KR102608311B1 - CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same - Google Patents

CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same Download PDF

Info

Publication number
KR102608311B1
KR102608311B1 KR1020210047056A KR20210047056A KR102608311B1 KR 102608311 B1 KR102608311 B1 KR 102608311B1 KR 1020210047056 A KR1020210047056 A KR 1020210047056A KR 20210047056 A KR20210047056 A KR 20210047056A KR 102608311 B1 KR102608311 B1 KR 102608311B1
Authority
KR
South Korea
Prior art keywords
crbn
peptide
tau
disease
seq
Prior art date
Application number
KR1020210047056A
Other languages
Korean (ko)
Other versions
KR20210128919A (en
Inventor
박철승
우르스 아크버
전승제
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to PCT/KR2021/004627 priority Critical patent/WO2021210878A1/en
Publication of KR20210128919A publication Critical patent/KR20210128919A/en
Application granted granted Critical
Publication of KR102608311B1 publication Critical patent/KR102608311B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Abstract

본 발명은 CRBN에 결합하여 CRBN 및 DJ2의 결합을 저해하는 펩티드 및 이를 이용한 알츠하이머 병의 예방, 치료 또는 개선용 조성물 등에 관한 것으로, 본 발명의 펩티드는 DJ2 내의 CRBN 결합 모티프를 모사하므로, CRBN에 결합하여 DJ2와 CRBN의 결합을 방해하여 CRBN에 의한 DJ2의 분해가 억제된다. 그 결과 DJ2가 타우 단백질의 응집을 억제하는 효과가 유지, 향상되므로 알츠하이머 병의 예방, 개선 또는 치료용도로 유용하게 이용될 수 있다.The present invention relates to a peptide that binds to CRBN and inhibits the binding of CRBN and DJ2, and to a composition for preventing, treating or improving Alzheimer's disease using the same. The peptide of the present invention mimics the CRBN binding motif in DJ2 and thus binds to CRBN. This prevents the binding of DJ2 and CRBN, thereby suppressing the degradation of DJ2 by CRBN. As a result, the effect of DJ2 to inhibit tau protein aggregation is maintained and improved, so it can be usefully used for the prevention, improvement, or treatment of Alzheimer's disease.

Description

CRBN 결합 펩티드 및 이를 이용한 알츠하이머 병 예방 또는 치료용 조성물{CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same}CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same {CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same}

본 발명은 CRBN에 결합하여 CRBN 및 DJ2의 결합을 저해하는 펩티드 및 이를 이용한 알츠하이머 병의 예방, 치료 또는 개선용 조성물 등에 관한 것이다.The present invention relates to a peptide that binds to CRBN and inhibits the binding of CRBN and DJ2, and a composition for preventing, treating, or improving Alzheimer's disease using the same.

최근 의학의 급속한 발전으로 인간의 평균수명이 늘어나고, 장노년 인구가 증가함에 따라 새로운 사회적 문제들이 부각되고 있다. 특히, 뇌졸중, 알츠하이머병, 파킨슨병 등의 노인성 신경계 질환들은 치명적인 신경계의 기능장애로 나타나며, 현재까지는 이를 치료하기 위한 효과적인 방법이 없다. 특히, 노인성 신경계 질환 중 가장 흔하게 나타나고 있는 것이 알츠하이머(Alzheimer's disease, AD)이다. 알츠하이머는 치매를 일으키는 가장 흔한 퇴행성 뇌질환으로 기억력, 사고력 및 행동상의 문제를 야기하는 뇌 질환이다. 치매는 일상생활을 방해할 정도로 심각한 기억력 및 기타 지적능력의 상실을 의미하는 일반 용어로서 알츠하이머는 치매 사례의 60 내지 80%를 차지한다.Recently, with the rapid development of medicine, the average human lifespan has increased, and as the elderly population increases, new social problems are emerging. In particular, geriatric neurological diseases such as stroke, Alzheimer's disease, and Parkinson's disease are caused by fatal nervous system dysfunction, and there is currently no effective method to treat them. In particular, the most common geriatric neurological disease is Alzheimer's disease (AD). Alzheimer's is the most common degenerative brain disease that causes dementia and causes problems with memory, thinking, and behavior. Dementia is a general term meaning loss of memory and other intellectual abilities severe enough to interfere with daily life. Alzheimer's accounts for 60 to 80% of dementia cases.

알츠하이머의 발병 기전 및 원인은 정확하지 않으나, 신경전달물질인 아세틸콜린의 합성 감소, β-아밀로이드의 침착 및 타우 단백질의 과인산화로 인한 신경세포의 손상이 주요 원인으로 알려져있다. 타우(tau) 단백질은 분자량이 50,000 내지 70,000 Da인 미세소관 결합 단백질의 일종으로, 신경 섬유의 얽힘에 주로 관여한다. 타우 단백질은 현저한 분자적 다양성을 나타내는데, 그 중 가장 잘 알려진 원인은 프롤린 지향성 인산화에 의한 것이다.Although the pathogenesis and cause of Alzheimer's are unclear, the main causes are known to be neuronal damage due to decreased synthesis of the neurotransmitter acetylcholine, deposition of β-amyloid, and hyperphosphorylation of tau protein. Tau protein is a type of microtubule-binding protein with a molecular weight of 50,000 to 70,000 Da, and is mainly involved in the entanglement of nerve fibers. Tau proteins exhibit remarkable molecular diversity, the best known of which is proline-directed phosphorylation.

CRL4CRBN의 기질 수용체인 E3-ligase substrate recruiter cereblon (CRBN)은 thalidomide 및 그의 유도체의 치료 표적이며, 면역 조절 약물 (IMiD)로 알려져 있다. CRBN 돌연변이는 상염색체 열성, 비증후성 정신 지체와 관련이 있다. CRBN은 또한 AMP-활성화된 단백질 키나제, 글루타민 합성 효소, MEIS2 및 이온 채널의 조절에 연관되어 있다.E3-ligase substrate recruiter cereblon (CRBN), a substrate receptor for CRL4 CRBN , is the therapeutic target of thalidomide and its derivatives and is known as an immunomodulatory drug (IMiD). CRBN mutations are associated with autosomal recessive, non-symptomatic mental retardation. CRBN has also been implicated in the regulation of AMP-activated protein kinase, glutamine synthetase, MEIS2, and ion channels.

DNAJ 패밀리는 단백질 폴딩 / 펼치기 / 리폴딩 등 다양한 세포 활동에 관여한다. 그 중 DJ2는 DnaK와 수많은 Hsp70 및 Hsp110와 반응하는 것으로 알려져 있으며, 이는 안정한 응집체 내에서 잘못 접힌 단백질을 끌어당겨 펼친다. 그러나, DJ2가 전개된 단백질을 인지하는 능력에 더하여 전개 또는 응집을 방지할 수 있는지는 확실하지 않으며 타우 단백질과의 관계도 아직 알려져 있지 않은 상태로, 이에 대한 연구가 요구되고 있다.The DNAJ family is involved in a variety of cellular activities, including protein folding/unfolding/refolding. Among them, DJ2 is known to react with DnaK and numerous Hsp70 and Hsp110, which attract and unfold misfolded proteins within stable aggregates. However, it is unclear whether DJ2 can prevent unfolding or aggregation in addition to its ability to recognize unfolded proteins, and its relationship with tau protein is not yet known, so research on this is required.

대한민국 등록특허 10-2033776Republic of Korea registered patent 10-2033776

본 발명의 목적은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드를 제공하는 것이다.The object of the present invention is to provide a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

본 발명의 목적은 상기 펩티드를 포함하는 알츠하이머 병의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.The purpose of the present invention is to provide a pharmaceutical composition for preventing or treating Alzheimer's disease containing the above peptide.

본 발명의 목적은 상기 펩티드를 포함하는 알츠하이머 병의 예방 또는 개선용 식품 조성물을 제공하는 것이다.The purpose of the present invention is to provide a food composition for preventing or improving Alzheimer's disease containing the above peptide.

본 발명의 목적은 알츠하이머 치료제 스크리닝 방법을 제공하는 것이다.The purpose of the present invention is to provide a screening method for a therapeutic agent for Alzheimer's disease.

상기 본 발명의 목적을 달성하기 위해 본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드를 제공한다.In order to achieve the object of the present invention, the present invention provides a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

또한, 본 발명은 상기 펩티드를 포함하는, 알츠하이머 병의 예방 또는 치료용 약학적 조성물을 제공한다.Additionally, the present invention provides a pharmaceutical composition for preventing or treating Alzheimer's disease, comprising the peptide.

또한, 본 발명은 상기 펩티드를 포함하는, 알츠하이머 병의 예방 또는 개선용 식품 조성물을 제공한다.Additionally, the present invention provides a food composition for preventing or improving Alzheimer's disease, comprising the peptide.

본 발명의 일 구현예로, 상기 알츠하이머 병은 타우 인산화에 의한 것일 수 있다.In one embodiment of the present invention, Alzheimer's disease may be caused by tau phosphorylation.

또한, 본 발명은 하기 단계를 포함하는, 알츠하이머 치료제 스크리닝 방법을 제공한다.Additionally, the present invention provides a screening method for an Alzheimer's drug, comprising the following steps.

a) 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프를 포함하는 펩티드를 합성하는 단계;a) synthesizing a peptide containing a CRBN binding motif represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3;

b) 상기 a)단계에서 합성된 펩티드가 CRBN의 DJ2 결합부위에 결합하여 CRBN와 DJ2의 결합을 저해할 수 있는지 분석하는 단계 및b) analyzing whether the peptide synthesized in step a) can bind to the DJ2 binding site of CRBN and inhibit the binding of CRBN and DJ2; and

c) 상기 b)단계에서 합성된 펩티드가 CRBN와 DJ2의 결합을 저해하는 경우 알츠하이머 병 치료제로 판정하는 단계.c) determining that the peptide synthesized in step b) is a treatment for Alzheimer's disease if it inhibits the binding of CRBN and DJ2.

또한, 본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드를 개체에 투여하는 단계를 포함하는 알츠하이머 병의 예방 또는 치료방법을 제공한다.Additionally, the present invention provides a method for preventing or treating Alzheimer's disease, comprising administering to a subject a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

또한, 본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드의 알츠하이머 병의 예방 또는 치료용도를 제공한다.Additionally, the present invention provides the use of a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 for the prevention or treatment of Alzheimer's disease.

본 발명의 펩티드는 DJ2 내의 CRBN 결합 모티프를 모사하는 펩티드로, CRBN에 결합하여 DJ2와 CRBN의 결합을 방해하므로 CRBN에 의한 DJ2의 분해가 억제된다. 그 결과 DJ2가 타우 단백질의 응집을 억제하는 효과가 유지, 향상되므로 알츠하이머 병의 예방, 개선 또는 치료 용도로 유용하게 이용될 수 있다.The peptide of the present invention is a peptide that mimics the CRBN binding motif in DJ2, binds to CRBN and interferes with the binding between DJ2 and CRBN, thus inhibiting the degradation of DJ2 by CRBN. As a result, the effect of DJ2 to inhibit tau protein aggregation is maintained and improved, so it can be usefully used for the prevention, improvement, or treatment of Alzheimer's disease.

