KR102615877B1 - Composition for discriminating Nanchukmacdon pork meat and use thereof - Google Patents

Composition for discriminating Nanchukmacdon pork meat and use thereof Download PDF

Info

Publication number
KR102615877B1
KR102615877B1 KR1020210066802A KR20210066802A KR102615877B1 KR 102615877 B1 KR102615877 B1 KR 102615877B1 KR 1020210066802 A KR1020210066802 A KR 1020210066802A KR 20210066802 A KR20210066802 A KR 20210066802A KR 102615877 B1 KR102615877 B1 KR 102615877B1
Authority
KR
South Korea
Prior art keywords
seq
gene
pork
pigs
represented
Prior art date
Application number
KR1020210066802A
Other languages
Korean (ko)
Other versions
KR20220159020A (en
Inventor
박원철
임다정
최봉환
박종은
신문철
조인철
채한화
임영조
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020210066802A priority Critical patent/KR102615877B1/en
Publication of KR20220159020A publication Critical patent/KR20220159020A/en
Application granted granted Critical
Publication of KR102615877B1 publication Critical patent/KR102615877B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 난축맛돈 돼지육 판별용 조성물 및 이의 용도에 관한 것으로, 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는, UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3 및 ELN 유전자를 포함하는 바이오마커를 이용한 난축맛돈의 등심 형성 예측 및 난축맛돈 돼지육 판별 방법에 관한 것이다. 본 발명자들은 RNA-Seq 데이터 분석을 통해 난축맛돈을 기준으로 각각의 품종에서 차등적으로 발현되는 유전자 군을 선정하고, 난축맛돈의 등심 조직에서quantitative RT-PCR을 통해 실험적 검증을 수행함으로써, 난축맛돈의 등심 근육 형성을 예측할 수 있는 유전자를 선별하였고, 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 이용한 난축맛돈 등심 근육 형성 예측 및 난축맛돈 돼지육 판별 방법을 확립하였다.The present invention relates to a composition for determining pork meat from recalcitrant pigs and its use, including UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, and This relates to a method for predicting sirloin formation in low-quality pork and discriminating pork meat from low-quality pork using biomarkers containing the ELN gene. The present inventors selected gene groups that are differentially expressed in each breed based on naive pigs through RNA-Seq data analysis, and performed experimental verification through quantitative RT-PCR in the sirloin tissue of naive hogs. Genes that can predict loin muscle formation were selected, and a method for predicting loin muscle formation and distinguishing lean pork loin muscle using a composition containing an agent that amplifies the gene was established.

Description

난축맛돈 돼지육 판별용 조성물 및 이의 용도{Composition for discriminating Nanchukmacdon pork meat and use thereof}Composition for discriminating Nanchukmacdon pork meat and use thereof}

본 발명은 난축맛돈 돼지육 판별용 조성물 및 이의 용도에 관한 것으로, 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는, UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3 및 ELN 유전자를 포함하는 바이오마커를 이용한 난축맛돈 돼지육 판별 방법에 관한 것이다.The present invention relates to a composition for determining pork meat from recalcitrant pigs and its use, including UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, and This relates to a method for discriminating pork meat from poorly stocked pigs using a biomarker containing the ELN gene.

품종개량을 위한 가축육종은 분자유전학적 실험기법의 도입 이전에는 계통의 혈통 자료와 후손의 능력을 기준으로 하는 교배, 선발 과정을 통해 이루어져 왔다. 인간 유전체 서열에 대한 물리지도가 완성 (Human genome project)된 이후 (IHGSC, 2004), 유전자 서열정보는 분자유전학 분야가 한층 더 급속하게 발달하는 전기가 되었고, 이후 세균과 식물, 동물 등 여러 생물체에 대한 유전체 정보들이 밝혀지게 되었다 (Church, 2006). 유전체 정보의 해독과 여러 가지 DNA 마커의 도입은 참조축군(reference family)을 이용한 양적형질좌위(quantitative trait loci, QTL)와 연관된 후보유전자의 검출이 가능해졌다. Before the introduction of molecular genetic testing techniques, livestock breeding for breed improvement was conducted through a crossbreeding and selection process based on lineage data and the ability of the descendants. After the completion of the physical map of the human genome sequence (Human genome project) (IHGSC, 2004), gene sequence information became a turning point in the field of molecular genetics developing more rapidly, and has since been used in various living organisms such as bacteria, plants, and animals. Genomic information has been revealed (Church, 2006). The deciphering of genomic information and the introduction of various DNA markers have made it possible to detect candidate genes associated with quantitative trait loci (QTL) using reference families.

유전체학(genomics)뿐만 아니라 단백질체학 (proteomics), 전사체학(transcriptomics)과 생물정보학(bioinformatics)의 연구결과들 또한 유전자의 전사와 발현, 기능과 상호작용에 대한 정보를 제공함으로써, 후보유전자의 마커로써의 활용가능성을 분자, 세포, 개체의 수준에서 제시하여 의학뿐 아니라 가축개량에 적용가능하게 하였다. 특히, 가축 유전체에 대한 연구는 가축의 경제형질 개량을 목적으로 유전자 또는 돌연변이 영역들을 탐색대상으로 하고 있다.Research results from not only genomics, but also proteomics, transcriptomics, and bioinformatics also provide information on gene transcription, expression, function, and interaction, and serve as markers for candidate genes. The possibility of its use was presented at the molecular, cellular, and individual levels, making it applicable not only to medicine but also to livestock improvement. In particular, research on livestock genomes is aimed at exploring genes or mutation regions for the purpose of improving economic traits of livestock.

가축의 경제형질은 대부분 양적형질(quantitative trait)에 해당되며, 돼지에서는 도체중, 체형, 육질 등 대다수의 경제성 관련 형질들이 양적유전 양상을 나타낸다. 이런 형질들에 영향을 주는 QTL을 찾기 위하여 많은 방법들이 개발되었다. 그 중에서 유전체 수준의 연관 연구(genome-wide association study, GWAS)는 집단 내에 존재하는 단일염기변이(single nucleotide polymorphism, SNP)의 유전자형과 표현형질의 상관관계를 유전체 수준에서 분석하여 최상위 관련 마커를 검출하는 연구방법으로 돼지, 닭, 개, 소 등을 포함하는 가축들을 대상으로 활발하게 연구되고 있다.Most economic traits of livestock are quantitative traits, and in pigs, most economic traits such as carcass weight, body shape, and meat quality show quantitative inheritance patterns. Many methods have been developed to find QTL affecting these traits. Among them, genome-wide association study (GWAS) analyzes the correlation between genotype and phenotype of single nucleotide polymorphism (SNP) existing in a population at the genome level and detects the top related marker. This research method is being actively studied on livestock including pigs, chickens, dogs, and cows.

돼지의 경우, 대부분의 국가에서 새로운 돼지 품종 개발 보다는 기존의 돼지 품종을 개량하기 위하여 전통적인 통계육종 프로그램으로 균일성 확보를 위한 계통조성 연구가 추진이 되었왔다. 목적은 종돈보다 더 균일한 돼지를 생산함과 더불어 타 품종간 교배시 잡종강세 효과를 보기 위함이라 할 수 있다. 하지만, 개량의 목표가 대부분 성장속도, 산육량, 등지방두께의 증가 위주였고, 이로 인해 강선발이 진행되어 육질의 저하 등의 부작용을 초래했다. In the case of pigs, in most countries, lineage composition research to ensure uniformity has been promoted through traditional statistical breeding programs to improve existing pig breeds rather than develop new pig breeds. The purpose can be said to be to produce pigs that are more uniform than breeding pigs and to see the hybrid effect when crossing between different breeds. However, the goals of improvement were mostly focused on increasing growth speed, yield, and back fat thickness, which led to strong selection, resulting in side effects such as deterioration of meat quality.

최근에는 유전정보를 활용하여 전통적인 통계육종 방법에 유전자형을 결합하는 여러 연구 방법이 시도가 되고 있으며, 그 예가 G-BLUB이며, 유전체 연구분야에서는 특정 참조축군에서 개발된 DNA Marker의 효율성으로 인하여 Genomic selection 방법을 채택하여 연구가 세계적으로 추진되는 추세에 있다. 국내에서 국립축산과학원 난지축산연구소에서 세계 최대 규모의 참조축군을 조성하여 돼지 육질형질을 결정한는 유전자좌위를 세계최초로 보고하였고, 개발한 육질 유전자를 활용하여 새로운 돼지 품종을 개발하였는데 이때 활용된 유전자는 육질유전자 이외에 전신흑모색 유전자이다.Recently, several research methods that combine genotypes with traditional statistical breeding methods using genetic information have been attempted, an example of which is G-BLUB. In the field of genome research, Genomic selection is possible due to the efficiency of DNA Markers developed from specific reference livestock groups. Research is being promoted globally by adopting the method. In Korea, the Nanji Livestock Research Institute of the National Institute of Animal Science created the world's largest reference herd and reported the world's first genetic locus that determines pig meat quality traits. The developed meat quality genes were used to develop a new pig breed, and the gene used in this case was meat quality. In addition to the gene, it is the gene for full body black hair.

전 세계적으로 상업적 이용을 위해 키워지는 돼지의 수는 약 30여 종이며, 그 중 우리나라에서 자주 쓰이는 품종은 랜드레이스, 요크셔, 듀록, 버크셔 등 4가지이다. 하지만, 구웠을 때 감칠맛과 씹는 맛이 높은 우리나라 제주도 재래종 흑돼지와 다르게, 외국에서 개량되어 들어온 종돈들은 햄과 같은 가공식품을 만드는데 적합한 품종으로 만들어지는 경우가 많아서 한국인이 추구하는 맛과 차이가 나는 경우가 많다. 그러나 제주도 재래종 흑돼지는 육질은 우수하지만 성장이 느리고 체중도 외국산 종돈 대비 70% 선에 불과하여 한번 새끼가 태어나면 7마리 선이었기 때문에 10마리를 넘게 낳는 다른 종에 비하여 번식력도 낮은 편이라 종돈으로 삼기에 어려운 점이 있었다. 따라서, 재래종 흑돼지의 장점을 지니면서 단점으로 꼽히던 부분들을 개선하여 종돈으로 삼을 수 있는 새로운 품종을 개발해야한다는 필요성이 대두되었고, 이에 재래종 흑돼지, 랜드레이서 (Landrace) 및 듀록 (Duroc)을 교배하여 개발된 품종이 난축맛돈이다.There are about 30 breeds of pigs raised for commercial use around the world, of which four breeds are frequently used in Korea: Landrace, Yorkshire, Duroc, and Berkshire. However, unlike the native black pig from Jeju Island in Korea, which has a high umami and chewy taste when grilled, pigs imported from overseas are often made into breeds suitable for making processed foods such as ham, so the taste is different from the taste pursued by Koreans. There are a lot. However, Jeju Island's native black pigs have excellent meat quality, but their growth is slow and their weight is only about 70% of that of foreign breeding pigs. Once a pig is born, it produces around 7 pigs, so its fertility is low compared to other breeds that give birth to more than 10 pigs, making it difficult to use as breeding pigs. There was a point. Therefore, there was a need to develop a new breed that could be used as breeding pigs by improving the disadvantages of native black pigs while retaining the advantages of native black pigs. Accordingly, native black pigs, Landrace, and Duroc were crossed. The developed breed is a low-livestock pig.

난축맛돈은 경제성 향상을 위해 우수한 육질 형질과 흑모색을 지닌 제주도의 재래종 돼지를 생산성이 높은 개량종인 랜드레이스 및 듀록 품종과 교배하여 유전자 선발에 의하여 개발된 고육질형 흑돼지 품종으로, 육질형질에 영향을 미치는 유전자와 몸 전체를 검은색으로 만드는 유전자를 밝혀내고, DNA 수준에서 유전자를 고정하는 방법을 개발하여 개량한 품종이다. 이렇게 개량된 난축맛돈은 일반 돼지에 비하여 근내 지방량이 우수하고, 일반 돼지에서 가장 근내지방이 없는 부위 중 하나인 등심의 근내 지방량이 높아, 저지방 부위에 마블링이 발달해 전체 부위를 구이용으로 활용할 수 있어 구이문화가 발달한 우리나라 소비자의 기호도가 높은 편이다. 또한, 육색이 붉고 제주재래돼지 고유의 맛을 지녀 일반 돼지고기에 비해 맛이 우수하다는 평을 받고 있으며 지난 2014년 우리나라 최초로 돼지 자체 (생축)를 특허등록 (등록번호 제 10-1457942호)했다.In order to improve economic efficiency, low-livestock pigs are a high-meat quality black pig breed developed through genetic selection by crossing Jeju Island's native pigs, which have excellent meat quality and black hair color, with highly productive improved breeds such as Landrace and Duroc. This is an improved breed that was developed by discovering the gene that affects the skin and the gene that makes the entire body black, and developing a method to fix the gene at the DNA level. This improved raw pork has a superior amount of intramuscular fat compared to regular pigs, and the intramuscular fat content of the sirloin, which is one of the parts with the least intramuscular fat in regular pigs, is high, so marbling is developed in the low-fat part, allowing the entire part to be used for grilling. Consumer preference in Korea, where grilling culture is developed, is high. In addition, the meat is red in color and has the unique taste of Jeju native pig, so it is said to have a superior taste compared to regular pork. In 2014, the pig itself (live livestock) was patented for the first time in Korea (registration number 10-1457942).

하지만, 육질과 모색에 대한 제어체계가 완성되었을 뿐, 육색, 체형, 도체중 등 중요 경제형질에 영향을 미치는 유전적 요인에 대해서는 아직 체계가 확립되지 않아, 산업현장에서 적용가능한 분자 마커가 요구되는 실정이다. 또한 개발품종에 대한 친자확인, 혈통관리, 생산이력제 및 품종인증과 관련된 분자진단체계가 마련되지 않은 상태이다. 이에 난축맛돈의 주요 경제형질과 관련된 유전자의 동정과 핵심 유전자 변이를 발굴하고, 발굴된 유전자변이들을 중심으로 개발품종의 인증과 관리에 필요한 분자진단체계를 확립을 통한 난축맛돈 품종의 생산성 향상과 함께 농가 분양 이후 사후관리체계를 구축할 필요성이 있다.However, the control system for meat quality and hair color has only been completed, and the system has not yet been established for genetic factors that affect important economic traits such as meat color, body shape, and carcass weight, so molecular markers applicable in industrial settings are required. This is the situation. In addition, molecular diagnostic systems related to paternity verification, pedigree management, production history system, and variety certification for developed varieties have not been established. Accordingly, the identification of genes and key genetic mutations related to the main economic traits of low-livestock pigs were identified, and the establishment of a molecular diagnostic system necessary for certification and management of developed breeds based on the discovered genetic mutations was used to improve the productivity of low-livestock pig breeds. There is a need to establish a follow-up management system after farm sales.

한우의 경우 개체 수준의 품종식별과 도축 이후의 동일성 검사를 통해 생산이력추적(traceability)과 품종인증(breed certification)이 가능한 수준이다. 하지만 현재까지 돼지의 경우 농가단위의 생산이력추적은 가능하나 비육돈 및 종돈의 개체추적과 품종인증을 위해 적용 가능한 분자진단체계는 완전히 구비되어 있지 않다. 특히, 난축맛돈의 경우 고육질형 흑돼지 축군이라는 점에서 생산이력추적과 품종인증에서 육질과 모색을 설명할 수 있는 자료의 확보가 필수적이며, 이에 대한 과학적 근거를 제시할 수 있는 진단체계 역시 구비되어야 한다. 이를 위해 신속하면서도 정확한 유전자형 자료를 산출할 수 있는 분석체계가 필요하다.In the case of Korean beef, traceability and breed certification are possible through individual-level breed identification and identity testing after slaughter. However, although it is possible to trace the production history of pigs at the farm level, there is no complete molecular diagnostic system applicable to individual tracking and breed certification of finishing pigs and breeding pigs. In particular, in the case of raw pigs, which are high-meat quality black pig herds, it is essential to secure data that can explain meat quality and color in production history tracking and breed certification, and a diagnostic system that can provide scientific basis for this must also be established. do. For this purpose, an analysis system that can quickly and accurately calculate genotype data is needed.

현재 난축맛돈을 판매하는 가게가 점점 늘어남에 따라 소비량이 증가하고 있으나, 몇몇 제주재래돼지가 섞여있지 않은 개체가 발생하고 있고, 이는 난축맛돈이 아직 고정이 되지 않은 것을 의미한다. 이러한 집단의 균일성 문제를 해결하기 위하여, 난축맛돈의 돼지육을 판단하는 객관적인 기준을 마련하려는 연구가 활발히 진행되고 있다. 따라서, 난축맛돈 개발에 이용이 된 제주재래돼지, 랜드레이스, 듀록 품종간의 유전체, 전사체 비교를 통해 각각의 품종이 가지고 있는 우수한 형질이 어떻게 난축맛돈의 유전적 조성을 구축했으며, 발현되는 유전자 및 기능을 구명하여, 최종적으로 난축맛돈의 육질, 육량에 직접적으로 영향을 주는 등심 근육의 성장과 발달에 관여하는 바이오 마커의 개발이 필요한 실정이다.Currently, consumption is increasing as the number of stores selling raw pork is increasing, but there are some individuals that are not mixed with Jeju native pigs, which means that raw slaughter pork has not yet been fixed. In order to solve the problem of uniformity of these groups, research is actively underway to establish objective standards for judging the quality of pork from uncooked pigs. Therefore, through comparison of the genomes and transcriptomes of the Jeju native pigs, Landrace, and Duroc breeds used in the development of low-living pigs, we can determine how the excellent traits of each breed established the genetic composition of low-living pigs, and the genes and functions expressed. There is a need to develop biomarkers that are involved in the growth and development of loin muscles, which ultimately directly affect the meat quality and mass of low-quality pork.

이러한 연구의 일환으로서, 돼지육의 유전자를 분석하여 특정 품종의 돼지육을 판단하는 방법이 개발되었는데, 이처럼 유전자를 분석하는 방법은 PCR 기술을 이용하는 RAPD(random amplified polymorphic DNA), SSCP(single strand conformation polymorphisms) 기법 등의 다양한 DNA 분석기법을 이용하여 돼지육의 품종을 판별하는 방법을 개발 및 발전시키려는 방향으로 활발한 연구가 이루어지고 있다. As part of this research, a method was developed to analyze the genes of pork meat to determine whether it is a specific breed of pork meat. This method of analyzing genes is RAPD (random amplified polymorphic DNA) and SSCP (single strand conformation DNA) using PCR technology. Active research is being conducted to develop and advance methods for determining the breed of pork meat using various DNA analysis techniques such as polymorphisms.

예를 들어, 공개특허 제2004-0039059호에는 돼지의 일당증체량, 등지방두께, 등심단면적에 관련된 특이 DNA marker를 이용하여 돼지의 형질이 우수한 돼지를 선발할 수 있는 유전자 검정방법이 개시되어 있고, 공개특허 제2011-0011443호에는 KIT 유전자에 대한 한국재래돼지 특이적인 DNA marker를 검출하여, 한국재래돼지와 기타 개량종 돼지와의 정확한 품종을 판별하는 기술이 개시되어 있으며, 공개특허 제2011-0139011호에는 돼지 근내지방 함량 진단용 단일형질 다형성 바이오마커를 이용하여 육질을 평가하는 방법이 개시되어 있고, 공개특허 제2012-0046968호에는 돼지의 유전자를 이용하여 전단력이 우수한 형질의 돼지를 선별하는 방법이 개시되어 있으며, 공개특허 제2012-0049624호에는 돼지의 유전자를 이용하여 육색이 우수한 형질의 돼지를 선별하는 방법이 개시되어 있고, 공개특허 제2012-0052796호에는 돼지의 육질 특성에 관여하는 PPARGC1A 유전자의 새로운 유전적 변이(SNP) 부위를 이용한 돼지의 육질 증가 여부 확인용 DNA 표지인자가 개시되어 있으며, 공개특허 제2012-0072871호에는 돼지의 불포화 지방산 함량 확인용 단일염기다형성(SNP) 마커를 이용하여 고품질의 돼지육을 확인하는 방법이 개시되어 있다. 그러나, 난축맛돈의 돼지육을 정확하게 판별하기 위한 방법에 대한 연구는 아직 미흡한 실정이다.For example, Publication Patent No. 2004-0039059 discloses a genetic testing method that can select pigs with excellent pig traits using specific DNA markers related to the pig's daily weight gain, back fat thickness, and loin cross-sectional area, Publication Patent No. 2011-0011443 discloses a technology for accurately distinguishing between Korean native pigs and other improved pigs by detecting DNA markers specific to Korean native pigs for the KIT gene, and Publication Patent No. 2011-0139011. discloses a method of evaluating meat quality using a single trait polymorphism biomarker for diagnosing intramuscular fat content in pigs, and Publication Patent No. 2012-0046968 discloses a method of selecting pigs with excellent shear force using pig genes. Publication No. 2012-0049624 discloses a method for selecting pigs with excellent meat color using pig genes, and Publication Patent No. 2012-0052796 discloses the PPARGC1A gene, which is involved in the meat quality characteristics of pigs. A DNA marker for checking whether the meat quality of pigs has increased using a new genetic mutation (SNP) site has been disclosed, and in Publication Patent No. 2012-0072871, a single nucleotide polymorphism (SNP) marker is used to check the unsaturated fatty acid content of pigs. A method for confirming high quality pork meat is disclosed. However, research on methods to accurately determine the quality of pork from uncooked pigs is still insufficient.

본 발명자들은 난축맛돈, 제주재래돼지, 랜드레이스, 듀록의 혈액 DNA 및 등심 조직의 RNA를 활용하여 난축맛돈의 등심 근육의 성장과 발달에 관여하는 바이오 마커(유전자)를 찾기 위한 집단 유전체 분석(Re sequencing) 및 전사체 분석(RNA-sequencing)을 통합하여 분석을 수행하였다. RNA-Seq 데이터 분석을 통해 난축맛돈을 기준으로 각각의 품종에서 차등적으로 발현되는 유전자 군을 선정하고, 난축맛돈의 등심 조직에서quantitative RT-PCR을 통해 실험적 검증을 수행함으로써, 난축맛돈의 등심 근육 형성을 예측할 수 있는 유전자를 선별하였고, 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 이용한 난축맛돈 돼지육 판별 방법을 확립함으로써, 본 발명을 완성하였다.The present inventors conducted a population genome analysis (Re The analysis was performed by integrating sequencing and transcriptome analysis (RNA-sequencing). Through RNA-Seq data analysis, we selected gene groups that are differentially expressed in each breed based on naive pork, and experimentally verified them through quantitative RT-PCR in the sirloin tissue of naive pork. The present invention was completed by selecting a gene whose formation can be predicted and establishing a method for determining the quality of pig meat using a composition containing an agent that amplifies the gene.

본 발명의 목적은 UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3 및 ELN 유전자를 이용한 난축맛돈 돼지육 판별 방법을 제공하는 것이다.The purpose of the present invention is to provide a method for determining pork meat from low-quality pigs using UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, and ELN genes.

상기 목적을 달성하기 위하여,In order to achieve the above purpose,

본 발명은 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는, 서열번호 1로 기재되는 UGT8 유전자; 서열번호 2로 기재되는 UBE2L6 유전자; 서열번호 3으로 기재되는 MELK 유전자; 서열번호 4로 기재되는 ZGRF1 유전자; 서열번호 5로 기재되는 NCALD 유전자; 서열번호 6으로 기재되는 FHL2 유전자; 서열번호 7로 기재되는 SERP2 유전자; 서열번호 8로 기재되는 GDPD5 유전자; 서열번호 9로 기재되는 NDUFA10 유전자; 서열번호 10으로 기재되는 EBF3 유전자; 및 서열번호 11로 기재되는 ELN 유전자를 증폭시키는 제제를 포함하는, 난축맛돈 돼지육 판별용 바이오 마커를 제공한다.The present invention relates to the UGT8 gene, shown in SEQ ID NO: 1, whose expression is relatively increased in the sirloin tissue of naive pigs; UBE2L6 gene represented by SEQ ID NO: 2; MELK gene represented by SEQ ID NO: 3; ZGRF1 gene represented by SEQ ID NO: 4; NCALD gene represented by SEQ ID NO: 5; FHL2 gene represented by SEQ ID NO: 6; SERP2 gene represented by SEQ ID NO: 7; GDPD5 gene represented by SEQ ID NO: 8; NDUFA10 gene represented by SEQ ID NO: 9; EBF3 gene represented by SEQ ID NO: 10; and an agent for amplifying the ELN gene shown in SEQ ID NO: 11.

본 발명은 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는, 서열번호 1로 기재되는 UGT8 유전자; 서열번호 2로 기재되는 UBE2L6 유전자; 서열번호 3으로 기재되는 MELK 유전자; 서열번호 4로 기재되는 ZGRF1 유전자; 서열번호 5로 기재되는 NCALD 유전자; 서열번호 6으로 기재되는 FHL2 유전자; 서열번호 7로 기재되는 SERP2 유전자; 서열번호 8로 기재되는 GDPD5 유전자; 서열번호 9로 기재되는 NDUFA10 유전자; 서열번호 10으로 기재되는 EBF3 유전자; 및 서열번호 11로 기재되는 ELN 유전자를 증폭시키는 제제를 포함하는, 난축맛돈 돼지육 판별용 조성물을 제공한다.The present invention relates to the UGT8 gene, shown in SEQ ID NO: 1, whose expression is relatively increased in the sirloin tissue of naive pigs; UBE2L6 gene represented by SEQ ID NO: 2; MELK gene represented by SEQ ID NO: 3; ZGRF1 gene represented by SEQ ID NO: 4; NCALD gene represented by SEQ ID NO: 5; FHL2 gene represented by SEQ ID NO: 6; SERP2 gene represented by SEQ ID NO: 7; GDPD5 gene represented by SEQ ID NO: 8; NDUFA10 gene represented by SEQ ID NO: 9; EBF3 gene represented by SEQ ID NO: 10; and an agent for amplifying the ELN gene shown in SEQ ID NO: 11.

또한, 본 발명은 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 포함하는, 난축맛돈 돼지육 판별용 키트를 제공한다.In addition, the present invention provides a kit for determining poor quality pork meat, comprising a composition containing an agent that amplifies the gene.

아울러, 본 발명은 1) 난축맛돈의 등심 조직으로부터 총 RNA를 분리하는 단계;In addition, the present invention includes the steps of 1) isolating total RNA from loin tissue of nanchukmatdon;

2) 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 사용하여 단계 1)의 RNA의 양을 측정하는 단계; 및2) measuring the amount of RNA of step 1) using a composition containing an agent that amplifies the gene; and

3) 단계 2)의 RNA 양을 다른 품종과 비교하여 발현 정도를 확인하는 단계를 포함하는, 난축맛돈 돼지육 판별 방법을 제공한다.3) It provides a method for determining the level of expression of raw pig meat by comparing the amount of RNA in step 2) with that of other breeds.

본 발명의 난축맛돈 돼지육 판별용 바이오마커는 타 품종에 비해 난축맛돈에서 강한 긍정적 선발 신호를 보이는 영역을 확인하고, 상기 영역과 매칭이 되는 유전자 중 난축맛돈의 등심 근육에서 상대적으로 발현이 증가하는 유전자를 선별한 것으로, 본 발명의 바이오마커를 증폭시키는 제제를 포함하는 조성물을 난축맛돈의 등심 근육의 성장과 발달을 예측하고, 난축맛돈 돼지육을 판별하는데 유용하게 사용될 수 있다.The biomarker for determining pig meat from recalcitrant pigs of the present invention identifies a region showing a strong positive selection signal in refractory porcines compared to other breeds, and among genes matching the region, expression is relatively increased in the loin muscle of reproducible porcines. By selecting genes, a composition containing an agent that amplifies the biomarker of the present invention can be usefully used to predict the growth and development of the loin muscle of low-quality pork and to identify pork from low-quality pork.

도1은 난축맛돈과 제주재래돼지의 집단유전체 분석(XP-EHH 및 XP-CLR) 결과이다.
도2는 난축맛돈과 랜드레이스의 집단유전체 분석(XP-EHH 및 XP-CLR) 결과이다.
도3은 난축맛돈과 듀록의 집단유전체 분석(XP-EHH 및 XP-CLR) 결과이다.
도4는 긍정적 선발 신호 (FHL2)의 Necleotide diversity 를 확인한 그림이다.
도5는 긍정적 선발 신호 (MELK)의 Necleotide diversity 를 확인한 그림이다.
도6은 긍정적 선발 신호 (UGT8)의 Necleotide diversity 를 확인한 그림이다.
도7은 긍정적 선발 신호 (NDUFA10)의 Necleotide diversity 를 확인한 그림이다.
도8은 긍정적 선발 신호 (ZGRF1)의 Necleotide diversity 를 확인한 그림이다.
도9는 긍정적 선발 신호 (UGT8)의 Necleotide diversity 를 확인한 그림이다.
도10은 Quantitative Real-time PCR법을 이용한 유전자 발현량 및 RNA-Seq 분석간의 연관성 분석 결과이다.
Figure 1 shows the results of population genome analysis (XP-EHH and XP-CLR) of farmed pigs and Jeju native pigs.
Figure 2 shows the results of population genome analysis (XP-EHH and XP-CLR) of oviparous pigs and landraces.
Figure 3 shows the results of population genome analysis (XP-EHH and XP-CLR) of oviparous pigs and Duroc.
Figure 4 is a diagram confirming the necrotide diversity of the positive selection signal (FHL2).
Figure 5 is a diagram confirming the necrotide diversity of the positive selection signal (MELK).
Figure 6 is a diagram confirming the necrotide diversity of the positive selection signal (UGT8).
Figure 7 is a diagram confirming the necrotide diversity of the positive selection signal (NDUFA10).
Figure 8 is a diagram confirming the necrotide diversity of the positive selection signal (ZGRF1).
Figure 9 is a diagram confirming the necrotide diversity of the positive selection signal (UGT8).
Figure 10 shows the results of correlation analysis between gene expression level and RNA-Seq analysis using Quantitative Real-time PCR.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는, 서열번호 1로 기재되는 UGT8 유전자; 서열번호 2로 기재되는 UBE2L6 유전자; 서열번호 3으로 기재되는 MELK 유전자; 서열번호 4로 기재되는 ZGRF1 유전자; 서열번호 5로 기재되는 NCALD 유전자; 서열번호 6으로 기재되는 FHL2 유전자; 서열번호 7로 기재되는 SERP2 유전자; 서열번호 8로 기재되는 GDPD5 유전자; 서열번호 9로 기재되는 NDUFA10 유전자; 서열번호 10으로 기재되는 EBF3 유전자; 및 서열번호 11로 기재되는 ELN 유전자를 증폭시키는 제제를 포함하는, 난축맛돈 돼지육 판별용 바이오 마커를 제공한다.The present invention relates to the UGT8 gene, shown in SEQ ID NO: 1, whose expression is relatively increased in the sirloin tissue of naive pigs; UBE2L6 gene represented by SEQ ID NO: 2; MELK gene represented by SEQ ID NO: 3; ZGRF1 gene represented by SEQ ID NO: 4; NCALD gene represented by SEQ ID NO: 5; FHL2 gene represented by SEQ ID NO: 6; SERP2 gene represented by SEQ ID NO: 7; GDPD5 gene represented by SEQ ID NO: 8; NDUFA10 gene represented by SEQ ID NO: 9; EBF3 gene represented by SEQ ID NO: 10; and an agent for amplifying the ELN gene shown in SEQ ID NO: 11.

상기 UGT8 (UDP Glycosyltransferase 8) 유전자는 세라마이드 갈락토실트랜스퍼라제를 코딩하는 유전자이며, 관련 경로로는 스핑고리프드 대사 (Sphingolipid metabolism)가 있다.The UGT8 (UDP Glycosyltransferase 8) gene is a gene encoding ceramide galactosyltransferase, and the related pathway includes sphingolipid metabolism.

상기 UBE2L6 (Ubiquitin Conjugating Enzyme E2 L6) 유전자는 리가아제 활성 (ligase activity) 및 산-아미노산 리가아제 활성 (acid-amino acid ligase activity) 과 관련있다고 알려져 있다.The UBE2L6 (Ubiquitin Conjugating Enzyme E2 L6) gene is known to be related to ligase activity and acid-amino acid ligase activity.

상기 MELK (Maternal Embryonic Leucine Zipper Kinase) 유전자는 대장암 및 수모세포종 (Medulloblastoma)과 같은 질병과 관련이 있으며, 칼슘이온 결합 및 단백질 키나아제 활성과 관련이 있다.The MELK (Maternal Embryonic Leucine Zipper Kinase) gene is associated with diseases such as colon cancer and medulloblastoma, and is related to calcium ion binding and protein kinase activity.

상기 ZGRF1 (Zinc Finger GRF-Type Containing 1) 유전자는 여러 DNA 결합 단백질(DNA-binding proteins)에서 발견되는 유전자로, 대체 스플라이싱은 서로 다른 이소폼을 인코딩하는 여러 전사체 변형 (transcript variants)을 생성한다.The ZGRF1 (Zinc Finger GRF-Type Containing 1) gene is a gene found in several DNA-binding proteins, and alternative splicing produces several transcript variants encoding different isoforms. Create.

상기 NCALD (Neurocalcin Delta) 유전자는 관련 경로 중에는 Kainate 수용체의 후각 전달 및 시냅스 전 기능이 있다.Among the related pathways, the NCALD (Neurocalcin Delta) gene has olfactory transmission and presynaptic functions of kainate receptors.

상기 FHL2 (Four And A Half LIM Domains 2) 유전자는 LIM도메인 단백질 2를 코딩하는 유전자로, LIM 단백질에는 LIM 도메인이라고하는 고도로 보존된 이중 아연 핑거 모티프가 포함되어 있다.The FHL2 (Four And A Half LIM Domains 2) gene is a gene encoding LIM domain protein 2, and the LIM protein contains a highly conserved double zinc finger motif called the LIM domain.

상기 SERP2 (Stress Associated Endoplasmic Reticulum Protein Family Member 2) 유전자는 말라리아 및 림프모구백혈병 (B-Lymphoblastic Leukemia)과 관련이 있다.The SERP2 (Stress Associated Endoplasmic Reticulum Protein Family Member 2) gene is related to malaria and B-Lymphoblastic Leukemia.

상기 GDPD5 (Glycerophosphodiester Phosphodiesterase Domain Containing 5) 유전자는 PI 대사 및 글리세로인지질 (Glycerophospholipid) 생합성과 연관이 있다.The GDPD5 (Glycerophosphodiester Phosphodiesterase Domain Containing 5) gene is associated with PI metabolism and glycerophospholipid (Glycerophospholipid) biosynthesis.

상기 NDUFA10 (Ubiquinone Oxidoreductase Subunit A10) 유전자는 Mitochondrial Complex I Deficiency와 관련이 있다.The NDUFA10 (Ubiquinone Oxidoreductase Subunit A10) gene is related to Mitochondrial Complex I Deficiency.

상기 EBF3 (early B-cell factor 3) 유전자는 저혈압, 운동실조, 발달 지연 증후군 및 방관 요관 역류와 같은 질병과 관련이 있으며, 관련 경로로는 백색 및 갈색 지방 세포의 분화가 있다.The EBF3 (early B-cell factor 3) gene is associated with diseases such as hypotension, ataxia, developmental delay syndrome, and ductal ureteral reflux, and the related pathway includes differentiation of white and brown adipocytes.

상기 ELN (Elastin) 유전자는 탄성 섬유 (elastic fibers)의 두가지 구성 요소 중 하나인 단백질을 암호화하고, 탄성섬유는 세포외 기질의 일부를 구성하며, 심장, 피부, 폐, 인대 및 혈관을 포함하는 기관 및 조직에 탄력을 부여한다.The ELN (Elastin) gene encodes a protein that is one of the two components of elastic fibers, which constitute part of the extracellular matrix and organs including the heart, skin, lungs, ligaments, and blood vessels. and gives elasticity to the organization.

상기 난축맛돈은 한국재래돼지(Korean Native Pig), 랜드레이스(Landrace) 및 듀록(Duroc) 품종을 서로 교배하여 생산한 교잡돈이다.The above-mentioned pig is a crossbreed pig produced by crossing Korean Native Pig, Landrace and Duroc breeds.

본 발명은 상기 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는 유전자를 증폭시키는 제제를 포함하는, 난축맛돈 돼지육 판별용 조성물을 제공한다.The present invention provides a composition for discriminating raw pork meat, comprising an agent that amplifies genes whose expression is relatively increased in the loin tissue of the raw pork.

상기 유전자를 증폭시키는 제제는 정방향 및 역방향 프라이머 및 프로브 (probe)로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다.The agent for amplifying the gene may be any one or more selected from the group consisting of forward and reverse primers and probes.

상기 유전자를 증폭시키는 제제는 상기 서열번호 1 내지 11로 기재되는 유전자들을 증폭할 수 있도록 설계된 프라이머라면 모두 사용할 수 있다.As an agent for amplifying the gene, any primer designed to amplify the genes shown in SEQ ID NOs: 1 to 11 can be used.

상기 프라이머는 짧은 자유 3' 말단 수산화기(free 3' hydroxyl group) 를 가지는 염기서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 서열을 의미한다. The primer is a short base sequence that has a short free 3' hydroxyl group, can form a base pair with a complementary template, and functions as a starting point for copying the template strand. It means sequence.

본 발명에서, 유전자 마커 증폭에 사용되는 프라이머, 적절한 버퍼 중의 적절한조건 (예를 들면, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA, RNA 폴리머라제 또는 역전사 효소와 같은 중합제) 및 적당한 온도하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고뉴클레오티드가 될 수 있는데, 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있다. 상기 프라이머 서열은 상기 유전자 마커를 포함하는 폴리뉴클레오티드 또는 이의 상보적인 폴리뉴클레오티드와 완전하게 상보적일 필요는 없으며, 혼성화할 정도로 충분히 상보적이면 사용 가능하다.In the present invention, primers used for amplifying genetic markers, a template under appropriate conditions (e.g., four different nucleoside triphosphates and DNA, RNA polymerase or reverse transcriptase) in an appropriate buffer and an appropriate temperature. It can be a single-stranded oligonucleotide that can act as a starting point for directed DNA synthesis, and the appropriate length of the primer may vary depending on the purpose of use. The primer sequence does not need to be completely complementary to the polynucleotide containing the genetic marker or its complementary polynucleotide, and can be used as long as it is sufficiently complementary to hybridize.

상기 프라이머로 이용된 올리고뉴클레오티드는 뉴클레오티드 유사체, 예를 들어, 포스포로티오에이트 (phosphorothioate), 알킬포스포로티오에이트 또는 펩티드 핵산 (peptide nucleic acid)를 포함할 수 있다.The oligonucleotide used as the primer may include a nucleotide analog, for example, phosphorothioate, alkylphosphorothioate, or peptide nucleic acid.

또한, 프라이머는 변형시킬 수 있는데, 구체적인 예로, 메틸화, 캡화, 뉴클레오타이드의 치환 또는 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있을 수 있다.Additionally, primers can be modified, specific examples of which include methylation, capping, substitution of nucleotides or modifications between nucleotides, such as uncharged linkages (e.g., methyl phosphonate, phosphotriester, phosphoroamidate, carbamates, etc.) or charged linkages (e.g. phosphorothioate, phosphorodithioate, etc.).

일 실시예에서 상기 프라이머는 서열번호 12 내지 32로 표시되는 정방향 및 역방향 프라이머를 포함하는 프라이머 세트를 포함하며, 상기 서열번호 12 내지 32로 표시되는 정방향 및 역방향 프라이머 세트는 난축맛돈의 등심 조직에서 발현이 상대적으로 증가하는 상기 서열번호 1 내지 11로 기재되는 유전자들에 특이적으로 혼성결합하는 프라이머 세트를 포함한다.In one embodiment, the primers include a primer set including forward and reverse primers represented by SEQ ID NOs. 12 to 32, and the forward and reverse primer sets represented by SEQ ID NOs. 12 to 32 are expressed in the loin tissue of oval pigs. It includes a set of primers that specifically hybridize to the relatively increasing genes shown in SEQ ID NOs: 1 to 11.

구체적으로, 서열번호 12 및 13으로 표시되는 정방향 및 역방향 프라이머 세트는 상기 UGT8 유전자에 특이적으로 결합하고,Specifically, the forward and reverse primer sets represented by SEQ ID NOs: 12 and 13 specifically bind to the UGT8 gene,

서열번호 14 및 15로 표시되는 프라이머세트는 상기 UBE2L6 유전자에 특이적으로 결합하며,Primer sets represented by SEQ ID NOs: 14 and 15 specifically bind to the UBE2L6 gene,

서열번호 16 및 17로 표시되는 프라이머세트는 상기 MELK 유전자에 특이적으로 결합하고,Primer sets represented by SEQ ID NOs: 16 and 17 specifically bind to the MELK gene,

서열번호 18 및 19로 표시되는 프라이머세트는 상기 ZGRF1 유전자에 특이적으로 결합하며,Primer sets represented by SEQ ID NOs: 18 and 19 specifically bind to the ZGRF1 gene,

서열번호 20 및 21로 표시되는 프라이머세트는 상기 NCALD 유전자에 특이적으로 결합하고,Primer sets represented by SEQ ID NOs: 20 and 21 specifically bind to the NCALD gene,

서열번호 22 및 23으로 표시되는 프라이머세트는 상기 FHL2 유전자에 특이적으로 결합하며,Primer sets represented by SEQ ID NOs: 22 and 23 specifically bind to the FHL2 gene,

서열번호 24 및 25로 표시되는 프라이머세트는 상기 SERP2 유전자에 특이적으로 결합하고,Primer sets represented by SEQ ID NOs: 24 and 25 specifically bind to the SERP2 gene,

서열번호 26 및 27로 표시되는 프라이머세트는 상기 GDPD5 유전자에 특이적으로 결합하며,Primer sets represented by SEQ ID NOs: 26 and 27 specifically bind to the GDPD5 gene,

서열번호 28 및 29로 표시되는 프라이머세트는 상기 NDUFA10 유전자에 특이적으로 결합하고,Primer sets represented by SEQ ID NOs: 28 and 29 specifically bind to the NDUFA10 gene,

서열번호 30 및 31로 기재되는 프라이머세트는 상기 EBF3 유전자에 특이적으로 결합하며,The primer set shown in SEQ ID NOs: 30 and 31 specifically binds to the EBF3 gene,

서열번호 32 및 33으로 기재되는 프라이머세트는 상기 ELN 유전자에 특이적으로 결합하는 프라이머 세트를 포함한다.The primer set represented by SEQ ID NOs: 32 and 33 includes a primer set that specifically binds to the ELN gene.

본 발명의 "PCR (Polymerase Chain Reaction)"은 중합 효소를 사용하여 핵산을 연쇄적으로 합성하여 개시 핵산 물질을 기하급수적으로 증폭하는 방법으로 당업계에 널리 고지된 방법이며. 특정 핵산의 존재 유무를 확인하는 정성분석 PCR, 특정 핵산의 양을 측정하는 정량 PCR 및 PCR 과정을 실시간으로 추적하여 정성 및 정량 분석을 가능하게 하는 실시간 PCR을 모두 포함하는 개념이다. "Polymerase Chain Reaction (PCR)" of the present invention is a method widely known in the art to exponentially amplify the starting nucleic acid material by sequentially synthesizing nucleic acids using a polymerase. It is a concept that includes both qualitative PCR, which confirms the presence or absence of specific nucleic acids, quantitative PCR, which measures the amount of specific nucleic acids, and real-time PCR, which enables qualitative and quantitative analysis by tracking the PCR process in real time.

상기 프로브는 DNA 또는 RNA와 특이적 결합을 이룰 수 있는, 짧게는 수개 내지 길게는 수백개의 염기에 해당하는 핵산 단편으로서, 특정 DNA 또는 RNA의 존재 유무를 확인하는데 사용될 수 있다. 상기 프로브는 올리고뉴클레오티드 프로브, 단쇄 DNA 프로브, 이중쇄 DNA 프로브, RNA 프로브 등의 형태로 제작될 수 있고, 비오틴, FITC, 로다민, DIG(digoxigenin) 등으로 표지되거나 방사선 동위원소 등으로 표지될 수 있다.The probe is a nucleic acid fragment of a few to hundreds of bases long that can specifically bind to DNA or RNA, and can be used to confirm the presence or absence of specific DNA or RNA. The probe may be manufactured in the form of an oligonucleotide probe, single-stranded DNA probe, double-stranded DNA probe, RNA probe, etc., and may be labeled with biotin, FITC, rhodamine, DIG (digoxigenin), etc., or may be labeled with a radioisotope, etc. there is.

상기 난축맛돈 등심 형성 예측용 조성물은 상기 서술한 바와 같은 유전자를 증폭시키는 제제 외에도 이들의 구조를 안정하게 유지시키는 증류수 또는 완충액을 포함할 수 있다.The composition for predicting the formation of nanchukmatdon sirloin may include distilled water or a buffer solution that maintains their structure stably in addition to agents that amplify genes as described above.

상기 조성물에는 역전사 중합효소, DNA중합효소, Mg2+와 같은 조인자, dATP, dCTP, dGTP 및 dTTP가 포함될 수 있다. 역전사된 cDNA를 증폭하기 위하여 다양한 DNA 중합효소가 본 발명의 증폭 단계에 이용될 수 있으며, DNA 중합효소의 예로 E.coli DNA 중합효소 I의 클레나우 단편, 열안정성 DNA 중합효소 또는 박테리오파지 T7 DNA 중합효소가 있다. 중합효소는 박테리아 그 자체로부터 분리하거나 상업적으로 구입하거나 중합효소를 암호화하는 클로닝 유전자의 높은 레벨을 발현하는 세포로부터 수득할 수 있다.The composition may include reverse transcription polymerase, DNA polymerase, cofactors such as Mg2+, dATP, dCTP, dGTP, and dTTP. To amplify reverse transcribed cDNA, various DNA polymerases can be used in the amplification step of the present invention. Examples of DNA polymerases include Klenow fragment of E. coli DNA polymerase I, thermostable DNA polymerase, or bacteriophage T7 DNA polymerase. There are enzymes. The polymerase can be isolated from the bacteria themselves, purchased commercially, or obtained from cells expressing high levels of the cloned gene encoding the polymerase.

본 발명은 1) 난축맛돈의 등심 조직으로부터 총 RNA를 추출하고, 역전사효소를 이용하여 cDNA를 합성하는 단계;The present invention includes the following steps: 1) extracting total RNA from the loin tissue of an oval pig and synthesizing cDNA using reverse transcriptase;

2) 상기 cDNA를 주형으로 하고, 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 사용하여 중합효소연쇄반응에 의한 증폭 반응을 통해 상기 유전자의 발현량을 측정하는 단계; 및2) measuring the expression level of the gene through an amplification reaction by polymerase chain reaction using a composition containing the cDNA as a template and an agent for amplifying the gene; and

3) 단계 2)의 유전자의 양을 다른 품종과 비교하여 발현 정도를 확인하는 단계를 포함하는, 난축맛돈 돼지육 판별 방법을 제공한다.3) It provides a method for determining the level of expression of the genes in step 2) by comparing them with other breeds.

일 실시예에 있어서, 난축맛돈의 등심 조직으로부터 총 RNA를 추출하는 방법은 본 발명이 속하는 기술 분야에 공지된 방법을 이용할 수 있으며, 상기 추출된 RNA로부터 cDNA를 합성하고, 상기 cDNA를 주형으로 하여 본 발명의 일 실시예에 따른 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 유전자를 증폭할 수 있다. 표적 유전자 증폭 방법은 Realtime-PCR을 포함하는 중합효소 연쇄반응 (PCR) 등을 포함할 수 있다. In one embodiment, a method known in the art to which the present invention pertains may be used to extract total RNA from the loin tissue of an oval pork loin, and cDNA is synthesized from the extracted RNA, and the cDNA is used as a template. A target gene can be amplified by performing an amplification reaction using an oligonucleotide primer set according to an embodiment of the present invention. Target gene amplification methods may include polymerase chain reaction (PCR), including Realtime-PCR.

본 발명은 상기 유전자를 증폭시키는 제제를 포함하는 조성물을 포함하는, 난축맛돈 돼지육 판별용 키트를 제공한다.The present invention provides a kit for determining poor quality pork meat, comprising a composition containing an agent that amplifies the gene.

상기 조성물은 상술한 바와 같은 특징을 가질 수 있다. 일례로, 상기 조성물은 서열 번호 1 내지 11로 기재되는 유전자를 증폭시키는 제제를 포함할 수 있다.The composition may have the characteristics described above. For example, the composition may include an agent that amplifies the genes shown in SEQ ID NOs: 1 to 11.

상기 난축맛돈의 등심 형성 예측을 위한 키트는 당업자에게 알려진 종래의 제조 방법에 의해 제조될 수 있으며, 증폭 반응을 수행하기 위한 DNA 중합효소, dNTPs 및 완충액 등을 포함할 수 있으며, 최적의 반응 수행 조건을 기재한 사용자 설명서를 추가로 포함할 수 있다.The kit for predicting sirloin formation of oval chicken meat can be manufactured by a conventional manufacturing method known to those skilled in the art, and may include DNA polymerase, dNTPs, and a buffer solution for performing an amplification reaction, and optimal reaction performance conditions. A user manual listing may additionally be included.

상기 키트는 본 발명의 유전자 마커를 증폭을 통해 확인하거나, 상기 유전자 마커의 mRNA 발현 수준을 확인함으로써 난축맛돈의 돼지육을 판별할 수 있다.The kit can identify pork meat from low-quality pigs by confirming the genetic marker of the present invention through amplification or checking the mRNA expression level of the genetic marker.

상기 키트는 PCR 키트, 또는 DNA 분석용 키트일 수 있으나, 이에 제한되지 않는다.The kit may be a PCR kit or a DNA analysis kit, but is not limited thereto.

본 발명의 구체적인 실시예에서, 본 발명자들은 난축맛돈, 제주재래돼지, 랜드레이스 및 듀록 4품종의 유전체 정보를 이용하여 다른 세 품종과 비교하여 난축맛돈에서 긍적적인 선발 신호를 보이는 영역을 확인하였다. 상기 영역과 매칭되는 유전자를 찾은 후, 이 유전자가 직접적으로 조직에서의 발현에도 영향을 미치는 지 확인을 위하여 전사체 분석을 수행하였고, 난축맛돈과 각각의 품좀의 등심 조직을 1:1로 비교하여 차등발현유전자(DEGs)를 선정하고 (도1), 난축맛돈의 등심 조직에서 Quantitative Real-time RT-PCR을 통해 유전자 발현량의 실험적 검증을 수행하여 상기 유전자들이 유전체적으로도 난축맛돈에서 강한 긍정적 선발 신호를 보이며, 유전자 발현에서도 타 품종과 비교하여 상대적으로 높은 발현량을 보이는 유전자임을 확인함으로써 (도10), 상기 유전자들을 난축맛돈 돼지육 판별마커로 이용할 수 있음을 입증하였다. In a specific example of the present invention, the present inventors used the genomic information of four breeds of low-skilled pigs, Jeju native pigs, landrace, and Duroc to identify regions showing positive selection signals in low-skilled pigs compared to the other three breeds. After finding a gene matching the above region, transcriptome analysis was performed to confirm whether this gene directly affects expression in the tissue, and a 1:1 comparison was made between the loin tissue of the oval pig and each poomsom. Differentially expressed genes (DEGs) were selected (Figure 1), and experimental verification of gene expression was performed in the sirloin tissue of low-risk pigs through Quantitative Real-time RT-PCR, and the genes were genetically identified as strong positive selection in low-risk pigs. By confirming that the gene shows a signal and shows a relatively high expression level in gene expression compared to other breeds (Figure 10), it was demonstrated that the genes can be used as markers for distinguishing pig meat from low-quality pigs.

기존 판별용 마커의 경우, SNP-Chip 유래의 유전체 정보(5~6개 정도의 SNP 정보 포함)만을 이용하거나, 전사체 정보만 이용하여 비교 대상간 발현량의 차이를 보이는 유전자가 바이오마커로 발굴되는 경우가 대부분이었다. In the case of existing discriminative markers, only genomic information derived from SNP-Chip (including information about 5 to 6 SNPs) is used, or genes showing differences in expression levels between comparison targets are discovered as biomarkers using only transcriptome information. In most cases, it worked.

하지만 본 발명은 전장유전체 정보(전체 Genome, 약 60억개 SNP 정보 포함)를 이용하여 비교 대상간의 선발신호영역을 추적하고, 여기에 전사체 정보를 추가하여 유전자 발현 차이도 같이 확인한 것으로, 이는 두 가지 정보를 같이 접목한 방법이기 때문에 한가지 정보만으로 판별하는 기존의 방법 보다 더욱 정확도가 높은 분석 방법이라고 할 수 있다. However, the present invention uses whole-genome information (including information on the entire genome, about 6 billion SNPs) to track selection signal regions between comparison targets, and adds transcriptome information to this to confirm differences in gene expression, which can be done in two ways. Because it is a method that combines information, it can be said to be a more accurate analysis method than the existing method of determining using only one piece of information.

본 발명자들은 정확도를 높이고 기능을 더 구체화한 멀티 오믹스 분석법을 사용하여 난축맛돈 돼지육 판별용 바이오마커를 발굴하였다.The present inventors used a multi-omics analysis method with increased accuracy and more specific functions to discover biomarkers for distinguishing pork meat from low-quality pork.

따라서, 본 발명에 따른 상기 유전자들을 난축맛돈의 돼지육 판별용 바이오 마커로 사용함으로써, 난축맛돈 돼지육을 판별하고, 등심 근육의 성장 및 발달 정도를 예측할 수 있다.Therefore, by using the genes according to the present invention as biomarkers for distinguishing pork meat from low-quality pork, it is possible to identify pork meat from low-quality pork and predict the degree of growth and development of loin muscles.

이하, 본 발명을 실시예에 의하여 상세히 설명한다. Hereinafter, the present invention will be described in detail through examples.

단, 하기 실시예는 본 발명을 예시하는 것이며, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.However, the following examples illustrate the present invention, and the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the claims are also included in the scope of the present invention. belongs to

<실시예1> 돼지 품종 별 등심조직의 유전체(Re sequencing) 분석 및 전사체(RNA-Seq) 분석 <Example 1> Genome (Re-sequencing) analysis and transcriptome (RNA-Seq) analysis of loin tissue for each pig breed

난축맛돈의 유전체 및 전사체를 분석하기 위하여, 난축맛돈 혈액 10점 및 등심 조직 시료 5점을 사용하였고, 제주재래돼지, 랜드레이스 및 듀록 품종의 유전체 및 전사체는 온라인으로 등록된 데이터 (NCBI, GEO, SRA)를 이용하였다.To analyze the genome and transcriptome of naive pigs, 10 blood and 5 sirloin tissue samples were used, and the genomes and transcriptomes of Jeju native pigs, landrace and Duroc breeds were collected from data registered online (NCBI, GEO, SRA) were used.

TRIzol 시약(Invitrogen, 미국)을 이용하여 제조사의 설명서에 따라 상기 등심 조직으로부터 총 RNA을 추출하였다. 추출한 RNA의 양 및 순도를 바이오분석기(Bioanalyzer 2100, Agilent, 미국) 및 RNA 나노 랩칩 키트(RNA 6000 Nano LabChip Kit, Agilent)를 이용하여 분석하였으며, 이때 RIN(RNA integrity number)은 0.8 이상의 값으로 유지하였다. 폴리-T 올리고가 부착된 마그네틱 비즈(poly-T oligo-attached magnetic beads, Invitrogen)를 이용하여 각 시료로부터 추출한 총 RNA 약 10 ㎍으로부터 폴리-A mRNA를 분리하였다. 상기 mRNA를 정제하고, 고온 조건에서 2가 양이온을 이용하여 작은 조각들로 절단하였다. Total RNA was extracted from the loin tissue using TRIzol reagent (Invitrogen, USA) according to the manufacturer's instructions. The amount and purity of the extracted RNA were analyzed using a bioanalyzer (Bioanalyzer 2100, Agilent, USA) and an RNA Nano LabChip Kit (RNA 6000 Nano LabChip Kit, Agilent), and the RIN (RNA integrity number) was maintained at a value of 0.8 or higher. did. Poly-A mRNA was isolated from approximately 10 μg of total RNA extracted from each sample using poly-T oligo-attached magnetic beads (Invitrogen). The mRNA was purified and cut into small pieces using divalent cations under high temperature conditions.

이후, mRNA 서열분석 시료 준비 키트(mRNA-Seq Sample Preparation Kit, Illumina, 미국)를 이용하여 제조사의 설명서에 따라 절단된 RNA 단편들을 역전사하여 최종 상보적 DNA(complementary DNA, cDNA) 라이브러리를 제작하였다. 이때, 페어드 엔드 (paired-end) 라이브러리의 평균적인 삽입 크기는 300 ± 50 bp였다.Afterwards, the cleaved RNA fragments were reverse transcribed using an mRNA-Seq Sample Preparation Kit (Illumina, USA) according to the manufacturer's instructions to create a final complementary DNA (cDNA) library. At this time, the average insert size of the paired-end library was 300 ± 50 bp.

난축맛돈의 등심 조직은 Illumina NovaSeq 플랫폼을 활용하여 전사체 자료를 생산하였다. 전사체 자료의 품질 관리는 Trimmomatic (USADELLAB, version 036) 소프트웨어를 활용하여 염기서열 양 말단의 베이스 퀄리티 3 이하와 sliding window로 4개 염기 기준 퀄리티 스코어 평균 30(Q30) 이하이면서, 남은 read의 길이가 최소 36 bp를 넘지 않는 염기서열을 제거하였다. 참조 서열은 UCSC 데이터베이스의 SGSC Sscrofa11.1/susScr11 버전을 사용하였다.Transcriptome data were produced from the sirloin tissue of naive pigs using the Illumina NovaSeq platform. Quality control of transcriptome data uses Trimmomatic (USADELLAB, version 036) software to ensure that the base quality at both ends of the sequence is 3 or lower, that the average quality score is 30 (Q30) or lower based on 4 bases using a sliding window, and that the length of the remaining reads is 30 or lower. Base sequences that did not exceed at least 36 bp were removed. The SGSC Sscrofa11.1/susScr11 version of the UCSC database was used as the reference sequence.

Hisat2 (Daehwan Kim, version 2.2.1)프로그램을 이용하여 생산된 전사체 데이터를 참조 서열 Sscrofa11.1에 맵핑을 하였다. 이 후, Python 패키지인 FetureCount (Yang Liao, version 2.0.1)을 활용하여 유전자 초기 발현량으로 변환했으며 DESeq2 (Michael Love, version 1.30.1)를 이용하여 차등 발현 유전자로 추출하였다. The transcriptome data produced using the Hisat2 (Daehwan Kim, version 2.2.1) program was mapped to the reference sequence Sscrofa11.1. Afterwards, the gene was converted to initial expression level using the Python package FetureCount (Yang Liao, version 2.0.1), and differentially expressed genes were extracted using DESeq2 (Michael Love, version 1.30.1).

DESeq2 소프트웨어는 발현량 정규화 방법으로 Negative binomial distribution방식을 사용하였다. 또한 샘플 별 참조유전자의 발현량 통계데이터를 도출하는 함수에서 log2 fold change 파라미터를 설정할 경우 이 값을 넘는 데이터를 제거하는 독립 필터링(independent filtering) 결과로만 DEGs를 추출하였다. DESeq2 software used the Negative binomial distribution method as the expression level normalization method. In addition, when the log2 fold change parameter was set in the function that derives statistical data on the expression level of reference genes for each sample, DEGs were extracted only as a result of independent filtering, which removes data exceeding this value.

본 발명에서는 정규화를 거친 후 DESeq2는 log2 fold change 파라미터를 -1로 설정하고 그 결과에서 Benjamini-Hochberg방법으로 조정된 p-value (FDR) < 0.05, log2 fold change -1를 이하의 값을 가진 유전자를 차등발현유전자로 추출하였다. In the present invention, after normalization, DESeq2 sets the log2 fold change parameter to -1, and in the result, genes with p-value (FDR) < 0.05 and log2 fold change -1 or less adjusted by the Benjamini-Hochberg method. were extracted as differentially expressed genes.

RNA-seq 분석 결과, 다른 품종과 비교해서 난축맛돈에서 UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, ELN 유전자들의 발현양이 높은 것을 확인할 수 있었다 (표1).As a result of RNA-seq analysis, it was confirmed that the expression levels of UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, and ELN genes were high in naive pigs compared to other breeds (Table 1).

ENS_IDENS_ID ChrChr XP-CLRXP-CLR XP-EHHXP-EHH log2FClog2FC FDRFDR Gene SymbolGene Symbol CompareCompare ENSSSCG00000005344ENSSSCG00000005344 1One 50.3151790150.31517901 -2.312935631-2.312935631 -2.18-2.18 0.0001240340.000124034 MELKMELK Nanchukmacdon
VS
Jeju Native Pig
Nanchukmacdon
VS
Jeju Native Pig
ENSSSCG00000040405ENSSSCG00000040405 1111 67.16827167.168271 -2.485311147-2.485311147 -2.15-2.15 0.0083922780.008392278 SERP2SERP2 ENSSSCG00000014853ENSSSCG00000014853 99 163.2458645163.2458645 -2.364323658-2.364323658 -1.63-1.63 0.000002120.00000212 GDPD5GDPD5 ENSSSCG00000008147ENSSSCG00000008147 33 78.4528869978.45288699 -2.696124665-2.696124665 -1-One 0.0005168920.000516892 FHL2FHL2 ENSSSCG00000031904ENSSSCG00000031904 88 44.7069403444.70694034 -2.024535069-2.024535069 -3.64-3.64 0.0031951030.003195103 UGT8UGT8 Nanchukmacdon
VS
Duroc
Nanchukmacdon
VS
Duroc
ENSSSCG00000009120ENSSSCG00000009120 88 56.2385321756.23853217 -2.164609468-2.164609468 -1.52-1.52 0.0037736820.003773682 ZGRF1ZGRF1 ENSSSCG00000016349ENSSSCG00000016349 1515 55.0373917655.03739176 -2.714584707-2.714584707 -1.24-1.24 0.000000000000001810.00000000000000181 NDUFA10NDUFA10 ENSSSCG00000010757ENSSSCG00000010757 1414 86.8786563686.87865636 -2.505302829-2.505302829 -1.09-1.09 0.00000000000630.0000000000063 EBF3EBF3 ENSSSCG00000031904ENSSSCG00000031904 88 57.7718277857.77182778 -2.738613817-2.738613817 -2.34-2.34 0.0001789150.000178915 UGT8UGT8 Nanchukmacdon
VS
Landrace
Nanchukmacdon
VS
Landrace
ENSSSCG00000025858ENSSSCG00000025858 33 85.9744604785.97446047 -2.080438144-2.080438144 -1.94-1.94 0.00000000000007720.0000000000000772 ELNELN ENSSSCG00000006059ENSSSCG00000006059 44 58.2505263658.25052636 -2.861748569-2.861748569 -1.05-1.05 0.00000003140.0000000314 NCALDNCALD ENSSSCG00000023379ENSSSCG00000023379 22 80.8520072980.85200729 -2.939038774-2.939038774 -1.14-1.14 0.0000005150.000000515 UBE2L6UBE2L6

집단 유전체 분석을 수행하기 위해 4품종의 유전체 정보를 Burrows-wheeler aligner(Li H. and Durbin R, version 0.7.17) 프로그램으로 참조 서열 Sscrofa11.1에 맵핑을 하였으며, 생산된 BAM 파일을 SAMTOOLS(Li H, version 1.12) 프로그램을 사용하여 정렬을 하였다. 또한 단일 염기 변이(SNP, Indel)을 추출하기 위해 GATK Toolkit (De Summa S, version 4.1.4.0)을 사용하였다. 또한 반수체 phase, 잃어버린 좌위의 보정 등의 필터링을 위해 BEAGLE(B L Browning and S R Browning, version 4.1)을 사용하였다. To perform population genome analysis, the genome information of the four breeds was mapped to the reference sequence Sscrofa11.1 using the Burrows-wheeler aligner (Li H. and Durbin R, version 0.7.17) program, and the produced BAM file was stored in SAMTOOLS (Li Alignment was performed using the H, version 1.12) program. Additionally, GATK Toolkit (De Summa S, version 4.1.4.0) was used to extract single nucleotide variations (SNP, Indel). Additionally, BEAGLE (B L Browning and S R Browning, version 4.1) was used for filtering such as haploid phase and correction of missing loci.

이렇게 추출된 단일염기다형성(SNP) 전체를 비교 품종 그룹당 XP-EHH(cross-population extended haplotype homozygosity method, Sabeti PC), XP-CLR (cross-population composite likelihood ratio method, Chen H)을 수행하였다. XP-EHH (cross-population extended haplotype homozygosity method, Sabeti PC) and XP-CLR (cross-population composite likelihood ratio method, Chen H) were performed on all single nucleotide polymorphisms (SNPs) extracted in this way for each comparative breed group.

이 방법들은 selscan (ZA Szpiech and RD Hernandez, version 1.3.0)프로그램을 이용하여 계산하였으며 그 결과는 표1과 같다. 난축맛돈을 기준으로 다른 3품종을 비교하였으며 난축맛돈에서 강한 긍정적 선발 신호를 보이는 유전자들을(UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, ELN)을 확인하였다. Nucleotide Diversity는 BAM 파일을 활용하여 house script를 활용하여 Nucleotide Diversity 값을 추정하여 R 프로그램에서 그래프를 그렸다. These methods were calculated using the selscan (ZA Szpiech and RD Hernandez, version 1.3.0) program, and the results are shown in Table 1. Three other breeds were compared based on low-livestock pigs, and genes showing strong positive selection signals (UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, ELN) in low-livestock pigs were identified. Nucleotide Diversity was estimated using a BAM file using a house script and a graph was drawn in the R program.

집단유전체 분석 (XP-EHH, XP-CLR, Nucleotide Diversity)을 활용하여 난축맛돈과 다른 품종 (제주재래돼지, 랜드레이스, 두록) 간의 유전자를 비교 분석한 결과, UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2, GDPD5, NDUFA10, EBF3, ELN 유전자들이 난축맛돈에서 긍정적 선발 신호를 보이는 것을 확인할 수 있었다 (도 1 내지 3). As a result of comparative analysis of genes between low-quality pigs and other breeds (Jeju native pig, landrace, Durok) using population genome analysis (XP-EHH, XP-CLR, Nucleotide Diversity), UGT8, UBE2L6, MELK, ZGRF1, NCALD , FHL2, SERP2, GDPD5, NDUFA10, EBF3, and ELN genes were confirmed to show positive selection signals in egg-breeding pigs (Figures 1 to 3).

구체적으로, 도 1의 XP-EHH 결과는 난축맛돈과 제주재래돼지를 비교하였을 때, 품종 간의 방향성, 즉 긍정적 선발신호를 보여주는 것으로, MELK, FHL2, GDPD5 및 SERP2 유전자가 -2 이하 (난축맛돈에 긍정적인 선발 신호) 에 존재하는 것을 확인할 수 있다.Specifically, the XP-EHH results in Figure 1 show the directionality between breeds, that is, a positive selection signal, when comparing low-livestock pigs and Jeju native pigs, with MELK, FHL2, GDPD5, and SERP2 genes being -2 or less (in low-livestock pigs). It can be confirmed that a positive selection signal exists.

또한, XP-CLR 결과에서도 상기 유전자들이 50 이상 (난축맛돈에 긍정적인 선발 신호)의 값을 보여주어 MELK, FHL2, GDPD5 및 SERP2 유전자가 난축맛돈에서 강한 긍정적인 선발 신호를 보이는 영역에 있음을 확인하였다.In addition, the XP-CLR results also showed that the above genes showed values above 50 (a positive selection signal in low-livestock pigs), confirming that the MELK, FHL2, GDPD5, and SERP2 genes are in the region showing a strong positive selection signal in low-livestock pigs. did.

도 2의 XP-EHH 결과는 난축맛돈과 듀록 품종을 비교하였을 때, 품종 간의 방향성, 즉 긍정적 선발신호를 보여주는 것으로, UGT8, ZGRF1, EBF3 및 NDUFA10 유전자가 -2 이하에 존재하는 것을 확인할 수 있다.The XP-EHH results in Figure 2 show the directionality between breeds, that is, a positive selection signal, when comparing the low-living pig and Duroc breeds, and it can be confirmed that UGT8, ZGRF1, EBF3, and NDUFA10 genes are present at -2 or lower.

또한, XP-CLR 결과에서도 상기 유전자들이 50 이상의 값을 보여주어 UGT8, ZGRF1, EBF3 및 NDUFA10 유전자가 난축맛돈에서 강한 긍정적인 선발 신호를 보이는 영역에 있음을 확인하였다.In addition, the XP-CLR results also showed that the above genes showed values above 50, confirming that the UGT8, ZGRF1, EBF3, and NDUFA10 genes were in the region showing a strong positive selection signal in oviparous pigs.

도 3의 XP-EHH 결과는 난축맛돈과 랜드레이스 품종을 비교하였을 때, 품종 간의 방향성, 즉 긍정적 선발신호를 보여주는 것으로, UBE2L6, ELN, NCALD 및 UGT8 유전자가 -2 이하에 존재하는 것을 확인할 수 있다.The XP-EHH results in Figure 3 show the directionality between breeds, that is, a positive selection signal, when comparing low-livestock pigs and landrace breeds, and it can be confirmed that UBE2L6, ELN, NCALD, and UGT8 genes are present at -2 or lower. .

또한, XP-CLR 결과에서도 상기 유전자들이 50 이상의 값을 보여주어 UBE2L6, ELN, NCALD 및 UGT8 유전자가 난축맛돈에서 강한 긍정적인 선발 신호를 보이는 영역에 있음을 확인하였다.In addition, the XP-CLR results also showed that the above genes showed values above 50, confirming that the UBE2L6, ELN, NCALD, and UGT8 genes were in the region showing a strong positive selection signal in egg-breeding pigs.

또한, 상기 선발신호의 Necleotide diversity를 확인한 결과, 난축맛돈의 그래프 (분홍색)가 확연하게 분리되는 것으로 나타났다 (도 4 내지 9).In addition, as a result of confirming the necleotide diversity of the selection signal, it was found that the graph (pink) of oviparous pigs was clearly separated (Figures 4 to 9).

상기 결과는 본 발명의 난축맛돈에 강한 긍정적 선발신호 영역의 유전자들은 확실하게 품종별 차이를 보인다는 것을 의미한다.The above results mean that the genes in the positive selection signal region that are strong in the pigs of the present invention clearly show differences among breeds.

<실험예 1> 정량 실시간 PCR (Quantitative Real-time PCR)을 이용한 유전자 발현량 실험 검증 분석<Experimental Example 1> Gene expression level experimental verification analysis using quantitative real-time PCR

난축맛돈의 등심 조직으로부터 총 RNA는 TRIzol (Invitrogene Life Technologies, Carlsbad, USA)을 이용하여 추출한 후 RNeasy MiniElute cleanup kit(Qiagen, MD, USA)을 이용하여 정제하고 cDNA 합성에 이용하였다. cDNA 합성은 총 RNA 2μg에 random primer(Promega, WI, USA) 1μl, 2.5mM dNTP 1μl를 첨가하고, DEPC를 처리한 증류수로 총 12μl가 되도록 함. 65℃에서 5분간 변성 후 즉시 얼음 위에서 냉각한 후 5X buffer 4μl, 0.1M DTT 2μl, RNase inhibitor(Promega) 0.5U 및 reverse transcriptase(SuperScript Ⅱ Reverse Transcriptase, Invotrogene Life Technologies) 1㎕를 첨가하여 42℃에서 60분간 반응시킨 후, 70℃에서 15분간 반응시켜 reverse transcriptase를 불활성화 시킨 후 real-time PCR의 주형으로 사용하였다. 합성된 cDNA 0.2μg을 주형으로 2X Power SYBR Green PCR Master mix (Applied Biosystems, Warrington, UK)와 각각의 프라이머 [표 2] 를 이용하여 7500 Real time PCR system (Applied Biosystems)을 통하여 분석하였다. 유전자 발현량은 2-△Ct 방법으로 발현값을 도출하였다.Total RNA was extracted from the loin tissue of naive pigs using TRIzol (Invitrogene Life Technologies, Carlsbad, USA), purified using the RNeasy MiniElute cleanup kit (Qiagen, MD, USA), and used for cDNA synthesis. For cDNA synthesis, add 1μl of random primer (Promega, WI, USA) and 1μl of 2.5mM dNTP to 2μg of total RNA, and add DEPC-treated distilled water to make a total of 12μl. After denaturing at 65°C for 5 minutes, immediately cooling on ice, adding 4μl of 5X buffer, 2μl of 0.1M DTT, 0.5U of RNase inhibitor (Promega), and 1μl of reverse transcriptase (SuperScript Ⅱ Reverse Transcriptase, Invotrogene Life Technologies) at 42°C. After reacting for 60 minutes, reverse transcriptase was inactivated by reacting at 70°C for 15 minutes and used as a template for real-time PCR. 0.2 μg of synthesized cDNA was analyzed using the 7500 Real time PCR system (Applied Biosystems) using 2X Power SYBR Green PCR Master mix (Applied Biosystems, Warrington, UK) as a template and each primer [Table 2]. Gene expression levels were derived using the 2 -△Ct method.

유전자명 gene name 프라이머 염기서열(5'-3')Primer sequence (5'-3') 서열번호sequence number UGT8
(UDP Glycosyltransferase 8)
UGT8
(UDP Glycosyltransferase 8)
정방향
(Forward)
forward
(Forward)
ACACAAGGTGCAAGTGGCATGAAGACACAAGGTGCAAGTGGCATGAAG 1212
역방향reverse
(Reverse)(Reverse)
ACATGAGCCTCTGTGAGCTGGATTACATGAGCCTTCTGTGAGCTGGATT 1313
UBE2L6
(Ubiquitin Conjugating Enzyme E2 L6)
UBE2L6
(Ubiquitin Conjugating Enzyme E2 L6)
정방향
(Forward)
forward
(Forward)
ACATCGCGCCATCTCATCATACATCGGCGCCATCTCATCAT 1414
역방향reverse
(Reverse)(Reverse)
GCAGGATACCAAAGGCCAGTGCAGGATACCAAAGGCCAGT 1515
MELK
(Maternal Embryonic Leucine Zipper Kinase)
MELK
(Maternal Embryonic Leucine Zipper Kinase)
정방향
(Forward)
forward
(Forward)
AAACCGCCCTACAACCTCAGAAACCGCCCTACAACCTCAG 1616
역방향reverse
(Reverse)(Reverse)
AGGGCTTCCAGTTCTCGTTGAGGGCTTCCAGTTCTCGTTG 1717
ZGRF1
(Zinc Finger GRF-Type Containing 1)
ZGRF1
(Zinc Finger GRF-Type Containing 1)
정방향
(Forward)
forward
(Forward)
GCCCTCAGAGTCCACATCCTTGCCCTCAGAGTCCACATCCTT 1818
역방향reverse
(Reverse)(Reverse)
CGGAACACAACTCGGGTCTCCGGAACACAACTCGGGTCTC 1919
NCALD
(Neurocalcin Delta)
NCALD
(Neurocalcin Delta)
정방향
(Forward)
forward
(Forward)
GTAGATGCTTTTCAGGGCGCGTAGATGCTTTTCAGGGCGC 2020
역방향reverse
(Reverse)(Reverse)
TCCTTCCTCTGGTCAATGCATCCTTCCTCTGGTCAATGCA 2121
FHL2
(Four And A Half LIM Domains 2)
FHL2
(Four And A Half LIM Domains 2)
정방향
(Forward)
forward
(Forward)
TGGTTTCTGTCTTGCTTGCAGTGGTTTCTGTCTTGCTTGCAG 2222
역방향reverse
(Reverse)(Reverse)
GTGCGCACATGCAAGAGATTGTGCGCCACATGCAAGAGATT 2323
SERP2
(Stress Associated Endoplasmic Reticulum Protein Family Member2)
SERP2
(Stress Associated Endoplasmic Reticulum Protein Family Member2)
정방향
(Forward)
forward
(Forward)
AATGAAGGGTTGGTGTCAGGAATGAAGGTTGGTGTCAGG 2424
역방향reverse
(Reverse)(Reverse)
CGGGTATTGGCTTGATGTGCGGGTATTGGCTTGATGTG 2525
GDPD5
(Glycerophosphodiester Phosphodiesterase Domain Containing5)
GDPD5
(Glycerophosphodiester Phosphodiesterase Domain Containing 5)
정방향
(Forward)
forward
(Forward)
ACCATCTCCTCTCCCTGCATACCATCTCCTCTCCCTGCAT 2626
역방향reverse
(Reverse)(Reverse)
CAGGCGCCACTTCTGGAGCAGGCGCCACTTCTGGAG 2727
NDUFA10
(Ubiquinone Oxidoreductase Subunit A10)
NDUFA10
(Ubiquinone Oxidoreductase Subunit A10)
정방향
(Forward)
forward
(Forward)
GTGGGGGACAAGTGGATCTGGTGGGGGACAAGTGGATTCTG 2828
역방향reverse
(Reverse)(Reverse)
CTGTGCAGAAATGCAACGCTCTGTGCAGAAATGCAACGCT 2929
EBF3
(early B-cell factor3)
EBF3
(early B-cell factor3)
정방향
(Forward)
forward
(Forward)
AGATCATCCTGAAGCGAGCGAGATCATCCTGAAGCGAGCG 3030
역방향reverse
(Reverse)(Reverse)
GTAGCCGACTTATCACGCCAGTAGCCGACTTATCACGCCA 3131
ELN
(Elastin)
ELN
(Elastine)
정방향
(Forward)
forward
(Forward)
TCCTATTTTCCCAGGTGGCGTCCTATTTTCCCAGGTGGCG 3232
역방향reverse
(Reverse)(Reverse)
CTCTTCCGGCCACAGGATTTCTTCTTCCGGCCACAGGATTT 3333

실시예 1의 유전자 중 랜덤으로 선정한 유전자 (UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2) 의 발현량 및 실시예 1의 RNA-Seq 분석간의 연관성을 분석하였다.The correlation between the expression levels of randomly selected genes (UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2) among the genes in Example 1 and the RNA-Seq analysis in Example 1 was analyzed.

UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2 유전자들의 RNA-Seq 분석 결과(도10, Y축)와 Quantitative Real-time PCR을 이용한 분석(도10, X축) 결과의 연관성을 분석한 결과, 난축맛돈 등심조직에서 UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, SERP2 상관관계 분석 결과 P-valure 값은 0.00232, R값은 0.931로 매우 유의한 값으로 RNA-seq과 Quantitative Real-time PCR간의 유전자들이 매우 유사하게 발현되는 것으로 확인되었다.Results of analyzing the correlation between the results of RNA-Seq analysis of UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, and SERP2 genes (Figure 10, Y-axis) and the results of analysis using Quantitative Real-time PCR (Figure 10, X-axis) , As a result of correlation analysis of UGT8, UBE2L6, MELK, ZGRF1, NCALD, FHL2, and SERP2 in loin tissue, the P-valure value was 0.00232 and the R value was 0.931, which are very significant values, indicating a significant difference between RNA-seq and Quantitative Real-time PCR. It was confirmed that the genes were expressed very similarly.

상기 결과에서, 난축맛돈과 다른 품종 제주재래돼지, 랜드레이스 및 듀록의 유전체분석과 전사체 분석을 통해 난축맛돈의 긍정적 선발 신호 유전자를 확인하였고, From the above results, positive selection signal genes for low-living pigs were identified through genome and transcriptome analysis of low-living pigs and other breeds of Jeju native pigs, landrace and duroc.

상기 유전자들이 다른 품종과 비교하였을 때 난축맛돈의 등심 조직에서 유의적으로 높게 발현된다는 것을 확인하였다. It was confirmed that the above genes were expressed significantly highly in the loin tissue of naive pigs compared to other breeds.

이에, 본 발명에 따른 유전자들이 난축맛돈의 등심 형성 예측 및 난축맛돈 돼지육 판별용 바이오마커로 사용될 수 있음을 확인하였다.Accordingly, it was confirmed that the genes according to the present invention can be used as biomarkers for predicting loin formation in low-quality pork and for discriminating pork meat from low-risk pork.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Composition for discriminating Nanchukmacdon pork meat and use thereof <130> 2021P-03-028 <160> 33 <170> KoPatentIn 3.0 <210> 1 <211> 1739 <212> RNA <213> Artificial Sequence <220> <223> UGT8 mRNA <400> 1 agctatgaag tcttacactc cgtatttcat gctcctgtgg agtgctgttg ggatagcaaa 60 ggctgccaaa atcatcatcg tgccgccaat tatgtttgaa agccatatgt acattttcaa 120 gacactagcc tcagccttgc atgagagggg ccaccacaca gtgttcctgc tctctgaagg 180 cagagacatc gcgccatctc atcattacag cctccagcgc tacccaggga tctttaacag 240 caccacctcg gatgctttcc tgcagtccaa aatgcggaat attttctctg ggagattgac 300 agcagtcgag ctgtttgaca tactggatca ctatactaag aactgcgata tgatggttgg 360 caaccgcgcc ctgattcagg gcctgaaaaa ggagaagttt gacctgctgc tggtggaccc 420 gaacgacatg tgtggatttg tgatagctca tcttttaggg gttaaatatg ctgtattttc 480 aactggcctt tggtatcctg ctgaagtggg tgctcctgcc ccgttagctt acgtcccaga 540 gtttaactca ctgctcacag accgcatgaa cctgctgcag aggatgaaaa ataccggcgt 600 ttacctcatt tccagattag cggtcagctt tctggttctt cccagatatg aaagaataat 660 gcagaagtac aacctgctgc cagagaagtc catgtatgac ttggtccacg ggtccagcct 720 gtggatgctg tgtacggatg tagcactgga gtttcccaga cccacgctgc ctaatgttgt 780 ttatgtagga ggaatcctaa ccaaaccggc cagcccacta cccgaagatc tgcaaaggtg 840 ggtcaatggt gctaatgaac atggctttgt cctggtatct tttggagctg gtgtcaagta 900 tctatcagaa gacattgcta gcaagctggc cggagctctg gggagactgc cccaaaaagt 960 gatttggagg ttttctggaa ccaaaccaaa gaatctgggg aacaatacca agctcataga 1020 atggttaccg caaaatgact tgctcgggca ttcaaatatt aaagccttcc tgagccatgg 1080 tggtttgaat agtattttcg aaactatgta tcatggtgtc cctgtagtgg gcatcccact 1140 ctttggagac cattacgata ctatgacccg ggtacaggca aaaggcatgg ggatcctgct 1200 agagtggaag acagttactg aaggagaggt atatgaagca ctagtgaaag ttatcaataa 1260 tcccagctac cgtcagaggg ctcagaagct ttcagaaatc cacaaggatc aacctggtca 1320 ccctgtcaat cggactgtct attggatcga ttatattctc cgtcacgatg gagcccatca 1380 cctccgtgcc gctgtccatc aaatctcatt ctgtcagtat tttttactgg atattgcctt 1440 tgtgcttctg cttggtgctg ccttgtttta cttcctcttg tcctgggtga caaaatttat 1500 ctacagaaaa atcaaaagtt tgtggtctag aaataagcat agcacagtta atggacatta 1560 ccctaatgga atcctcaatg gcaagtataa aagaaatggc catattaaac atgaaaagaa 1620 ggtgaaatga gccaacagcc cacctgatag tcaccaatct gttcagtcat tgaattttta 1680 ttgctataat ttaggctaac aactactaaa aggaaaacat cagtaaataa ttctaatac 1739 <210> 2 <211> 462 <212> RNA <213> Artificial Sequence <220> <223> UBE2L6 mRNA <400> 2 atgacggcga gcaagcgggt ggcgaaggag ctggaggatc ttcagaagga gcttcccagg 60 tacctcggga agctgttcag cgatgatgcc aacgtgttgg tgtggcacgc gctcctcctg 120 cctgagaaac cgccctacaa cctcagggcc ttcaaccttc gcatcagctt cccggaggag 180 tacccattca agcccccgac ggtgacgttt acaactagga tctaccaccc caacgtggac 240 agcgaaggcc aggtgtgtct gcccatcatc agcaacgaga actggaagcc ctgcaccaag 300 acctgccaag tcctggaggc cctcaacgtg ctggtgaata gaccagagcc ggggcagccc 360 cttcgggtgg agctcgccga ccagctgacc caggacccgg agctgttcaa caggaaggcc 420 gaagagttca ccctccagtt cggagtggac cggccctcct aa 462 <210> 3 <211> 2493 <212> RNA <213> Artificial Sequence <220> <223> MELK mRNA <400> 3 aggtttgatt tcattggcgg gcggaagcgg ccggagccag accatccaaa agatacctag 60 gcgtccttct cactcgcctc ttcgcttagg actccaggcc ggagcgtgtg acctgtctgg 120 cccagtccct ctctgccctt gcgccctcag cttctttttg taattttgac taaacttcca 180 ggaggattat gaaagattat gatgaacttc tcaaatacta tgaattatat gaaactattg 240 ggacaggtgg ctttgcaaag gtcaaacttg cctgccatat cctcactgga gaaatggtag 300 ctataaaaat catggataaa aatactctag ggagtgattt gccacgggtc aaaacagaaa 360 tcgatgcctt gaagaacctg aaacatcagc atatatgtca actctaccat gtgatagaga 420 cagcgaacaa aatattcatg gttctcgagt attgccctgg aggagagctg tttgactaca 480 taatctccca ggatcgcctg tcagaggggg agacccgagt tgtgttccgt cagatagtgt 540 ctgcagttgc ttacgtgcac agccagggct atgctcacag ggacctcaaa ccggaaaatt 600 tgttgtttga tgagtatcat aaattgaagc tgattgactt tggtctctgt gcaaaaccca 660 agggtaacaa ggattaccat ctacagacat gctgtgggag tcttgcttat gcagcacctg 720 aattaataca aggcaaatca tatctgggat cagaggcaga tgtttggagc atgggcatac 780 tcttatatgt acttatgtgt ggctttctac catttgatga tgataacgtc atggctttgt 840 acaagaagat tatgagaggg aaatatgaag ttcctaagtg gctctctccc agtagcattc 900 tacttcttca acaaatgcta caggtggacc caaagaagcg gatttctatg aaaaatctcc 960 tgaaccatcc ctggatcatg caagattaca actgtcccgt tgagtggcaa agcaaaactc 1020 ctcttattca ccttgatgaa gattgtgtaa cggaactttc tgtacatcac agaaacaaca 1080 ggcaaacaat ggaggattta atttcactgt ggcagtatga tcacctcaca gctacttatc 1140 ttctgctcca agccaagaag gctcggggga aaccagttcg tttaaggctt ctttcttcct 1200 atggacaagc caacactact ccagtcacag acatcaagtc aaagaatctg agtctagaag 1260 atatgagcac cagtgatgaa aattatgtgg ctggattaat ggactatgaa tggtgtgaag 1320 atatttcatc aagaggtgtg gctactccac aaacaccaca gtttgccaag cattggacag 1380 aatcaaatgg tctggaatct aaatcattaa ctcccgtatt atgcagagca tctgccaata 1440 aattaaagaa caaagagaat gtatatactc ctaagtctgc tgtaaataat gaagagtgct 1500 ttgtatttcc tgaaccaagg actccagtta ataagaacca gcgtaaaaga gaaatactca 1560 ccacaccaaa tcatttcatt acaccctcaa aagctagaaa ccagtgccta aaagaaactc 1620 caattaaaat gccagaaaat tcagcaggaa cagagaagtt agtaacaggt gtcataagcc 1680 ctgagaggcg gtgtcgctca gtggaactca atctcaacca agcacatgta gaggacactc 1740 caaaaaggaa gggaaccaaa gtgtttggga gccttgagaa gggcttggat aaggtgatca 1800 ctgtgcttac caggagcaag aagaagggct ctgccagaga cgggccaaga agactaaagc 1860 ctcactataa tgtgactaca accagattag tgaatccaga tcaactcttg aatgaaataa 1920 tgtctattct tccaaagaag catgttgact ttgtacaaaa gggctataca ctgaagtgtc 1980 aaacccagtc agattttggc aaagtgacaa tgcagtttga actagaagtg tgccagcttc 2040 aaaaacctga tgtggtgggt atcaggaggc agaggcttaa gggtgatgcc tgggtttaca 2100 agagattagt ggaagacatc ctatctagct gcaaggttta attgatagat ggtttccatc 2160 ttgcctgatg agcatgggtg cgatacagcc tacgtggagc ctggtgtgat tggtttgatt 2220 ttaaaagtcc actggaacta cactcgtttc taaagggcta tcctaaagac caatattttt 2280 tgcttgtttg tttttaaaca aaagatactt tttgtggatg aatctaagcc aagactatct 2340 gccgttatct gtaactgtct ttttaagtaa tatgctttgt ataataataa ccattgactt 2400 tcttagattc acttccatac atgaatgtaa gctcttaact gtttctcctt ttatttgtaa 2460 tttctttctg aaataaaacc attcatgaat ata 2493 <210> 4 <211> 6850 <212> RNA <213> Artificial Sequence <220> <223> ZGRF1 mRNA <400> 4 ggcagtggtg ggcgggctaa atagtgggtc ttgatttggt gtggtcgcga gttgatgacg 60 tcaagggctt ttcgcgggag agattcgaaa gtggattttg tgcaatggcc gggtgaaatg 120 agctgtttcc cggggtttct ggggagtaag aggcgagagg cggtgtcgct gattttggcg 180 cgactggacg aagaagtttg ctccgccaga agcggacgat aaggataccg tgtggaacag 240 gattggctca cagcttggtc gaacaacttg caataattgg tgccccgtct tcctcgcctt 300 ctccaatctc tgctttgcag ttcccgcata catgtggtat aaatagttgt atgaccactg 360 attattctcc ggagacctga ctatatataa tttcagaaga aacaatggaa agccaggaat 420 ttattgtcct atatactcat caaaagatga agaagtcaaa agtatggcaa gatggaattc 480 tgaagatcac tcacgtagga aacaaagcca ttttatatga tgacaaagga cagtgtttgg 540 agagtttatt tcttaagtgc cttgaggtga aacctggaga tgatttagaa agtgatcgat 600 acttaatcac agttgaggag gttaaagttg ctggaagcat agctgttaaa caagatatca 660 ttaaaggagc acctccatta aattcaaaga gctttatacc ttctggccgg tcccttgggt 720 gtcaacctgc tggtttaaaa aggaaattta ctggttttca aggaccacgg caagtgccaa 780 agaaaatggc tattacagaa aatagtgaat cagctgcttc acttgaggct aaggaagctg 840 gtcctgtttt tctttctcca gtctacagca cacctccttt gtttcctact gttggcaaaa 900 aagatataaa ttatatgcca acagaccctg acaaccagga cagagagaga aatggcatag 960 ctttttcttc ggttgtctct actccatcct tcaagattaa cccagaaatg ctatgtgaag 1020 aaaattattt ttgctctact gtcaattctg taaataagca ttcaggttct ttactgaccg 1080 atgagcttat gaaaagagat tgtttggtat ctcacaattc aggagtttca cagaacatta 1140 gaagtaaagc ccagatattg gctcttctga aatccaaatc cactggtaca tctaaagaac 1200 caaattctga gattacagga catttccctc tgatacaacc acaaggaagt ttaaaaattc 1260 ctgctaaact tgagtgctta attgaacagg aagaacacac tcaggtgaag agcacagaaa 1320 gtttatactg ccaacatcaa tcaaaaaata ccatgagaaa taaaagccgg tgggccatgt 1380 atttatcctc acagagttca cctacacatt cttctacagt agatggaaat aatacaggaa 1440 aaaatcctga ggccgaggga ggtaatataa atttaaattt gaaagacgct ttggtgcaaa 1500 aaagcatgcg gtttttagaa acatgtactg aagagggaaa aaagtataat gaagacaagc 1560 cagtagttga taatgatcaa tcctggaatc aaaaagtaaa attagaattt ccttcattct 1620 gtgaaagcag tgccttacca gttacttgtg acaacgtaga aaacgacagc ttattatcag 1680 aaaatgacag cttattatca gaaaatgaca ttcaagaaaa taataaaaga ctttttaatc 1740 aaaatgacca gatgggcata aaaggatcaa ttctcattac agaaaaagct caggagataa 1800 ccatgtatgg aaccccagct aaggagtata aacatctgca gattgaatct tcactaagta 1860 acgattttag ggtctctaat ggcattgctg acatgttttc taaaagtaat gctgataatg 1920 aaaatctgaa cagtattcat gaaccacttg tggagattac ttttaatctg aacaattttg 1980 aaaccagtga ctctgaggag gaatcacagg aaagcagcag aatttcccac gattcagagg 2040 gttgggtgaa ggaaacttta gttaaagaca attcaagctg tgagaatata aactgtgcag 2100 aagttggcag tgaccatttg cctctcttaa cgtctagtgg ggacagactt gcagagacat 2160 tttccatgaa agagactctg ctatcacaat tttgtgataa aacttctgta ggttttgaca 2220 caggaccttg gaaagctgga aacactagaa aagaaataga ggaggagtac ggtgacacct 2280 caaacaatct tgactcatct ttagagtgga ctgaagatgc aaatgtaggt agtaatgaag 2340 gcactaataa atctactcag gaagtcacag ttaactatga ttttgcttct ctcccaaatg 2400 aaagtataaa cacaaattta catatccctc actctttaaa cacagccact aatcaggatc 2460 ctgaaaacaa tccatggtca caacaggctc agcctcagcc ttttattatg ggaactgact 2520 tacacaaaaa tactgaacag gttttaccat taacttctag cagtggcaac ggcacccaac 2580 tattaaatgc cagtcagaat cactctgaag aatttcttgc acttgataaa tcacataccc 2640 aagtttccaa ttcttcgttt taccctctgg gagtaaaata tcctatatct aaagacacag 2700 aatcacatat tctggaatct gaagatttgg gaaggactag aagtttacct catgacaata 2760 ctgacataga aactgccaga gagagcaaac agtactggaa tactcctaaa aattcttcag 2820 aactttctgg attagaaaat agcatttccc tattaaaatc attgtctgaa cacagtactg 2880 ctttagaagg cttggaaata ttgaaaaaga aacatacctc ctttaagcaa caaggaactc 2940 tgcagacgta tgatccagaa agcagtcctg aagctaggaa accattgact acaatagttt 3000 cacaagctat accaaagtct catccgaacc aggatcctca acagatgata aaagaaaatg 3060 aagttaaacc aagtgaatcc ctcaccaagt tttttccctt gggcagtgaa gaagagactg 3120 actcccgagc tctcattcct aaacaaatgg agagaaaaac ctgtgaccct aagcctgttg 3180 agtttcaagg gcaccaagtg aaaggatcag ctgctagtgc tgtgatggtc agaggacaca 3240 gctcccagtt tgaatgcagt caatttccag atagcgtgta tgaaaactgc atgacaaata 3300 cttgtttttt gacacctaag ttgcctagca cttgtatgca gattgacttc ttgcagttgc 3360 cagatgaaga aaacttgata aaaggagatt ccagctttaa cactgaagac aattttcaag 3420 tgatagctga gcctaataag aattcagtta aaaatgatct aatgaaaaag tctctggaga 3480 ataagaacct tcaaaggctt tcattagtaa gtagaatccg agttccactt attactttgc 3540 cagctaccag tgggtcacct gacctagatt cttgttcgtg tgtgatcgac tgtgacaggc 3600 aagagtcttc tgattctccc atagtcaact tgtatgaaga gtcagagctt ccttctttca 3660 gctttggatc tgaggaccaa agtgaaactt ctttctctaa agaatctact gaaatgactc 3720 caagggatat ttcacttctc gataatacat ctactcaaag caagtggctg aaatatcaaa 3780 acataatcca atgcaagttg actacaccaa acagacttga tcagaaagta acagatggct 3840 tctttgctga ggctgtttcc aggatgcatt ttagtgacac aggtgaaaga cagagtgatg 3900 ctgtgaatga aagcttagac tctgagcatt tgcaaatgat aaaatgcatg cttcaacaac 3960 agcggcagga ttttagcagt caagatttgg tttccagaca gaaagcactc tctttgaatt 4020 taaagcacac ttctaagact gaggaaatta aaaatgtgtt aggagagtct gcctgctaca 4080 cctgcagtgt aagaggagat ttacaggaga taagtgactg tgagctgtgc ttcccaagtg 4140 gggagaaagt aaaatctgca tatcttcccc aaaggcaaat tcacatacca gctgtttttc 4200 agtctcctgc tcattataaa cagattttta catcttgtct catagaacat ctaaatatat 4260 tgctgtttgg gttggcacaa aggctgcaca aagctctttc aaaagttgac atatcatttt 4320 actcatcaaa cggagacaaa cggaaaaatg tagaaaataa tgtgccatca tgccatcatc 4380 atcaccctgc aaaacttgtc atggttaaaa aggaaggtcc aaataagggt cgtctctttt 4440 atgcttgtga tggacccaaa gctgaccaat gtaaattttt caagtggctt gatgaagtga 4500 ccccaggata tttaacacag gaagaatcac tacctagcat ggttttaagt gatataaaaa 4560 gtattggctt gtacttaaga agtcaaaaga tacccctcta tgaggaatgc caacttttgg 4620 tgagaaaagg atttgatttt caaagaaaac ggtatggtaa actaaagaag tttacaactg 4680 tagatcctga attttataac gaacctaaga gcagacttta tcttaagctg agtcgtaagg 4740 aaagttcatc tgcttatagt aaagatgatc tttgggtggt ttcaaaaacc ctagactttg 4800 aattggatac ttttattgca tgtagtacat tctttggacc gtcatctgtc aatgaggtag 4860 agctactacc tttgaaaggt tatttccctt ccaactggcc cactaacaca ttggtccatg 4920 cattattggt ttgtaatgct agcacggagc tgaccacttt gaaaaatatt caggactact 4980 ttaatccagc tactctgcct ctaacacaga acctgttaac aatgtcttca tcaactatag 5040 tgagcaacaa gagagtcaat aagagaaaat ttatcccacc agccttctca aatatcaata 5100 caaaatttga actgctcagt ataggagcaa cgctgcagtt agctggtgag ttaattcaca 5160 cacacaagtt aaacaaggat caagctacag ccctaattca gatagcgcaa atgatggcat 5220 cacaaggaag tgctgaagaa gtgaaggaac tgggaactca caccctccca atcacgatca 5280 tacatggtgt ttttggagca ggaaaaagtt atttgctggc agtggtgatt ttgttttttg 5340 ttcagctatt tgaaaagagt gaagctcttg cagttggaaa tggaagacct tggaaacttc 5400 tgatttcttc ttctactaat gtagctgttg acagagtact tcttgggctt cttagtcttg 5460 ggtttgaaaa gtttgtcaga gttgggagtg tcaggaagat tgccaagcca attttacctt 5520 acagtttgca tgctggctca gaaaatgaaa atgaacaatt aaaagaactg catacactca 5580 tgaaggaaga cctgactcct gtggaaagag tctatgtgag aaaaagtatt gagcaacata 5640 aactggggac caataaaacc ctgctgaagc aggttcgagt agttggagtt acctgtgcag 5700 cctgcccatt tccatgcatg aatgacctta aatttcctgt ggttgtactg gatgagtgta 5760 gccaaataac cgaaccagct tctctccttc ccattgcaag gtttgagtgt gaaaagctta 5820 ttcttgttgg agatcccaaa cagcttcctc ctactattca gggttctgat gcagctcatg 5880 aaaatggact ggaacaaact ctttttgatc gactttgctt aatgggtcac aagccagttc 5940 ttttgcgaac ccagtaccgt tgtcacccta caatcagtgc tattgctaat gatctgtttt 6000 atgaaggaaa cctcgtgaat ggagtttcag aaacagagag gagcccttta ttggaatggc 6060 ttccaaccct gtgtttctat aacattcaag ggctggaaca gatcgaaaga gataacagct 6120 ttcataacgt agcagaagct gcttttacac tcaagctgat tcaatcactg attgtgagtg 6180 gaatagcagg ctctatgatt ggggtgataa cattatacaa atcccagatg tacaagcttt 6240 gtcacttact cactgcactg gactttgacc atcctggtaa tgtgaaagct gtgcaggtgt 6300 ccacagtaga tgcttttcag ggcgctgaaa aggagatcat cattctgtcc tgtgtgagga 6360 caagacaagt aggatttatt gattcagaac aaagaatgaa tgttgcattg accagaggaa 6420 ggagacattt gttgattgtg ggaaatttgg cctgtttgag gaaaaatcga ctatgggggc 6480 gtgtgatcca acactgtgaa ggcagggaag atggattgca acatgcaagc caatatgaac 6540 cacagctcaa ccatctcctt aaagattatt ttgaaaaaca agcagaagaa aaacaaaaga 6600 aaaagaatga aaaagataaa tccaaagata aatctcattt acaaaaagaa acagtatagt 6660 ttgtatttat ataaattcaa attaatttta tgctatacat ttttattacc cccaaaccct 6720 tgctactggg aaaaaaaaaa agttaaacat atataaaatt tgctctccaa aaaaactatg 6780 attacctata ttaagataga tgtagaaggt aatataaaat ctcagtaata aaagttaatt 6840 ttcttctgga 6850 <210> 5 <211> 3630 <212> RNA <213> Artificial Sequence <220> <223> NCALD mRNA <400> 5 tttggtttct gtcttgcttg cagcatattc ataattagca acagtaggca cagcgggaaa 60 gaacgttata ctttgaaaca aaagttgggg tttttctagt gaataaagta ttctgaaaag 120 accaaggaaa actgtccaca gattcctatt tggaaaaaaa tcatctggaa catgccaagg 180 tagttggggt ggaatctctt gcatgtgcgc acgcagttgc tttttggttg ttagagcaaa 240 gtgcagattt tcagtatctt cctctgaaaa ttcagctgtg aagagaagag catcggacgg 300 tcttcactac ggagtcgtct gaattcttgc tgtcaagatg ggaaaacaga acagcaagct 360 gcgcccagag gtcatgcagg acttgctgga aagcacagac tttacagagc acgagatcca 420 ggaatggtat aaaggcttct tgagagactg ccccagtgga catttgtcaa tggaagagtt 480 taagaaaatt tacgggaact ttttccctta tggggatgct tccaaatttg cagagcacgt 540 cttccgcacc ttcgatgcca atggagatgg aacaatagac tttagagaat ttatcatagc 600 cctgagtgta acatcgaggg ggaagctaga gcagaagctg aaatgggcct tcagcatgta 660 tgacctggat ggaaacggct acatcagcaa ggcagagatg ctcgagattg tgcaggcaat 720 ctataagatg gtttcctctg tgatgaaaat gcctgaagat gagtcaaccc cagagaagag 780 aacggaaaaa atcttccgcc agatggacac caacagagat ggaaaactct ccctggaaga 840 gttcatccga ggggccaaga gcgacccgtc catagtgcgc ctgctgcagt gcgaccccag 900 cagcgccggc cagttctgag cccggcagcc cgcgaatggt agagctgctt gtgttctctt 960 tggatttttc tttttaacaa attttttttt tgttttgcca aacgatattg acggtgatgc 1020 tgttccccat gtggtcggac gcacctccct ccgtgccgcc ttcagcttct tttgtcgtgg 1080 acgcttcgtg ggaatgtcta gagccccccc cgcgcttgtg gagagcatgg acagtgctgt 1140 cgtgcacaga ctttgtggtg ttcattgttc tgacgacttt tcatcgttat tattattttt 1200 tttcctttga ttggaaggtc tgtgttcgaa aactgaaaac ttggggaggc aagagaaggg 1260 aaaccaatcc agtccagcga ttttattgca agcttgagca gcttgtttga aaaacgaaac 1320 tccccacctg ggtcacacat gccctaaggt tgatggcacc agaagctgga ttccccaagg 1380 accaggaatc ctctggggcc aggctgttaa agggacctgg gggatccccc cagaggccca 1440 ccctaccctc ttccccagca ggctgtagtt actaagctgt gaacatttca aggtaaatta 1500 atagaggaga ggataaagat ggctaaagga tggctcagct gtttcttccc gggtttacat 1560 gagttgagct aagatgaatt tctttggaaa cttaatgcaa atgctaactt gtattccaaa 1620 accagaccca tcttgttgcc tattgtgatt taaaaaaaaa aaaaaaagat cattgtatat 1680 aaaatattgg gtattgcaga ccaaattaag tgttttgcct tgtttaaatg aaatgcatgt 1740 ttagtgagca ctaatacaat cttattacag aagactgttt ttagtagctt attgtgaagc 1800 aagccagcta taaggaatgt ctgtcttgtt ttaaagtcat atctgtctgc acaaatgcac 1860 caatcaacag atatatttta tatattccag aaaagtacaa agtaatcgtg accagggctc 1920 aaccttcatt ttgaatgcat ttccagtggt agcacctatt ccagaagtgg ggcaggtaga 1980 gtgggatggg tcaactgcag caccagaagg ttcttgttta ttcgaaatgt gggtttgccc 2040 acccagccca gcagatcgtc gatagtatta gattggaagt gtggtgcttt tccgagcaga 2100 tcaataactc tgtagacgct ttcccccacc caacccccac cccccgaccc caaaaggcaa 2160 aaatcctcaa gacttcctaa tgttttaatc cacatgcatg gttaggcagc tgtaggctgg 2220 aatattgact ttcccatgcc cccagtggcc tttaagagag tcagagattg ggcagtcatc 2280 tggttcatct tgaagtcagc aagtcaggtg tgtctgtgat ttccaaggcc cgctatgggg 2340 acttggaagt cttttccatt tctacgtttt ctgaatgcag atttctattt ccagaagtga 2400 taacccaatt tgagtttctg tttggtctga tgacctcata caccctaatt tgaattggaa 2460 ggtaagagtg aaagttgccg atcgcaggtg agtcacatta gcacaagcaa taggcatggg 2520 gaagcccaaa cagttaaggc tggagatggg gagaatgtgc ctcaagaagg cagagaggtc 2580 cccttggctg tggccacact ccttgggtag accatgaacc acagagagac tcctaaccat 2640 gaggaagatg atgctgagcc tgcttaaacc tccagattcc tgtgtgttac tcgattccat 2700 tttaactgat aatgaacatc cgaattagca tcggattttt cagtggaccg aaatgaaaca 2760 actttgccgg gtgagatttt gagagttgga ctctgtaaaa tcatcttcct ctgtcagttg 2820 ttcatagtgg ttctataccg tgaaccttgc cgagttcctc cactggccaa gtggtaaaat 2880 ctggttttga caactaggga attattaacc caaagcgtgg catgcagagg ggcaggggac 2940 cacgccctct ataggcaatg tcctggagct gcatcccact ttctctcccg cacttaattg 3000 aagatccagt tcctcctttt agtttttcct gagatggtgg agtcagttaa tgcttgagaa 3060 agcccgcctg agctctgccc tcagtcttga catcatactg agccagattc agtccctgga 3120 acctagagct gcagtgagaa gcccgaagag ctgttaagaa agaatccagc gttgccacag 3180 ctgtgatgat gtaggttgca gctccggctc ggattcagtc cctggttcag caactccata 3240 tgccatggga tggccaaaaa agaaaaaaag aaagaaagaa aaggaaatag atcagactca 3300 tggctgatga atgctgacaa gctcgagatg gatgaagaat aatccctatc ctggcctgcc 3360 cgtgaccctg tctgtatttt gagggttgtt ttcctcatgc tccccctgcc tcacaaggcc 3420 tttgtacatc tgatgcagtg cccttgagtg tggccaaggg actcagtagc acccaaaagg 3480 ccgaatggct caaggcttac gtcactcctg tgtggggctg gtcagtgtcg ctgctgtgtg 3540 gcgggacctc tggaaatgga gtctgttctg tctgagatca agccggcctg tgatgttcaa 3600 gggacgggaa taaagtggct tgaaggatgc 3630 <210> 6 <211> 2607 <212> RNA <213> Artificial Sequence <220> <223> FHL2 mRNA <400> 6 gcttgcaaga gcgagggctg ggttcttatc tcctgagctc tggacctgcc ttatttatag 60 cccagcttgc cggcagctgc atacaagttg ggacggttgg ctcagcagcc actgtcccct 120 ccagtcaggc tgaaaccagc caggtggcag aagtccagca ccaagatgac tgagcgcttc 180 gactgtcacc actgtgagaa ctccctcttc ggccggaagt atgtcctgcg ggaggagcag 240 ccctactgcg tgggctgctt tgaggccctc ttcgccagca catgcgagga gtgtgggaag 300 ctgattggat gcgactgcaa ggacttatcc tacaaggacc ggcactggca cgaggcctgc 360 ttccactgct cgcgatgcag gagctccctc gtggacaagc catttgctgc caaggaggac 420 caggtgctct gcactgactg ctactcgcag gagtactcat cccgctgcca ggagtgcagg 480 aaggccatca tgccaggcac ccgcaagatg gaatacaagg gcagcagctg gcacgagacc 540 tgcttcacct gccaccgctg ccagcagccc attgggacca agagcttcat ccctaaggac 600 ggccagaact tctgtgtgcc ctgctatgag aagcagcacg ccttgcagtg cattcagtgc 660 aaaaagccca tcaccagcgg gggcgtcacg taccgtgagc agccctggca cagggagtgc 720 ttcgtgtgca ccgcctgcaa gaagccactg tccggccagc gcttcacgtc ccgtgacgag 780 ttcgcctact gcctgggctg cttctgcgac ctgtacgcca agaagtgtac aggctgcgcc 840 aaccccatca gtggactggg cggcaccaag tacatctcct tcgaggagcg gcagtggcac 900 aacgactgct tcaactgcaa gaagtgctcg ctgtcgctgg tggggcgagg cttcgtcacc 960 gagagagacg acatcctgtg ccccgactgc gggaaggaca tctgagccgc tagagggcct 1020 gctcgcgctg ctttccccct gtgcgccccg ccccgccgcg ccccgccccg ccccgccgcg 1080 ccccgccccg ccccgccccg ccgcgccccg cccccaggtg gtgccgcggc ccccggcccc 1140 gcctgctacc tgtgccgccc acacctgttt acagccttgc tccgcgcttg tgcctgaggc 1200 ctagggaagg aggtcctgga gcccgaagtg ggaggtggtt gtgcattcgt ggaatcacgc 1260 aaggacaatc cgagtggaaa catccttttg aatgctatct ttatagaccg acctttcttt 1320 cactgtgtct ttaattatta agtgcaatta ccgcgagtta atgaagggtt ggtgtcaggg 1380 cgttgaccgg tggcctagtg cttggctttt ggcgctttcg cggctacagc caggggcagt 1440 aatccctggc ctgggacctg agatctcaca tcaagccaat acccgccaaa gccaaaaaaa 1500 tggtatttcc aaggccgtaa ctttgtcacg tggagcccaa agcaaggtga gccggctcac 1560 gataaagtga tccgggagga aatcttatgt caagtgcagt gggtcaaata tgaaacgtta 1620 agggtctcag cataaacaac acttgactgc agcttccact agggctctga cggactgaaa 1680 ttgcatcagg ccttttatcg aaaaggaagc cgcagtcagc accagggcag ctgccttcct 1740 ctctgaccct ttcccagact ccctgggaat ttaatgctca gcctaggatg tggtgacata 1800 agcgacagca cgtgagctga tggacgtgcg ggcagcactg ggtcactttt ctggacagag 1860 ctcgatgctc tcctgtgctc ccggccaagc cctcacacct gcctgccttc tcctccgtga 1920 gtggaggctt acaggaggca caggtgactc cagaccagag ttgatgtcct gcgcacctgt 1980 attttgtcaa cacctgggca actgaggcca cctgggagcc ttctgtgagt gtttctgaag 2040 gataagaagg gaaatcacag ctctaaatag aacactcctt ttcaggtagg ctcctgagct 2100 gacttctaaa ggttcgctat gccctagacc cagaaaaccc caaaaaatca ctgcacatca 2160 agaggttaag gtttttgtgc tcaccttttt ttggccacgc ccttggcatg tggaatttat 2220 gccaacttac caggtagggc atggcatggt tctttttggg ataacaactg tgattttttt 2280 gtccttagct ttctaagata atgcagtatg atacaatgat cggctatgca gcagaaaaat 2340 ctggttgaac tcaagtccca cctacgcaga gcatctgtga agccagtttc ttaatctgag 2400 tgctggtcac tgtgagaagt gcttgattgt ggctgaaacg ggcctctggc tgtatggtct 2460 gttggctgga ggctttgctc aaaaaaaata accaccaccc ccctccacct tgttagttgc 2520 tttgctggct cttactttat gatataaagg taaatgcatt cttgcaaatg tgctttttaa 2580 aataaaaata gcaaaattca aaaaaaa 2607 <210> 7 <211> 642 <212> RNA <213> Artificial Sequence <220> <223> SERP2 mRNA <400> 7 acccagaggg agtcacagcc ccgagactgg caagtgtgag gaactgagca gcccgggaga 60 aacccttctg tgtcaccaca aagggaagac ggaggacctg catctgctct ggacctcctg 120 cctcaggatc ggagatggcc aatctggaaa aagatgtctc ctcggccact ggcgcccgca 180 agctatcttc cagatcattc agagcataag gatgggcatg tgagccggct gggctttaag 240 cccaccctcc ccccgacccc cggagggcgg aggaccattt cagctcgtgg ccaggtagct 300 gcgggaagcc gaccagccgc cccggagaga aaaaaaggct ccctccagtg tcccccctgc 360 cccgatccct gcatcgtgga tgtcagacca aattgccttc tcagaggaca tctcggcccc 420 tccgagttct ccagcggaaa ggacgtttgg ctttgctctt ggcaggattg gtccttcccg 480 gattggtgtc tgcggcgggc cctgtctgtc cgggtgtggc cctgggtttc cgtgatgtct 540 gcatgtgggc ctcggaatga tcaccgcttt actttctacg gatacaattt ctgctccatt 600 gggaattgct tttacaaata aatgtctttg ttcaacctta aa 642 <210> 8 <211> 3578 <212> RNA <213> Artificial Sequence <220> <223> GDPD5 mRNA <400> 8 ggtgaccccg ccccaattcg ggcggggccg cgttggccgg cgctccggcg ctgggcggcg 60 ctgcctcggc tctgctcgac tccggctcag gctcctgcgg cagctcctgt gggggtgggc 120 ggcggggctg acagcggcgg tggcagcggc tgcggctcga ggctgagcga gcggcgggcc 180 agccgggaga agaggaggaa gtggagccgc ggctgtgagc tctggagtca gctgccacgc 240 cgaggaccgc cccattttgc agagcgagcc gagtccggac ctaggaagac ttctctaccg 300 ggctccagcc gccgcggctc cgcgtcttct cgcccgcgcc ctgccttgcc ccgccaaccc 360 cagcccggtt ctgcgctccg cggtccgggg cgtgtggccg ggacgcctca aacccctgac 420 cctgatccag tgcaccaggg cgggacgctc ctggcccacc acacggctct gggattaccg 480 gctccttccc agcctttctc tagtgtgtgc cgaagcccct agccctccgc ccgggattaa 540 ggcagggtgc ccccacccct ccgtctgagt gcaaaggagc ccggaccttc agctgcctct 600 gccccggtgc ttcggatttg gtgcggtgct aacgtccagg aagccccgac ccgggcccag 660 agccctatga ggggtcccag gcgggctggc ccgtcggact gaaccggact gggctggtgc 720 tgtgagacga agcagccacc ttcctgccgc cccgggcgag gggctgagcg cttgccccga 780 agaaaacaca ggggagagcc gagtgctgca gctctcccag tgaagccaca tcgccacctc 840 cgtggacagg acgcccccgg gagcccagct cacagccact ggtacctgct tccaggacca 900 gccggggcct ccatgggcgc ctgagggcgg ggtgccaggc cggcagcgcg agcatggtga 960 gacaccagcc cctgcagtac tacgagccgc agctctgcct ctcctgcctc actggcatct 1020 acggctgccg ctggaagcgc taccagcgct ctcacgatga caccacgccg tgggagcgcc 1080 tctggttcct gctcctcacc ctcacctttg gcctcacgct cacctggctc tacttctggt 1140 gggaggtcca caatgactac gacgaattca actggtacct ctacaaccgc ttgggctact 1200 ggagtgactg gtctgtgccc attctcatgg ccacagctgc cgctttcacg tacgtcgcgg 1260 gcctgcaggt cctggcactg tgtcacatcg ccgtgggaca gcagatgaac ctgcactggc 1320 tgcacaagat agggctggtg gccatcctgg tggccacggt ggtggccatg tcggccgtgg 1380 cccagctgtg ggaggacgag tgggaggtgc tgctcatctc cctgcagggc acagcgccat 1440 tcctgcacgt gggggccctg gccgccgtca ccgcgctctc ctggatcgtg gcaggacagt 1500 ttgcccgcgc cgagcggtcc tcctcccagg tggccatcct cagtaccttc ctcgccgtgg 1560 tgtttgccct ctacctggcc cctctcacca tctcctctcc ctgcatcatg gagaaaaagg 1620 acctgggccc caagcctgcc ctcatcggcc accgcggggc ccccatgctg gccccggagc 1680 acacgctgat gtccttcagg aaggccctgg agcagaagct gtacggactg caggctgacg 1740 tcaccatcag cctggacggc gtgcccttcc tcatgcacga cgccaccctg cggcgcacca 1800 ccaacgtgga ggagctgttc ccggagctcg ctcgcaggcc cgcctccatg ctcaactgga 1860 ccatcctgca gaggctcaac gctggccagt ggttcctgaa gacggacccc ttctggacgg 1920 ccagctccct gtcaccctct gaccagagag aggcccaaaa ccagtccatc tgcagcctca 1980 cggagctctt ggagttggcc aagggcaacg ccacactgct gctcaacctg cgcgacccgc 2040 cgcgggagca cccctaccgg ggcagcttcg tcaacgtcac gctggaggcc ctgctgcgct 2100 caggcttccc ccagcaccag gtcctgtggc tgcccaacag gcagaggccc ttggtgcgga 2160 aggtggctcc tggcttccag cagacgtccg gctccaagga ggcagctgcc acccttcgga 2220 aaggccacat ccagggcctg aacctgcgct acacgcaggt gtcccgccag gagctcaggg 2280 actacgcctc ctggaacctg agcgtgaacc tctacacagt caatgccccc tggctcttct 2340 ccctgctgtg gtgcgccggc gtcccctccg tcacctctga caactcccac accctgtcgc 2400 aggtgcctgt ccccctctgg atcatgcccc cagacgaata ctgcctcatg tgggtcaccg 2460 ccgacctgat ctccttcgcc ctcatcgtgg gcatcttcgt gctccagaac tatcacttga 2520 tcaggtggcg cctgggtggc atacgtagct acaaccctga gcagatcatg ctgagcgctg 2580 cggtgcaccg gaccagccgg gacgtcagca tcatgaagga gaagctcatc ttctcagaga 2640 tcagtgacgg catggaggtc tccgacgagc tctctgtgtg ctcagatcac agttacgaca 2700 cgtatgccaa cagcaccact gcccctgtgg ccccccgagg gagtagcagc cgcaccaaga 2760 ccctcacagg ccggggtggg cattagctga agacctgtct gtccagcctg tacctcgcgt 2820 ggagaccagg gaagcccaga gagctagcag gagtgcgctg ggagctggct ccatggcctt 2880 ctcattggct ccagcccctt gtcagccacg gcctctctcg gagggagctc ccttctccag 2940 cctcttgggt acccctgcag gcctggggtg ccttcttctg ggaagtctga ggcctggtcc 3000 tctcctccca tcctgacctg gaagctctga ggggtcaatg ggcgatgccg tgccccatgg 3060 caatgaggga aatgaagcct gagtgcgccc ctgagcgtct gtccttctgt gctgcaaaga 3120 aacgacttcc tgtttctccc acctcaaggg cgttggctga gcctctgccc cagcagctct 3180 gctcacctgt caggtgaaag cgcaaggaag ctcggcccag gaggaacctg ctgcgtggga 3240 agacactcct cctccctggc cagcctccgc caccattggc cctgccccag gagagggcct 3300 gagccatgtc cccaggagca gctggaggtg gccagaagag cagactcagg gctgctggat 3360 ctcacaccca agtgtccagc aggcctctgg gacaaactgg cctggaggcc caggaggtcc 3420 acagactgac acgacctcag gtttccacat cagtggccaa gggcaggagc ccccagggaa 3480 gaggttcagg catggtcaag ggtgggcgta cggccagagg cccacagtga agggcgtctg 3540 aggagccttg gccaaggtga ttaaagctgc caccttga 3578 <210> 9 <211> 1451 <212> RNA <213> Artificial Sequence <220> <223> NDUFA10 mRNA <400> 9 ggccgtgacg tcacgacggc gcgacggccg cgggagagga ccccggcgcg accgcgtccc 60 ctcgggtcct tgagccggcg cagaccgcgg agccatggcc ttgaggctgc tgagactggc 120 ccccgcgtcc gcgtccgcgg tcccgcgggg cctcggggcg gtcgcccagc gcgtgggcgg 180 aatccacacg ggcgccccgt gcaggctgca gtatggccct ctggccttcg tccttgggga 240 aagaacgacc aggaagctga cggaaaccag caaagtgata actgtggacg gcaacatatg 300 ttccggaaag ggcaggctgg cgagagaaat agccgagaag ctaggcctga ggcacttccc 360 cgaggccggg atccactacg ccgacagcac caccggcgac gggaagcccc tggacgtaca 420 gctcagcggc aactgcagtt tggagaagtt ctatgacgac ccgaaaagta acgacggcaa 480 cagctaccgc ctgcagtcct ggctgtacgc cagccgcctc ctgcagtacg cggacgccct 540 ggagcacctg ctgagcacag gacaaggcgt ggtgctggag cgctccatct acagtgactt 600 tgtgttcttg gaggccatgt acagacaggg cttcatccgg aagcagtgcg tggagcacta 660 caacgaggtg aagaaggtca ccgcctgcga gtacctgccc ccgcacgtgg tcgtctacgt 720 ggacgtgccc gtccccgaga tccagagccg catccagaag aagggcaacc cgcacgagat 780 gaagatcacc gccgcctacc tgcaggacat cgagaacgcc tacaagaaga ccttcctgcc 840 tgagatgagc gaaaaatgtg aggtgttaca gtacagtgcg agggaagccg aagatgcaga 900 aaaggtggtc gaggacatcg agtacctgaa gtgcgacaag ggcccgtggc cggaccagga 960 cgaccgcacc ttccacaggc tgaggatgct ggttcagaat aagctggagg tgctgaatta 1020 cacgaccatt cccgtctatc tcccggaaat caccatcggc gcgcaccaga gcgaccgggt 1080 cttccagaaa ttcacagagc tgccaggccg caagtacagc ccgggctaca acgaggacgt 1140 gggggacaag tggatctggc tgaagtgacc ggtgcctccg acccagctgc ccgaggacga 1200 cactgccccc cggccacccc gctcccctgg gctccctctg gcttagaagc agcggggtgg 1260 gggcagagca cgcggtgcgg ggggcgcctt ctggccttgt gggggcgctc agtgcttggc 1320 tcgggggaag agtcgccccg gagagcgagt gtcacgggag cgttgcattt ctgcacagcg 1380 cgcgccaccc gcggcaggcg acttgggcgg gctttcttca gacgtcgaga aataaaaccg 1440 ttcctctggc a 1451 <210> 10 <211> 3040 <212> RNA <213> Artificial Sequence <220> <223> EBF3 mRNA <400> 10 cggccagggc agccgcctgc cgccgagccc cgagcgccgc tgctcgcgga agcgctgtcg 60 gccgggagct gcggccgccg ccaccagttt tcatgtttgg gattcaggag aatattccgc 120 gcggggggac gaccatgaag gaggagccgc tgggcagcgg catgaacccg gtgcgctcgt 180 ggatgcacac ggcgggggtg gtggacgcca acacggccgc ccagagcggc gtggggctgg 240 cgcgggcgca cttcgagaag cagccgcctt ccaacctccg gaaatccaat ttcttccact 300 tcgtgctggc gctctacgac aggcaggggc agccggtgga gattgaaagg accgcttttg 360 tggactttgt ggagaaagag aaagagccca acaacgagaa aaccaacaac ggcatccact 420 ataaactcca gctgctgtac agcaacggag tcagaacgga gcaggatctg tatgttcggc 480 tcatagattc aatgaccaaa caggccatcg tctacgaggg ccaggacaag aacccggaga 540 tgtgccgcgt gctgctgacc cacgagatca tgtgcagccg gtgctgtgac aagaagagtt 600 gtggcaatag aaatgaaaca ccctcagacc ctgtgatcat tgacagattc tttctaaagt 660 ttttcctcaa gtgcaatcag aactgtttga agaatgcagg caaccctcgg gacatgcgga 720 gattccaggt tgtcgtctcg acaacggtca acgtggacgg ccacgtgctg gccgtgtccg 780 acaacatgtt tgtacacaac aactccaaac acgggcggcg ggcccgccgc ctggacccgt 840 cagaaggtac ggccccttct tatctggaca atgccacccc gtgcatcaag gccatcagtc 900 ccagcgaagg ctggaccacg ggcggagcaa ctgtgatcat cattggcgac aacttctttg 960 acgggctcca ggttgtgttc gggacgatgc tggtgtggag cgagctgata actccgcacg 1020 ccatccgcgt ccagaccccg ccaaggcaca ttcctggagt ggtcgaagtc accctctcct 1080 ataaatccaa gcagttctgt aaaggcgctc cagggcggtt tgtctacacc gcccttaatg 1140 aaccaaccat agattacggc tttcagaggt tgcagaaagt gatcccaaga catccgggtg 1200 atcccgaaag gttacccaag gaagtgttac ttaagagggc agcggacctg gtggaggcct 1260 tgtacgggat gccccacaac aaccaggaga tcatcctgaa gcgagcggcc gacatcgcgg 1320 aggcgttgta cagcgtccct cgcaaccaca accagatccc cgccctgggc aacactcccg 1380 cgcacacggg catgatgggc gtgaactcct tcagcagcca gctagccgtc aacgtctcag 1440 agacgtcaca agccaacgac caagtcggct acagtcgcaa tacaagcagc gtgtccccgc 1500 gaggctacgt ccccagcagc actccccagc agtccaatta caacacagtc agcactagca 1560 tgaatggata tggaagtggc gccatggcca atctaggggt cccgggctcg cctggatttc 1620 ttaatggctc ctccgctaac tctccctacg gcatagtgcc gtccagcccc accatggcag 1680 cctcttcggt caccctccct tcaaactgta gcagtacaca cggcattttc tcattctcac 1740 ctgccaatgt catctctgca gtgaaacaaa agagcgcctt cgcgcccgtg gtccggcccc 1800 aagcctcccc tcctccttcc tgcaccagcg ccaatgggaa cggactgcaa ggctctctgc 1860 tgggtgctga ggacgctacc gtggagaaga caaactggcc cttttgtgaa gtcggtggca 1920 tatttcactt tgatgaacta atgctcaaaa aaggaactgg aaaggtatca gtgatttgca 1980 ataattgtct gcacaacacc tgttagccca tgagagggac gcccagcccc gaggggccgc 2040 cgactggcct gggagccggc agcggtcacc agaccacagt tgcttcagcg gcagggggcc 2100 aggtgccacg gccctgcccg ccgtccgtcc gtccatccgt ccgtccacgc ggtgccgagg 2160 cccgttgcga gtcggcgccg tgtgtacaca acaggtctcc caaaccataa cgttgtaacg 2220 gtgagtcgga ggtaaattaa tattgttgca attaatgacc tgagaaattg aagctcccgt 2280 cacgacatga acagacgtat taatgctcat acataaatta atgagctcca ccactctgac 2340 caaagttaaa caacacgaaa gttaagagat tttaaattgc atttgcacca ggagttcact 2400 gggaagctct gccgcccttg gcatttgagt gcaagtttcc tgcttgcttc cgagaaggga 2460 cacgctccct aaggtggagc tgtggctcgt gtctctgcgg ggccctgggc cctgagcttg 2520 caaaccaggt gggctgtgag tggctttgac cttggcgagc ccgcgactca ccattacgat 2580 acagagcgaa tggcaggagg gccagggcca gggctgagag cagaggggaa accaggcatg 2640 tccagtttga ccgagggggc ccgagcggtg cccgggtgcc cctggcccga gagccggcct 2700 tggctggtgt cacggaagtg accgggttgg ttcacgtctg tcgacggagg tggcctctag 2760 ggagtctggg cctccgcctg ctctgagcca gccaccgaga ggtgcgggca gtggcccctg 2820 cgcacacaaa aggccagcag cctttccctc ggccccgtga ggcctctgag gagggccgcc 2880 gtaggagagg actcgggggg ctgtccccac aggcaccccc gtcccatgca gtaggtgccc 2940 ttgaccgagc ccacggctgg tcagcggaga acactgttga ccgaagccca gggaggccgg 3000 cccgccgcgg tgagaggcac ccctgacctg cccccctctc 3040 <210> 11 <211> 2313 <212> RNA <213> Artificial Sequence <220> <223> ELN mRNA <400> 11 atggcgggtc tgacagctgc agccctgcgg cccggagtcc tcctgctcct gctgtccatc 60 atccacccct cgcagcctgg aggggtccca ggggctgttc ctgggggagt tcccggaggc 120 gtctttttcc caggggctgg tctcggaggc ctgggaggag gagcactggg ccctggaggc 180 aagccaccca agccaggtgt cggagggctc gcaggcgctg gccttggggc agggctcggg 240 gcctttcctg caggcgcctt cccaggggct ctggtgcccg gcggcgtggc tgacgcggcc 300 gcagcctata aagctgctgc caaggctggt gccgggcttg gcggcgttgg tggtgtcggc 360 ggcttaggag tgtctacagg tgcagtggta cctcaactcg gagcaggagt tggagctggc 420 gcgaagccag ggaaagtacc aggtgtgggg ctcccaggtg tctaccctgg tggagtgctc 480 ccgggcacag gagctcggtt cccaggtgta ggggtgctcc ctggcgttcc cactggaaca 540 ggagtcaagg ccaaggcccc aggtggaggt ggagcttttg ctggaatccc aggagttgga 600 ccctttggag gtcagcagcc tggagtcccc ctagggtacc ccatcaaggc acccaagctg 660 ccaggtggct acggactgcc ctacagcact gggaaactgc cctacggctt tgggcctgga 720 ggagtggctg gcgccgcggg caaggctggg tacccaacgg ggacgggggt tggtacacaa 780 gccgcagcag cagcagcagc agctaaagca gcagctaaat atggtgcccc gggagccggc 840 gttctccctg gcgtcggcgt cggaggtgtc ggcgttcctg gcggggccgg cgcgattcct 900 ggcatcggag gcattgcagg ggccggagct ccagctgcag cggctgctgc tgcaaaggcg 960 gccaaatacg gagctgccgg aggcttagtg cctggtgcgc caggcttcgg cccaggagtt 1020 ggagtccccg gtgtaggcgt gcctggtgtt ggagtcccag gtgttggcgt gccaggcgtt 1080 ggggtcccag gtgttggcgt gccaggtgtt ggggtcccag gtgttggcgt gccaggcgtt 1140 ggggtcccag gtgttggagt gccaggtgtt ggggtcccag gggccgtgtc tccagctgca 1200 gctgctaaag cagcagccaa ggcagccaag tacggggcca gaggtggtgt gggagttggc 1260 ggcattccca ctttcggagt gggtgccggg ggctttcctg gctttggtgt cggagtcgga 1320 ggtgttcctg gagctgccct ttcccctgca gctcaggcag ccgccgctgc caaggcagcc 1380 aagctcggtg ctgcaggagc aggagccctg ggtgggctgg tgccaggtgc cgaaggagca 1440 gtaccaggtg tgcccggtgc tggagcagtg ccaggggtag gagccccagc agctgcagcc 1500 gccaaagcag ccgccaaagc cgcccagttc ggcttaggcc ctggcattgg tgtggctccc 1560 ggcgtcggtg tggctcccgg cgtcggtgtg gctcccggcg tcggtgtggc tcccggcgtc 1620 ggtgtggctc ccggcattgg cattggccct ggcggtgtta taggagcagg ggccccggct 1680 gcagccaaat ctgctgctaa ggcagccgcc aaagcccagt tccaggctgc tgctgggctt 1740 cctgccggcg ttcccggatt tggagttggt gccggcgttc ctggatttgg agttggtgct 1800 ggtgttcctg gctttggggc aggtgcagta cctggacccc tggccgcagc taaagcagcc 1860 aaatatgggg cggccggggc ccttggaggg gttggagatc ttggcggagc tggtatccca 1920 ggtggtgtgg caggagtcgg acctgctgcc gccaaagccg ctgccaaagc tgcccagttt 1980 ggcgtcgggg gagtcggagg actgggagtt gggggccttg gagctgttcc aggggctgga 2040 gcctttggag gtgtgtcccc ggctgccgct gctaaagcag ccaaatatgg tgccgctggc 2100 ctcggaggtg tcctaggagt caccaggcca ttcccacttg gaggagtcgc accaaggcct 2160 ggctttggac tgtctcctat tttcccaggt ggcggcgctg ggggcctggg aattggtggc 2220 aaacctccca agcccttcgg aggggccctg ggagccctgg gataccaagg tggggcctgc 2280 ctggggaaat cctgtggccg gaagagaaag tga 2313 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> UGT8 F primer <400> 12 acacaaggtg caagtggcat gaag 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> UGT8 R primer <400> 13 acatgagcct ctgtgagctg gatt 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> UBE2L6 F primer <400> 14 acatcgcgcc atctcatcat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> UBE2L6 R primer <400> 15 gcaggatacc aaaggccagt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MELK F primer <400> 16 aaaccgccct acaacctcag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MELK R primer <400> 17 agggcttcca gttctcgttg 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ZGRF1 F primer <400> 18 gccctcagag tccacatcct t 21 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ZGRF1 R primer <400> 19 cggaacacaa ctcgggtctc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NCALD F primer <400> 20 gtagatgctt ttcagggcgc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NCALD R primer <400> 21 tccttcctct ggtcaatgca 20 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FHL2 F primer <400> 22 tggtttctgt cttgcttgca g 21 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FHL2 R primer <400> 23 gtgcgcacat gcaagagatt 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SERP2 F primer <400> 24 aatgaagggt tggtgtcagg 20 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SERP2 R primer <400> 25 cgggtattgg cttgatgtg 19 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GDPD5 F primer <400> 26 accatctcct ctccctgcat 20 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GDPD5 R primer <400> 27 caggcgccac ttctggag 18 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NDUFA10 F primer <400> 28 gtgggggaca agtggatctg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NDUFA10 R primer <400> 29 ctgtgcagaa atgcaacgct 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EBF3 F primer <400> 30 agatcatcct gaagcgagcg 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EBF3 R primer <400> 31 gtagccgact tatcacgcca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ELN F primer <400> 32 tcctattttc ccaggtggcg 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ELN R primer <400> 33 ctcttccggc cacaggattt 20 <110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Composition for discriminating Nanchukmacdon pork meat and use thereof <130> 2021P-03-028 <160> 33 <170> KoPatentIn 3.0 <210> 1 <211> 1739 <212> RNA <213> Artificial Sequence <220> <223> UGT8 mRNA <400> 1 agctatgaag tcttacactc cgtatttcat gctcctgtgg agtgctgttg ggatagcaaa 60 ggctgccaaa atcatcatcg tgccgccaat tatgtttgaa agccatatgt acattttcaa 12 0 gacactagcc tcagccttgc atgagagggg ccaccacaca gtgttcctgc tctctgaagg 180 cagagacatc gcgccatctc atcattacag cctccagcgc tacccaggga tctttaacag 240 caccacctcg gatgctttcc tgcagtccaa aatgcggaat attttctctg ggagatgac 300 agcagtcgag ctgtttgaca tactggatca ctatactaag aactgcgata tgatggttgg 360 caaccgcgcc ctgattcagg gcctgaaaaa ggagaagttt gacctgctgc tggtggaccc 42 0 gaacgacatg tgtggatttg tgatagctca tcttttaggg gttaaatatg ctgtattttc 480 aactggcctt tggtatcctg ctgaagtggg tgctcctgcc ccgttagctt acgtcccaga 540 gtttaactca ctgctcacag accgcatgaa cctgctgcag aggatgaaaa ataccggcg t 600 ttacctcatt tccagattag cggtcagctt tctggttctt cccagatatg aaagaataat 660 gcagaagtac aacctgctgc cagagaagtc catgtatgac ttggtccacg ggtccagcct 720 gtggatgctg tgtacggatg tagcactgga gtttcccaga cccacgctgc ctaatgttgt 780 ttatgtagga ggaatcctaa ccaaaccggc cagcccacta cccgaagatc tgcaaaggtg 840 ggtcaatggt g ctaatgaac atggctttgt cctggtatct tttggagctg gtgtcaagta 900 tctatcagaa gacattgcta gcaagctggc cggagctctg gggagactgc cccaaaaagt 960 gatttggagg ttttctggaa ccaaaccaaa gaatctgggg aacaatacca agctcataga 1020 atggttaccg caaaatg act tgctcgggca ttcaaatatt aaagccttcc tgagccatgg 1080 tggtttgaat agtattttcg aaactatgta tcatggtgtc cctgtagtgg gcatcccact 1140 ctttggagac cattacgata ctatgacccg ggtacaggca aaaggcatgg ggatcctgct 1200 agagtggaag acagttactg aaggagaggt atatgaagca ctagtgaaag ttatcaataa 1260 tcccagctac cgtcagaggg ctcagaag ct ttcagaaatc cacaaggatc aacctggtca 1320 ccctgtcaat cggactgtct attggatcga ttatattctc cgtcacgatg gagcccatca 1380 cctccgtgcc gctgtccatc aaatctcatt ctgtcagtat tttttactgg atattgcctt 1440 tgtgcttctg cttggt gctg ccttgtttta cttcctcttg tcctgggtga caaaatttat 1500 ctacagaaaa atcaaaagtt tgtggtctag aaataagcat agcacagtta atggacatta 1560 ccctaatgga atcctcaatg gcaagtataa aagaaatggc catattaaac atgaaaagaa 1620 ggtgaaatga gccaacagcc cacctgatag tcaccaatct gttcagtcat tgaattttta 1680 ttgctataat ttaggctaac aactactaaa aggaaaacat cagtaaataa ttc taatac 1739 <210> 2 <211> 462 <212> RNA <213> Artificial Sequence <220> <223> UBE2L6 mRNA < 400> 2 atgacggcga gcaagcgggt ggcgaaggag ctggaggatc ttcagaagga gcttcccagg 60 tacctcggga agctgttcag cgatgatgcc aacgtgttgg tgtggcacgc gctcctcctg 120 cctgagaaac cgccctacaa cctcagggcc ttcaaccttc gcat cagctt cccggagaggag 180 tacccattca agcccccgac ggtgacgttt acaactagga tctaccaccc caacgtggac 240 agcgaaggcc aggtgtgtct gcccatcatc agcaacgaga actggaagcc ctgcaccaag 300 acctgccaag tcctggaggc cctcaacgtg ctggtgaata gacca gagcc ggggcagccc 360 cttcgggtgg agctcgccga ccagctgacc caggacccgg agctgttcaa caggaaggcc 420 gaagagttca ccctccagtt cggagtggac cggccctcct aa 462 <210> 3 <211> 2493 <212> RNA <213> Artificial Sequence <220> <223> MELK mRNA <400> 3 aggtttgatt tcattggcgg gcggaagcgg ccggagccag accat ccaaa agatacctag 60 gcgtccttct cactcgcctc ttcgcttagg actccaggcc ggagcgtgtg acctgtctgg 120 cccagtccct ctctgccctt gcgccctcag cttctttttg taattttgac taaacttcca 180 ggaggattat gaaagattat gatgaacttc tcaaatacta tgaattatat gaaactattg 240 ggacaggtgg ctttgcaaag gtcaaacttg cctgccatat cctcactgga gaaat ggtag 300 ctataaaaat catggataaa aatactctag ggagtgattt gccacgggtc aaaacagaaa 360 tcgatgcctt gaagaacctg aaacatcagc atatatgtca actctaccat gtgatagaga 420 cagcgaacaa aatattcatg gttctcgagt attgccctgg aggagagctg tttgactaca 480 taatctccca ggatcgcctg tcagaggggg agacccgagt tgtgttccgt cagatagtgt 540 ctgcagttgc ttacgtgcac agccagggct atgctcacag ggacctcaaa ccggaaaatt 600 tgttgtttga tgagtatcat aaattgaagc tgattgactt tggtctctgt gcaaaaccca 660 agggtaacaa ggattaccat ctacagacat gctgtgggag tcttgcttat gcagcacc tg 720 aattaataca aggcaaatca tatctgggat cagaggcaga tgtttggagc atgggcatac 780 tcttatatgt acttatgtgt ggctttctac catttgatga tgataacgtc atggctttgt 840 acaagaagat tatgagaggg aaatatgaag ttcctaagtg gctctctccc agtagcattc 900 tacttcttca acaaatgcta caggtggacc caaagaagcg gatttctatg aaaaatctcc 960 tgaaccatcc ctggatcatg caagattaca actgtcccgt tgagtggcaa agcaaaactc 1020 ctcttattca ccttgatgaa gattgtgtaa cggaactttc tgtacatcac agaaacaaca 1080 ggcaaacaat ggaggattta atttcactgt ggcagtatga tcacctcaca gctacttatc 1140 ttct gctcca agccaagaag gctcggggga aaccagttcg tttaaggctt ctttcttcct 1200 atggacaagc caacactact ccagtcacag acatcaagtc aaagaatctg agtctagaag 1260 atatgagcac cagtgatgaa aattatgtgg ctggattaat ggactatgaa tggtgtgaag 1320 at atttcatc aagaggtgtg gctactccac aaacaccaca gtttgccaag cattggacag 1380 aatcaaatgg tctggaatct aaatcattaa ctcccgtatt atgcagagca tctgccaata 1440 aattaaagaa caaagagaat gtatatactc ctaagtctgc tgtaaataat gaagagtgct 1500 ttgtatttcc tgaaccaagg actccagtta ataagaacca gcgtaaaaga gaaatactca 1560 ccacaccaaa tcatttcatt acaccctca a aagctagaaa ccagtgccta aaagaaactc 1620 caattaaaat gccagaaaat tcagcaggaa cagagaagtt agtaacaggt gtcataagcc 1680 ctgagaggcg gtgtcgctca gtggaactca atctcaacca agcacatgta gaggacactc 1740 caaaaaggaa gggaaccaaa gtgtttggga gcctt gagaa gggcttggat aaggtgatca 1800 ctgtgcttac caggagcaag aagaagggct ctgccagaga cgggccaaga agactaaagc 1860 ctcactataa tgtgactaca accagattag tgaatccaga tcaactcttg aatgaaataa 1920 tgtctattct tccaaagaag catgttgact ttgtacaaaa gggctataca ctgaagtgtc 1980 aaacccagtc agattttggc aaagtga caa tgcagtttga actagaagtg tgccagcttc 2040 aaaaacctga tgtggtgggt atcaggaggc agaggcttaa gggtgatgcc tgggtttaca 2100 agagattagt ggaagacatc ctatctagct gcaaggttta attgatagat ggtttccatc 2160 ttgcctgatg agcatggg tg cgatacagcc tacgtggagc ctggtgtgat tggtttgatt 2220 ttaaaagtcc actggaacta cactcgtttc taaagggcta tcctaaagac caatattttt 2280 tgcttgtttg tttttaaaca aaagatactt tttgtggatg aatctaagcc aagactatct 2340 gccgttatct gtaactgtct ttttaagtaa tatgctttgt ataataataa ccattgactt 2400 tcttagattc acttccatac atgaatgtaa gctctta act gtttctcctt ttatttgtaa 2460 tttctttctg aaataaaacc attcatgaat ata 2493 <210> 4 <211> 6850 <212> RNA <213> Artificial Sequence <220> < 223> ZGRF1 mRNA <400> 4 ggcagtggtg ggcgggctaa atagtgggtc ttgatttggt gtggtcgcga gttgatgacg 60 tcaagggctt ttcgcgggag agattcgaaa gtggattttg tgcaatggcc gggtgaaatg 120 agctgtttcc cggggtttct ggggagtaag aggcgagagg cggtgtcgct gattttggcg 180 cgactggacg aagaagtttg ctccgccaga agcggacgat aaggataccg tgtggaacag 240 gattggctca cagcttggtc gaacaacttg caataattgg tgccccgtct tcctcgcctt 300 ctccaatctc tg ctttgcag ttcccgcata catgtggtat aaatagttgt atgaccactg 360 attattctcc ggagacctga ctatatataa tttcagaaga aacaatggaa agccaggaat 420 ttattgtcct atatactcat caaaagatga agaagtcaaa agtatggcaa gatggaattc 480 tgaagatcac tcacgtagga aacaaagcca ttttatatga tgacaaagga cagtgtttgg 540 agagt ttaatt tcttaagtgc cttgaggtga aacctggaga tgatttagaa agtgatcgat 600 acttaatcac agttgaggag gttaaagttg ctggaagcat agctgttaaa caagatatca 660 ttaaaggagc acctccatta aattcaaaga gctttatacc ttctggccgg tcccttgggt 720 gtcaacctgc t ggtttaaaa aggaaattta ctggttttca aggaccacgg caagtgccaa 780 agaaaatggc tattacagaa aatagtgaat cagctgcttc acttgaggct aaggaagctg 840 gtcctgtttt tctttctcca gtctacagca cacctccttt gtttcctact gttggcaaaa 900 aagatataaa ttatatgcca acagaccctg acaaccagga cagagagaga aatggcatag 960 ctttttct tc ggttgtctct actccatcct tcaagattaa cccagaaatg ctatgtgaag 1020 aaaattattt ttgctctact gtcaattctg taaataagca ttcaggttct ttactgaccg 1080 atgagcttat gaaaagagat tgtttggtat ctcacaattc aggagtttca cagaacatta 1140 gaagtaa agc ccagatattg gctcttctga aatccaaatc cactggtaca tctaaagaac 1200 caaattctga gattacagga catttccctc tgatacaacc acaaggaagt ttaaaaattc 1260 ctgctaaact tgagtgctta attgaacagg aagaacacac tcaggtgaag agcacagaaa 1320 gtttatactg ccaacatcaa tcaaaaaata ccatgagaaa taaaagccgg tgggccatgt 1380 atttatcctc acagagttca cct acacatt cttctacagt agatggaaat aatacaggaa 1440 aaaatcctga ggccgaggga ggtaatataa atttaaattt gaaagacgct ttggtgcaaa 1500 aaagcatgcg gtttttagaa acatgtactg aagagggaaa aaagtataat gaagacaagc 1560 cagtagttga taatgatcaa tcct ggaatc aaaaagtaaa attagaattt ccttcattct 1620 gtgaaagcag tgccttacca gttacttgtg acaacgtaga aaacgacagc ttattatcag 1680 aaaatgacag cttattatca gaaaatgaca ttcaagaaaa taataaaaga ctttttaatc 1740 aaaatgacca gatgggcata aaaggatcaa ttctcattac agaaaaagct caggagataa 1800 ccatgtatgg aaccccagct aaggagtata aacatctg ca gattgaatct tcactaagta 1860 acgattttag ggtctctaat ggcattgctg acatgttttc taaaagtaat gctgataatg 1920 aaaatctgaa cagtattcat gaaccacttg tggagattac ttttaatctg aacaattttg 1980 aaaccagtga ctctgaggag gaatcacagg aaagcagca g aatttcccac gattcagagg 2040 gttgggtgaa ggaaacttta gttaaagaca attcaagctg tgagaatata aactgtgcag 2100 aagttggcag tgaccatttg cctctcttaa cgtctagtgg ggacagactt gcagagacat 2160 tttccatgaa agagactctg ctatcacaat tttgtgataa aacttctgta ggttttgaca 2220 caggaccttg gaaagctgga aacactagaa a agaaataga ggaggagtac ggtgacacct 2280 caaacaatct tgactcatct ttagagtgga ctgaagatgc aaatgtaggt agtaatgaag 2340 gcactaataa atctactcag gaagtcacag ttaactatga ttttgcttct ctcccaaatg 2400 aaagtataaa cacaaattta catatccctc actcttta aa cacagccact aatcaggatc 2460 ctgaaaacaa tccatggtca caacaggctc agcctcagcc ttttattatg ggaactgact 2520 tacacaaaaa tactgaacag gttttaccat taacttctag cagtggcaac ggcacccaac 2580 tattaaatgc cagtcagaat cactctgaag aatttcttgc acttgataaa tcacataccc 2640 aagtttccaa ttcttcgttt taccctctgg gagtaaaata tcctatatct aaagacacag 2700 aatcacatat tctggaatct gaagatttgg gaaggactag aagtttacct catgacaata 2760 ctgacataga aactgccaga gagagcaaac agtactggaa tactcctaaa aattcttcag 2820 aactttctgg attagaaaat agcatttccc tattaaaatc attgtctgaa cacagtactg 2880 ctttaga agg cttggaaata ttgaaaaaga aacatacctc ctttaagcaa caaggaactc 2940 tgcagacgta tgatccagaa agcagtcctg aagctagga accattgact acaatagttt 3000 cacaagctat accaaagtct catccgaacc aggatcctca acagatgata aaagaaaatg 3060 aagttaaacc aagtgaatcc ctcaccaagt tttttccctt gggcagtgaa gaagag actg 3120 actcccgagc tctcattcct aaacaaatgg agagaaaaac ctgtgaccct aagcctgttg 3180 agtttcaagg gcaccaagtg aaaggatcag ctgctagtgc tgtgatggtc agaggacaca 3240 gctcccagtt tgaatgcagt caatttccag atagcgtgta t gaaaactgc atgacaaata 3300 cttgtttttt gacacctaag ttgcctagca cttgtatgca gattgacttc ttgcagttgc 3360 cagatgaaga aaacttgata aaaggagatt ccagctttaa cactgaagac aattttcaag 3420 tgatagctga gcctaataag aattcagtta aaaatgatct aatgaaaaag tctctggaga 3480 ataagaacct tcaaaggctt tcattagtaa gtagaatccg agttccactt attactttgc 3540 cagctaccag tggg tcacct gacctagatt cttgttcgtg tgtgatcgac tgtgacaggc 3600 aagagtcttc tgattctccc atagtcaact tgtatgaaga gtcagagctt ccttctttca 3660 gctttggatc tgaggaccaa agtgaaactt ctttctctaa agaatctact gaaatgactc 3720 caagggatat ttcacttctc gataatacat ctactcaaag caagtggctg aaatatcaaa 3780 acataatcca atgcaagttg actacaccaa acagacttga tcagaaagta acagatggct 3840 tctttgctga ggctgtttcc aggatgcatt ttagtgacac aggtgaaaga cagagtgatg 3900 ctgtgaatga aagcttagac tctgagcatt tgcaaatgat aaaatgcatg cttcaacaac 3960 ag cggcagga ttttagcagt caagatttgg tttccagaca gaaagcactc tctttgaatt 4020 taaagcacac ttctaagact gaggaaatta aaaatgtgtt aggagagtct gcctgctaca 4080 cctgcagtgt aagaggagat ttacaggaga taagtgactg tgagctgtgc ttcccaagtg 41 40 gggagaaagt aaaatctgca tatcttcccc aaaggcaaat tcacatacca gctgtttttc 4200 agtctcctgc tcattataaa cagattttta catcttgtct catagaacat ctaaatatat 4260 tgctgtttgg gttggcacaa aggctgcaca aagctctttc aaaagttgac atatcatttt 4320 actcatcaaa cggagacaaa cggaaaaatg tagaaaataa tgtgccatca tgccatcatc 4380 atcaccctgc aaaacttgtc at ggttaaaa aggaaggtcc aaataagggt cgtctctttt 4440 atgcttgtga tggaccccaaa gctgaccaat gtaaattttt caagtggctt gatgaagtga 4500 ccccaggata tttaacacag gaagaatcac tacctagcat ggttttaagt gatataaaaa 4560 gtattggctt gtacttaaga agtcaaa tacccctcta tgaggaatgc caacttttgg 4620 tgagaaaagg atttgatttt caaagaaaac ggtatggtaa actaaagaag tttacaactg 4680 tagatcctga attttataac gaacctaaga gcagacttta tcttaagctg agtcgtaagg 4740 aaagttcatc tgcttatagt aaagatgatc tttgggtggt ttcaaaaacc ctagactttg 4800 aattggatac ttttaattgca tgtagtacat t ctttggacc gtcatctgtc aatgaggtag 4860 agctactacc tttgaaaggt tatttccctt ccaactggcc cactaacaca ttggtccatg 4920 cattattggt ttgtaatgct agcacggagc tgaccacttt gaaaaaatatt caggactact 4980 ttaatccagc tactctgcct ctaacacaga acctg ttaac aatgtcttca tcaactatag 5040 tgagcaacaa gagagtcaat aagagaaaat ttatcccacc agccttctca aatatcaata 5100 caaaatttga actgctcagt ataggagcaa cgctgcagtt agctggtgag ttaattcaca 5160 cacacaagtt aaacaaggat caagctacag ccctaattca gatagcgcaa atgatggcat 5220 cacaaggaag tgctgaagaa gtgaaggaac tgggaactca caccctcc ca atcacgatca 5280 tacatggtgt ttttggagca ggaaaaagtt atttgctggc agtggtgatt ttgttttttg 5340 ttcagctatt tgaaaagagt gaagctcttg cagttggaaa tggaagacct tggaaacttc 5400 tgatttcttc ttctactaat gtagctgttg a cagagtact tcttgggctt cttagtcttg 5460 ggtttgaaaa gtttgtcaga gttgggagtg tcaggaagat tgccaagcca attttacctt 5520 acagtttgca tgctggctca gaaaatgaaa atgaacaatt aaaagaactg catacactca 5580 tgaaggaaga cctgactcct gtggaaagag tctatgtgag aaaaagtatt gagcaacata 5640 aactggggac caataaaacc ctgctgaagc aggttcgagt agttggagtt acc tgtgcag 5700 cctgcccatt tccatgcatg aatgacctta aatttcctgt ggttgtactg gatgagtgta 5760 gccaaataac cgaaccagct tctctccttc ccattgcaag gtttgagtgt gaaaagctta 5820 ttcttgttgg agatcccaaa cagcttcctc ctactattca g ggttctgat gcagctcatg 5880 aaaatggact ggaacaaact ctttttgatc gactttgctt aatgggtcac aagccagttc 5940 ttttgcgaac ccagtaccgt tgtcacccta caatcagtgc tattgctaat gatctgtttt 6000 atgaaggaaa cctcgtgaat ggagtttcag aaacagagag gagcccttta ttggaatggc 6060 ttccaaccct gtgtttctat aacattcaag ggctggaaca gatcga aaga gataacagct 6120 ttcataacgt agcagaagct gcttttacac tcaagctgat tcaatcactg attgtgagtg 6180 gaatagcagg ctctatgatt ggggtgataa cattatacaa atcccagatg tacaagcttt 6240 gtcacttact cactgcactg gactttgacc atcctggtaa tgtgaa agct gtgcaggtgt 6300 ccacagtaga tgcttttcag ggcgctgaaa aggagatcat cattctgtcc tgtgtgagga 6360 caagacaagt aggatttatt gattcagaac aaagaatgaa tgttgcattg accagaggaa 6420 ggagacattt gttgattgtg ggaaatttgg cctgtttgag gaaaaaatcga ctatgggggc 6480 gtgtgatcca acactgtgaa ggcagggaag atggattgca acatgcaagc caatatgaac 6540 cacagctcaa ccatctcctt aaagattatt ttgaaaaaca agcagaagaa aaacaaaaga 6600 aaaagaatga aaaagataaa tccaaagata aatctcattt acaaaaagaa acagtatagt 6660 ttgtatttat ataaattcaa attaatttta tgctatacat ttttattacc cccaaaccct 6720 tgctactggg a aaaaaaaaa agttaaacat atataaaatt tgctctccaa aaaaactatg 6780 attacctata ttaagataga tgtagaaggt aatataaaat ctcagtaata aaagttaatt 6840 ttcttctgga 6850 <210> 5 <211> 3630 <212> RNA <213> Artificial Sequence <220> <223> NCALD mRNA <400> 5 tttggtttct gtcttgcttg cagcatattc ataattag ca acagtaggca cagcgggaaa 60 gaacgttata ctttgaaaca aaagttgggg tttttctagt gaataaagta ttctgaaaag 120 accaaggaaa actgtccaca gattcctatt tggaaaaaaaa tcatctggaa catgccaagg 180 tagttggggt ggaatctctt gcatgtgcgc acgcagttgc tttttggttg ttagagcaaa 240 gtgcagattt tcagtatctt cctctgaaaa ttcagctgtg aagagaagag catcggac gg 300 tcttcactac ggagtcgtct gaattcttgc tgtcaagatg ggaaaacaga acagcaagct 360 gcgcccagag gtcatgcagg acttgctgga aagcacagac tttacagagc acgagatcca 420 ggaatggtat aaaggcttct tgagagactg ccccagtgga catttgtcaa tgga agagtt 480 taagaaaatt tacgggaact ttttccctta tggggatgct tccaaatttg cagagcacgt 540 cttccgcacc ttcgatgcca atggagatgg aacaatagac tttagagaat ttatcatagc 600 cctgagtgta acatcgaggg ggaagctaga gcagaagctg aaatgggcct tcagcatgta 660 tgacctggat ggaaacggct acatcagcaa ggcagagatg ctcgagattg tgcaggcaat 720 ctataagatg gtttcctctg tgatgaaaat gcctgaagat gagtcaaccc cagagaagag 780 aacggaaaaaa atcttccgcc agatggacac caacagagat ggaaaactct ccctggaaga 840 gttcatccga ggggccaaga gcgacccgtc catagtgcgc ctgctgcagt gcgaccccag 900 cagc gccggc cagttctgag cccggcagcc cgcgaatggt agagctgctt gtgttctctt 960 tggatttttc tttttaacaa attttttttt tgttttgcca aacgatattg acggtgatgc 1020 tgttccccat gtggtcggac gcacctccct ccgtgccgcc ttcagcttct tttgtcgtgg 1080 acgcttcgtg ggaatgtcta gagccccccc cgcgcttgtg gagag catgg acagtgctgt 1140 cgtgcacaga ctttgtggtg ttcattgttc tgacgacttt tcatcgttat tattattttt 1200 tttcctttga ttggaaggtc tgtgttcgaa aactgaaaac ttggggaggc aagagaaggg 1260 aaaccaatcc agtccagcga tttt attgca agcttgagca gcttgtttga aaaacgaaac 1320 tccccacctg ggtcacacat gccctaaggt tgatggcacc agaagctgga ttccccaagg 1380 accaggaatc ctctggggcc aggctgttaa agggacctgg gggatccccc cagaggccca 1440 ccctaccctc ttccccagca ggctgtagtt actaagctgt gaacatttca aggtaaatta 1500 atagaggaga ggataaagat ggctaaagga tggctcagct gtttcttccc gggtttacat 1560 gagttgagct aagatgaatt tcttt ggaaa cttaatgcaa atgctaactt gtattccaaa 1620 accagaccca tcttgttgcc tattgtgatt taaaaaaaaa aaaaaaagat cattgtatat 1680 aaaatattgg gtattgcaga ccaaattaag tgttttgcct tgtttaaatg aaatgcatgt 1740 ttagtgagca ctaatacaat cttattacag aagactgttt ttagtagctt attgtgaagc 1800 aagccagcta taaggaatgt ctgtcttgtt ttaaagtcat atctgtctgc acaaatgcac 1860 caatcaacag atatatttta tatattccag aaaagtacaa agtaatcgtg accagggctc 192 0 aaccttcatt ttgaatgcat ttccagtggt agcacctatt ccagaagtgg ggcaggtaga 1980 gtgggatggg tcaactgcag caccagaagg ttcttgttta ttcgaaatgt gggtttgccc 2040 acccagccca gcagatcgtc gatagtatta gattggaagt gtggtgcttt tccga gcaga 2100 tcaataactc tgtagacgct ttcccccacc caacccccac cccccgaccc caaaaggcaa 2160 aaatcctcaa gacttcctaa tgttttaatc cacatgcatg gttaggcagc tgtaggctgg 2220 aatattgact ttcccatgcc cccagtggcc tttaagagag tcagagattg ggcagtcatc 2280 tggttcatct tgaagtcagc aagtcaggtg tgtctgtgat ttccaaggcc cgctatgggg 2340 acttgga agt cttttccatt tctacgtttt ctgaatgcag atttctattt ccagaagtga 2400 taacccaatt tgagtttctg tttggtctga tgacctcata caccctaatt tgaattggaa 2460 ggtaagagtg aaagttgccg atcgcaggtg agtcacatta gcacaagcaa taggcatggg 2520 gaagcccaaa cagttaaggc tggagatggg gagaatgtgc ctcaagaagg cagagaggtc 2580 cccttggctg tggccacact ccttgggtag accatgaacc acagagagac tcctaaccat 2640 gaggaagatg atgctgagcc tgcttaaacc tccagattcc tgtgtgttac tcgattccat 2700 tttaactgat aatgaacatc cgaattagca tcggattttt cagtggaccg aaatgaaaca 2760 actttgccgg gtgagatttt gag agttgga ctctgtaaaa tcatcttcct ctgtcagttg 2820 ttcatagtgg ttctataccg tgaaccttgc cgagttcctc cactggccaa gtggtaaaat 2880 ctggttttga caactaggga attattaacc caaagcgtgg catgcagagg ggcaggggac 2940 cacgccctct atagg caatg tcctggagct gcatcccact ttctctcccg cacttaattg 3000 aagatccagt tcctcctttt agtttttcct gagatggtgg agtcagttaa tgcttgagaa 3060 agcccgcctg agctctgccc tcagtcttga catcatactg agccagattc agtccctgga 3120 acctagagct gcagtgagaa gcccgaagag ctgttaagaa agaatccagc gttgccacag 3180 ctgtgatgat gtaggttg ca gctccggctc ggattcagtc cctggttcag caactccata 3240 tgccatggga tggccaaaaa agaaaaaaag aaagaaagaa aaggaaatag atcagactca 3300 tggctgatga atgctgacaa gctcgagatg gatgaagaat aatccctatc ctggcctgcc 3360 cgtgaccctg tctgtatttt gagggttgtt ttcctcatgc tccccctgcc tcacaaggcc 3420 tttgtacatc tgatgcagtg cccttgagtg tggccaaggg actcagtagc acccaaaagg 3480 ccgaatggct caaggcttac gtcactcctg tgtggggctg gtcagtgtcg ctgctgtgtg 3540 gcgggacctc tggaaatgga gtctgttctg tctgagatca agccggcctg tgatgttcaa 3600 gggacgggaa taaagtggct tgaaggatgc 3630 <210> 6 <211> 2607 <212> RNA <213> Artificial Sequence <220> <223> FHL2 mRNA <400> 6 gcttgcaaga gcgagggctg ggttcttatc tcctgagctc tggacctgcc ttatttatag 60 cccagcttgc cggcagctgc atacaagttg ggacggttgg ctcagcagcc actgtcccct 120 ccagtcaggc tgaaaccagc caggtggcag aagtccagca ccaagatgac tgagcgct tc 180 gactgtcacc actgtgagaa ctccctcttc ggccggaagt atgtcctgcg ggaggagcag 240 ccctactgcg tgggctgctt tgaggccctc ttcgccagca catgcgagga gtgtgggaag 300 ctgattggat gcgactgcaa ggacttatcc tacaaggacc ggcactggca c gaggcctgc 360 ttccactgct cgcgatgcag gagctccctc gtggacaagc catttgctgc caaggaggac 420 caggtgctct gcactgactg ctactcgcag gagtactcat cccgctgcca ggagtgcagg 480 aaggccatca tgccaggcac ccgcaagatg gaatacaagg gcagcagctg gcacgagacc 540 tgcttcacct gccaccgctg ccagcagccc attgggacca agagcttcat ccctaaggac 600 ggccaga act tctgtgtgcc ctgctatgag aagcagcacg ccttgcagtg cattcagtgc 660 aaaaagccca tcaccagcgg gggcgtcacg taccgtgagc agccctggca cagggagtgc 720 ttcgtgtgca ccgcctgcaa gaagccactg tccggccagc gcttcacgtc cc gtgacgag 780 ttcgcctact gcctgggctg cttctgcgac ctgtacgcca agaagtgtac aggctgcgcc 840 aaccccatca gtggactggg cggcaccaag tacatctcct tcgaggagcg gcagtggcac 900 aacgactgct tcaactgcaa gaagtgctcg ctgtcgctgg tggggcgagg cttcgtcacc 960 gagagagacg acatcctgtg ccccgactgc gggaaggaca tctgagccgc tagagggcct 1020 gctcgcgctg ctttccccct gtgcgccccg ccccgccgcg ccccgccccg ccccgccgcg 1080 ccccgccccg ccccgccccg ccgcgccccg cccccaggtg gtgccgcggc ccccggcccc 1140 gcctgctacc tgtgccgccc acacctgttt acagccttgc tccg cgcttg tgcctgaggc 1200 ctagggaagg aggtcctgga gcccgaagtg ggaggtggtt gtgcattcgt ggaatcacgc 1260 aaggacaatc cgagtggaaa catccttttg aatgctatct ttatagaccg acctttcttt 1320 cactgtgtct ttaattatta agtgcaatta ccgcgagtta atgaagggtt ggtgtcaggg 1380 cgttgaccgg tggcctagtg cttggctttt ggcgctttcg cggctacagc caggggcagt 1440 aatccctggc ctgg gacctg agatctcaca tcaagccaat acccgccaaa gccaaaaaaa 1500 tggtatttcc aaggccgtaa ctttgtcacg tggagcccaa agcaaggtga gccggctcac 1560 gataaagtga tccgggagga aatcttatgt caagtgcagt gggtcaaata tgaaacgtta 1620 agg gtctcag cataaacaac acttgactgc agcttccact agggctctga cggactgaaa 1680 ttgcatcagg ccttttatcg aaaaggaagc cgcagtcagc accagggcag ctgccttcct 1740 ctctgaccct ttcccagact ccctgggaat ttaatgctca gcctaggatg tggtgacata 1800 agcgacagca cgtgagctga tggacgtgcg ggcagcactg ggtcactttt ctggacagag 1860 ctcgatgctc tcctgtgctc ccggccaagc cctcacacct gcctgccttc tcctccgtga 1920 gtggaggctt acaggaggca caggtgactc cagaccagag ttgatgtcct gcgcacctgt 1980 attttgtcaa cacctgggca actgaggcca cctgggagcc ttctgtgagt gtttctgaag 2040 gataaga agg gaaatcacag ctctaaatag aacactcctt ttcaggtagg ctcctgagct 2100 gacttctaaa ggttcgctat gccctagacc cagaaaaccc caaaaaatca ctgcacatca 2160 agaggttaag gtttttgtgc tcaccttttt ttggccacgc ccttggcatg tggaatttat 2220 gccaacttac caggtagggc atggcatggt tctttttggg ataacaactg tgattttttt 2280 gtccttagct ttctaagata atgcagtatg atacaatga t cggctatgca gcagaaaaat 2340 ctggttgaac tcaagtccca cctacgcaga gcatctgtga agccagtttc ttaatctgag 2400 tgctggtcac tgtgagaagt gcttgattgt ggctgaaacg ggcctctggc tgtatggtct 2460 gttggctgga ggctttgctc a aaaaaaata accaccaccc ccctccacct tgttagttgc 2520 tttgctggct cttactttat gatataaagg taaatgcatt cttgcaaatg tgctttttaa 2580 aataaaaata gcaaaattca aaaaaaa 2607 <210> 7 <211> 642 <212> RNA <213> Artificial Sequence <220> <223> SERP2 mRNA <400> 7 acccagaggg agtcacagcc ccgagactgg caagtgtgag gaactgagca gcccgggaga 60 aaccctt ctg tgtcaccaca aagggaagac ggaggacctg catctgctct ggacctcctg 120 cctcaggatc ggagatggcc aatctggaaa aagatgtctc ctcggccact ggcgcccgca 180 agctatcttc cagatcattc agagcataag gatgggcatg tgagccggct gggctttaag 240 cccaccctcc ccccgacccc cggagggcgg aggaccattt cagctcgtgg ccaggtagct 300 gcgggaagcc gaccagccgc ccc ggagaga aaaaaaggct ccctccagtg tcccccctgc 360 cccgatccct gcatcgtgga tgtcagacca aattgccttc tcagaggaca tctcggcccc 420 tccgagttct ccagcggaaa ggacgtttgg ctttgctctt ggcaggattg gtccttcccg 480 gattggtgtc t gcggcgggc cctgtctgtc cgggtgtggc cctgggtttc cgtgatgtct 540 gcatgtgggc ctcggaatga tcaccgcttt actttctacg gatacaattt ctgctccatt 600 gggaattgct tttacaaata aatgtctttg ttcaacctta aa 642 <210> 8 <211> 3578 <212> RNA <213> Artificial Sequence <220> <223> GDPD5 mRNA <400> 8 ggtgaccccg ccccaattcg ggcgg ggccg cgttggccgg cgctccggcg ctgggcggcg 60 ctgcctcggc tctgctcgac tccggctcag gctcctgcgg cagctcctgt gggggtgggc 120 ggcggggctg acagcggcgg tggcagcggc tgcggctcga ggctgagcga gcggcgggcc 180 agccgggaga agaggaggaa gtggagccgc ggctgtgagc tctggagtca gctgccacgc 240 cgaggaccgc cccattttgc aga gcgagcc gagtccggac ctaggaagac ttctctaccg 300 ggctccagcc gccgcggctc cgcgtcttct cgcccgcgcc ctgccttgcc ccgccaaccc 360 cagcccggtt ctgcgctccg cggtccgggg cgtgtggccg ggacgcctca aacccctgac 420 cctgatcc ag tgcaccaggg cgggacgctc ctggcccacc acacggctct gggattaccg 480 gctccttccc agcctttctc tagtgtgtgc cgaagcccct agccctccgc ccgggattaa 540 ggcagggtgc ccccacccct ccgtctgagt gcaaaggagc ccggaccttc agctgcctct 600 gccccggtgc ttcggatttg gtgcggtgct aacgtccagg aagccccgac ccgggcccag 660 agccctatga ggggtcccag gcgggctggc cc gtcggact gaaccggact gggctggtgc 720 tgtgagacga agcagccacc ttcctgccgc cccgggcgag gggctgagcg cttgccccga 780 agaaaacaca ggggagagcc gagtgctgca gctctcccag tgaagccaca tcgccacctc 840 cgtggacagg acgcccccgg gag cccagct cacagccact ggtacctgct tccaggacca 900 gccggggcct ccatgggcgc ctgagggcgg ggtgccaggc cggcagcgcg agcatggtga 960 gacaccagcc cctgcagtac tacgagccgc agctctgcct ctcctgcctc actggcatct 1020 acggctgccg ctggaagcgc taccagcgct ctcacgatga caccacgccg tggggagcgcc 1080 tctggttcct gctcctcacc ctcacctttg gcctcacgct cacct ggctc tacttctggt 1140 gggaggtcca caatgactac gacgaattca actggtacct ctacaaccgc ttgggctact 1200 ggagtgactg gtctgtgccc attctcatgg ccacagctgc cgctttcacg tacgtcgcgg 1260 gcctgcaggt cctggcactg tgtcacatcg ccg tgggaca gcagatgaac ctgcactggc 1320 tgcacaagat agggctggtg gccatcctgg tggccacggt ggtggccatg tcggccgtgg 1380 cccagctgtg ggaggacgag tgggaggtgc tgctcatctc cctgcagggc acagcgccat 1440 tcctgcacgt gggggccctg gccgccgtca ccgcgctctc ctggatcgtg gcaggacagt 1500 ttgcccgcgc cgagcggtcc tcctcccagg tggccatcct cagta ccttc ctcgccgtgg 1560 tgtttgccct ctacctggcc cctctcacca tctcctctcc ctgcatcatg gagaaaaagg 1620 acctgggccc caagcctgcc ctcatcggcc accgcggggc ccccatgctg gccccggagc 1680 acacgctgat gtccttcagg aaggccctgg agcaga agct gtacggactg caggctgacg 1740 tcaccatcag cctggacggc gtgcccttcc tcatgcacga cgccaccctg cggcgcacca 1800 ccaacgtgga ggagctgttc ccggagctcg ctcgcaggcc cgcctccatg ctcaactgga 1860 ccatcctgca gaggctcaac gctggccagt ggttcctgaa gacggacccc ttctggacgg 1920 ccagctccct gtcaccctct gaccagagag aggcccaaaa ccagtccatc tgcagcctca 1980 cggagctctt ggagttggcc aagggcaacg ccacactgct gctcaacctg cgcgacccgc 2040 cgcgggagca cccctaccgg ggcagcttcg tcaacgtcac gctggaggcc ctgctgcgct 2100 caggcttccc ccagcaccag gtcctgtggc tgcccaacag gcagaggccc tt ggtgcgga 2160 aggtggctcc tggcttccag cagacgtccg gctccaagga ggcagctgcc acccttcgga 2220 aaggccacat ccagggcctg aacctgcgct acacgcaggt gtcccgccag gagctcaggg 2280 actacgcctc ctggaacctg agcgtgaacc tctacacagt caatgccccc tggctcttct 2340 ccctgctgtg gtgcgccggc gtcccctccg tcacctctga caactcccac accctgtcgc 2400 agg tgcctgt ccccctctgg atcatgcccc cagacgaata ctgcctcatg tgggtcaccg 2460 ccgacctgat ctccttcgcc ctcatcgtgg gcatcttcgt gctccagaac tatcacttga 2520 tcaggtggcg cctgggtggc atacgtagct acaaccctga gcagatcatg ctgagcgctg 2580 cggtgcaccg gaccagccgg gacgtcagca tcatgaagga gaagctcatc ttctcagaga 2640 tcagtgacgg catggaggtc tccgacgagc tctctgtgtg ctcagatcac agttacgaca 2700 cgtatgccaa cagcaccact gcccctgtgg ccccccgagg gagtagcagc cgcaccaaga 2760 ccctcacagg ccggggtggg cattagctga agacctgtct gtccagcctg tacctcgcgt 2820 ggagaccagg gaagcccaga gagctag cag gagtgcgctg ggagctggct ccatggcctt 2880 ctcattggct ccagcccctt gtcagccacg gcctctctcg gagggagctc ccttctccag 2940 cctcttgggt acccctgcag gcctggggtg ccttcttctg ggaagtctga ggcctggtcc 3000 tctcctccca tcctga cctg gaagctctga ggggtcaatg ggcgatgccg tgccccatgg 3060 caatgaggga aatgaagcct gagtgcgccc ctgagcgtct gtccttctgt gctgcaaaga 3120 aacgacttcc tgtttctccc acctcaaggg cgttggctga gcctctgccc cagcagctct 3180 gctcacctgt caggtgaaag cgcaaggaag ctcggcccag gaggaacctg ctgcgtggga 3240 agacactcct cctccctggc cagcct ccgc caccattggc cctgccccag gagagggcct 3300 gagccatgtc cccaggagca gctggaggtg gccagaagag cagactcagg gctgctggat 3360 ctcacaccca agtgtccagc aggcctctgg gacaaactgg cctggaggcc caggaggtcc 3420 acagactgac acgacctcag gtttc cacat cagtggccaa gggcaggagc ccccagggaa 3480 gaggttcagg catggtcaag ggtgggcgta cggccagagg cccacagtga agggcgtctg 3540 aggagccttg gccaaggtga ttaaagctgc caccttga 3578 <210> 9 <211> 1451 <212> RNA <213> Artificial Sequence <220> <223> NDUFA10 mRNA <400> 9 ggccgtgacg tcacgacggc gcgacggccg cgg gagagga ccccggcgcg accgcgtccc 60 ctcgggtcct tgagccggcg cagaccgcgg agccatggcc ttgaggctgc tgagactggc 120 ccccgcgtcc gcgtccgcgg tcccgcgggg cctcggggcg gtcgcccagc gcgtgggcgg 180 aatccacacg ggcgccccgt gcaggctgca gtatggccct ctggccttcg tccttgggga 240 aagaacgacc aggaagctga cggaaaccag caaagtgata actgtggacg g caacatatg 300 ttccggaaag ggcaggctgg cgagagaaat agccgagaag ctaggcctga ggcacttccc 360 cgaggccggg atccactacg ccgacagcac caccggcgac gggaagcccc tggacgtaca 420 gctcagcggc aactgcagtt tggagaagtt ctatgacgac ccgaaaagta ac gacggcaa 480 cagctaccgc ctgcagtcct ggctgtacgc cagccgcctc ctgcagtacg cggacgccct 540 ggagcacctg ctgagcacag gacaaggcgt ggtgctggag cgctccatct acagtgactt 600 tgtgttcttg gaggccatgt acagacaggg cttcatccgg aagcagtgcg tggagcacta 660 caacgaggtg aagaaggtca ccgcctgcga gtacctgccc ccgcacgtgg tcgtct acgt 720 ggacgtgccc gtccccgaga tccagagccg catccagaag aagggcaacc cgcacgagat 780 gaagatcacc gccgcctacc tgcaggacat cgagaacgcc tacaagaaga ccttcctgcc 840 tgagatgagc gaaaaaatgtg aggtgttaca gtacagtgcg agggaagccg aagat gcaga 900 aaaggtggtc gaggacatcg agtacctgaa gtgcgacaag ggcccgtggc cggaccagga 960 cgaccgcacc ttccacaggc tgaggatgct ggttcagaat aagctggagg tgctgaatta 1020 cacgaccatt cccgtctatc tcccggaaat caccatcggc gcgcaccaga gcgaccgggt 1080 cttccagaaa ttcacagagc tgccaggccg caagtacagc ccgggctaca acgaggacgt 1140 gg gggacaag tgg atctggc tgaagtgacc ggtgcctccg acccagctgc ccgaggacga 1200 cactgccccc cggccacccc gctcccctgg gctccctctg gcttagaagc agcggggtgg 1260 gggcagagca cgcggtgcgg ggggcgcctt ctggccttgt gggggcgctc agtgcttggc 1 320 tcgggggaag agtcgccccg gagagcgagt gtcacgggag cgttgcattt ctgcacagcg 1380 cgcgccaccc gcggcaggcg acttgggcgg gctttcttca gacgtcgaga aataaaaccg 1440 ttcctctggc a 1451 <210> 10 <211> 3040 <212> RNA <213> Artificial Sequence <220> <223> EBF3 mRNA <400> 10 cggccagggc agccgcctgc cgccgagccc cgagcgccgc tgctcgcgga agcgctgtcg 60 gccgggagct gcggccgccg ccaccagttt tcatgtttgg gattcaggag aatattccgc 120 gcggggggac gaccatgaag gaggagccgc tgggcagcgg catgaacccg gtgcgctcgt 180 ggatgcacac ggcgggggtg gtggacgcca acacggccgc ccagagcggc gtggggctgg 240 cgcgggcgca cttcgagaag cagccgcctt ccaacctccg gaaatccaat t tcttccact 300 tcgtgctggc gctctacgac aggcaggggc agccggtgga gattgaaagg accgcttttg 360 tggactttgt ggagaaagag aaagagccca acaacgagaa aaccaacaac ggcatccact 420 ataaactcca gctgctgtac agcaacggag tcagaacgga gcaggatctg tatg ttcggc 480 tcatagattc aatgaccaaa caggccatcg tctacgaggg ccagggacaag aacccggaga 540 tgtgccgcgt gctgctgacc cacgagatca tgtgcagccg gtgctgtgac aagaagagtt 600 gtggcaatag aaatgaaaca ccctcagacc ctgtgatcat tgacagatc tttctaaagt 660 ttttcctcaa gtgcaatcag aactgtttga agaatgcagg caaccctcgg gacatgcgga 72 0 gattccaggt tgtcgtctcg acaacggtca acgtggacgg ccacgtgctg gccgtgtccg 780 acaacatgtt tgtacacaac aactccaaac acgggcggcg ggcccgccgc ctggacccgt 840 cagaaggtac ggccccttct tatctggaca atgccacccc gtgcatcaag gccatcagtc 900 ccagcgaagg ctggaccacg ggcggagcaa ctgtgatcat cattggcgac aacttctttg 960 acgggctcca ggttgtgttc gggacgatgc tggtgtggag cgagctgata actccgcacg 1020 ccatccgcgt ccagaccccg ccaaggcaca ttcctggagt ggtcgaagtc accctctcct 1080 ataaatccaa gcagttctgt aaaggcgctc cagggcggtt tgtctacacc gcccttaatg 1140 aaccaacca t agattacggc tttcagaggt tgcagaaagt gatcccaaga catccgggtg 1200 atcccgaaag gttacccaag gaagtgttac ttaagagggc agcggacctg gtggaggcct 1260 tgtacgggat gccccacaac aaccaggaga tcatcctgaa gcgagcggcc gacatcgcgg 1320 aggc gttgta cagcgtccct cgcaaccaca accagatccc cgccctgggc aacactcccg 1380 cgcacacggg catgatgggc gtgaactcct tcagcagcca gctagccgtc aacgtctcag 1440 agacgtcaca agccaacgac caagtcggct acagtcgcaa tacaagcagc gtgtccccgc 1500 gaggctacgt ccccagcagc actccccagc agtccaatta caacacagtc agcactagca 1560 tgaatggata tggaagt ggc gccatggcca atctaggggt cccgggctcg cctggatttc 1620 ttaatggctc ctccgctaac tctccctacg gcatagtgcc gtccagcccc accatggcag 1680 cctcttcggt caccctccct tcaaactgta gcagtacaca cggcattttc tcattctcac 1740 ctgccaatgt cat ctctgca gtgaaacaaa agagcgcctt cgcgcccgtg gtccggcccc 1800 aagcctcccc tcctccttcc tgcaccagcg ccaatgggaa cggactgcaa ggctctctgc 1860 tgggtgctga ggacgctacc gtggagaaga caaactggcc cttttgtgaa gtcggtggca 1920 tatttcactt tgatgaacta atgctcaaaa aaggaactgg aaaggtatca gtgatttgca 1980 ataattgtct gcacaacacc tgttagccca tga gagggac gcccagcccc gaggggccgc 2040 cgactggcct gggagccggc agcggtcacc agaccacagt tgcttcagcg gcagggggcc 2100 aggtgccacg gccctgcccg ccgtccgtcc gtccatccgt ccgtccacgc ggtgccgagg 2160 cccgttgcga gtc ggcgccg tgtgtacaca acaggtctcc caaaccataa cgttgtaacg 2220 gtgagtcgga ggtaaattaa tattgttgca attaatgacc tgagaaattg aagctcccgt 2280 cacgacatga acagacgtat taatgctcat acataaatta atgagctcca ccactctgac 2340 caaagttaaa caacacgaaa gttaagagat tttaaattgc atttgcacca ggagttcact 2400 gggaagctct gccgcccttg gcatttgagt gcaagtttcc tgcttgcttc cgagaaggga 2460 cacgctccct aaggtggagc tgtggctcgt gtctctgcgg ggccctgggc cctgagcttg 2520 caaaccaggt gggctgtgag tggctttgac cttggcgagc ccgcgactca ccattacgat 2580 acagagcgaa tggcaggagg gccagggcca gggct gagag cagaggggaa accaggcatg 2640 tccagtttga ccgagggggc ccgagcggtg cccgggtgcc cctggcccga gagccggcct 2700 tggctggtgt cacggaagtg accgggttgg ttcacgtctg tcgacggagg tggcctctag 2760 ggagtctggg cctccgcctg ctctgagcca gccaccgaga ggtgcgggca gtggcccctg 2820 cgcacacaaa aggccagcag cctttccctc ggccccgt ga ggcctctgag gagggccgcc 2880 gtaggagagg actcgggggg ctgtccccac aggcaccccc gtcccatgca gtaggtgccc 2940 ttgaccgagc ccacggctgg tcagcggaga acactgttga ccgaagccca gggaggccgg 3000 cccgccgcgg tgagaggcac ccctgacctg ccccc ctctc 3040 <210> 11 <211> 2313 < 212> RNA <213> Artificial Sequence <220> <223> ELN mRNA <400> 11 atggcgggtc tgacagctgc agccctgcgg cccggagtcc tcctgctcct gctgtccatc 60 atccacccct cgcagcctgg aggggtccca ggggctgttc ctgggggagt tcccggaggc 1 20 gtctttttcc caggggctgg tctcggaggc ctgggaggag gagcactggg ccctggaggc 180 aagccaccca agccaggtgt cggagggctc gcaggcgctg gccttggggc agggctcggg 240 gcctttcctg caggcgcctt cccaggggct ctggtgcccg gcggcgtggc tgacgcggcc 300 gcagcctata aagctgctgc caaggctggt gccgggcttg gcggcg ttgg tggtgtcggc 360 ggcttaggag tgtctacagg tgcagtggta cctcaactcg gagcaggagt tggagctggc 420 gcgaagccag ggaaagtacc aggtgtgggg ctcccaggtg tctaccctgg tggagtgctc 480 ccgggcacag gagctcggtt cccaggtgta ggggtgct cc ctggcgttcc cactggaaca 540 ggagtcaagg ccaaggcccc aggtggaggt ggagcttttg ctggaatccc aggagttgga 600 ccctttggag gtcagcagcc tggagtcccc ctagggtacc ccatcaaggc acccaagctg 660 ccaggtggct acggactgcc ctacagcact gggaaactgc cctacggctt tgggcctgga 720 ggagtggctg gcgccgcggg caaggctggg tacccaacgg ggacgggggt tggtacacaa 780 gccgcag cag cagcagcagc agctaaagca gcagctaaat atggtgcccc gggagccggc 840 gttctccctg gcgtcggcgt cggaggtgtc ggcgttcctg gcggggccgg cgcgattcct 900 ggcatcggag gcattgcagg ggccggagct ccagctgcag cggctgctgc tgcaaaggc g 960 gccaaatacg gagctgccgg aggcttagtg cctggtgcgc caggcttcgg cccaggagtt 1020 ggagtccccg gtgtaggcgt gcctggtgtt ggagtcccag gtgttggcgt gccaggcgtt 1080 ggggtcccag gtgttggcgt gccaggtgtt ggggtcccag gtgttggcgt gccaggcgtt 1140 ggggtcccag gtgttggagt gccaggtgtt ggggtcccag gggccg tgtc tccagctgca 1200 gctgctaaag cagcagccaa ggcagccaag tacggggcca gaggtggtgt gggagttggc 1260 ggcattccca ctttcggagt gggtgccggg ggctttcctg gctttggtgt cggagtcgga 1320 ggtgttcctg gagctgccct ttcc cctgca gctcaggcag ccgccgctgc caaggcagcc 1380 aagctcggtg ctgcaggagc aggagccctg ggtgggctgg tgccaggtgc cgaaggagca 1440 gtaccaggtg tgcccggtgc tggagcagtg ccaggggtag gagccccagc agctgcagcc 1500 gccaaagcag ccgccaaagc cgcccagttc ggcttaggcc ctggcattgg tgtggctccc 1560 ggcgtcggtg tggctcccgg cgtcggtgtg gctcccggcg tcggtgtggc tcccggcgtc 1620 ggtgt ggctc ccggcattgg cattggccct ggcggtgtta taggagcagg ggccccggct 1680 gcagccaaat ctgctgctaa ggcagccgcc aaagcccagt tccaggctgc tgctgggctt 1740 cctgccggcg ttcccggatt tggagttggt gccggcgttc ctggatttgg agttggtgct 1800 ggtgttcctg gctttggggc aggtgcagta cctggacccc tggccgcagc taaagcagcc 1860 aaatatgggg cggccggggc ccttggaggg gttggagatc ttggcggagc tggtatccca 1920 ggtggtgtgg caggagtcgg acctgctgcc gccaaagccg ctgccaaagc tgcccagttt 1980 ggcgtcgggg gagtcggagg actgggagtt gggggccttg gagctgttcc aggggctgga 2040 gcctttggag gtgtgtcccc ggctgccgct gctaaagcag ccaaatatgg tgccgctggc 2100 ctcggaggtg tcctaggagt caccaggcca ttcccacttg gaggagtcgc accaaggcct 2160 ggctttggac tgtctcctat tttcccaggt ggcggcgctg ggggcctggg aattggtggc 2220 aaac ctccca agcccttcgg aggggccctg ggagccctgg gataccaagg tggggcctgc 2280 ctggggaaat cctgtggccg gaagagaaag tga 2313 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> UGT8 F primer <400> 12 acacaaggtg caagtggcat gaag 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> UGT8 R primer <400> 13 acatgagcct ctgtgagctg gatt 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> UBE2L6 F primer <400> 14 acatcgcgcc atctcatcat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> UBE2L6 R primer <400> 15 gcaggatacc aaaggccagt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MELK F primer <400> 16 aaaccgccct acaacctcag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MELK R primer <400> 17 agggcttcca gttctcgttg 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ZGRF1 F primer <400> 18 gccctcagag tccacatcct t 21 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ZGRF1 R primer <400> 19 cggaacacaa ctcgggtctc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NCALD F primer <400> 20 gtagatgctt ttcagggcgc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NCALD R primer <400> 21 tccttcctct ggtcaatgca 20 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FHL2 F primer <400> 22 tggtttctgt cttgcttgca g 21 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> FHL2 R primer <400> 23 gtgcgcacat gcaagagatt 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SERP2 F primer <400> 24 aatgaagggt tggtgtcagg 20 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SERP2 R primer <400> 25 cgggtattgg cttgatgtg 19 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GDPD5 F primer <400> 26 accatctcct ctccctgcat 20 < 210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GDPD5 R primer <400> 27 caggcgccac ttctggag 18 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence < 220> <223> NDUFA10 F primer <400> 28 gtgggggaca agtggatctg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NDUFA10 R primer <400> 29 ctgtgcagaa atgcaacgct 20 <210 > 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EBF3 F primer <400> 30 agatcatcct gaagcgagcg 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> EBF3 R primer <400> 31 gtagccgact tatcacgcca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ELN F primer <400> 32 tcctattttc ccaggtggcg 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ELN R primer<400> 33 ctcttccggc cacaggattt 20

Claims (9)

서열번호 1로 기재되는 UGT8 유전자; 서열번호 2로 기재되는 UBE2L6 유전자; 서열번호 3으로 기재되는 MELK 유전자; 서열번호 4로 기재되는 ZGRF1 유전자; 서열번호 5로 기재되는 NCALD 유전자; 서열번호 6으로 기재되는 FHL2 유전자; 서열번호 7로 기재되는 SERP2 유전자; 서열번호 8로 기재되는 GDPD5 유전자; 서열번호 9로 기재되는 NDUFA10 유전자; 서열번호 10으로 기재되는 EBF3 유전자; 및 서열번호 11로 기재되는 ELN 유전자를 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 바이오마커 조성물.
UGT8 gene represented by SEQ ID NO: 1; UBE2L6 gene represented by SEQ ID NO: 2; MELK gene represented by SEQ ID NO: 3; ZGRF1 gene represented by SEQ ID NO: 4; NCALD gene represented by SEQ ID NO: 5; FHL2 gene represented by SEQ ID NO: 6; SERP2 gene represented by SEQ ID NO: 7; GDPD5 gene represented by SEQ ID NO: 8; NDUFA10 gene represented by SEQ ID NO: 9; EBF3 gene represented by SEQ ID NO: 10; and an ELN gene shown in SEQ ID NO: 11.
제1항에 있어서,
상기 난축맛돈은 한국재래돼지(Korean Native Pig), 랜드레이스(Landrace) 및 듀록(Duroc) 품종을 서로 교배하여 생산한 교잡돈인 것을 특징으로 하는, 난축맛돈 돼지육 판별용 바이오마커 조성물.
According to paragraph 1,
A biomarker composition for determining pig meat, characterized in that the pig is a crossbreed produced by crossing Korean Native Pig, Landrace and Duroc breeds.
제1항의 바이오마커 조성물 중의 1종 이상의 유전자를 증폭시키는 제제를 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 조성물.
A composition for determining pork meat from poor quality pigs, characterized in that it contains an agent that amplifies one or more genes in the biomarker composition of claim 1.
제3항에 있어서,
상기 유전자를 증폭시키는 제제는 상기 유전자에 특이적으로 결합하는 프라이머 및 프로브 (probe)로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, 난축맛돈 돼지육 판별용 조성물.
According to paragraph 3,
The agent for amplifying the gene is characterized in that at least one selected from the group consisting of primers and probes that specifically bind to the gene.
제4항에 있어서,
상기 프라이머는 서열번호 12 및 13으로 기재되는 UGT8 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 14 및 15로 기재되는 UBE2L6 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 16 및 17로 기재되는 MELK 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 18 및 19로 기재되는 ZGRF1 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 20 및 21로 기재되는 NCALD 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 22 및 23으로 기재되는 FHL2 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 24 및 25로 기재되는 SERP2 유전자에 특이적으로 결합하는 프라이머 쌍을 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 조성물.
According to paragraph 4,
The primers include a primer pair that specifically binds to the UGT8 gene shown in SEQ ID NOs: 12 and 13, a primer pair that specifically binds to the UBE2L6 gene shown in SEQ ID NOS: 14 and 15, and MELK shown in SEQ ID NOs: 16 and 17. A primer pair that specifically binds to a gene, a primer pair that specifically binds to the ZGRF1 gene shown in SEQ ID NOs: 18 and 19, a primer pair that specifically binds to the NCALD gene shown in SEQ ID NOS: 20 and 21, SEQ ID NO: A composition for determining lean pork pork, comprising a primer pair that specifically binds to the FHL2 gene represented by SEQ ID NOs. 22 and 23, and a primer pair that specifically binds to the SERP2 gene represented by SEQ ID NOs. 24 and 25. .
제 4항에 있어서,
상기 프라이머는 서열번호 26 및 27로 기재되는 GDPD5 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 28 및 29로 기재되는 NDUFA10 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 30 및 31로 기재되는 EBF3 유전자에 특이적으로 결합하는 프라이머 쌍, 서열번호 32 및 33으로 기재되는 ELN 유전자에 특이적으로 결합하는 프라이머 쌍을 더 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 조성물.
According to clause 4,
The primers include a primer pair that specifically binds to the GDPD5 gene shown in SEQ ID NOs: 26 and 27, a primer pair that specifically binds to the NDUFA10 gene shown in SEQ ID NOS: 28 and 29, and EBF3 shown in SEQ ID NOs: 30 and 31. A composition for discriminating indigestible pig meat, characterized in that it further comprises a primer pair that specifically binds to the gene, and a primer pair that specifically binds to the ELN gene shown in SEQ ID NOs: 32 and 33.
1) 난축맛돈의 등심 조직으로부터 총 RNA를 분리하는 단계;
2) 제 1항의 바이오마커 조성물 중의 1종 이상의 유전자를 증폭시키는 제제를 포함하는 조성물을 사용하여 단계 1)의 RNA의 양을 측정하는 단계; 및
3) 단계 2)의 RNA 양을 다른 품종과 비교하여 발현 정도를 확인하는 단계를 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별 방법.
1) isolating total RNA from the loin tissue of naive pork;
2) measuring the amount of RNA of step 1) using a composition containing an agent that amplifies one or more genes in the biomarker composition of claim 1; and
3) A method for determining the level of expression of unsalted pig meat by comparing the amount of RNA in step 2) with that of other breeds.
제 7항에 있어서,
상기 단계 3)에서 유전자 발현량이 다른 품종과 비교하여 증가하는 경우, 난축 맛돈 돼지육인 것으로 판단하는 것을 특징으로 하는, 난축맛돈 돼지육 판별 방법.
According to clause 7,
In step 3), if the gene expression level increases compared to other breeds, it is determined that the pork is from unskilled pork.
서열번호 1로 기재되는 UGT8 유전자; 서열번호 2로 기재되는 UBE2L6 유전자; 서열번호 3으로 기재되는 MELK 유전자; 서열번호 4로 기재되는 ZGRF1 유전자; 서열번호 5로 기재되는 NCALD 유전자; 서열번호 6으로 기재되는 FHL2 유전자; 서열번호 7로 기재되는 SERP2 유전자; 서열번호 8로 기재되는 GDPD5 유전자; 서열번호 9로 기재되는 NDUFA10 유전자; 서열번호 10으로 기재되는 EBF3 유전자; 및 서열번호 11로 기재되는 ELN 유전자를 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 바이오마커 조성물, 또는 상기 바이오마커 조성물 중의 1종 이상의 유전자를 증폭시키는 제제를 포함하는 난축맛돈 돼지육 판별용 조성물을 포함하는 것을 특징으로 하는, 난축맛돈 돼지육 판별용 키트.
UGT8 gene represented by SEQ ID NO: 1; UBE2L6 gene represented by SEQ ID NO: 2; MELK gene represented by SEQ ID NO: 3; ZGRF1 gene represented by SEQ ID NO: 4; NCALD gene represented by SEQ ID NO: 5; FHL2 gene represented by SEQ ID NO: 6; SERP2 gene represented by SEQ ID NO: 7; GDPD5 gene represented by SEQ ID NO: 8; NDUFA10 gene represented by SEQ ID NO: 9; EBF3 gene represented by SEQ ID NO: 10; And a biomarker composition for determining pig meat from poorly stocked pigs, characterized in that it contains the ELN gene shown in SEQ ID NO: 11, or a composition for determining pork meat from poorly stocked pork containing an agent that amplifies one or more genes in the biomarker composition. A kit for determining uncooked pork meat, characterized in that it contains a composition.
KR1020210066802A 2021-05-25 2021-05-25 Composition for discriminating Nanchukmacdon pork meat and use thereof KR102615877B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210066802A KR102615877B1 (en) 2021-05-25 2021-05-25 Composition for discriminating Nanchukmacdon pork meat and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210066802A KR102615877B1 (en) 2021-05-25 2021-05-25 Composition for discriminating Nanchukmacdon pork meat and use thereof

Publications (2)

Publication Number Publication Date
KR20220159020A KR20220159020A (en) 2022-12-02
KR102615877B1 true KR102615877B1 (en) 2023-12-21

Family

ID=84417804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210066802A KR102615877B1 (en) 2021-05-25 2021-05-25 Composition for discriminating Nanchukmacdon pork meat and use thereof

Country Status (1)

Country Link
KR (1) KR102615877B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Meech, R. et al., Mol Pharmacol (2015) 87(3):442-450

Also Published As

Publication number Publication date
KR20220159020A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP6483220B2 (en) Genetic markers for judging meat traits in pigs and their use
JP6424027B2 (en) DNA markers related to the 6 traits of pigs developed by analyzing the relations with traits and their discrimination systems
CN110719957B (en) Methods and kits for targeted enrichment of nucleic acids
JP2004522418A (en) Novel PRKAG3 allele and its use as a genetic marker for reproductive and flesh traits
KR101213217B1 (en) SNP Markers Associated with Meat Quantity and Beef Quality in Hanwoo
KR101929391B1 (en) Novel SNP marker for discriminating increasedthe number of nipples of pigs and use thereof
KR101751932B1 (en) A new dna marker and a detecting method of using the same
KR20200072410A (en) SNP marker set for discriminating genetic background and cultivar of Korean native chicken and uses thereof
MXPA06009452A (en) Leptin promoter polymorphisms and uses thereof.
KR101258186B1 (en) Method For Discriminating Breeds Of Pig With Black Coat Colour
KR100804310B1 (en) 4 DNA marker of adipocyte-fatty acid binding protein gene related the intramuscular fat content in beef cattle
CA2600677A1 (en) Association between markers in the leptin gene and carcass traits in commercial feedlot steer and heifers
KR102615877B1 (en) Composition for discriminating Nanchukmacdon pork meat and use thereof
KR102019997B1 (en) Composition for predicting meat quality of pork and method for simple and rapid predicting of meat quality using thereof
KR101472025B1 (en) Kits and methods for detecting intramuscular fat tissue of Hanwoo using TNMD and DUSP27
KR102439855B1 (en) SNP marker composition for discriminating Korean native chicken or new breed chicken and uses thereof
KR101249635B1 (en) Novel EGR2 SNPs Related to Bipolar Disorder, Microarrays and Kits Comprising them for Diagnosing Bipolar Disorder
AU2008232747B2 (en) Identification of the causative mutation for Hereditary Equine Regional Dermal Asthenia and a method for testing same
EP1660675B1 (en) Polymorphism of the igf2 gene and improving production characteristics of cattle
KR101911074B1 (en) Single Nucleotide Polymorphisms Determining Trypanosomiasis-resistance of N&#39;Dama breeds and Use Thereof
KR101696692B1 (en) SNP Novel SNP marker for discriminating level of muscle fiber type within porcine muscle and use thereof
KR101720969B1 (en) Composition for discrimination of Yeonsan Ogye
KR20080078091A (en) Biomarker gene for confirmation of cyst formation
JP2006519593A (en) Methods for identifying genetic traits in animals
KR101765690B1 (en) Composition for discrimination of chicken

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right