KR102614816B1 - 자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 - Google Patents
자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 Download PDFInfo
- Publication number
- KR102614816B1 KR102614816B1 KR1020220089622A KR20220089622A KR102614816B1 KR 102614816 B1 KR102614816 B1 KR 102614816B1 KR 1020220089622 A KR1020220089622 A KR 1020220089622A KR 20220089622 A KR20220089622 A KR 20220089622A KR 102614816 B1 KR102614816 B1 KR 102614816B1
- Authority
- KR
- South Korea
- Prior art keywords
- autonomous vehicle
- neural network
- model
- artificial neural
- dynamic model
- Prior art date
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 32
- 231100001261 hazardous Toxicity 0.000 title 1
- 230000009467 reduction Effects 0.000 claims description 6
- 230000000704 physical effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
- B60W60/0016—Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Transportation (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Game Theory and Decision Science (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims (8)
- 삭제
- 삭제
- 모델 예측 제어기를 통해 자율주행 차량의 운동을 예측하기 위한 인공신경망 기반 동역학 모델을 모델링하는 방법으로서,
상기 동역학 모델은 Pacejka magic formula(파세카 매직 공식) 및 Dynamic Bicycle Model(동적 바이시클 모델) 을 반영하여 상기 자율주행 차량의 다음 시점의 상태를 추정하는 것을 특징으로 하고,
상기 Dynamic Bicycle Model 에 의한 상기 자율주행 차량의 상태변수(x), 커맨드 입력변수(u), 전륜 횡활각(sideslip angle, ) 및 후륜 횡활각()은 하기 수학식으로 표현되는 것을 특징으로 하며,
(여기서, 는 차량의 종방향 속도, 는 횡방향 속도, 은 차량의 각속도, 는 조향각, 는 목표 속도, 는 전륜까지의 종방향 거리, 는 후륜까지의 종방향 거리)
상기 Pacejka magic formula 에 의한 상기 자율주행 차량의 contact dynamics(접촉 역학)은 하기 수학식으로 표현되는 것을 특징으로 하는,
자율주행 차량의 인공신경망 기반 동역학 모델의 모델링 방법.
(여기서, 는 전륜 타이어 횡력, 는 후륜 타이어 횡력, 는 각 타이어에 가해지는 수직항력, 은 전륜, 후륜의 Stiffness factor, 는 전륜, 후륜의 Shape factor, 은 전륜, 후륜의 Peak value, 는 전륜, 후륜의 Curvature factor) - 청구항 3에 있어서,
하기 수학식에 의해 인공신경망의 마지막 은닉층(hidden layer)에서 모델 파라미터들을 추정하는 것을 특징으로 하는,
자율주행 차량의 인공신경망 기반 동역학 모델의 모델링 방법.
(여기서, , 는 현재 시점에서의 상태 변수 및 커맨드 입력변수, , 는 과거 시점에서의 상태 변수 및 커맨드 입력변수, , 는 과거 시점에서의 상태 변수임.)
(Fx는 차량 바퀴에 가해지는 종방향 힘, z는 은닉 신경층의 내재 변수(convention), W와 b는 인공신경망에서 weight와 bias를 뜻하는 notation, o는 은닉층이 내재변수 z를 받으면 output 하는 값임.) - 청구항 5의 자율주행 차량의 인공신경망 기반 동역학 모델의 모델링 방법에 의해 모델링된 상기 동역학 모델을 이용하여 상기 자율주행 차량을 제어하는 것을 특징으로 하는,
자율주행 차량의 인공신경망 기반 동역학 모델을 이용한 자율주행 제어 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220089622A KR102614816B1 (ko) | 2022-07-20 | 2022-07-20 | 자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220089622A KR102614816B1 (ko) | 2022-07-20 | 2022-07-20 | 자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102614816B1 true KR102614816B1 (ko) | 2023-12-19 |
Family
ID=89385377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220089622A KR102614816B1 (ko) | 2022-07-20 | 2022-07-20 | 자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102614816B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118192393A (zh) * | 2024-05-17 | 2024-06-14 | 中国民用航空总局第二研究所 | 机场无人驾驶车柔顺对接控制方法、系统、设备及介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100946723B1 (ko) * | 2008-04-12 | 2010-03-12 | 재단법인서울대학교산학협력재단 | 차량의 조향 방법 및 그 장치 |
US20190337507A1 (en) * | 2018-05-04 | 2019-11-07 | The Regents Of The University Of Michigan | Collision Imminent Steering Control Systems and Methods |
KR102184929B1 (ko) | 2018-10-05 | 2020-12-01 | 한국과학기술원 | 자율주행 차량의 충돌 회피 시스템 및 충돌 회피 방법 |
EP3885867A1 (en) * | 2020-03-27 | 2021-09-29 | embotech AG | Method and system for controlling autonomous or semi-autonomous vehicle |
-
2022
- 2022-07-20 KR KR1020220089622A patent/KR102614816B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100946723B1 (ko) * | 2008-04-12 | 2010-03-12 | 재단법인서울대학교산학협력재단 | 차량의 조향 방법 및 그 장치 |