도 1은 CRL4CRBN의 내생 기질로서 Hsp70, DJ1 및 DJ2를 확인한 것이다. 구체적으로, 도 1a는 SH-SY5Y 세포를 용해시키고, 토끼 IgG 대조군 또는 α-CRBN 항체로 면역 침전시키고, 지시된 항체로 블롯팅 한 결과이다. 도 1b 내지 1d는 SH-SY5Y 세포를 스크램블 SiRNA(Scr) 또는 siRNACRBN으로 일시적으로 형질 감염시킨 후 24 시간 후에 HA-Ub로 형질 감염시킨 것으로, IP를 각각 α-Hsp70, α-DJ1 및 α-DJ2 항체로 수행하고 지시된 항체로 블롯팅 한 결과이다. 도 1e는 SH-SY5Y 세포를 FLAG-CRBN으로 일시적으로 형질 감염시키고 플래그 M2 아가로스 비드로 면역 침전시킨 것으로, 내인성, 공침된 샤페론의 in vitro 유비퀴틴화는 E1 + E2 및 Ub의 존재하에 수행되었고, 메틸화된 유비퀴틴 (Me-Ub)을 지시된 곳에 첨가하였으며 반응은 SDS-PAGE로 분석하고 나타낸 항체로 면역 블롯팅 한 결과이다.
도 1f는 Crbn-/- 및 Crbn+/+ MEF 세포를 2.5 ㎍/ml CHX로 처리하고 면역 블롯 분석을 수행한 결과이다(통계 분석은 Hsp70, DJ1 및 DJ2 순서로 위에서 아래로 표시됨). 도 1g는 Crbn-/- 및 Crbn+/+ MEF 세포를 0.5 ㎍/ml MG132로 처리하고 면역 블롯 분석을 수행한 결과이다(통계 분석은 Hsp70, DJ1 및 DJ2 순서로 위에서 아래로 표시됨).
도 2는 타우의 헤파린 매개 응집에 대한 CRBN 및 DJ2의 효과에 대한 실험이다. 구체적으로, 도 2a는 전장 hTau-44 (5 μM)를 48 시간 동안 지시된 단백질 조합과 함께 배양한 다음 5 μM ThT를 첨가하고 440 nm에서 여기와 함께 480 nm에서 형광 방출을 측정한 결과이다(헤파린을 2.5 μM의 농도로 대조군을 제외한 모든 반응에 포함, Student's t-test는 95% 유의 수준의 데이터를 정량화 하는데 사용됨). 도 2b는 모노머 hTau-K18 (5 μM)을 지시된 조합(5 μM) 및 5 μM ThT와 함께 4 시간 동안 배양하여 형광 방출은 480 nm에서 여기되었고 440 nm에서 여기됨을 확인한 결과이다(헤파린은 2.5 μM의 농도로 대조군을 제외한 모든 반응에 포함) 도 2c는 모노머 K18을 4시간 동안 헤파린-유도된 응집을 위해 DJ2와 함께 또는 DJ2 없이 배양하고 TEM 분석을 수행한 결과이다. 도 2d는 SHSY5Y 세포를 단량체 K18로 처리하고, DJ2 및 CRBN의 존재 또는 부재하에 K18을 응집시킨 결과를 나타내며, 처리 48 시간 후에 사진을 찍었고, MTT 분석을 수행하여 세포 생존력을 평가한 결과이다(오차 막대는 SEM을 나타냄. Student's t-test는 95% 유의 수준의 데이터를 정량화하는 데 사용됨)
도 3은 CRBN의 N-말단 Lon 도메인이 DJ2의 C-말단 도메인에 결합한다는 것을 확인한 것이다. 구체적으로, 도 3a 및 3b는 하기 도 3c 및 도 3d에 사용된 전장 (Full) rCRBN 및 결실 구축물의 개략도를 나타낸 것이다(CULT (Cereblon domain of Unknown activity, binding cellular Ligands and Thalidomide), L (linker), CTD (C-terminal domain)). 도 3c 및 3e는 SH-SY5Y 세포를 Myc-DJ2 및 표시된 플라스미드로 일시적으로 동시 형질 감염시키고 세포 추출물을 α-Myc 항체로 면역 침전시킨 다음, SDS-PAGE로 분류하고, Myc 및 HA 항체로 면역 블롯팅한 결과를 나타낸 것이다(~ 55kDa의 밴드는 IgG 중쇄 (HC)를 나타내고 ~ 25kDa의 밴드는 IgG 경쇄 (LC)를 나타냄. 별표는 비 특정 대역을 나타냄). 도 3d 및 3f는 SH-SY5Y 세포를 HA-CRBN 및 지정된 프라미드로 일시적으로 동시 형질 감염 시킨 다음, 24 시간 후에 HA 항체로 IP를 수행한 결과이다.
도 4는 K32 및 K350가 DJ2의 주요 유비퀴틴화 사이트라는 것을 확인한 실험결과이다. 구체적으로, 도 4a는 SH-SY5Y 세포를 야생형(WT) DJ2 및 리신 돌연변이 체로 형질 감염시키고, 세포를 2.5 ㎍/ml CHX로 처리하여 면역 블롯 분석을 수행한 결과이다. 도 4b는 상기 도 4a 결과를 그래프로 나타낸 것이다. 도 4c는 K32 및 K350 잔기의 이중 돌연변이체의 경우 유비퀴틸화가 손상됨을 확인한 것이다.
도 5는 CUMS(chronic ultra-mild stress) 및 타우 병리에 대한 CRBN KO의 효과를 확인한 것이다. 구체적으로, 도 5a는 Crbn-/-(KO) 및 Crbn+/+ (WT) 마우스를 CUMS 패러다임에 노출시킨 다음, WBL을 SDS-PAGE로 분별하고 항체로 면역 블롯팅을 수행한 결과이다. 도 5b 및 5c는 WT 및 KO 마우스의 WBL을 선택된 pTau 에피토프 및 타우키나제에 대한 웨스턴 블롯 분석 결과를 나타낸 것이다. 도 5d는 KO 및 WT 마우스의 각 그룹에서 5 마리의 마우스를 사용하여 n = 3으로 통계처리한 결과를 나타낸 것이다. 도 5e 및 5f는 상기 도 5b 및 5c 결과를 t-테스트에 의해 P < 0.05 인 통계 분석 결과를 나타낸 것이다.
도 6은 CRBN KO는 타우 병리의 확산을 억제함을 확인한 것이다. 구체적으로, 도 6a는 마우스 뇌의 해부 개략도로, 웨스턴 블롯팅을 분석하기위한 전방 반대측 (AC), 전방 동측 (AI), 후방 반대측 (PC), 후방 동측 (PI) 및 소뇌 (Cb)로 구분하였으며, PI 영역은 측면 편도 주사 부위를 포함한다. 도 6b는 OA를 WT 및 KO 마우스의 뇌에 입체적으로 주사하고, WBL을 RIPA 완충액에서 제조하며, pTau 어레이의 항체로 블롯팅한 결과를 나타낸 것이다. 도 5c는 각각의 KO 및 WT 마우스 n = 3 인 그룹에서 상대적 밴드 강도 정량화 결과이다(오차막대는 SEM을 나타냄).
도 7은 인산화 매개 타우 이량체화에 대한 CRBN KO의 효과를 나타낸 것이다. 구체적으로, 도 7a는 HEK293T 세포는 CRBN의 CRISPR/Cas9-매개 녹아웃 (KO)을 실시하거나 음성 대조군 (NC)으로서 사용되었으며, Myc-tau를 세포주 모두에 일시적으로 형질 감염시키고 웨스턴 블롯을 수행한 결과이다. 도 7b는 상기 도 7a의 결과를 컬러 그레이던트 스케일로 나타낸 것이다. 도 7c는 SH-SY5Y 세포를 siRNA 또는 siRNACRBN으로 일시적으로 형질 감염시킨 다음, 상기 세포를 tau40-VN173 및 tau-VC155 구축물로 형질 감염시키고 OA (30 nM)로 처리하여 공초점 현미경을 사용해 BiFC를 측정한 결과이다(Hoechst 염료가 카운터 스테인으로 사용됨).
도 8은 타우 병리에서 CRBN 및 DJ2의 역할을 개략적으로 나타낸 것이다.
도 9는 DJ2의 CRBN 및 타우에 결합여부 및 DJ1의 thalidomide 비의존적 분해에 관한 실험 내용이다. 구체적으로, 도 9a는 His-tagged DJ2 및 GST-tagged CRBN에 GST 풀다운 분석을 수행하고 항-DJ2 및 항-CRBN 항체로 블롯팅한 결과를 나타낸 것이고, 도 9b는 SH-SY5Y 세포를 HA-Ub로 일시적으로 형질 감염시키고 30 시간 후 세포를 thalidomide로 24 시간 동안 처리하고 마우스 IgG 대조군 또는 α-DJ2 항체로 세포 용해 및 IP를 수행한 결과이다. 도 9c는 SH-SY5Y 세포를 일시적으로 Myc-tagged 타우 및 FLAG-tagged DJ2로 공동-형질 감염시키고 24시간 후 세포 추출물을 α-Myc 항체로 면역 침전 및 SDS-PAGE로 분별하고, 지시된 항체로 면역 블롯팅 한 결과이다(SE: 짧은 노출, LE: 긴 노출).
도 10은 CRBN-DJ2 상호 작용을 담당하는 도메인의 로컬화에 대한 실험 내용이다. 구체적으로, 도 10a 및 10b는 SH-SY5Y 세포를 Myc-DJ2 및 HA-tagged CRBN 절단물로 일시적으로 동시 형질 감염시키고 24 시간 후 세포 추출물을 α-HA 항체로 면역 침전하여, SDS-PAGE로 분류하고, 항체로 면역 블롯팅 한 결과이다. 도 10c 및 10d는 SH-SY5Y 세포를 HA-CRBN 및 Myc-tagged DJ2 절단물로 일시적으로 동시 형질 감염시키고 24 시간 후, 세포 추출물을 α-HA 항체로 면역 침전하여 웨스턴 블롯을 수행한 결과이다. 도 10e는 ClusPro에 의해 예측된 DJ2-CRBN 상호 작용의 구조 모델을 나타낸 것이다.
도 11은 DJ2의 유비퀴틴화를 담당하는 특정 라이신 잔기의 로컬화와 대한 실험 결과이다. 구체적으로, 도 11a 및 11b는 PhosphositePlus 및 GGbase 데이터베이스를 사용하여 DJ2에서 유비퀴틴화된 실험적으로 보고된 라이신을 확인한 것이다. 도 11c는 SH-SY5Y 세포를 야생형(WT) DJ2 및 다양한 리신 돌연변이체로 형질 감염시켜 K32와 K350은 DJ2의 주요 유비퀴틴화 사이트임을 확인한 것이다.
도 12는 Crbn-/- 및 Crbn+/+의 전체 뇌 용해물에 대해 2D-폴리아크릴아미드 겔 전기영동을 수행한 결과, Crbn+/+ 마우스와 비교하여 Crbn-/- 뇌 용해물의 항산화 수준 증가를 확인한 것이다.
도 13은 Okadaic acid의 주사에 의해 유도된 타우 병리에 대한 CRBN KO의 효과를 확인한 것으로, Crbn-/- 및 Crbn+/+ 마우스의 각 그룹(n = 3)에서 상대 밴드 강도의 밀도 측정 정량화 결과를 그래프로 나타낸 것이다.
도 14는 동일한 뇌 샘플로 타우 키나제 3개의 활성을 분석한 결과이다.
도 15는 CRBN knock-out이 타우 병증에 미치는 영향 및 제조된 펩티드의 CRBN 및 DJ2 결합 억제 효과를 확인한 것이다. 구체적으로, 도 15a는 신경 병증 뮤린 모델에서 APP 플라크의 확인한 것으로, 8개월령의 APP knock-in 마우스로부터 뇌를 제거하고, 해마를 CRBN 및 APP 항체로 16시간 동안 면역 염색하고, 1시간 동안 Alexa-접합된 2차 항체와 함께 인큐베이션한 다음, 60X 렌즈가 장착된 공초점 현미경 하에서 이미지화한 것이다. 도 15b 및 15c는 APP knock-in 및 5XFAD 마우스의 뇌 샘플에서 높은 수준의 CRBN 및 낮은 DJ2를 확인한 것으로, 8개월된 APP knock-in 및 5XFAD 마우스로부터 뇌를 제거하고, 뇌의 절반을 냉동 절편에 사용하고 다른 절반을 웨스턴 블롯 분석에 사용했으며, 해마를 16시간 동안 CRBN 및 DJ2 항체로 면역 염색하고, 1시간 동안 Alexa-접합된 이차 항체와 함께 인큐베이션 하여, 10X 렌즈가 장착된 공초점 현미경 하에서 이미지화 한 것이다. 도 15d는 본 발명의 펩티드 억제제의 아미노산 서열을 나타낸 것이다. 도 15e는 펩티드 억제제의 첨가가 CRBN과 DJ2의 결합을 저해시킨다는 것을 확인한 것으로, SH-SY5Y 세포를 Myc-DJ2 및 FLAG-CRBN으로 일시적으로 동시 형질 감염시키고 24 시간 후, 세포 추출물을 α-Myc 항체로 면역 침전시킨 다음, Myc 및 HA 항체로 면역 블롯팅을 수행한 결과이다(~ 55 kDa의 밴드는 IgG 중쇄를 나타냄).
도 16은 선형(Linear, 서열번호 1) 및 원형(Circular, 서열번호 3) 펩티드 형태를 이용하여 면역침강법으로 CRBN과 DJ2 결합저해능을 확인한 것이다.
도 17a 내지 17d는 서열번호 3의 펩티드를 기준으로 면역침강법으로 CRBN과 DJ2 결합저해능을 확인한 것으로, 아미노산 서열이 무작위적으로 섞어진(Scrambled) 펩티드를 실험대조군으로 추가한 면역침강법 실험결과를 나타낸 것이다(DJ2-peptide는 서열번호 3의 펩티드이며 각 펩티드의 구조는 도 17c에 나타남).
도 18은 서열번호 1의 펩티드 중, 중요 잔기인 4개의 펩티드 시퀀스(Tetra-Peptide sequence, 서열번호 2)와 대조군(scrambled tetra-peptide)의 서열 및 구조를 나타낸 것이다.
도 19a 내지 19c는 서열번호 2로 표시되는 펩티드가 CRBN과 DJ2의 결합을 유의미하게 저해함을 확인한 것이다.
Figure 1 identifies Hsp70, DJ1, and DJ2 as endogenous substrates of CRL4 CRBN . Specifically, Figure 1a shows the results of SH-SY5Y cells lysed, immunoprecipitated with rabbit IgG control or α-CRBN antibodies, and blotted with the indicated antibodies. Figures 1b to 1d show SH-SY5Y cells transiently transfected with scrambled SiRNA (Scr) or siRNA CRBN and then 24 h later transfected with HA-Ub, followed by IP for α-Hsp70, α-DJ1, and α-Ub, respectively. This is the result of performing with DJ2 antibody and blotting with the indicated antibody. Figure 1E shows SH-SY5Y cells were transiently transfected with FLAG-CRBN and immunoprecipitated with Flag M2 agarose beads. In vitro ubiquitination of endogenous, coprecipitated chaperones was performed in the presence of E1 + E2 and Ub. Methylated ubiquitin (Me-Ub) was added where indicated, and the reaction was analyzed by SDS-PAGE and immunoblotting with the indicated antibodies.
Figure 1F shows the results of Crbn −/− and Crbn +/+ MEF cells treated with 2.5 μg/ml CHX and subjected to immunoblot analysis (statistical analyzes are shown in the order of Hsp70, DJ1, and DJ2 from top to bottom). Figure 1g shows the results of Crbn −/− and Crbn +/+ MEF cells treated with 0.5 μg/ml MG132 and subjected to immunoblot analysis (statistical analyzes are presented in the order of Hsp70, DJ1, and DJ2 from top to bottom).
Figure 2 is an experiment on the effect of CRBN and DJ2 on heparin-mediated aggregation of tau. Specifically, Figure 2A shows the results of incubating full-length hTau-44 (5 μM) with the indicated protein combinations for 48 hours, then adding 5 μM ThT and measuring fluorescence emission at 480 nm with excitation at 440 nm ( Heparin was included in all reactions except the control group at a concentration of 2.5 μM; Student's t-test was used to quantify data at a 95% significance level). Figure 2b shows the results of incubating monomeric hTau-K18 (5 μM) with the indicated combination (5 μM) and 5 μM ThT for 4 hours, confirming that the fluorescence emission was excited at 480 nm and 440 nm (heparin is 2.5 μM). (included in all reactions except the control group at a concentration of μM). Figure 2c shows the results of incubating monomer K18 with or without DJ2 for heparin-induced aggregation for 4 hours and performing TEM analysis. Figure 2d shows the results of treating SHSY5Y cells with monomeric K18, aggregating K18 in the presence or absence of DJ2 and CRBN, photographs were taken 48 hours after treatment, and MTT assay was performed to evaluate cell viability (error Bars represent SEM, Student's t-test was used to quantify data at 95% significance level)
Figure 3 confirms that the N-terminal Lon domain of CRBN binds to the C-terminal domain of DJ2. Specifically, Figures 3a and 3b show schematic diagrams of the full-length rCRBN and deletion constructs used in Figures 3c and 3d below (CULT (Cereblon domain of Unknown activity, binding cellular Ligands and Thalidomide), L (linker) , CTD (C-terminal domain)). Figures 3c and 3e show that SH-SY5Y cells were transiently cotransfected with Myc-DJ2 and the indicated plasmids, and cell extracts were immunoprecipitated with α-Myc antibody, sorted by SDS-PAGE, and immunoblotted with Myc and HA antibodies. The plotted results are shown (the band at ~55 kDa represents the IgG heavy chain (HC) and the band at ~25 kDa represents the IgG light chain (LC). Asterisks indicate non-specific bands). Figures 3d and 3f show the results of SH-SY5Y cells transiently co-transfected with HA-CRBN and the indicated primers, and then IP performed with HA antibody 24 hours later.
Figure 4 shows the results of an experiment confirming that K32 and K350 are the main ubiquitination sites of DJ2. Specifically, Figure 4a shows the results of immunoblot analysis performed by transfecting SH-SY5Y cells with wild-type (WT) DJ2 and lysine mutants, and treating the cells with 2.5 μg/ml CHX. Figure 4b is a graphical representation of the results of Figure 4a. Figure 4c confirms that ubiquitylation is impaired in the case of a double mutant of K32 and K350 residues.
Figure 5 confirms the effect of CRBN KO on CUMS (chronic ultra-mild stress) and tau pathology. Specifically, Figure 5A shows the results of exposing Crbn -/- (KO) and Crbn +/+ (WT) mice to the CUMS paradigm, followed by fractionation of WBLs by SDS-PAGE and immunoblotting with antibodies. Figures 5b and 5c show the results of Western blot analysis of WBL from WT and KO mice for selected pTau epitopes and taukinase. Figure 5d shows the results of statistical processing with n = 3 using 5 mice in each group of KO and WT mice. Figures 5e and 5f show the results of statistical analysis of the results of Figures 5b and 5c using a t-test, with P < 0.05.
Figure 6 confirms that CRBN KO suppresses the spread of tau pathology. Specifically, Figure 6A is a schematic diagram of the anatomy of the mouse brain, divided into anterior contralateral (AC), anterior ipsilateral (AI), posterior contralateral (PC), posterior ipsilateral (PI) and cerebellum (Cb) for analysis by Western blotting. The PI area includes the lateral tonsil injection site. Figure 6b shows the results of stereotactically injecting OA into the brains of WT and KO mice, preparing WBL in RIPA buffer, and blotting with antibodies from the pTau array. Figure 5C shows relative band intensity quantification results in each group of KO and WT mice n = 3 (error bars represent SEM).
Figure 7 shows the effect of CRBN KO on phosphorylation-mediated tau dimerization. Specifically, Figure 7A shows that HEK293T cells were subjected to CRISPR/Cas9-mediated knockout (KO) of CRBN or used as a negative control (NC), and Myc-tau was transiently transfected into both cell lines and Western blot was performed. am. Figure 7b shows the results of Figure 7a in color gradient scale. Figure 7c shows that SH-SY5Y cells were transiently transfected with siRNA or siRNA CRBN , and then the cells were transfected with tau40-VN173 and tau-VC155 constructs and treated with OA (30 nM) to reveal BiFC using confocal microscopy. This is the measured result (Hoechst dye was used as a counter stain).
Figure 8 schematically shows the role of CRBN and DJ2 in tau pathology.
Figure 9 shows the contents of an experiment regarding the binding of DJ2 to CRBN and tau and thalidomide-independent degradation of DJ1. Specifically, Figure 9a shows the results of GST pull-down analysis performed on His-tagged DJ2 and GST-tagged CRBN and blotting with anti-DJ2 and anti-CRBN antibodies, and Figure 9b shows SH-SY5Y cells treated with HA-Ub This is the result of transient transfection and 30 hours later, cells were treated with thalidomide for 24 hours, and cell lysis and IP were performed with mouse IgG control or α-DJ2 antibody. Figure 9c shows that SH-SY5Y cells were transiently co-transfected with Myc-tagged tau and FLAG-tagged DJ2, and after 24 h, cell extracts were immunoprecipitated with α-Myc antibody and fractionated by SDS-PAGE and labeled with the indicated antibodies. This is the result of immunoblotting (SE: short exposure, LE: long exposure).
Figure 10 shows experimental details on the localization of the domain responsible for CRBN-DJ2 interaction. Specifically, Figures 10a and 10b show that SH-SY5Y cells were transiently co-transfected with Myc-DJ2 and HA-tagged CRBN digests, and after 24 h, cell extracts were immunoprecipitated with α-HA antibody and sorted by SDS-PAGE. This is the result of immunoblotting with antibodies. Figures 10c and 10d show the results of Western blotting performed by transiently co-transfecting SH-SY5Y cells with HA-CRBN and Myc-tagged DJ2 digest, and 24 hours later, cell extracts were immunoprecipitated with α-HA antibody. Figure 10e shows the structural model of DJ2-CRBN interaction predicted by ClusPro.
Figure 11 shows the results of an experiment on the localization of a specific lysine residue responsible for ubiquitination of DJ2. Specifically, Figures 11A and 11B identify experimentally reported lysines ubiquitinated in DJ2 using PhosphositePlus and GGbase databases. Figure 11c shows that SH-SY5Y cells were transfected with wild-type (WT) DJ2 and various lysine mutants, confirming that K32 and K350 are the main ubiquitination sites of DJ2.
Figure 12 shows the results of 2D-polyacrylamide gel electrophoresis on whole brain lysates of Crbn -/- and Crbn +/+ , and the antioxidant level of Crbn -/- brain lysates compared to Crbn +/+ mice. The increase was confirmed.
Figure 13 confirms the effect of CRBN KO on tau pathology induced by injection of okadaic acid, densitometric quantification results of relative band intensity in each group (n = 3) of Crbn -/- and Crbn +/+ mice. is shown graphically.
Figure 14 shows the results of analyzing the activities of three tau kinases in the same brain sample.
Figure 15 confirms the effect of CRBN knock-out on tauopathy and the inhibitory effect of the prepared peptide on CRBN and DJ2 binding. Specifically, Figure 15a shows confirmation of APP plaques in a murine model of neuropathy. Brains were removed from 8-month-old APP knock-in mice, hippocampi were immunostained with CRBN and APP antibodies for 16 hours, and Alexa-infected mice were incubated for 1 hour. After incubation with conjugated secondary antibodies, they were imaged under a confocal microscope equipped with a 60X lens. Figures 15b and 15c confirm the high levels of CRBN and low DJ2 in brain samples from APP knock-in and 5XFAD mice. Brains were removed from 8-month-old APP knock-in and 5XFAD mice, and half of the brain was cryosectioned. The other half was used for Western blot analysis, and the hippocampus was immunostained with CRBN and DJ2 antibodies for 16 h, incubated with Alexa-conjugated secondary antibodies for 1 h, and imaged under a confocal microscope equipped with a 10X lens. It was done. Figure 15d shows the amino acid sequence of the peptide inhibitor of the present invention. Figure 15e confirms that the addition of the peptide inhibitor inhibits the binding of CRBN and DJ2. SH-SY5Y cells were transiently co-transfected with Myc-DJ2 and FLAG-CRBN, and 24 hours later, cell extracts were incubated with α-Myc antibody. This is the result of immunoprecipitation followed by immunoblotting with Myc and HA antibodies (the band of ~ 55 kDa represents the IgG heavy chain).
Figure 16 shows the ability to inhibit CRBN and DJ2 binding by immunoprecipitation using linear (SEQ ID NO: 1) and circular (SEQ ID NO: 3) peptide forms.
Figures 17a to 17d show the CRBN and DJ2 binding inhibition ability confirmed by immunoprecipitation based on the peptide of SEQ ID NO: 3, and show the results of an immunoprecipitation experiment in which peptides with randomly scrambled amino acid sequences were added as an experimental control group. (DJ2-peptide is the peptide of SEQ ID NO: 3, and the structure of each peptide is shown in Figure 17c).
Figure 18 shows the sequences and structures of the four peptide sequences (Tetra-Peptide sequence, SEQ ID NO: 2), which are important residues among the peptides of SEQ ID NO: 1, and the control group (scrambled tetra-peptide).
Figures 19a to 19c confirm that the peptide represented by SEQ ID NO: 2 significantly inhibits the binding of CRBN and DJ2.

본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드를 제공한다.The present invention provides a peptide comprising the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

본 발명에서 CRBN은 cillin-ring E3 ubiquitin ligase (CRL) 복합체의 기질 수용체로써 CRL 복합체는 ubiquitin-conjugation enzyme (E2)으로부터 기질에 유비퀴틴화 시켜 프로테아좀에서의 분해를 유도시킨다. 또한 다발성 골수종 (multiple myeloma)에 대한 항암효과가 있는 면역 조절제(IMiDs)인 thalidomide, lenalidomide, pomalidomide의 표적 단백질로 보고된 바 있다.In the present invention, CRBN is a substrate receptor of the cillin-ring E3 ubiquitin ligase (CRL) complex, and the CRL complex ubiquitinates the substrate from ubiquitin-conjugation enzyme (E2) to induce degradation in the proteasome. It has also been reported as a target protein for thalidomide, lenalidomide, and pomalidomide, which are immunomodulators (IMiDs) with anticancer effects against multiple myeloma.

본 발명에서 사용하는 용어 "펩티드"란, 아미드 결합 또는 펩티드 결합으로 연결된 아미노산으로 이루어진 폴리머를 의미한다. 본 발명의 목적상 "CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드"는 CRBN에 특이적으로 결합하여 CRBN의 기능을 억제할 수 있는 서열의 펩티드를 의미한다. 구체적으로, 상기 펩티드는 CRBN 상의 DJ2 결합 자리에 결합할 수 있는 활성을 가지는 펩티드로서, DJ2에 대한 경쟁적 기질로 작용하여, DJ2와 CRBN의 결합을 억제하는 효과를 나타낸다.The term “peptide” used in the present invention refers to a polymer composed of amino acids linked by amide bonds or peptide bonds. For the purposes of the present invention, “peptide containing a CRBN binding motif amino acid sequence” refers to a peptide with a sequence that can specifically bind to CRBN and inhibit the function of CRBN. Specifically, the peptide is a peptide that has the activity to bind to the DJ2 binding site on CRBN, and acts as a competitive substrate for DJ2, showing the effect of inhibiting the binding of DJ2 and CRBN.

본 발명에서 상기 펩티드는 CRBN 상의 DJ2 결합 자리에 결합하여 CRBN의 기능을 저해할 수 있는 펩티드라면 제한없이 본 발명의 범위에 포함된다. 본 발명의 펩티드는 바람직하게는 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 아미노산 서열을 포함하는 펩티드 일 수 있으나 이에 제한되는 것은 아니며, 상기 아미노산 서열 중 하나 이상의 아미노산이 다른 아미노산 또는 다른 화합물로 치환되더라도 CRBN 상의 DJ2 결합 자리에 결합하여 CRBN의 기능을 저해하는 효과가 유지된다면 본 발명의 범위에 포함된다.In the present invention, the peptide is included in the scope of the present invention without limitation as long as it is a peptide that can inhibit the function of CRBN by binding to the DJ2 binding site on CRBN. The peptide of the present invention may preferably be a peptide containing an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3, but is not limited thereto, and at least one amino acid in the amino acid sequence is another amino acid or another compound. Even if substituted with , if the effect of inhibiting the function of CRBN by binding to the DJ2 binding site on CRBN is maintained, it is included within the scope of the present invention.

상기 서열번호 1, 서열번호 2 및 서열번호 3의 아미노산 서열은 아래와 같다.The amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 are as follows.

PISTLDNRTIV (서열번호 1)PISTLDNRTIV (SEQ ID NO: 1)

DNRT (서열번호 2)DNRT (SEQ ID NO: 2)

CPISTLDNRTIVC (서열번호 3)CPISTLDNRTIVC (SEQ ID NO: 3)

본 발명은 상기 펩티드를 포함하는, 알츠하이머 병의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating Alzheimer's disease, comprising the above peptide.

본 발명에서 상기 알츠하이머 병은 타우 인산화에 의한 것일 수 있다.In the present invention, the Alzheimer's disease may be caused by tau phosphorylation.

본 발명에서 알츠하이머 병이란 치매를 일으키는 가장 흔한 퇴행성 뇌질환으로 서서히 발병하여 기억력을 포함한 인지기능의 악화가 점진적으로 진행된다. 알츠하이머병의 정확한 발병 기전과 원인에 대해서는 정확히 알려져 있지는 않다. 현재 베타 아밀로이드(beta-amyloid)라는 작은 단백질이 과도하게 만들어져 뇌에 침착되면서 뇌 세포에 유해한 영향을 주는 것이 발병의 핵심 기전으로 알려져 있으나, 그 외에도 뇌 세포의 골격 유지에 중요한 역할을 하는 타우 단백질(tau protein)의 과인산화도 뇌 세포 손상에 기여하여 발병에 영향을 미치는 것으로 알려져 있다.In the present invention, Alzheimer's disease is the most common degenerative brain disease that causes dementia, and it develops slowly and causes gradual deterioration of cognitive functions, including memory. The exact pathogenesis and cause of Alzheimer's disease are not exactly known. Currently, it is known that the core mechanism of the disease is that a small protein called beta-amyloid is excessively produced and deposited in the brain, which has a harmful effect on brain cells. In addition, tau protein (Tau protein), which plays an important role in maintaining the skeleton of brain cells, Hyperphosphorylation of tau protein is also known to contribute to brain cell damage and affect the development of the disease.

타우 단백질은 미세소관을 지지하는 단백질(microtubule-associated protein)인 세포골격 단백질(cytoskeleton protein)로서, 다른 세포에 비하여 중추신경계통(central nervous system)의 신경세포 안에 풍부 하게 존재하며, 과인산화된 타우 단백질의 섬유성 응집이 내부신경세포에 비정상적으로 축적되어 타우 질환(tauopathy)이 발생한다.Tau protein is a cytoskeleton protein that supports microtubules (microtubule-associated protein). It is abundant in neurons of the central nervous system compared to other cells, and hyperphosphorylated tau Tauopathy occurs when fibrous aggregates of protein accumulate abnormally in inner nerve cells.

타우 질환은 알츠하이머성 치매의 주요 병인으로 거론되는 아밀로이드 베타(Aβ, β-amyloid)의 축적이 외부신경세포에서 이루어지는 점에서 구별되고, 특히 유전되는 타우 기인성 치매(tau only dementia)인 전두측두엽 치매 환자에서 외부신경세포에서 아밀로이드 베타의 축적 없이 내부신경세포에서 타우 과인산화와 응집만으로도 치매가 유도되는 점이 확인된 바 있다(van Swieten and Spillantini, 2007).Tau disease is distinguished in that the accumulation of amyloid beta (Aβ, β-amyloid), which is considered the main cause of Alzheimer's dementia, occurs in external nerve cells, especially in patients with frontotemporal dementia, an inherited tau-related dementia (tau only dementia). It has been confirmed that dementia is induced solely by tau hyperphosphorylation and aggregation in inner nerve cells without accumulation of amyloid beta in outer nerve cells (van Swieten and Spillantini, 2007).

본 발명에서 사용되는 용어, “예방”이란 본 발명에 따른 약학적 조성물의 투여에 의해 알츠하이머 병을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.As used in the present invention, the term “prevention” refers to all actions that suppress or delay the onset of Alzheimer's disease by administering the pharmaceutical composition according to the present invention.

본 발명에서 사용되는 용어, “치료”란 본 발명에 따른 약학적 조성물의 투여에 의해 알츠하이머 병에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.As used in the present invention, the term “treatment” refers to any action in which symptoms of Alzheimer's disease are improved or beneficially changed by administration of the pharmaceutical composition according to the present invention.

본 발명에 따른 약학적 조성물은 본 발명의 펩티드를 유효성분으로 포함하며, 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약학적으로 허용 가능한 담체는 제제시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립, 또는 정제로 제제화할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제화에 관해서는 레밍턴의 문헌에 개시되어 있는 방법을 이용하여 각 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학적 조성물은 제형에 특별한 제한은 없으나 주사제 또는 경구 섭취제 등으로 제제화할 수 있다.The pharmaceutical composition according to the present invention contains the peptide of the present invention as an active ingredient and may contain a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier is commonly used in preparation and includes, but is limited to, saline solution, sterile water, Ringer's solution, buffered saline solution, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, etc. If necessary, other common additives such as antioxidants and buffers may be added. In addition, diluents, dispersants, surfactants, binders, lubricants, etc. can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets. Regarding suitable pharmaceutically acceptable carriers and formulations, the formulations can be preferably formulated according to each ingredient using the method disclosed in Remington's literature. The pharmaceutical composition of the present invention is not particularly limited in formulation, but can be formulated as an injection or oral ingestion.

본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally (e.g., intravenously or subcutaneously) depending on the desired method, and the dosage depends on the patient's condition and weight, disease severity, drug form, It varies depending on the route and time of administration, but can be appropriately selected by a person skilled in the art.

본 발명에 따른 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서, “약학적으로 유효한 양”은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명에 따른 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The composition according to the present invention is administered in a pharmaceutically effective amount. In the present invention, “pharmacologically effective amount” means an amount sufficient to treat the disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, and activity of the patient's disease. , can be determined based on factors including sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, drugs used simultaneously, and other factors well known in the field of medicine. The composition according to the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.

구체적으로, 본 발명에 따른 조성물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며 투여 경로, 질환의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있다.Specifically, the effective amount of the composition according to the present invention may vary depending on the patient's age, gender, and weight, and may increase or decrease depending on the route of administration, severity of disease, gender, weight, age, etc.

본 발명에서 사용되는 용어, "약제학적으로 허용 가능한 이의 염"은 당해 기술분야에서 통상적인 방법에 의해 제조될 수 있는 것으로, 예를 들면, 염산, 브롬화수소, 황산, 황산수소나트륨, 인산, 탄산 등의 무기산과의 염 또는 개미산, 초산, 옥살산, 벤조산, 시트르산, 타르타르산, 글루콘산, 게스티스산, 푸마르산, 락토비온산, 살리실릭산, 또는 아세틸살리실릭산(아스피린)과 같은 유기산과 함께 약제학적으로 허용 가능한 이들의 산의 염을 형성하거나, 또는 나트륨, 칼륨 등의 알칼리금속이온과 반응하여 이들의 금속염을 형성하거나, 또는 암모늄 이온과 반응하여 또 다른 형태의 약제학적으로 허용 가능한 그의 염을 형성하는 것을 의미한다.As used in the present invention, the term “pharmaceutically acceptable salt thereof” refers to one that can be prepared by methods common in the art, for example, hydrochloric acid, hydrogen bromide, sulfuric acid, sodium hydrogen sulfate, phosphoric acid, carbonic acid. Drugs with salts of inorganic acids such as formic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gestisic acid, fumaric acid, lactobionic acid, salicylic acid, or acetylsalicylic acid (aspirin). It forms scientifically acceptable salts of these acids, or reacts with alkali metal ions such as sodium and potassium to form metal salts, or reacts with ammonium ions to form another pharmaceutically acceptable salt thereof. means forming.

본 발명은 상기 펩티드를 포함하는, 알츠하이머 병의 예방 또는 개선용 식품 조성물을 제공한다.The present invention provides a food composition for preventing or improving Alzheimer's disease, comprising the above peptide.

상기 식품 조성물은 건강기능성 식품 조성물을 포함한다.The food composition includes a health functional food composition.

본 발명에서 사용되는 용어, “개선”이란, 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.As used herein, the term “improvement” means any action that reduces at least the severity of a parameter, such as a symptom, related to the condition being treated.

본 발명의 식품 조성물에서 유효성분을 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 식품 또는 음료의 제조시에 본 발명의 조성물은 원료에 대하여 15 중량% 이하, 바람직하게는 10 중량% 이하의 양으로 첨가된다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있다.In the food composition of the present invention, the active ingredient can be added as is to the food or used together with other foods or food ingredients, and can be used appropriately according to conventional methods. The mixing amount of the active ingredient can be appropriately determined depending on the purpose of use (prevention or improvement). Generally, when producing food or beverages, the composition of the present invention is added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw materials. However, in the case of long-term intake for the purpose of health and hygiene or health control, the amount may be below the above range.

본 발명의 건강기능성식품 조성물은 지시된 비율로 필수 성분으로서 상기 유효성분을 함유하는 것 외에 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 당업자의 선택에 의해 적절하게 결정될 수 있다.The health functional food composition of the present invention has no particular restrictions on other ingredients other than containing the above-mentioned active ingredients as essential ingredients in the indicated proportions, and may contain various flavoring agents or natural carbohydrates as additional ingredients like ordinary beverages. there is. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, such as common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (thaumatin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.)) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used. The ratio of the natural carbohydrates can be appropriately determined by the selection of a person skilled in the art.

상기 외에 본 발명의 건강기능성식품 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율 또한 당업자에 의해 적절히 선택될 수 있다.In addition to the above, the health functional food composition of the present invention contains various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavoring agents, colorants and thickening agents (cheese, chocolate, etc.), pectic acid and its salts, It may contain alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc. These ingredients can be used independently or in combination. The proportions of these additives can also be appropriately selected by those skilled in the art.

본 발명은 하기 단계를 포함하는, 알츠하이머 치료제 스크리닝 방법을 제공한다.The present invention provides a screening method for an Alzheimer's drug, comprising the following steps.

a) 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프를 포함하는 펩티드를 합성하는 단계;a) synthesizing a peptide containing a CRBN binding motif represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3;

b) 상기 a)단계에서 합성된 펩티드가 CRBN의 DJ2 결합부위에 결합하여 CRBN와 DJ2의 결합을 저해할 수 있는지 분석하는 단계 및b) analyzing whether the peptide synthesized in step a) can bind to the DJ2 binding site of CRBN and inhibit the binding of CRBN and DJ2; and

c) 상기 b)단계에서 합성된 펩티드가 CRBN와 DJ2의 결합을 저해하는 경우 알츠하이머 병 치료제로 판정하는 단계.c) determining that the peptide synthesized in step b) is a treatment for Alzheimer's disease if it inhibits the binding of CRBN and DJ2.

단계 a)는 본 발명에 따른 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 아미노산 서열을 갖는 CRBN 결합 모티프를 이용하여 상기 서열을 포함하는 임의의 펩티드를 합성하는 단계이다. 이 단계에서 펩티드는 공지의 펩티드 합성기를 이용하는 화학적 방법 또는 재조합적 방법에 의하여 얻을 수 있다.Step a) is a step of synthesizing any peptide containing the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 using the CRBN binding motif according to the present invention. At this stage, peptides can be obtained by chemical or recombinant methods using known peptide synthesizers.

단계 b)는 합성된 펩티드가 DJ2 존재 하에 CRBN에 대한 결합활성을 가지고 있는지 여부를 확인하는 단계이다. 이 단계에서 본 발명의 펩티드와 CRBN 결합 여부는 당업계에 공지된 펩티드-펩티드 결합을 분석할 수 있는 임의의 방법에 의해 확인할 수 있으며, 예컨대 화학적 이동(chemical shift) 변동 분석을 통해 수행될 수 있다.Step b) is a step to confirm whether the synthesized peptide has binding activity to CRBN in the presence of DJ2. At this stage, whether the peptide of the present invention binds to CRBN can be confirmed by any method that can analyze peptide-peptide bonds known in the art, for example, it can be performed through chemical shift fluctuation analysis. .

단계 c)은 단계 b)의 분석 결과, 합성된 펩티드가 CRBN에 결합하는 것으로 확인되면 상기 펩티드를 알츠하이머 병 치료제로 판정하는 단계이다.Step c) is a step in which, if the synthesized peptide is confirmed to bind to CRBN as a result of the analysis in step b), the peptide is determined as a treatment for Alzheimer's disease.

본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드를 개체에 투여하는 단계를 포함하는 알츠하이머 병의 예방 또는 치료방법을 제공한다.The present invention provides a method for preventing or treating Alzheimer's disease, comprising administering to a subject a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.

본 발명에서 사용하는 용어 “개체”란 동물을 말하며, 본 발명의 펩티드를 이용한 치료로 유익한 효과를 나타낼 수 있는 포유동물일 수 있다. 이러한 대상체의 바람직한 예로 인간과 같은 영장류가 포함될 수 있다. 또한 이와 같은 개체들에는 알츠하이머 병 증상을 갖거나 이와 같은 증상을 가질 위험이 있는 개체들이 모두 포함될 수 있다.The term “individual” used in the present invention refers to an animal, and may be a mammal that can exhibit beneficial effects through treatment using the peptide of the present invention. Preferred examples of such subjects may include primates such as humans. Additionally, such individuals may include all individuals who have symptoms of Alzheimer's disease or are at risk of having symptoms of Alzheimer's disease.

본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드의 알츠하이머 병의 예방 또는 치료용도를 제공한다.The present invention provides the use of a peptide containing the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 for the prevention or treatment of Alzheimer's disease.

상기 조성물, 치료방법 및 치료용도와 관련된 설명은 상호 모순되지 않는 한 동일하게 적용될 수 있다.Descriptions related to the composition, treatment method, and treatment use may be applied in the same manner as long as they do not contradict each other.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Below, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are provided only to make the present invention easier to understand, and the content of the present invention is not limited by the following examples.

<실시예1: 실험방법, 재료 및 시약><Example 1: Experimental method, materials and reagents>

실시예 1-1. 시약, DNA 및 항체Example 1-1. Reagents, DNA and Antibodies

항체는 Sigma, Abnova, Abcam, CST 등에서 상업적으로 구매하였으며 Thalidomide, cycloheximide, MG132, okadaic acid, heparin 및 ThT는 시그마 (Sigma)로부터 상업적으로 구입하였고, Lipofectamine 2000은 Invitrogen에서 상업적으로 구입하였으며, 유비퀴틴, E1, E2 및 메틸화 유비퀴틴은 BostonBiochem에서 상업적으로 구입하였다.Antibodies were purchased commercially from Sigma, Abnova, Abcam, CST, etc. Thalidomide, cycloheximide, MG132, okadaic acid, heparin, and ThT were purchased commercially from Sigma, Lipofectamine 2000 was purchased commercially from Invitrogen, ubiquitin, E1 , E2 and methylated ubiquitin were purchased commercially from BostonBiochem.

실시예 1-2. 세포 배양 및 재료Example 1-2. Cell culture and materials

인간 신경 아세포종 세포주 SH-SY5Y (Invitrogen), HEK-293T 세포 및 마우스 배아 섬유 아세포 (MEF) 세포는 ATCC로부터 구입하였으며, 5 % CO2로 37 °C에서 10 % 소 태아 혈청 (FBS; Invitrogen) 및 100U ml-1 항생제-항진균제 (Invitrogen)가 보충된 DMEM에서 유지시켰다.The human neuroblastoma cell line SH-SY5Y (Invitrogen), HEK-293T cells and mouse embryonic fibroblast (MEF) cells were purchased from ATCC and incubated with 10% fetal bovine serum (FBS; Invitrogen) at 37 °C with 5% CO2 . Maintained in DMEM supplemented with 100U ml -1 antibiotic-antimycotic (Invitrogen).

실시예 1-3. 플라스미드Example 1-3. plasmid

포유 동물 세포 발현을 위해, Myc-tagged hDJ2 및 그의 돌연변이체를 pCS2+ MT 벡터에서 클로닝하였다. 그리고 HA-tagged rCRBN 및 그의 돌연변이체를 pEBB-3HA 벡터로 클로닝하였다. BiFC 분석을 위한 Tau40-VN173 및 Tau40-VC155는 김윤경 박사로부터 제공되었다. 박테리아 발현을 위해, His-tagged Tau40 및 Hsp70은 pET-28a에서 제작되었고 His-tagged DJ2-pET30b는 권기선 박사로부터 제공되었다. pGEX-4T-1 벡터에서 GST-tagged hCRBN는 Raymond J. Deshaies의 실험실에서 제공되었다. 포유 동물 발현 벡터 및 박테리아 발현 벡터로 클로닝된 모든 cDNA는 DNA 서열 분석에 의해 확인되었다.For expression in mammalian cells, Myc-tagged hDJ2 and its mutants were cloned in pCS2+ MT vector. And HA-tagged rCRBN and its mutants were cloned into pEBB-3HA vector. Tau40-VN173 and Tau40-VC155 for BiFC analysis were provided by Dr. Yun-Kyung Kim. For bacterial expression, His-tagged Tau40 and Hsp70 were constructed in pET-28a and His-tagged DJ2-pET30b was provided by Dr. Ki-Seon Kwon. GST-tagged hCRBN in pGEX-4T-1 vector was provided by the laboratory of Raymond J. Deshaies. All cDNAs cloned into mammalian and bacterial expression vectors were confirmed by DNA sequence analysis.

실시예 1-4. 실험 동물Example 1-4. laboratory animals

CRBN-knockout(KO) 마우스의 제조 및 스크리닝은 종래 기술을 이용하였다 (Lee et al., 2013). 야생형 및 CRBN-KO 마우스는 12 시간의 명암 주기로 병원체가 없는 조건에서 표준 chow 식이 및 물을 제공하였다. 모든 실험과 패러다임은 광주 과학 기술 동물 관리소의 승인을 받았다. 다양한 스트레스 요인에 대한 동물의 노출은 하기 표 1에 기재되었다. 뇌로부터 단백질 추출물을 제조하고 브래드 포드 방법 (Bio-Rad Laboratories)에 의해 정량화 하였다. 동일한 양의 단백질을 함유하는 샘플을 SDS-PAGE에서 분리하고 웨스턴 면역블롯팅을 실시하였다.Construction and screening of CRBN-knockout (KO) mice were performed using conventional techniques (Lee et al., 2013). Wild-type and CRBN-KO mice were provided standard chow diet and water under pathogen-free conditions with a 12-h light/dark cycle. All experiments and paradigms were approved by the Gwangju Science and Technology Animal Control Center. The animals' exposure to various stressors is listed in Table 1 below. Protein extracts were prepared from the brain and quantified by the Bradford method (Bio-Rad Laboratories). Samples containing equal amounts of protein were separated on SDS-PAGE and subjected to Western immunoblotting.

실시예 1-5. 2D-PAGE 및 이미지 분석Examples 1-5. 2D-PAGE and image analysis

전체 뇌 조직을 급속 냉동시키고, 액체 N2에서 미세 분말로 분쇄하고, urea lysis buffer (7M urea, 2M thiourea, 2% CHAPS, 1% DTT)에서 초음파 처리하였다. 그 다음, 45,000RPM에서 30분 동안 원심 분리하여 용해물을 제거하고 브래드 포드 방법(Bio-Rad, Hercules, CA)으로 정량화 하였다. 같은 양의 단백질 (300 μg / strip)을 IEF (GE Healthcare, pH 3-10, 7cm)로 분리한 다음 SDS-PAGE로 분리했다. Silver stain을 실시한 후, 연세 프로테옴 연구소에서 이미지 분석을 수행 하였으며, Crbn-/- 및 Crbn+/+ 에서 현저한 차이를 갖는 스팟은 겔내 분해 및 MS / MS 분석에 적용되었다.Whole brain tissue was flash frozen, ground to a fine powder in liquid N 2 , and sonicated in urea lysis buffer (7M urea, 2M thiourea, 2% CHAPS, 1% DTT). The lysate was then removed by centrifugation at 45,000 RPM for 30 minutes and quantified by the Bradford method (Bio-Rad, Hercules, CA). Equal amounts of protein (300 μg/strip) were separated by IEF (GE Healthcare, pH 3–10, 7 cm) and then by SDS-PAGE. After silver staining, image analysis was performed at the Yonsei Proteome Research Institute, and spots with significant differences in Crbn -/- and Crbn +/+ were subjected to in-gel digestion and MS/MS analysis.

실시예 1-6. In vitro 유비퀴틴화 분석Example 1-6. In vitro ubiquitination assay

유비퀴틴화 분석은 기존에 알려진 바와 같이 수행하였다. 요약하자면, 6-웰 플레이트에서 배양된 SHSY5Y 세포에 FlagCRBN 또는 빈벡터를 형질 감염시키고 48 시간 후 MG132 (10 μM)로 4 시간 동안 처리하였다. 그 다음 세포를 수확하여 RIPA 완충액에 용해시키고, 4 ℃에서 2-4 시간 동안 플래그 M2 아가로스 비드로 면역 침전시켰다. RIPA 완충액으로 2회 및 유비퀴틴화 완충액 (50 mM Tris-HCl [pH 8.0], 10 mM MgCl2, 0.2 mM CaCl2, 1 mM DTT 및 100 nM MG132)으로 2 회 세척한 후, 비드는 E1 (0.5μM), UbcH5a (0.5μM), UbcH3 (1.67μM), 유비퀴틴 (60μM) 및 ATP (4mM)를 포함하는 30μl의 유비퀴틴화 완충액에서 30 ℃에서 1 시간 동안 배양되었다. 메틸화 유비퀴틴 (Me-Ub)도 명시된 곳에 첨가하였으며, SDS 샘플 완충제를 첨가하여 반응을 정지시키고 면역 블롯 분석을 수행하였다.Ubiquitination analysis was performed as previously known. Briefly, SHSY5Y cells cultured in 6-well plates were transfected with Flag CRBN or empty vector, and 48 hours later, they were treated with MG132 (10 μM) for 4 hours. Cells were then harvested, lysed in RIPA buffer, and immunoprecipitated with Flag M2 agarose beads for 2–4 h at 4 °C. After washing twice with RIPA buffer and twice with ubiquitination buffer (50 mM Tris-HCl [pH 8.0], 10 mM MgCl 2 , 0.2 mM CaCl 2 , 1 mM DTT, and 100 nM MG132), the beads were incubated with E1 (0.5 µM), UbcH5a (0.5 µM), UbcH3 (1.67 µM), ubiquitin (60 µM) and ATP (4 mM) for 1 h at 30 °C. Methylated ubiquitin (Me-Ub) was also added where indicated, and the reaction was stopped by adding SDS sample buffer and immunoblot analysis was performed.

실시예 1-7. 세포 기반 유비퀴틴화 분석Example 1-7. Cell-based ubiquitination assay

6-웰 플레이트에서 배양된 SHSY5Y 세포를 siRNA 또는 siRNACRBN으로 형질 감염시켰다. 24 시간 후, 세포에 1㎍의 pRK5-HA-유비퀴틴(HA-Ub)을 형질 감염시켰다. 24 시간 후, 세포를 수확하고, 차가운 PBS로 2 회 세척하고 PMSF 및 프로테아제 억제제 칵테일이 보충된 유비퀴틴화 완충액 (50mM Tris-HCl, 150mM NaCl, 1mM EDTA, 0.5 % Triton X-100)에 용해시켰다. 용해물을 4 ℃에서 밤새 α-DJ2 항체와 함께 배양하고 proteinG 레진으로 면역 침전시켰다. 비드는 유비퀴틴화 완충액 및 PBS로 철저히 세척되었으며, SDS 샘플 완충제를 첨가하여 반응을 중지시키고, SDS-PAGE를 분리하여 PVDF 막으로 옮겨 면역 블롯 분석을 수행하였다.SHSY5Y cells cultured in 6-well plates were transfected with siRNA or siRNA CRBN . 24 hours later, cells were transfected with 1 μg of pRK5-HA-ubiquitin (HA-Ub). After 24 h, cells were harvested, washed twice with cold PBS and lysed in ubiquitination buffer (50mM Tris-HCl, 150mM NaCl, 1mM EDTA, 0.5% Triton X-100) supplemented with PMSF and protease inhibitor cocktail. Lysates were incubated with α-DJ2 antibody overnight at 4°C and immunoprecipitated with proteinG resin. Beads were washed thoroughly with ubiquitination buffer and PBS, the reaction was stopped by adding SDS sample buffer, and separated by SDS-PAGE and transferred to PVDF membrane for immunoblot analysis.

실시예 1-8. LC-MS / MS를 이용한 CRBN 결합 파트너 식별Examples 1-8. Identification of CRBN binding partners using LC-MS/MS

액체 질소로 분말화 시킨 전체 뇌 조직을 용해 완충액 (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.2, protease inhibitor cocktail, 1 mM NaF, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 1 mM PMSF)에 재현탁 시켰다. 이어서, 단백질은 37 ℃에서 30 분 동안 5mM dithiothreitol(DTT)의 최종 농도로 감소시키고, 실온의 어두운 곳에서 30 분 동안 IAA를 최종 농도 25mM로 사용하여 알킬화시켰다. 알킬화 후, 요소 농도를 25mM의 Tris-HCl (pH 8.0)을 사용하여 <2μM로 희석하고 1:50 희석 트립신으로 37 ℃에서 밤새 소화시켰다. 소화된 단백질은 종래 알려진 방법을 변형한 다차원 단백질 식별 기술 (MudPIT) 분석에 적용되었다.Whole brain tissue powdered in liquid nitrogen was lysed in lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.2, protease inhibitor cocktail, 1 mM NaF, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate, 10 mM sodium). pyrophosphate, 1 mM PMSF). Proteins were then reduced to a final concentration of 5mM dithiothreitol (DTT) for 30 min at 37 °C and alkylated using IAA to a final concentration of 25mM for 30 min in the dark at room temperature. After alkylation, the urea concentration was diluted to <2 μM using 25 mM Tris-HCl (pH 8.0) and digested with 1:50 diluted trypsin overnight at 37 °C. The digested proteins were subjected to multidimensional protein identification technology (MudPIT) analysis, which was a modification of a previously known method.

MudPIT 컬럼은 7 cm의 5-μm Aqua C18 물질을 함유하는 분석 컬럼 융합 실리카 모세관 컬럼(100-μm inner diameter) 및 2 cm의 5 μm Partisphere strong cation exchange 및 2 cm의 5-μm Aqua C18 역상 컬럼 물질로 충전된 트래핑 컬럼 융합 실리카 모세관 컬럼(250-μm inner diameter)으로 구성되었다. 마이크로 모세관 컬럼으로부터의 펩티드 용출 후, 펩티드를 LTQ 선형 이온 트랩 질량 분석기로 전기 분무하고, 원위적으로 사용된 2.3 kV 분무 전압으로 HPLC 스플리트의 waste에 적용하였다. 35% 정규화된 충돌 에너지에서 9개의 데이터 의존형 tandem MS (MS / MS) 스펙트럼(400-1400 m/z (mass-to-charge ratio))가 뒤 따르는 전체 스캔 질량 스펙트럼의 사이클을 다차원 분리 전체에 걸쳐 연속적으로 반복 하였다.The MudPIT column is an analytical column fused silica capillary column (100-μm inner diameter) containing 7 cm of 5-μm Aqua C18 material and 2 cm of 5 μm Partisphere strong cation exchange material and 2 cm of 5-μm Aqua C18 reversed-phase column material. The trapping column was composed of a fused silica capillary column (250-μm inner diameter) packed with . After peptide elution from the microcapillary column, peptides were electrosprayed into an LTQ linear ion trap mass spectrometer and applied to the waste of the HPLC split with 2.3 kV spray voltage used distally. Cycles of full-scan mass spectra followed by nine data-dependent tandem MS (MS/MS) spectra (400–1400 m/z (mass-to-charge ratio)) at 35% normalized collision energies throughout the multidimensional separation. It was repeated continuously.

LC / LC-ESI-MS / MS 분석으로부터 얻은 MS / MS 스펙트럼을 사용하여 마우스 International Protein Index (IPI) 데이터베이스를 검색하였다. SEQUEST는 1.0 Da의 조각 이온 mass tolerance 및 3.0 Da의 부모 mass tolerance로 검색되었다. MS/MS spectra obtained from LC/LC-ESI-MS/MS analysis were used to search the mouse International Protein Index (IPI) database. SEQUEST was searched with a fragment ion mass tolerance of 1.0 Da and a parent mass tolerance of 3.0 Da.

cysteine의 iodoacetamide 유도체는 SEQUEST에서 고정 변형 (시스테인 +57)으로서 허용되었다. 메티오닌의 산화 및 리신의 아세틸화는 SEQUEST 검색에서 펩티드당 최대 3개의 변형이 허용되는 가변 변형 (메티오닌 +16) (타입 당 최대 변형 수는 5 임) 및 최대 2 개의 트립신 소화를 위한 missed cleavage site로 지정되었다. The iodoacetamide derivative of cysteine was accepted as a fixed modification (cysteine +57) in SEQUEST. Oxidation of methionine and acetylation of lysine were identified as variable modifications (methionine +16) with up to 3 modifications allowed per peptide in SEQUEST searches (maximum number of modifications per type is 5) and up to 2 missed cleavage sites for trypsin digestion. It has been designated.

유사한 펩티드를 함유하고 MS / MS 분석 단독에 기초하여 분화될 수 없는 단백질을 parsimony 원리를 만족시키기 위해 그룹화 하였다. BIOWORKS 버전 3.2를 사용하여 검색 결과를 필터링하고 다음과 같은 Xcorr 값과 델타 Cn 값 0.08을 펩티드의 다른 충전 상태에 적용했다: 단일 하전 펩티드의 경우 1.8, 이중 하전 펩티드의 경우 2.5, 삼중 하전 펩티드의 경우 3.5. 2 개의 tryptic-digested end 둘 다의 요구 사항이 필터링 프로세스에서 사용되었다.Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the parsimony principle. BIOWORKS version 3.2 was used to filter the search results and the following 3.5. The requirement of both tryptic-digested ends was used in the filtering process.

실시예 1-9. CRBN KnockdownExample 1-9. CRBN Knockdown

siRNACRBN 및 스크램블 siRNA (대조군)는 Invitrogen에서 구입했으며, 제조업체의 프로토콜에 따라 약간만 수정하여 세포 형질 감염을 수행했다. 표적 세포를 lipfectamine2000과 siRNA로 형질 감염시켰으며, knockdown 효율은 면역 블롯으로 분석했다.siRNA CRBN and scrambled siRNA (control) were purchased from Invitrogen, and cell transfections were performed according to the manufacturer's protocol with minor modifications. Target cells were transfected with lipfectamine2000 and siRNA, and knockdown efficiency was analyzed by immunoblot.

실시예 1-10. Bimolecular Fluorescence Complementation (BiFC) 분석Examples 1-10. Bimolecular Fluorescence Complementation (BiFC) analysis

SH-SY5Y 세포를 6-웰 플레이트 (1 x 104 cells/well)의 완전 배지에서 poly-L-lysine 코팅된 커버 슬립에 시딩하고 siRNA 또는 siRNACRBN으로 형질 감염시켰다. 24 시간 후, 세포를 Tau40-VN173 및 Tau-VC155 작제물로 공동 형질 감염시킨 후, 16 시간 후에 30 nM okadaic acid(OA)로 처리하였다. 세포에서 tau-BiFC 형광 강도는 100X 대물 렌즈가 장착된 FV1000 공초점 레이저 스캐닝 현미경 (Olympus)을 사용하여 분석되었다.SH-SY5Y cells were seeded on poly-L-lysine coated coverslips in complete medium in 6-well plates (1 x 10 4 cells/well) and transfected with siRNA or siRNA CRBN . After 24 h, cells were co-transfected with Tau40-VN173 and Tau-VC155 constructs and then treated with 30 nM okadaic acid (OA) 16 h later. The tau-BiFC fluorescence intensity in cells was analyzed using an FV1000 confocal laser scanning microscope (Olympus) equipped with a 100X objective.

실시예 1-11. K18 응집 분석Example 1-11. K18 agglutination assay

타우 단백질 K18 (5 μM)의 응집은 pH 7.4의 PBS에서 폴리 음이온 (헤파린, 2.5 μM)의 존재하에 37 ℃에서 수행되었다. 어셈블리는 정성적으로 TEM에 의해 그리고 정량적으로 ThT를 사용한 형광 분석에 의해 수행되었다. 샘플은 37 ℃에서 6 시간 동안 인큐베이션 하였으며, 분자 내 이황화 가교를 피하기 위해 Dithiothreitol을 1 mM의 최종 농도로 첨가하였다. 각 상태 (사전 응집체, 응집체, DJ2를 갖는 응집체)에 대해, K18 (5 μM)을 5 μM ThT (Sigma)를 함유하는 PBS를 갖는 흑색 98-웰 플레이트로 옮겼다. ThT 신호는 Synergy H1 하이브리드 리더인 Biotek에서 λex = 430nm 및 λem = 480nm에서 측정되었다.Aggregation of tau protein K18 (5 μM) was performed at 37 °C in the presence of polyanions (heparin, 2.5 μM) in PBS at pH 7.4. Assembly was performed qualitatively by TEM and quantitatively by fluorescence analysis using ThT. Samples were incubated at 37 °C for 6 h, and Dithiothreitol was added to a final concentration of 1 mM to avoid intramolecular disulfide bridges. For each state (pre-aggregates, aggregates, aggregates with DJ2), K18 (5 μM) was transferred to black 98-well plates with PBS containing 5 μM ThT (Sigma). ThT signals were measured at λ ex = 430 nm and λ em = 480 nm on a Synergy H1 hybrid reader, Biotek.

실시예 1-12. 투과 전자 현미경(TEM)Examples 1-12. Transmission electron microscopy (TEM)

600-메쉬 탄소-코팅된 구리 그리드 (SPI 공급)를 네거티브 염색된 타우-K18 응집체의 TEM 분석에 사용하였다. 샘플을 글로우-방전 그리드에서 1분 동안 인큐베이션 한 다음, 여과지를 사용하여 용액을 제거하였다. 증류수로 3회 세척 한 후, 1 % (w / v) uranyl acetate로 2 분간 염색하고 증류수로 최종 세척 단계를 수행하였다. 그리드는 CCD 카메라가 장착된 Tecnai T12 전자 현미경에 의해 분석되었다.600-mesh carbon-coated copper grids (supplied by SPI) were used for TEM analysis of negatively stained Tau-K18 aggregates. Samples were incubated on a glow-discharge grid for 1 minute, then the solution was removed using filter paper. After washing three times with distilled water, the cells were stained with 1% (w/v) uranyl acetate for 2 min and a final washing step was performed with distilled water. Grids were analyzed by a Tecnai T12 electron microscope equipped with a CCD camera.

실시예 1-13. 재조합 단백질의 발현 및 정제Example 1-13. Expression and purification of recombinant proteins

CRBN-GST를 glutathione resin에서 정제한 후 TEV 프로테아제로 소화시켰다. Tau-6xHis, DJ2-6xHis 및 Hsp70-6xHis를 Ni-NTA 친화성 수지 (Clontech)에서 정제하였다.CRBN-GST was purified from glutathione resin and digested with TEV protease. Tau-6xHis, DJ2-6xHis and Hsp70-6xHis were purified on Ni-NTA affinity resin (Clontech).

실시예 1-14. 면역블롯 분석Example 1-14. Immunoblot analysis

세포를 PMSF 및 프로테아제 억제제 칵테일 (Roche)이 보충된 RIPA 완충액(20 mM Hepes, 150 mM NaCl, 1mM EDTA-EGTA, 1% Triton X-100, 1% NP40, 1% sodium deoxycholate, 2 mM Na4VO3, 100 mM NaF [pH 7.4])에 용해시켰다.Cells were incubated in RIPA buffer (20 mM Hepes, 150 mM NaCl, 1mM EDTA-EGTA, 1% Triton 3 , dissolved in 100 mM NaF [pH 7.4]).

그 다음, 12,500 RPM에서 30 분 동안 원심 분리하여 용해물을 제거하고 브래드 포드 (Bradford) 방법으로 정량화 하였다. 동일한 양의 단백질 (10 ㎍ / 레인)을 SDS-PAGE로 분리하고 PVDF 막으로 옮겼다. 명시된 항체로 막을 블롯팅 하였다. Horseradish peroxidase에 접합된 α-레빗 또는 α-마우스 항체를 2차 항체로 사용하였고, 신호는 ECLTM 웨스턴 블롯팅 검출 시약(Amersham)을 사용하여 검출되었다.The lysate was then cleared by centrifugation at 12,500 RPM for 30 min and quantified by the Bradford method. Equal amounts of protein (10 μg/lane) were separated by SDS-PAGE and transferred to PVDF membranes. Membranes were blotted with the indicated antibodies. α-Rabbit or α-mouse antibodies conjugated to horseradish peroxidase were used as secondary antibodies, and signals were detected using ECL TM Western blotting detection reagent (Amersham).

실시예 1-15. 면역침강Example 1-15. immunoprecipitation

세포를 RIPA 완충액에 용해시킨 후 12,500 RPM에서 30 분 동안 원심분리 하였다. 단백질을 지정된 항체로 4 ℃에서 16 시간 동안 면역 침강시킨 후, protein G Sepharose 4 Fast Flow(GE Healthcare)와 함께 4 ℃에서 2.5 시간 동안 인큐베이션 하였다. 그 후, 비드를 함유하는 RIPA 완충액에서 2회 및 PBS에서 2회 세척하였다. 면역 침전된 단백질을 SDS-PAGE에 의해 분석하고, PVDF 막으로 옮긴 후, 특정 항체로 면역 블롯팅하여 분석하였다.Cells were dissolved in RIPA buffer and centrifuged at 12,500 RPM for 30 minutes. Proteins were immunoprecipitated with the indicated antibodies for 16 h at 4°C and then incubated with protein G Sepharose 4 Fast Flow (GE Healthcare) for 2.5 h at 4°C. Afterwards, the beads were washed twice in RIPA buffer and twice in PBS. Immunoprecipitated proteins were analyzed by SDS-PAGE, transferred to PVDF membrane, and analyzed by immunoblotting with specific antibodies.

실시예 1-16. Cycloheximide 추적 실험Example 1-16. Cycloheximide tracking experiment

세포를 6-웰 플레이트 (1 x 104 cells/wall) 내의 완전 배지에서 밤새 시딩 한 다음, 2.5 ㎍ / ml Cycloheximide(CHX)를 첨가 하였다. 그 다음, 면역 블롯 분석을 위해 표시된 시점에서 샘플을 수확하였다.Cells were seeded overnight in complete medium in 6-well plates (1 × 10 4 cells/wall), and then 2.5 μg/ml Cycloheximide (CHX) was added. Samples were then harvested at the indicated time points for immunoblot analysis.

실시예 1-17. CRISPR / Cas9에 의한 CRBN Knockout HEK293T 세포의 생성Example 1-17. Generation of CRBN Knockout HEK293T cells by CRISPR/Cas9

CRBN CRISPR / Cas9 KO 플라스미드 및 CRBN HDR 플라스미드 (sc-412142)는 산타 크루즈 (Santa Cruz)에서 구입했으며 제조업체의 프로토콜에 따라 CRBN을 녹아웃하였다. 요약하면, HEK293T 세포를 CRBN CRISPR / Cas9 KO 플라스미드 및 CRBN HDR 플라스미드 또는 대조군 CRISPR 플라스미드 (sc-418922)로 공동 형질 감염시켰다. Puromycin을 사용하여 Cas-9 유도 DSB (DNA 함유 이중 가닥 파괴)가 성공적인 세포를 선별하였다.CRBN CRISPR/Cas9 KO plasmid and CRBN HDR plasmid (sc-412142) were purchased from Santa Cruz and CRBN was knocked down according to the manufacturer's protocol. Briefly, HEK293T cells were co-transfected with CRBN CRISPR/Cas9 KO plasmid and CRBN HDR plasmid or control CRISPR plasmid (sc-418922). Puromycin was used to select cells with successful Cas-9-induced DSBs (DNA-containing double-strand breaks).

실시예 1-18. 스트레스 패러다임Example 1-18. stress paradigm

본 발명에서 multimodal short-term 스트레스 패러다임이 사용되었다. 한 그룹의 Crbn +/+ C57BL/6 동물 및 한 그룹의 Crbn -/- C57BL/6 동물을 5주간 CUMS에 노출시켰으며, 실험은 3 회 반복하였다. 구체적으로, CUMS 패러다임은 아래와 같은 혐오성 스트레스 요인 중 하나에 매일 3번 노출되는 것으로 구성되었다 : stroboscopic illumination (1시간 동안 6번 / 초에 빛을 6번/초), 케이지 틸팅(30 ° 포지션), 더러워진 우리(침대에 물을 부어서 침구를 적신 상태), 페어링된 주택(각 그룹화 세션에서 서로 익숙하지 않은 두 마리의 쥐를 짝 짓고 거주자를 전환), 시끄러운 소음(임의의 소음 발생기 (dB 수준 <80; 주파수 80-300 Hz)에서 1 시간 동안 생성), 감금(케이지 너비를 따라 골판지 시트를 도입하여 이동 가능한 공간을 제한), 반전된 조명주기 (주간에는 일반 실내 조명을 끄고 야간에는 켬). 스트레스 요인은 예측할 수 없는 임의 순서로 제공되었다 (하기 표 1 참조).In the present invention, a multimodal short-term stress paradigm was used. One group of Crbn +/+ C57BL/6 animals and one group of Crbn -/- C57BL/6 animals were exposed to CUMS for 5 weeks, and the experiment was repeated three times. Specifically, the CUMS paradigm consisted of three daily exposures to one of the following aversive stressors: stroboscopic illumination (6 flashes of light/sec for 1 hour), cage tilting (30° position). , soiled cages (water was poured on the beds to wet the bedding), paired housing (two rats unfamiliar to each other were paired in each grouping session and the occupants were switched), loud noises (random noise generator (dB level <80; frequency 80-300 Hz) for 1 h), confinement (limiting the space available for movement by introducing sheets of cardboard along the width of the cage), and inverted light cycle (normal room lighting turned off during the day and turned on at night). Stressors were presented in a random, unpredictable order (see Table 1 below).

실시예 1-19. 마우스 뇌에 okadaic acid(OA)의 정위 주입(Stereotaxic Injections)Example 1-19. Stereotactic Injections of okadaic acid (OA) into the mouse brain.

정위 수술은 다음과 같이 수행되었다. 마우스를 6X ketamine (0.1mL / 10g 체중)으로 마취시키고, 국소 마취 (lidocaine 0.3mL)를 제공하여 제모하고, 마우스를 이어바에 단단히 위치시켰다. 60 nl / 분의 주입 속도로 DMSO 또는 DMSO 단독에 용해된 130 nl의 100 μM OA (Sigma)를 측면 편도에서 일방적으로 주사 하였다(bregma coordinates: anterior/posterior -1.94, medial/lateral -3.15, dorsal/ventral -4.5). 그 다음, 바늘을 5 분간 삽입 상태로 유지한 다음 천천히 빼내고 두피를 단단히 꿰매었다. 수술 후 진통제 및 항생제는 일단 반사가 회복되면 (septazol 0.05 mL, ketapro 0.05 mL) 근육 내로 투여되고 마우스를 그들의 케이지에 넣고 24 시간 동안 회복시켰다. 두개골로부터 뇌를 제거하고, PBS로 관류시키고, 해부하여 도 6a에 도시된 영역을 수득하고 액체 질소에서 스냅 동결시켰다.Stereotactic surgery was performed as follows. Mice were anesthetized with 6 130 nl of 100 μM OA (Sigma) dissolved in DMSO or DMSO alone was injected unilaterally in the lateral tonsil at an infusion rate of 60 nl/min (bregma coordinates: anterior/posterior -1.94, medial/lateral -3.15, dorsal/ ventral -4.5). Then, the needle was kept inserted for 5 minutes and then slowly withdrawn and the scalp was tightly stitched. Postoperative analgesics and antibiotics were administered intramuscularly once reflexes were restored (septazol 0.05 mL, ketapro 0.05 mL) and mice were placed in their cages and allowed to recover for 24 h. The brain was removed from the skull, perfused with PBS, dissected to yield the region shown in Figure 6A, and snap frozen in liquid nitrogen.

실시예 1-20. 통계 분석Examples 1-20. statistical analysis

데이터는 평균 ± 표준 편차 (SD)로 제시된다; P- 값은 Microsoft Excel에서 쌍을 이루지 않은 양측 스튜던트 t-검정을 사용하여 계산되었다. P <0.05는 유의한 것으로 간주되었다.Data are presented as mean ± standard deviation (SD); P-values were calculated using an unpaired two-tailed Student's t-test in Microsoft Excel. P <0.05 was considered significant.

<실시예 2: CRBN의 내인성 기질로서 Hsp70 및 그의 공동-샤페론의 동정><Example 2: Identification of Hsp70 and its co-chaperone as endogenous substrates of CRBN>

CRBN 관련 기질만을 식별하기 위해, CRBN의 내인성 기질이 Crbn-/- 마우스 및 세포주에서 과발현 될 수 있다는 가설을 세웠다. 이러한 가설을 입증하기 위해 Crbn-/- 및 Crbn+/+ 마우스의 전체 뇌 용해물 (whole brain lysate, WBL)의 정량적 질량 분석을 수행했다. 3번의 Crbn-/- 마우스 vs. Crbn+/+ 마우스 실험을 통해, 더 높은 스펙트럼 (평균 > 2배 이상)을 갖는 수십 개의 단백질을 발견하였다. 가장 차등적으로 발현된 단백질을 하기 표 2에 기재하였다.To identify only CRBN-related substrates, we hypothesized that endogenous substrates of CRBN might be overexpressed in Crbn −/− mice and cell lines. To substantiate this hypothesis, we performed quantitative mass spectrometry of whole brain lysate (WBL) from Crbn −/− and Crbn +/+ mice. 3 Crbn −/− mice vs. Through experiments with Crbn +/+ mice, dozens of proteins with higher spectra (average > 2 times higher) were discovered. The most differentially expressed proteins are listed in Table 2 below.

WBL (Crbn-/- Vs Crbn+/+)의 LC-MS/MS 분석을 기반으로, Hsp70과 공동 샤페론인 DJ1 및 DJ2가 CRBN의 새로운 내인성 기질일 것으로 예상되었다. pull-down 분석을 통해, Hsp70, DJ1 및 DJ2가 내인성 및 외인성 시스템 둘 다에서 CRBN과 상호 작용한다는 것을 확인하였다(도 1a, 도 9a). CRBN-specific siRNA을 이용하여 CRBN의 발현을 억제하는 경우 내인성 Hsp70, DJ1 및 DJ2에 HA-태그 유비퀴틴의 도입은 크게 감소되었으며 이는 상기 DJ1 등은 CRBN 매개 유비퀴틴화에 의해 분해됨을 의미한다.Based on LC-MS/MS analysis of WBL (Crbn -/- Vs Crbn +/+ ), Hsp70 and co-chaperones DJ1 and DJ2 were predicted to be novel endogenous substrates of CRBN. Through pull-down analysis, we confirmed that Hsp70, DJ1, and DJ2 interact with CRBN in both endogenous and exogenous systems (Figures 1a and 9a). When the expression of CRBN was suppressed using CRBN-specific siRNA, the incorporation of HA-tagged ubiquitin into endogenous Hsp70, DJ1 and DJ2 was greatly reduced, indicating that DJ1 and others were degraded by CRBN-mediated ubiquitination.

또한, FlagCRBN은 재조합 E1, E2, 유비퀴틴 및 ATP가 풍부할 때 in vitro 유비퀴틴화에서 공동 침전된 내인성 샤페론을 증가시켰으며 (도 1e, line 5), 메틸화된 유비퀴틴의 첨가는 유비퀴틴화를 억제하였다 (도 1e, line 4). thalidomide가 샤페론의 유비퀴틴화를 방해하지 않기 때문에, 샤페론과 IMiD의 관련성은 추가로 연구하지 않았다 (도 9b).Additionally, Flag CRBN increased co-precipitated endogenous chaperones upon in vitro ubiquitination when recombinant E1, E2, ubiquitin, and ATP were enriched (Figure 1e, line 5), and addition of methylated ubiquitin inhibited ubiquitination. (Figure 1e, line 4). Because thalidomide does not interfere with the ubiquitination of the chaperone, the association of the chaperone with IMiD was not studied further (Figure 9b).

다음으로 CRBN 녹아웃이 세포에서 샤페론 축적을 촉진하는지 실험하였다. WT-MEF 및 Crbn-/-MEF 세포를 이용하여, cycloheximide(CHX) 존재하에 Hsp70, DJ1 및 특히 DJ2의 분해가 지연되는 것을 관찰되었으며 (도 1f), 이들 샤페론은 MG132로 처리시 Crbn-/-MEF 세포에서 축적되었다 (도 1g). 이러한 결과는 Hsp70, DJ1 및 DJ2가 CRL4CRBN의 신규한 내인성 기질임을 의미한다.Next, we tested whether CRBN knockout promoted chaperone accumulation in cells. Using WT-MEF and Crbn −/− MEF cells, we observed delayed degradation of Hsp70, DJ1 and especially DJ2 in the presence of cycloheximide (CHX) (Figure 1f), and these chaperones were activated in Crbn −/− upon treatment with MG132. accumulated in MEF cells (Figure 1g). These results indicate that Hsp70, DJ1, and DJ2 are novel endogenous substrates of CRL4 CRBN.

<실시예 3: CRBN과 DJ2가 타우의 헤파린 매개 응집에 미치는 영향><Example 3: Effect of CRBN and DJ2 on heparin-mediated aggregation of tau>

인간 Hsp70과 DJ1의 합동 작용 (DJ2는 아님)은 α-synuclein fibril 형성에 효과적인 반전을 초래한다. 이는 Hsp70과의 파트너십으로 J-protein 중에서 훌륭하게 조절된 기질-특이적 선호도를 나타낸다. α-synuclein의 응집을 감소시키는데 있어서 DJ1 및 DJ2의 역할이 연구되었으므로, 본 발명에서는 미세관 관련 단백질 타우 (MAPT 또는 tau)의 응집을 낮추는데 있어 이들의 역할에 초점을 두었다.Joint action of human Hsp70 and DJ1, but not DJ2, results in an effective reversal of α-synuclein fibril formation. This, in partnership with Hsp70, exhibits a well-regulated substrate-specific preference among J-proteins. Since the role of DJ1 and DJ2 in reducing the aggregation of α-synuclein has been studied, the present invention focused on their role in reducing the aggregation of the microtubule-associated protein tau (MAPT or tau).

우선, 상이한 조합의 샤페론 및 CRBN의 존재하에 전장 타우 및 절단된 타우 (타우 또는 K18의 반복 도메인)로 시험 관내 응집 분석을 수행하였다. 헤파린 및 dithiothreitol(DTT)에 의해 응집을 유도하였으며, thioflavin T (ThT)-형광 분석 및 투과 전자 현미경 (TEM) 분석을 사용하여 평가하였다 (도 2a 내지 2d). 샤페론과 타우의 인큐베이션은 ThT 염료의 결합 감소를 통해 알 수 있듯이 응집을 감소시켰으며, Hsp70/DJ2가 Hsp70/DJ1보다 더 효과가 있었다 (도 2a). 흥미롭게도, Hsp70만으로는 DJ2에 비해 효율적으로 타우 응집을 제거할 수 없었으며, 이는 DJ2가 타우 본래 형태를 안정화시켜 응집을 막는 것을 의미한다.First, in vitro aggregation assays were performed with full-length tau and truncated tau (repeat domain of tau or K18) in the presence of different combinations of chaperones and CRBN. Aggregation was induced by heparin and dithiothreitol (DTT) and assessed using thioflavin T (ThT)-fluorescence analysis and transmission electron microscopy (TEM) analysis (Figures 2a to 2d). Incubation of tau with the chaperone reduced aggregation, as evidenced by reduced binding of ThT dye, and Hsp70/DJ2 was more effective than Hsp70/DJ1 (Figure 2a). Interestingly, Hsp70 alone was not able to remove tau aggregation as efficiently as DJ2, indicating that DJ2 prevents aggregation by stabilizing the original form of tau.

이에, 타우에 대한 DJ2의 결합을 확인하기 위해 공동 면역 침전 분석을 수행하였다 (도 9c). 타우와 DJ2의 결합은 타우 고유 형태를 안정화시킬 뿐만 아니라 생체내 타우 키나제와 반응을 제한하여 타우의 인산화 및 응집을 감소시킬 수 있다. 한편, CRBN에 의한 DJ2의 제거는 타우 응집을 방지하기 위한 활동을 감소시켰으며(도 2a), DJ2는 전장 타우보다 빠르게 응집되는 K18과 마찬가지로 전장 타우의 응집도 효과적으로 제거함을 확인하였다(도 2b). Therefore, co-immunoprecipitation analysis was performed to confirm the binding of DJ2 to tau (Figure 9c). The binding of tau to DJ2 not only stabilizes the native form of tau, but can also limit the reaction with tau kinase in vivo, reducing phosphorylation and aggregation of tau. Meanwhile, removal of DJ2 by CRBN reduced the activity to prevent tau aggregation (Figure 2a), and it was confirmed that DJ2 effectively removes the aggregation of full-length tau, similar to K18, which aggregates faster than full-length tau (Figure 2b).

앞서 DJ2는 타우의 고유 형태를 안정화시키는 기능이 있음을 보여주었다. 이에, 타우 응집을 제거하는 DJ2의 효과 및 CRBN에 의한 방해 여부를 확인하기 위해 in vivo 및 in vitro 연구를 수행하였다. 타우 병증은 CNS에서 원섬유형 타우 봉입체의 현저한 축적을 특징으로 한다 그러나, 세포 외 타우는 트렌스-세포 증식에서 영향력 있는 역할을 수행한다. 세포 외 단량체 및 seed-competent 타우는 세포에 들어가서 강하게 응집한다. 세포 외 타우의 독성에 대한 DJ2의 효과를 관찰하기 위해, 헤파린-유도 K18 응집체를 DJ2의 존재 또는 부재하에 48 시간 동안 처리하고, SH-SY5Y 세포 외부에 첨가하였다. K18 응집체 처리된 SH-SY5Y 세포에서 대규모 세포 사멸이 관찰되었다. 그러나, 헤파린-유도 응집 이전에 DJ2와 공동 배양된 K18은 현미경 및 MTT 분석을 통해 시각화 된 바와 같이 세포 독성이 없음을 확인하였다 (도 2d). 흥미롭게도 CRBN은 DJ2를 타우에서 분리시켜 DJ2의 샤페론 활성을 방해했다. 비교적 큰 크기의 원섬유형 물질은 neurofibrillary tangles (NFTs) 독성 효과의 진행에 중요한 역할을 하는데 뉴런 내부에 축적되어 축삭 이동에 직접적인 물리적 간섭을 일으킬 수 있기 때문이다. 이러한 결과는 DJ2가 타우의 응집를 방해하는 반면, CRBN은 DJ2의 유비퀴틴화를 통해 DJ2의 타우 응집 방해 효과를 감소시킨 다는 것을 의미한다.Previously, DJ2 was shown to have the function of stabilizing the native form of tau. Therefore, in vivo and in vitro studies were performed to confirm the effectiveness of DJ2 in eliminating tau aggregation and whether it is interfered with by CRBN. Tauopathies are characterized by significant accumulation of fibrillar tau inclusions in the CNS. However, extracellular tau plays an influential role in trans-cell proliferation. Extracellular monomers and seed-competent tau enter cells and aggregate strongly. To observe the effect of DJ2 on the toxicity of extracellular tau, heparin-induced K18 aggregates were treated with or without DJ2 for 48 h and added outside SH-SY5Y cells. Extensive cell death was observed in SH-SY5Y cells treated with K18 aggregates. However, K18 co-cultured with DJ2 prior to heparin-induced aggregation showed no cytotoxicity, as visualized through microscopy and MTT assay (Figure 2d). Interestingly, CRBN dissociated DJ2 from tau and interfered with the chaperone activity of DJ2. Relatively large fibrillar substances play an important role in the development of toxic effects of neurofibrillary tangles (NFTs), as they can accumulate inside neurons and cause direct physical interference with axonal movement. These results mean that while DJ2 interferes with tau aggregation, CRBN reduces the effect of DJ2 on interfering with tau aggregation through ubiquitination of DJ2.

<실시예 4: CRBN에 의존하는 유비퀴틴화에 있어서 DJ2의 C-터미널 확장><Example 4: C-terminal extension of DJ2 in CRBN-dependent ubiquitination>

CRBN에 의해 인식된 DJ2의 아미노산 서열을 특정하기 위해, Myc-tagged DJ2 (Myc-DJ2) 및 HA-tagged CRBN (HA-CRBN)에 대한 결실 돌연변이체를 구축하였다(도 3a 및 3b). Pull-down 분석은 CRBN의 N-말단에서 ~80 아미노산의 스트레치 (Lon-N)가 DJ2의 C-말단에서 ~100 개의 아미노산 범위와 상호 작용한다는 것을 보여주었다 (도 3c 및 3d). 상호 작용에 중요한 DJ2 및 CRBN의 시퀀스를 정확히 찾아 내기 위해, 두 단백질의 추가 결실 돌연변이체를 제작하였으며, 이는 CRBN의 ß3 및 ß4 및 DJ2의 C-말단에서 40 개 아미노산의 스팬에 결합하는 ß-turn-ß 루프의 불가 결성을 보여주었다 (도 10a 내지 10d).To specify the amino acid sequence of DJ2 recognized by CRBN, deletion mutants for Myc-tagged DJ2 (Myc-DJ2) and HA-tagged CRBN (HA-CRBN) were constructed (Figures 3a and 3b). Pull-down analysis showed that a stretch of ∼80 amino acids at the N-terminus of CRBN (Lon-N) interacted with a range of ∼100 amino acids at the C-terminus of DJ2 (Figure 3c and 3d). To pinpoint the sequences in DJ2 and CRBN that are important for the interaction, we constructed additional deletion mutants of both proteins, which contain a ß-turn that binds ß3 and ß4 of CRBN and a span of 40 amino acids from the C-terminus of DJ2. showed inability to form the -ß loop (Figures 10a to 10d).

그 다음 단백질-단백질 도킹을 위한 완전 자동화 알고리즘인 ClusPro26을 사용하여 정의된 모든 원자의 3D 좌표를 이용해 CRBN에 도킹된 DJ2의 여러 구조 모델을 분석했다. CRBN (4TZ4)의 결정 구조 및 I-Tasser27 서버에 의해 생성된 DJ2의 구조 모델의 PDB 파일이 이용되었다. 컴퓨터 도킹 데이터뿐만 아니라 체외 co-IP 데이터에 기초하여, CRBN (4TZ4)의 결정 구조 및 I-Tasser27 서버에 의해 생성된 DJ2의 구조 모델의 PDB 파일이 이용되었다. 시험관 내 co-IP 데이터와 계산 도킹 데이터를 기반으로, 본 발명자들은 DJ2의 6 개의 아미노산 (T279-T284) 및 CRBN의 2 개의 아미노산 (E152A, F153A, E152A / F153A)을 개별적으로 또는 조합하여 조작하여 돌연변이를 제작하였다(도 10e). CRBN의 경우, E152 및 F153를 알라닌으로의 돌연변이 시킨 경우 결합력이 저하되었다(도 3e). 특히, DJ2의 모든 돌연변이 체는 D281A, N282A, R283A 및 T284A를 제외하고는 CRBN에 대한 결합을 유지하였으며, 이는 이들 잔기가 DJ2와 CRBN의 결합에 관여한다는 것을 나타낸다 (도 3f).We then analyzed several structural models of DJ2 docked to CRBN using the 3D coordinates of all atoms defined using ClusPro26, a fully automated algorithm for protein-protein docking. The crystal structure of CRBN (4TZ4) and the PDB file of the structural model of DJ2 generated by the I-Tasser27 server were used. Based on computer docking data as well as in vitro co-IP data, the crystal structure of CRBN (4TZ4) and the PDB files of the structural model of DJ2 generated by the I-Tasser27 server were used. Based on in vitro co-IP data and computational docking data, we manipulated six amino acids (T279-T284) of DJ2 and two amino acids (E152A, F153A, E152A/F153A) of CRBN, individually or in combination, to Mutants were constructed (Figure 10e). In the case of CRBN, binding affinity decreased when E152 and F153 were mutated to alanine (Figure 3e). Notably, all mutants of DJ2 retained binding to CRBN except D281A, N282A, R283A and T284A, indicating that these residues are involved in the binding of DJ2 to CRBN (Fig. 3f).

<실시예 5: DJ2의 주요 유비퀴틴화 위치 확인><Example 5: Confirmation of major ubiquitination sites of DJ2>

외인성 유비퀴틴의 형질 감염에 의해 DJ2가 유비퀴틴 화되기 때문에 (도 1d), 본 발명자들은 내인성 유비퀴틴화를 위한 CRL4CRBN에 의해 표적화된 라이신 (Lys 또는 K) 잔기를 확인하고자 하였다. 실험적으로 관찰된 포유 동물 post-translational modification의 포괄적인 데이터베이스인 PhosphoSitePlus28에 따르면, 유비퀴틴화를 겪는 DJ2의 Lys 잔기는 주로 J-도메인 및 C-말단 도메인에 축적된다(도 11a 및 11b). 이러한 Lys 잔기를 아르기닌 (Arg 또는 R)으로 개별적으로 치환하고 유비퀴틴화 분석을 수행하였다. K32R 및 K350R 돌연변이체는 손상된 유비퀴틴화를 나타내었고(도 11c) CHX 추적 분석에서 분해가 지연되었다 (도 4a 및 4b). 이중 돌연변이체 K32R / K350R은 WT-DJ2와 비교하여 유비퀴틴화가 거의 완전히 저해되었다 (도 4a 내지 4c). 이는 K32와 K350이 DJ2의 주요 유비퀴틴화 위치임을 의미한다.Because DJ2 is ubiquitinated by transfection of exogenous ubiquitin (Figure 1D), we sought to identify lysine (Lys or K) residues targeted by CRL4 CRBN for endogenous ubiquitination. According to PhosphoSitePlus28, a comprehensive database of experimentally observed mammalian post-translational modifications, Lys residues of DJ2 that undergo ubiquitination mainly accumulate in the J-domain and C-terminal domains (Figures 11A and 11B). These Lys residues were individually replaced with arginine (Arg or R) and ubiquitination analysis was performed. K32R and K350R mutants showed impaired ubiquitination (Figure 11c) and delayed degradation in CHX tracking assays (Figures 4a and 4b). The double mutant K32R/K350R had almost completely inhibited ubiquitination compared to WT-DJ2 (Figures 4A-4C). This means that K32 and K350 are the main ubiquitination sites of DJ2.

<실시예 6: CRBN 감소가 가벼운 스트레스 및 타우 병리에 미치는 영향 확인><Example 6: Confirmation of the effect of CRBN reduction on mild stress and tau pathology>

타우병증(tauopathies)의 예방을 위한 잠재적인 공동 샤페론으로서 추가 분석을 위해 DJ2를 선택했으며, 다중 모드 chronic ultra-mild stress (CUMS) 패러다임이 사용되었다. Crbn+/+ 마우스에서 CUMS는 급식 관련 행동 감소와 함께 현저한 과잉 행동을 일으켰다. 그러나, Crbn-/- 마우스에서는 전체 스트레스 과정 동안 이러한 행동 변화가 예방되었다(표 3). 타우 인산화는 또한 CUMS의 말미에 대조군 및 스트레스 마우스의 WBL에서 측정되었다. 놀랍게도 Crbn+/+ 마우스와 비교하여 Crbn-/- 마우스의 뇌에서 타우 인산화가 현저하게 감소하였고, Crbn-/- 마우스에서 DJ2 레벨이 증가하였다 (도 5a 및 5b).DJ2 was selected for further analysis as a potential co-chaperone for the prevention of tauopathies, and a multimodal chronic ultra-mild stress (CUMS) paradigm was used. In Crbn +/+ mice, CUMS caused marked hyperactivity along with decreased feeding-related behavior. However, in Crbn −/− mice, these behavioral changes were prevented during the entire stress process (Table 3). Tau phosphorylation was also measured in the WBL of control and stressed mice at the end of CUMS. Surprisingly, tau phosphorylation was significantly reduced in the brains of Crbn −/− mice compared with Crbn +/+ mice, and DJ2 levels were increased in Crbn −/− mice (Figures 5A and 5B).

타우 인산화 감소가 DJ2 단독의 증가된 샤페로닉 활성의 결과인지 또는 타우 단백질을 표적으로 하는 키나제의 활성 또한 손상된 결과인지 여부를 검증하기 위해, 타우 키나제의 활성 형태를 추가로 측정하였다. 그 결과, glycogen synthase kinase 3(GSK-3)의 Ser9 및 Ser21에서의 인산화가 Crbn-/-WBL에서 유의하게 증가하여 GSK-3α / β를 억제하는 것을 확인하였다(도 5c). 마찬가지로, ERK1 / 2 및 p38의 키나제 활성은 그들의 인산화 감소에 의해 감소되는 것으로 밝혀졌다 (도 5c). 따라서, Crbn-/- 마우스에서 개선된 공동-샤페론 활성 및 손상된 타우 키나제 활성은 함께 타우 인산화에 영향을 줄 뿐만 아니라 스트레스 요인에 대한 대처를 용이하게 할 수 있다. Crbn-/- 및 Crbn+/+ 마우스의 WBL에 대한 2D-PAGE 분석을 통해 thioredoxin, peroxiredoxin 및 superoxide dismutase를 포함하는 다양한 항산화 단백질의 수준이 현저히 증가한 것을 확인할 수 있으며(하기 표 4 참조), 이는 스트레스 요인에 저항하는 Crbn-/- 마우스의 특징을 입증한다(도 12).To verify whether the decrease in tau phosphorylation was a result of increased chaperonic activity of DJ2 alone or if the activity of the kinase targeting the tau protein was also impaired, the active form of tau kinase was further measured. As a result, it was confirmed that phosphorylation at Ser9 and Ser21 of glycogen synthase kinase 3 (GSK-3) was significantly increased in Crbn -/- WBL, thereby suppressing GSK-3α / β (Figure 5c). Likewise, the kinase activities of ERK1/2 and p38 were found to be reduced by decreased their phosphorylation (Figure 5c). Therefore, the improved co-chaperone activity and impaired tau kinase activity in Crbn −/− mice may together not only affect tau phosphorylation but also facilitate coping with stressors. 2D-PAGE analysis of WBL from Crbn -/- and Crbn +/+ mice revealed significantly increased levels of various antioxidant proteins, including thioredoxin, peroxiredoxin, and superoxide dismutase (see Table 4 below), which was consistent with stress. We demonstrate the characteristics of Crbn -/- mice that are resistant to factors (Figure 12).

<실시예 7: 타우-타우 상호 작용 및 프리온 유사 확산에 대한 CRBN 감소의 효과 확인><Example 7: Confirmation of the effect of CRBN reduction on tau-tau interaction and prion-like diffusion>

okadaic acid (OA)의 국소 투여는 protein phosphatase 2A (PP2A)를 억제함으로써 해부학적으로 원위 부위에서 타우의 인산화 및 응집을 즉시 유도할 수 있다. 타우의 프리온 유사 확산은 뇌의 다양한 해부학적 영역에서 타우의 인산화 상태를 분석함으로써 확인할 수 있다. 본 발명에서는 상기 전략을 이용하여 타우 인산화에 대한 Crbn-/- 마우스의 반응과 뇌의 다른 영역으로의 타우 인산화 확산을 추가로 검증했다. OA를 Crbn-/- 및 Crbn+/+ 뇌 (M & M)에 입체적으로 주입하고 주입된 반구와 주사되지 않은 반구의 타우 인산화 수준을 분석했다(도 6a). Crbn+/+ 뇌에서 다수의 부위 (예를 들어, pT181, pT231 및 pS403 / 404)에서 타우 인산화의 실질적인 증가가 관찰되었지만, Crbn-/- 뇌에서는 타우 인산화가 훨씬 덜 진행되거나 유의하게 예방됨을 확인하였다(도 6b 및 도 13).Local administration of okadaic acid (OA) can immediately induce phosphorylation and aggregation of tau at anatomically distal sites by inhibiting protein phosphatase 2A (PP2A). The prion-like spread of tau can be confirmed by analyzing the phosphorylation status of tau in various anatomical regions of the brain. In the present invention, we used the above strategy to further verify the response of Crbn −/− mice to tau phosphorylation and the spread of tau phosphorylation to other regions of the brain. OA was stereotactically injected into Crbn −/− and Crbn +/+ brains (M & M) and tau phosphorylation levels in the injected and non-injected hemispheres were analyzed ( Fig. 6A ). Although we observed a substantial increase in tau phosphorylation at multiple sites (e.g., pT181, pT231, and pS403/404) in Crbn +/+ brains, we found that tau phosphorylation was much less advanced or significantly prevented in Crbn −/− brains. (FIGS. 6b and 13).

또한, GSK3α/β의 OA-유도 억제는 Crbn+/+ 마우스보다 Crbn-/-의 WBL에서 더 두드러졌다(도 14). 억제된 타우 인산화는 또한 Myc-tau를 과발현하는 HEK293 세포주에서 CRBN 유전자좌가 CRISPR/Cas9에 의해 방해될 때 관찰되었다 (도 7a 및 7b). Hsp70은 Myc-tau를 과발현하는 Crbn+/+ HEK293 세포주에서 나타나는 tau와 역의 관계를 가진다(Hsp70 및 공동 샤페론도 마찬가지임). 흥미롭게도, CRISPR/Cas9 유래 Crbn-/-세포주(OA 처리에 의해 GSK3α/β가 억제된)에서 샤페론 수치는 감소하지 않았다.Additionally, OA-induced inhibition of GSK3α/β was more pronounced in the WBL of Crbn −/− than Crbn +/+ mice (Figure 14). Inhibited tau phosphorylation was also observed when the CRBN locus was disrupted by CRISPR/Cas9 in HEK293 cell lines overexpressing Myc-tau (Figures 7A and 7B). Hsp70 has an inverse relationship with tau (as do Hsp70 and co-chaperones) in the Crbn +/+ HEK293 cell line overexpressing Myc-tau. Interestingly, chaperone levels were not reduced in CRISPR/Cas9-derived Crbn −/− cell lines (where GSK3α/β was inhibited by OA treatment).

타우 과인산화는 병적인 타우 응집을 초래한다. 타우 응집에 대한 CRBN의 영향을 조사하기 위해 Venus 기반 BiFC 기술을 사용했다. SHSY5Y 세포를 tau-BiFC 작제물의 후속 동시 형질 감염으로, siRNACRBN(또는 대조군 스크램블된 siRNA)을 일시적으로 형질 감염시켰다. OA-유도된 과인산화가 타우 조립을 증가시켜서 예상대로 Venus 형광의 활성화를 야기했지만, CRBN 억제에 의해 이러한 효과는 크게 감소되었다 (도 7c).Tau hyperphosphorylation leads to pathological tau aggregation. Venus-based BiFC technology was used to investigate the effect of CRBN on tau aggregation. SHSY5Y cells were transiently transfected with siRNA CRBN (or control scrambled siRNA), with subsequent co-transfection of tau-BiFC constructs. Although OA-induced hyperphosphorylation increased tau assembly, resulting in activation of Venus fluorescence as expected, this effect was greatly reduced by CRBN inhibition (Figure 7c).

이러한 결과는, CRBN의 부재가 병리학적 타우의 응집 및 확산에 대한 내성을 유도하는 것을 의미한다.These results imply that the absence of CRBN induces resistance to the aggregation and proliferation of pathological tau.

<실시예 8: 신경병증 뮤린 모델에서 DJ2의 억제된 활성 확인><Example 8: Confirmation of suppressed activity of DJ2 in neuropathy murine model>

신경병증 마우스 모델의 질병 발달과 진행에 있어서 CRBN과 DJ2역할을 연구하였다. Amyloid-β(Aβ) 플라크는 병적 타우의 확산을 증가시켜 타우 병증을 촉진하기 때문에 타우 병증 유발 인자 중 하나이다. The roles of CRBN and DJ2 in disease development and progression in a mouse model of neuropathy were studied. Amyloid-β (Aβ) plaques are one of the triggers of tauopathy because they promote tauopathy by increasing the spread of pathological tau.

CRBN이 타우 병증 유도 인자인지 알아 내기 위해, 후기 타우 병증을 나타내는 8개월령 5X-FAD 및 APPNL-G-F knock-in 마우스의 뇌 샘플을 분석하였다. APP 항체 면역 염색 결과, 5XFAD 및 APPNL-G-F knock-in 마우스의 뇌 샘플에서 Aβ 플라크의 존재가 확인되었다 (도 15a).To determine whether CRBN is a tauopathy-inducing factor, brain samples from 8-month-old 5X-FAD and APP NL-GF knock-in mice exhibiting late-stage tauopathy were analyzed. APP antibody immunostaining confirmed the presence of Aβ plaques in brain samples from 5XFAD and APPNL-GF knock-in mice (Figure 15a).

또한, 8개월령 마우스의 해마를 CRBN 및 DJ2 항체로 면역 표지 하였다. 면역 조직 화학 및 웨스턴 블롯에 의해 확인된 바와 같이, 5X-FAD 및 APPNL-G-F knock-in 마우스의 해마 및 피질 영역에서 CRBN의 상승된 발현이 관찰되었다 (도 15b 및 15c). 반면, 같은 위치에서 샤페론 수치는 낮게 나타났다(도 15c). 이러한 결과는 상승된 CRBN가 신경 퇴행에 대한 바이오 마커임을 의미한다. 따라서, CRBN 매개 샤페론 활성 약화는 알츠하이머 병의 추가적 신경 독성 메커니즘일 수 있다.Additionally, the hippocampus of an 8-month-old mouse was immunolabeled with CRBN and DJ2 antibodies. Elevated expression of CRBN was observed in the hippocampus and cortical regions of 5X-FAD and APP NL-GF knock-in mice, as confirmed by immunohistochemistry and Western blot (Figures 15b and 15c). On the other hand, the chaperone level was low at the same location (Figure 15c). These results imply that elevated CRBN is a biomarker for neurodegeneration. Therefore, CRBN-mediated attenuation of chaperone activity may be an additional neurotoxic mechanism in Alzheimer's disease.

<실시예 9: 본 발명의 펩티드의 CRBN 및 DJ2의 상호작용 억제 확인><Example 9: Confirmation of inhibition of interaction between CRBN and DJ2 by the peptide of the present invention>

CRBN-DJ2 상호 작용 및 CRBN과 상호 작용하는 DJ2의 핫스팟 영역에 기초하여 펩티드 억제제 설계를 시도하였다. 시스테인 잔기를 펩티드 양쪽 끝에 첨가하여 펩티드를 원형화 시켰다 (도 15d). 이것은 DJ2 루프와 CRBN의 상호 작용에 필요한 형태를 얻기 위해 수행되었다 (도 10e). 설계된 펩티드의 농도를 0 내지 30 μM로 변경해가며 처리한 결과, 10 μM 농도의 펩티드 억제제를 처리한 경우 CoIP 분석 결과에 나타난 바와 같이 CRBN과 DJ2 사이의 상호 작용을 완전히 차단하였다 (도 15e).We attempted to design peptide inhibitors based on the CRBN-DJ2 interaction and the hotspot region of DJ2 that interacts with CRBN. The peptide was circularized by adding cysteine residues to both ends of the peptide (Figure 15d). This was done to obtain the conformation required for the interaction of CRBN with the DJ2 loop (Fig. 10e). As a result of varying the concentration of the designed peptide from 0 to 30 μM, treatment with a 10 μM concentration of peptide inhibitor completely blocked the interaction between CRBN and DJ2, as shown in the CoIP analysis results (FIG. 15e).

CRBN의 화학적 knockdown은 DJ2 이외 내인성 기질의 모집 및 유비퀴틸화 유지를 위해 세포에 바람직한 전략이 아닐 수 있다. 따라서, 핫스팟 잔기에 기초한 펩티드를 이용하는 것은 CRBN을 마스킹 할 수 있고, DJ2와 CRBN의 상호 작용을 방해하여 DJ2의 유비퀴틸화를 억제하고 병리학적 타우 인산화의 선택적 억제에 유용하다.Chemical knockdown of CRBN may not be a desirable strategy for cells to maintain recruitment and ubiquitination of endogenous substrates other than DJ2. Therefore, utilizing peptides based on hotspot residues can mask CRBN, inhibit the ubiquitination of DJ2 by interfering with the interaction of CRBN with DJ2, and are useful for selective inhibition of pathological tau phosphorylation.

<실시예 10: 선형 및 원형 펩티드를 이용한 CRBN과 DJ2 결합저해능 확인><Example 10: Confirmation of CRBN and DJ2 binding inhibition ability using linear and circular peptides>

CRBN-DJ2 상호 작용의 상기 결과를 고려하여, CRBN과 상호 작용하는 DJ2의 핫스팟 영역을 기반으로 선형(서열번호 1) 및 원형(서열번호 3) 펩타이드를 설계하였다. 원형의 경우 선형 펩티드의 양쪽 끝에 시스테인 잔기를 첨가하여 펩티드를 원형화 시켰다. 상기 펩타이드를 이용하여 면역침강을 수행한 결과 도 16에 나타난 바와 같이 두 형태의 펩티드 모두 유의미한 CRBN과 DJ2 결합저해능을 보였다.Considering the above results of CRBN-DJ2 interaction, linear (SEQ ID NO: 1) and circular (SEQ ID NO: 3) peptides were designed based on the hotspot region of DJ2 that interacts with CRBN. In the case of circularity, the peptide was circularized by adding cysteine residues to both ends of the linear peptide. As a result of immunoprecipitation using the above peptide, both types of peptides showed significant inhibition of CRBN and DJ2 binding, as shown in Figure 16.

<실시예 11: 원형 펩티드 및 이의 스크램블 펩티드를 이용한 CRBN과 DJ2 결합저해능 확인><Example 11: Confirmation of CRBN and DJ2 binding inhibition ability using circular peptide and its scrambled peptide>

본 발명 펩티드의 아미노산 서열이 CRBN과 DJ2 결합저해능이 있다는 점을 입증하기 위해 서열번호 3의 펩티드 및 서열번호 3의 펩티드를 이루고 있는 아미노산을 무작위 순서로 섞은 스크램블 펩티드를 준비하여 면역침강을 수행하였다. In order to prove that the amino acid sequence of the peptide of the present invention has the ability to inhibit CRBN and DJ2 binding, immunoprecipitation was performed by preparing a scrambled peptide in which the peptide of SEQ ID NO: 3 and the amino acids constituting the peptide of SEQ ID NO: 3 were mixed in random order.

구체적으로, SH-SY5Y 세포는 Myc-DJ2 및 FLAG-CRBN으로 일시적으로 공동 형질 감염되었다. 세포 추출물을 스크램블 펩티드 또는 서열번호 3의 펩티드로 24 시간 동안 처리하였다. 세포 추출물을 토끼 (Rb)의 α-FLAG 항체로 면역 침전시키고 마우스 (Ms)의 Myc 및 FLAG 항체로 면역 블롯하여 IgG 중쇄의 밴드를 제거하였다. 데이터는 평균 ± SD로 표시되었다. n = 5. Student's t 테스트가 사용되었다.Specifically, SH-SY5Y cells were transiently co-transfected with Myc-DJ2 and FLAG-CRBN. Cell extracts were treated with scrambled peptide or peptide of SEQ ID NO: 3 for 24 hours. Cell extracts were immunoprecipitated with α-FLAG antibody from rabbit (Rb) and immunoblotted with Myc and FLAG antibodies from mouse (Ms) to remove bands of IgG heavy chains. Data were expressed as mean ± SD. n = 5. Student's t test was used.

그 결과 도 17a 내지 17d에 나타난 바와 같이 원형 팹티드(서열번호 3, 도 17b의 DJ2 peptide)은 스크램블 펩티드에 비해 CRBN과 DJ2의 결합을 우수하게 저해함을 확인하였다.As a result, as shown in Figures 17a to 17d, it was confirmed that the circular peptide (SEQ ID NO: 3, DJ2 peptide in Figure 17b) inhibited the binding of CRBN and DJ2 better than the scrambled peptide.

<실시예 12: 테트라펩티드의 CRBN과 DJ2 결합저해능 확인><Example 12: Confirmation of the ability of tetrapeptide to inhibit CRBN and DJ2 binding>

가장 강력한 억제제는 일반적으로 500Da 미만이므로 펩티드 억제제의 크기를 줄이기 위해 핫스팟의 가장 중요한 잔기을 덮는 펩티드로 실험을 반복한 결과, DNRT 서열(서열번호 2)이 핵심적임을 확인하였다(도 18 참조). 이에 DNRT 펩티드 및 이의 스크램블 펩티드를 준비하여 CRBN과 DJ2 결합저해능을 확인하였다.Since the most potent inhibitor is generally less than 500 Da, the experiment was repeated with a peptide covering the most important residue of the hotspot to reduce the size of the peptide inhibitor, and it was confirmed that the DNRT sequence (SEQ ID NO: 2) was critical (see FIG. 18). Accordingly, DNRT peptide and its scramble peptide were prepared and their ability to inhibit CRBN and DJ2 binding was confirmed.

구체적으로, SH-SY5Y 세포는 Myc-DJ2 및 FLAG-CRBN으로 일시적으로 공동 형질 감염되었다. 세포 추출물을 스크램블 펩티드 또는 서열번호 2의 펩티드로 24 시간 동안 처리하였다. 세포 추출물은 마우스 (Ms)의 α-Myc 항체로 면역 침전되었고 토끼 (Rb)의 FLAG 및 Myc 항체로 면역 블롯팅되었다. 데이터는 평균 ± SD로 표시되었다. n = 5. Student's t 테스트가 사용되었다.Specifically, SH-SY5Y cells were transiently co-transfected with Myc-DJ2 and FLAG-CRBN. Cell extracts were treated with scrambled peptide or peptide of SEQ ID NO: 2 for 24 hours. Cell extracts were immunoprecipitated with α-Myc antibody from mouse (Ms) and immunoblotted with FLAG and Myc antibodies from rabbit (Rb). Data were expressed as mean ± SD. n = 5. Student's t test was used.

그 결과 비교적 더 높은 농도의 ~30 μM의 테트라 펩티드는 CoIP 분석에서 볼 수 있듯이 CRBN과 DJ2 사이의 상호 작용을 유의미하게 차단했지만 스크램블된 펩티드는 불가능함을 확인하였다(도 19a 내지 19c 참조).As a result, it was confirmed that a relatively higher concentration of ~30 μM tetra peptide significantly blocked the interaction between CRBN and DJ2, as seen in CoIP analysis, but the scrambled peptide could not (see FIGS. 19A to 19C).

<110> Gwangju Institute of Science and Technology <120> CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same <130> P210363P <150> KR 10-2020-0046909 <151> 2020-04-17 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> sequence No. 1 <400> 1 Pro Ile Ser Thr Leu Asp Asn Arg Thr Ile Val 1 5 10 <210> 2 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> sequence No. 2 <400> 2 Asp Asn Arg Thr 1 <210> 3 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> sequence No. 3 <400> 3 Cys Pro Ile Ser Thr Leu Asp Asn Arg Thr Ile Val Cys 1 5 10 <110> Gwangju Institute of Science and Technology <120> CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same <130>P210363P <150> KR 10-2020-0046909 <151> 2020-04-17 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Sequence No. One <400> 1 Pro Ile Ser Thr Leu Asp Asn Arg Thr Ile Val 1 5 10 <210> 2 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Sequence No. 2 <400> 2 Asp Asn Arg Thr One <210> 3 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Sequence No. 3 <400> 3 Cys Pro Ile Ser Thr Leu Asp Asn Arg Thr Ile Val Cys 1 5 10

Claims (6)

서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프 아미노산 서열을 포함하는 펩티드.
A peptide comprising the CRBN binding motif amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3.
제1항의 펩티드를 포함하는, 알츠하이머 병의 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating Alzheimer's disease, comprising the peptide of claim 1.
제2항에 있어서, 상기 알츠하이머 병은 타우(Tau) 인산화에 의한 것인, 약학적 조성물.
The pharmaceutical composition according to claim 2, wherein the Alzheimer's disease is caused by tau phosphorylation.
제1항의 펩티드를 포함하는, 알츠하이머 병의 예방 또는 개선용 식품 조성물.
A food composition for preventing or improving Alzheimer's disease, comprising the peptide of claim 1.
제4항에 있어서, 상기 알츠하이머 병은 타우(Tau) 인산화에 의한 것인, 식품 조성물.
The food composition according to claim 4, wherein the Alzheimer's disease is caused by tau phosphorylation.
하기 단계를 포함하는, 알츠하이머 치료제 스크리닝 방법:
a) 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 CRBN 결합 모티프를 포함하는 펩티드를 합성하는 단계;
b) 상기 a)단계에서 합성된 펩티드가 CRBN의 DJ2 결합부위에 결합하여 CRBN와 DJ2의 결합을 저해할 수 있는지 분석하는 단계 및
c) 상기 b)단계에서 합성된 펩티드가 CRBN와 DJ2의 결합을 저해하는 경우 알츠하이머 병 치료제로 판정하는 단계.
A method for screening a therapeutic agent for Alzheimer's, comprising the following steps:
a) synthesizing a peptide containing a CRBN binding motif represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3;
b) analyzing whether the peptide synthesized in step a) can bind to the DJ2 binding site of CRBN and inhibit the binding of CRBN and DJ2; and
c) determining that the peptide synthesized in step b) is a treatment for Alzheimer's disease if it inhibits the binding of CRBN and DJ2.
KR1020210047056A 2020-04-17 2021-04-12 CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same KR102608311B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/004627 WO2021210878A1 (en) 2020-04-17 2021-04-13 Crbn-binding peptide and composition for preventing or treating alzheimer's disease using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200046909 2020-04-17
KR20200046909 2020-04-17

Publications (2)

Publication Number Publication Date
KR20210128919A KR20210128919A (en) 2021-10-27
KR102608311B1 true KR102608311B1 (en) 2023-12-01

Family

ID=78287353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210047056A KR102608311B1 (en) 2020-04-17 2021-04-12 CRBN binding peptide and composition for preventing or treating Alzheimer's disease using the same

Country Status (1)

Country Link
KR (1) KR102608311B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201707832RA (en) * 2015-04-22 2017-11-29 Curevac Ag Rna containing composition for treatment of tumor diseases
KR102033776B1 (en) 2017-10-31 2019-10-17 가천대학교 산학협력단 Diagnostic composition of alzheimer's disease severity comprising agents measuring expression level of tau protein and diagnostics method of alzheimer's disease severity using the same

Also Published As

Publication number Publication date
KR20210128919A (en) 2021-10-27

Similar Documents

Publication Publication Date Title
Farmer et al. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer’s disease
Guo et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice
Kumar et al. CHIP and HSPs interact with β-APP in a proteasome-dependent manner and influence Aβ metabolism
Xiang et al. The role of endoplasmic reticulum stress in neurodegenerative disease
Trzeciakiewicz et al. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline
Thompson et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
Chen et al. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease
Wang et al. Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer's disease
Dehle et al. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide
Kumar et al. Cross‐functional E3 ligases Parkin and C‐terminus Hsp70‐interacting protein in neurodegenerative disorders
Shah et al. A central role for calcineurin in protein misfolding neurodegenerative diseases
Shih et al. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer’s disease
Ghiso et al. Cerebral amyloid angiopathy and Alzheimer’s disease
Mitterreiter et al. Bepridil and amiodarone simultaneously target the Alzheimer's disease β-and γ-secretase via distinct mechanisms
Pasinetti et al. Development of a grape seed polyphenolic extract with anti‐oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies
Carman et al. Chaperone-dependent neurodegeneration: a molecular perspective on therapeutic intervention
Fernandez et al. Blockade of the interaction of calcineurin with FOXO in astrocytes protects against amyloid-β-induced neuronal death
Mosser et al. The adipocyte differentiation protein APMAP is an endogenous suppressor of Aβ production in the brain
Choi et al. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy‐associated TGFBI p through activation of endoplasmic reticulum‐associated protein degradation
Wang et al. DJ-1 can inhibit microtubule associated protein 1 B formed aggregates
Hartlage-Rübsamen et al. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies
Odfalk et al. Microglia: Friend and foe in tauopathy
Ji et al. CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against Aβ25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway
Liu et al. An inhibitor with GSK3β and DYRK1A dual inhibitory properties reduces Tau hyperphosphorylation and ameliorates disease in models of Alzheimer's disease
Yang et al. A peptide binding to the β-site of APP improves spatial memory and attenuates Aβ burden in Alzheimer’s disease transgenic mice

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant