2차원 화합물(132)이 드레인 전극(142)과 연결되고, P-type의 2차원 화합물(131)이 소스 전극(141)과 연결되는 것은 아니다. 즉, N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131)은 위치가 변경될 수 있다. 예를 들어, N-type의 2차원 화합물(132)이 소스 전극(141)과 연결되고, P-type의 2차원 화합물(131)이 드레인 전극(142)과 연결될 수 있다.The above-described N-type two-dimensional compound 132 and P-type two-dimensional compound are for explaining one embodiment, and the N-type two-dimensional compound 132 is necessarily connected to the drain electrode 142, The P-type two-dimensional compound 131 is not connected to the source electrode 141. That is, the positions of the N-type two-dimensional compound 132 and the P-type two-dimensional compound 131 may be changed. For example, the N-type two-dimensional compound 132 may be connected to the source electrode 141, and the P-type two-dimensional compound 131 may be connected to the drain electrode 142.

소스 및 드레인 전극(140)은 광활성층(130) 상에 형성될 수 있고, ITO(Indium Tin Oxide), FTO(Fluorine-doped tin oxide), ZTO(Zinc Tin Oxide), IZO(Indium Zinc Oxide), AZO(Aluminum Zinc Oxide), SnO2(Stannous oxide), In2O3(Indium Oxide), ZnO(Zinc Oxide), MoO3(Molybdenum trioxide), CoO(Cobalt oxide), NiO(Nickel oxide), WoO3(Tungsten trioxide), TiO2(Titanium dioxide), IGZO(Indium Gallium Zinc Oxide), IZTO(Indium zinc-tin oxide), Al(Aluminum), Ag(Silver), 및 Au(Gold) 중에서 선택될 수 있으나, 소재가 반드시 상술한 물질에 한정되는 것은 아니다.The source and drain electrodes 140 may be formed on the photoactive layer 130 and may be formed of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc tin oxide (ZTO), indium zinc oxide (IZO), AZO (Aluminum Zinc Oxide), SnO 2 (Stannous oxide), In 2 O 3 (Indium Oxide), ZnO (Zinc Oxide), MoO 3 (Molybdenum trioxide), CoO (Cobalt oxide), NiO (Nickel oxide), WoO 3 (Tungsten trioxide), TiO 2 (Titanium dioxide), IGZO (Indium Gallium Zinc Oxide), IZTO (Indium zinc-tin oxide), Al (Aluminum), Ag (Silver), and Au (Gold). The material is not necessarily limited to the above-mentioned materials.

도 2는 일 실시예에 따른 광 펄스(10)에 의한 전자와 정공의 이동을 나타낸 모식도이다.Figure 2 is a schematic diagram showing the movement of electrons and holes by the light pulse 10 according to one embodiment.

도 2에서 나타낸 바와 같이, 광 펄스(10)에 의해 생성된 전자와 정공 쌍(Electron-hole pair)은 광활성층(130)에 구비된 N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131) 각각을 통해 이동할 수 있다. 이때, 드레인 전압(VD)과 게이트 전압(VG)에 따라 전자와 정공의 이동도(Mobility)가 달라질 수 있다.As shown in Figure 2, the electron and hole pairs generated by the light pulse 10 are the N-type two-dimensional compound 132 and the P-type provided in the photoactive layer 130. It can move through each of the two-dimensional compounds 131. At this time, the mobility of electrons and holes may vary depending on the drain voltage (V D ) and gate voltage (V G ).

광활성층에 N-type의 2차원 화합물(132) 또는 P-type의 2차원 화합물(131) 중 어느 하나가 단일로 존재할 경우, 전자 또는 정공의 이동 편차가 생겨 전류 효율이 저하될 수 있다. 따라서, 전자와 정공의 이동 편차에 따른 효율 저하를 방지하기 위해 두 개의 2차원 화합물을 이용하여 전자와 정공을 효율적으로 분산할 수 있다. 2차원 화합물은 나노 단위의 두께, Van der Waals 결합이 가능하기 때문에 두 개의 화합물을 사용할 시, 각 TMD 재료의 캐리어 밀도를 효율적으로 조절할 수 있으며, 이를 통해 새로운 전자 및 광전자 특성을 수용할 수 있다 If either the N-type two-dimensional compound 132 or the P-type two-dimensional compound 131 exists alone in the photoactive layer, a movement deviation of electrons or holes may occur, resulting in a decrease in current efficiency. Therefore, in order to prevent a decrease in efficiency due to movement deviation of electrons and holes, electrons and holes can be efficiently dispersed using two two-dimensional compounds. Because two-dimensional compounds can achieve nanoscale thickness and Van der Waals bonding, when using two compounds, the carrier density of each TMD material can be efficiently controlled, thereby accommodating new electronic and optoelectronic properties.

도 3은 일 실시예에 따른 시냅스의 활동을 전기적으로 나타낸 그래프이다.Figure 3 is a graph electrically showing synapse activity according to one embodiment.

도 3에서 나타낸 바와 같이, 일 실시예에 따른 시냅스의 활동에서 이상적인 시냅스 스파이크(Synapse spike)의 전기적 반응성인 시냅틱 웨이트(Synaptic weight)의 전류 특성은 업데이트 된 스파이크 신호에 따라 증가 또는 감소하는 동작을 나타낼 수 있다. 여기서, 웨이트가 증가하는 것이 강화(Potentiation)이고, 감소하는 것을 억압(Depression)이라 한다. 이러한 웨이트의 증가와 감소는 시냅스의 활동에서 점진적으로 증가 또는 감소하므로 장기강화(Long Term Potentiation)와 장기억압(Long Term Depression)이라고 할 수 있다. 이러한 시냅스 활동을 전기적으로 모사하기 위해서는 게이트 전극에 전압을 조절하여 신호의 증폭 효과를 표현하여야 한다. As shown in Figure 3, in synaptic activity according to one embodiment, the current characteristics of synaptic weight, which is the electrical reactivity of an ideal synapse spike, shows an increase or decrease behavior according to the updated spike signal. You can. Here, increasing the weight is called potentiation, and decreasing it is called depression. This increase and decrease in weight is a gradual increase or decrease in synaptic activity, so it can be called long-term potentiation and long-term depression. In order to electrically simulate this synaptic activity, the voltage at the gate electrode must be adjusted to express the signal amplification effect.

또한, 도 3에서 두번째 그래프의 경우, 도 4의 그래프를 기반으로 시냅스 스파이크를 입력 광 펄스 번호로, 시냅틱 웨이트를 업데이트된 드레인 전류로 하였을 때를 그래프로 나타낸 것이며, 실제 데이터임을 나타낸다.In addition, the second graph in FIG. 3 is based on the graph in FIG. 4 and represents a graph where synaptic spikes are set to the input light pulse number and the synaptic weight is set to the updated drain current, indicating that it is actual data.

게이트 전극(110)에 전압을 인가하고, 광활성층(130)에 광 펄스(10)를 조사함에 따라 장기 강화 또는 장기 억압을 모사할 수 있다. 이때 광 펄스(10)는 시냅스의 업데이트 된 스파이크를 모사하게 되고, 게이트에 인가된 전압으로 장기 강화 또는 장기 억압을 나타낼 수 있다. 이러한 뉴런의 시냅스에서 나타나는 전기적 거동을 트랜지스터로 구현하는 것은 차세대 뉴모로픽 시스템을 설계하는데 새로운 관점을 제공할 수 있다.By applying a voltage to the gate electrode 110 and irradiating the light pulse 10 to the photoactive layer 130, long-term enhancement or long-term suppression can be simulated. At this time, the light pulse 10 simulates the updated spike of the synapse, and can indicate long-term enhancement or long-term suppression with the voltage applied to the gate. Implementing the electrical behavior that occurs at the synapse of these neurons with a transistor can provide a new perspective in designing next-generation pneumotropic systems.

도 4는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 전류 특성을 나타낸 그래프이다.Figure 4 is a graph showing current characteristics of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.

도 4에서 나타낸 바와 같이, 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 전류 특성은 파장()이 638 nm인 광 펄스(10)를 조사하여 드레인 전압(VD)이 -1V일 때와 -10V일 때, 게이트 전압(VG)이 0V, 60V -60V, 및 -20V일 경우의 전류 특성을 나타낸 그래프이다.As shown in Figure 4, the current characteristics of the artificial synapse-mimicking heterogeneous interface phototransistor according to one embodiment have a wavelength ( ) is irradiated with a light pulse (10) of 638 nm, and the current when the drain voltage (V D ) is -1V and -10V and the gate voltage (V G ) is 0V, 60V, -60V, and -20V This is a graph showing the characteristics.

VD가 -1V일 때, VG의 변화에 따른 전류 특성을 비교해보면, VG의 크기에 따라서 드레인 전류의 증가폭 또는 감소폭이 변화되는 것을 알 수 있는데, 게이트 전압이 60V와 -20V일 때를 비교해보면, 게이트 전압이 60V일 때는 장기 강화를 나타내고, -20V일 때는 장기 억압의 전류 특성을 나타내는 것을 알 수 있다. When V D is -1V, comparing the current characteristics according to the change in V G , it can be seen that the increase or decrease in drain current changes depending on the size of V G , when the gate voltage is 60V and -20V. By comparison, it can be seen that when the gate voltage is 60V, it shows long-term enhancement, and when the gate voltage is -20V, it shows long-term suppression current characteristics.

드레인 전압이 -10V일 때, 게이트 전압의 변화에 따른 전류 특성을 비교해보면, 게이트 전압이 60V일 때와 -20V일 때의 전류 특성은 장기 강화와 장기 억압의 전류 특성이 확연하게 차이가 나는 것을 확인할 수 있다. 이는 드레인 전압에 의해 전류 밀도가 증가함에 따라 증가폭 또는 감소폭이 크게 변화됨을 알 수 있다.When comparing the current characteristics according to the change in gate voltage when the drain voltage is -10V, the current characteristics of long-term enhancement and long-term suppression are clearly different when the gate voltage is 60V and -20V. You can check it. It can be seen that as the current density increases due to the drain voltage, the increase or decrease amount changes significantly.

광 펄스(10)는 일 실시예를 설명하기 위한 것으로 반드시 상술한 파장대에 한정되어 조사되는 것은 아니다. 즉, 포토트랜지스터의 전류 특성은 광 펄스(10)의 광 파장 에너지에 따라 달라질 수 있음을 인지하여야 한다.The light pulse 10 is for illustrative purposes only and is not necessarily limited to the wavelength range described above. In other words, it should be recognized that the current characteristics of the phototransistor may vary depending on the light wavelength energy of the light pulse 10.

도 5는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 적층 순서를 나타낸 모식도이다.Figure 5 is a schematic diagram showing the stacking sequence of an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.

도 5에서 나타낸 바와 같이, 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 적층 순서는 게이트 전극(110)을 구비하고, 게이트 전극(110) 상에 게이트 절연막(120)을 형성할 수 있다. 이때, 게이트 절연막(120)은 건식 또는 습식 산화 공정에 의해 형성될 수 있다. As shown in FIG. 5, the stacking order of the artificial synapse-mimicking heterogeneous interface phototransistor according to one embodiment may include a gate electrode 110 and forming a gate insulating film 120 on the gate electrode 110. At this time, the gate insulating film 120 may be formed by a dry or wet oxidation process.

게이트 절연막(120) 상에는 광활성층(130)이 형성될 수 있다. 이때, 광활성층(130)은 N-type의 2차원 화합물(132)과 P-type의 2차원 화합물(131)로 형성될 수 있고, 광활성층(130) 양단에는 소스 전극(141)과 드레인 전극(142)이 형성될 수 있다.A photoactive layer 130 may be formed on the gate insulating film 120. At this time, the photoactive layer 130 may be formed of an N-type two-dimensional compound 132 and a P-type two-dimensional compound 131, and a source electrode 141 and a drain electrode at both ends of the photoactive layer 130. (142) can be formed.

여기서, 광활성층, 소스 전극, 및 드레인 전극은 열 증착(Thermal evaporation), 스핀코팅(Spin coating), 슬롯 다이 코팅(Slot die coating), 스프레이 코팅(Spray coating), 잉크젯 코팅(Ink-jet coating), 시어링 코팅(Shearing coating), 기상 화학 증착(Chemical Vapor Deposition), 스퍼터링(Sputtering) 등을 이용하여 형성될 수 있으나, 여기에 국한되는 것은 아니다.Here, the photoactive layer, source electrode, and drain electrode are formed by thermal evaporation, spin coating, slot die coating, spray coating, and ink-jet coating. , It may be formed using shearing coating, chemical vapor deposition, sputtering, etc., but is not limited thereto.

도 6는 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법을 나타낸 흐름도이다.Figure 6 is a flowchart showing a method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment.

도 6에서 나타낸 바와 같이, 일 실시예에 따른 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법은 게이트 전극 형성 단계(S100), 게이트 절연막 형성 단계(S200), 광활성층 형성 단계(S300), 및 소스 및 드레인 전극 형성 단계(S400)를 포함할 수 있다.As shown in Figure 6, the method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor according to an embodiment includes a gate electrode forming step (S100), a gate insulating film forming step (S200), a photoactive layer forming step (S300), and a source and It may include a drain electrode forming step (S400).

게이트 전극 형성 단계(S100)는 결정질 실리콘, 금속, 및 금속 산화물 중 어느 하나로 게이트 전극(110)이 형성될 수 있다.In the gate electrode forming step (S100), the gate electrode 110 may be formed of any one of crystalline silicon, metal, and metal oxide.

게이트 절연막 형성 단계(S200)는 게이트 전극(110) 상에 게이트 절연막(120)이 형성될 수 있다.In the gate insulating film forming step (S200), the gate insulating film 120 may be formed on the gate electrode 110.

광활성층 형성 단계(S300)는 상기 게이트 절연층 상에 N-type의 2차원 화합물과 P-type의 2차원 화합물이 이중구조로 형성될 수 있다. 이때, P-type의 2차원 화합물(131) 및 N-type의 2차원 화합물(132) 중 적어도 하나가 유기화합물 또는 무기화합물에 의해 도핑될 수 있다.In the photoactive layer forming step (S300), an N-type two-dimensional compound and a P-type two-dimensional compound may be formed in a dual structure on the gate insulating layer. At this time, at least one of the P-type two-dimensional compound 131 and the N-type two-dimensional compound 132 may be doped with an organic compound or an inorganic compound.

소스 및 드레인 전극 형성 단계(S400)는 광활성층(130) 양단에 각각 소스 전극과 드레인 전극이 형성될 수 있다. 광활성층(130) 상에 형성된 소스 전극(141)과 드레인 전극(142)으로 인해 전하가 이동할 수 있는 채널이 형성될 수 있다.In the source and drain electrode forming step (S400), source electrodes and drain electrodes may be formed at both ends of the photoactive layer 130, respectively. A channel through which charges can move may be formed due to the source electrode 141 and the drain electrode 142 formed on the photoactive layer 130.

이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다. Although the present invention has been described in detail through representative embodiments above, those skilled in the art will understand that various modifications can be made to the above-described embodiments without departing from the scope of the present invention. will be. Therefore, the scope of rights of the present invention should not be limited to the described embodiments, but should be determined not only by the claims described later, but also by all changes or modified forms derived from the claims and the concept of equivalents.

100: 이종 인터페이스 포토트랜지스터
110: 게이트 전극 120: 게이트 절연막
130: 광활성층 140: 소스 및 드레인 전극
131: P-type 2차원 화합물 132: N-type 2차원 화합물
141: 소스 전극 142: 드레인 전극
10: 광 펄스
100: Heterogeneous interface phototransistor
110: gate electrode 120: gate insulating film
130: Photoactive layer 140: Source and drain electrodes
131: P-type two-dimensional compound 132: N-type two-dimensional compound
141: source electrode 142: drain electrode
10: optical pulse

Claims (7)

광 에너지를 흡수하여 게이트 전극과 소스 및 드레인 전극에 의해 전류가 형성되는 광활성층을 포함하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터에 있어서,
상기 광활성층은,
N-type의 2차원 화합물과 P-type의 2차원 화합물이 이종구조로 구비되되,
상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층되고,
상기 N-type의 2차원 화합물과 P-type의 2차원 화합물 중 적어도 하나는 유기화합물 또는 무기화합물에 의해 도핑되며,
상기 포토트랜지스터는,
외부로부터 펄스(Pulse)형태로 인가되는 광 에너지 및 게이트 전극에 인가되는 전압 중 적어도 하나의 변동에 따른 전류 특성을 도출하여 도출된 전류 특성으로 뉴런의 시냅스 활동을 전기적으로 모사하는 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터.
In an artificial synapse-mimicking heterogeneous interface phototransistor comprising a photoactive layer that absorbs light energy and generates current by a gate electrode and source and drain electrodes,
The photoactive layer is,
N-type two-dimensional compounds and P-type two-dimensional compounds are provided in heterogeneous structures,
The N-type two-dimensional compound and the P-type two-dimensional compound are stacked to have a predetermined overlap area,
At least one of the N-type two-dimensional compound and the P-type two-dimensional compound is doped with an organic compound or an inorganic compound,
The phototransistor is,
An artificial device characterized by electrically simulating the synaptic activity of neurons with current characteristics derived from changes in at least one of light energy applied from the outside in the form of a pulse and voltage applied to the gate electrode. Synapse-mimicking heterogeneous interface phototransistor.
제1항에 있어서,
상기 광활성층은 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층됨에 따라 N-type 영역, P-type 영역, 및 오버랩 영역을 포함하고,
상기 N-type 영역, P-type 영역, 및 오버랩 영역 각각은 서로 다른 파장대의 광 에너지를 흡수하는 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터.
According to paragraph 1,
The photoactive layer includes an N-type region, a P-type region, and an overlap region as the N-type two-dimensional compound and the P-type two-dimensional compound are stacked to have a predetermined overlap region,
An artificial synapse-mimicking heterogeneous interface phototransistor, wherein each of the N-type region, P-type region, and overlap region absorbs light energy in different wavelength bands.
제1항에 있어서,
상기 N-type의 2차원 화합물과 P-type의 2차원 화합물 각각은 서로 다른 에너지 밴드갭을 갖는 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터.
According to paragraph 1,
An artificial synapse-mimicking heterogeneous interface phototransistor, characterized in that each of the N-type two-dimensional compound and the P-type two-dimensional compound has a different energy band gap.
제3항에 있어서,
상기 N-type의 2차원 화합물은 MoSe2 이고, P-type의 2차원 화합물은 WSe2 인 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터.
According to paragraph 3,
The N-type two-dimensional compound is MoSe 2 and the two-dimensional compound of P-type is WSe 2 An artificial synapse-mimicking heterogeneous interface phototransistor.
제1항에 있어서,
상기 뉴런의 시냅스 활동은 시냅스전 뉴런과 시냅스후 뉴런이 시냅스를 통해 신호를 전달하는 능력이 증가하는 장기 강화(Long-term Potentiation) 및 신호를 전달하는 능력이 감소하는 장기 억압(Long-term Depression) 중 하나인 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터.
According to paragraph 1,
The synaptic activity of the neuron is characterized by long-term potentiation, which increases the ability of presynaptic neurons and postsynaptic neurons to transmit signals through the synapse, and long-term depression, which decreases the ability to transmit signals. An artificial synapse-mimicking heterogeneous interface phototransistor, characterized in that one of the.
제1항의 광 에너지를 흡수하여 게이트 전극과 소스 및 드레인 전극에 의해 전류가 형성되는 광활성층을 포함하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법에 있어서,
결정질 실리콘, 금속, 및 금속 산화물 중 어느 하나로 게이트 전극이 형성되는 게이트 전극 형성 단계;
상기 게이트 전극 상에 게이트 절연층이 형성되는 게이트 절연층 형성 단계;
상기 게이트 절연층 상에 N-type의 2차원 화합물인 MoSe2와 P-type의 2차원 화합물인 WSe2의 이중구조가 형성되되, 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층되고, 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물 중 적어도 하나는 유기화합물 또는 무기화합물에 의해 도핑되는 광활성층 형성 단계; 및
상기 광활성층 양단에 각각 소스 및 드레인 전극이 구비되는 소스 및 드레인 전극 형성 단계를 포함하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법.
In the method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor comprising a photoactive layer that absorbs the light energy of claim 1 and generates a current by the gate electrode and the source and drain electrodes,
A gate electrode forming step in which a gate electrode is formed of any one of crystalline silicon, metal, and metal oxide;
A gate insulating layer forming step of forming a gate insulating layer on the gate electrode;
A dual structure of MoSe2, an N-type two-dimensional compound, and WSe2, a P-type two-dimensional compound, is formed on the gate insulating layer, and the N-type two-dimensional compound and the P-type two-dimensional compound are predetermined. forming a photoactive layer, which is stacked to have an overlap area of, and at least one of the N-type two-dimensional compound and the P-type two-dimensional compound is doped with an organic compound or an inorganic compound; and
A method of manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor comprising the step of forming source and drain electrodes where source and drain electrodes are provided on both ends of the photoactive layer, respectively.
제6항에 있어서,
상기 광활성층 형성 단계는 상기 N-type의 2차원 화합물과 P-type의 2차원 화합물이 소정의 오버랩 영역을 가지도록 적층됨에 따라 N-type 영역, P-type 영역, 및 오버랩 영역을 포함하는 것을 특징으로 하는 인공 시냅스 모방 이종 인터페이스 포토트랜지스터의 제조 방법.
According to clause 6,
The photoactive layer forming step includes an N-type region, a P-type region, and an overlap region as the N-type two-dimensional compound and the P-type two-dimensional compound are stacked to have a predetermined overlap region. Method for manufacturing an artificial synapse-mimicking heterogeneous interface phototransistor.
KR1020210063240A 2021-05-17 2021-05-17 Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof KR102619096B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210063240A KR102619096B1 (en) 2021-05-17 2021-05-17 Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210063240A KR102619096B1 (en) 2021-05-17 2021-05-17 Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20220155699A KR20220155699A (en) 2022-11-24
KR102619096B1 true KR102619096B1 (en) 2023-12-29

Family

ID=84235613

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063240A KR102619096B1 (en) 2021-05-17 2021-05-17 Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102619096B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542552B1 (en) * 2021-08-02 2023-06-12 재단법인대구경북과학기술원 Apparatus and method of measuring photocurrent mapping and noise current of heterojunction phototransistors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169913B1 (en) 2019-04-18 2020-10-26 포항공과대학교 산학협력단 Synaptic transistor and fabrication method of the same
KR102353437B1 (en) * 2019-10-01 2022-01-20 한국과학기술원 A single transistor capable of using both neuron and synaptic devices, and a neuromorphic system using it

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gwang Hyuk Shin et al., Nano Lett. 2020, 20, 8, 5741-5748, (2020.06.26.)공개
Liu, Bo, et al. "Photodetector based on heterostructure of two-dimensional WSe2/In2Se3." Nanotechnology 31.6 (2019): 065203. 1부.*
Seo, Seunghwan, et al. "Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition." Nature communications 11.1 (2020): 3936. 1부.*

Also Published As

Publication number Publication date
KR20220155699A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
Dai et al. Recent advances in transistor‐based artificial synapses
Sangwan et al. Neuromorphic nanoelectronic materials
CN108807546B (en) Oxide thin film transistor and method for manufacturing the same
Yi et al. Artificial synaptic emulators based on MoS2 flash memory devices with double floating gates
Chen et al. Artificial synapses based on nanomaterials
CN110518117B (en) Memristor of two-dimensional material heterojunction and preparation method thereof
Sun et al. Programmable van‐der‐Waals heterostructure‐enabled optoelectronic synaptic floating‐gate transistors with ultra‐low energy consumption
US9123817B2 (en) Transistors and electronic devices including the same
Liu et al. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide
KR20160019682A (en) Device imitating synaptic and method of manufacturing thereof
Xiao et al. Room-temperature-processed flexible amorphous InGaZnO thin film transistor
Feng et al. Proton conducting graphene oxide/chitosan composite electrolytes as gate dielectrics for new-concept devices
Yang et al. Selective p-doping of 2D WSe2 via UV/ozone treatments and its application in field-effect transistors
Li et al. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing
KR102619096B1 (en) Artificial synaptic-mimicking heterogeneous interface phototransistor and manufacturing method thereof
Wang et al. Artificial tactile recognition enabled by flexible low-voltage organic transistors and low-power synaptic electronics
US11177449B2 (en) P-type semiconductor layer, P-type multilevel element, and manufacturing method for the element
Wu et al. High visible‐light‐stimulated plasticity in optoelectronic synaptic transistors for irradiation history‐dependent learning
Yao et al. Reconfigurable Artificial Synapse Based on Ambipolar Floating Gate Memory
Qian et al. Rational band engineering of an organic double heterojunction for artificial synaptic devices with enhanced state retention and linear update of synaptic weight
Xia et al. 2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing
Xia et al. Carbon nanotube-based flexible ferroelectric synaptic transistors for neuromorphic computing
Zhang et al. Recent progress on 2D materials-based artificial synapses
Lee et al. A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors
Kim et al. Location-dependent multi-parameter detection behaviors using hetero-interfaced organic anti-ambipolar phototransistors

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right