US20190337507A1 (en) * | 2018-05-04 | 2019-11-07 | The Regents Of The University Of Michigan | Collision Imminent Steering Control Systems and Methods |
KR102184929B1 (ko) | 2018-10-05 | 2020-12-01 | 한국과학기술원 | 자율주행 차량의 충돌 회피 시스템 및 충돌 회피 방법 |
EP3885867A1 (en) * | 2020-03-27 | 2021-09-29 | embotech AG | Method and system for controlling autonomous or semi-autonomous vehicle |
Non-Patent Citations (2)
Title |
---|
Lukas 외 5, "Model Learning and Contextual Controller Tuning for Autonomous Racing", https://arxiv.org/abs/2110.02710, 2021.10.06.* * |
Taekyung Kim 외 2, "Physics Embedded Neural Network Vehicle Model and Applications in Risk-Aware Autonomous Driving Using Latent Features", Published 16 July 2022, 2022 IEEE/RSJ IROS.* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118192393A (zh) * | 2024-05-17 | 2024-06-14 | 中国民用航空总局第二研究所 | 机场无人驾驶车柔顺对接控制方法、系统、设备及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110539752B (zh) | 一种智能汽车多预测范围模型预测轨迹跟踪控制方法及系统 | |
Son et al. | Safety-critical control for non-affine nonlinear systems with application on autonomous vehicle | |
Novi et al. | Real-time control for at-limit handling driving on a predefined path | |
CN102216119B (zh) | 车辆以及提醒车辆的驾驶员的方法 | |
CN112758097A (zh) | 一种用于无人驾驶车辆的状态预测与估计方法 | |
US11698625B2 (en) | Stochastic model-predictive control of uncertain system | |
CN111985614A (zh) | 一种构建自动驾驶决策系统的方法、系统和介质 | |
WO2018072395A1 (zh) | 基于前向车辆驾驶行为的智能车辆安全环境包络重构方法 | |
CN110068302A (zh) | 一种基于深度神经网络的车辆测距方法 | |
KR20210073291A (ko) | 차량 성능 평가 시스템 | |
Samuel et al. | Lane keeping maneuvers using proportional integral derivative (PID) and model predictive control (MPC) | |
Ming et al. | MPC-based trajectory tracking control for intelligent vehicles | |
Chen et al. | Rhonn modelling-enabled nonlinear predictive control for lateral dynamics stabilization of an in-wheel motor driven vehicle | |
KR102614816B1 (ko) | 자율주행 차량의 물리적 특성을 반영한 인공신경망 기반 동역학 모델의 모델링 방법 및 모델 은닉층 내 잠재 변수들을 활용한 자율주행 제어 방법 | |
Kim et al. | Physics embedded neural network vehicle model and applications in risk-aware autonomous driving using latent features | |
Dallas et al. | Contingent nonlinear model predictive control for collision imminent steering in uncertain environments | |
CN114228690A (zh) | 一种基于ddpg和迭代控制的自动驾驶车辆侧倾控制方法 | |
Debarshi et al. | Robust EMRAN-aided coupled controller for autonomous vehicles | |
Yakub et al. | Model predictive control for car vehicle dynamics system-comparative study | |
Choi et al. | Waypoint tracking predictive control with vehicle speed variation | |
CN113721634B (zh) | 考虑执行器饱和的基于反步法的车队有限时间协同控制方法 | |
Berntorp et al. | Steering of autonomous vehicles based on friction-adaptive nonlinear model-predictive control | |
Suh et al. | Stochastic predictive control based motion planning for lane change decision using a vehicle traffic simulator | |
CN113033902B (zh) | 一种基于改进深度学习的自动驾驶换道轨迹规划方法 | |
CN118238847B (zh) | 一种自适应不同驾驶风格和路面环境的自主换道决策规划方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220720 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20220720 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230518 Patent event code: PE09021S01D |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230918 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20231211 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20231213 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20231214 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |