KR102606901B1 - A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component - Google Patents

A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component Download PDF

Info

Publication number
KR102606901B1
KR102606901B1 KR1020210061990A KR20210061990A KR102606901B1 KR 102606901 B1 KR102606901 B1 KR 102606901B1 KR 1020210061990 A KR1020210061990 A KR 1020210061990A KR 20210061990 A KR20210061990 A KR 20210061990A KR 102606901 B1 KR102606901 B1 KR 102606901B1
Authority
KR
South Korea
Prior art keywords
bioa
dna
artificial sequence
treatment
cells
Prior art date
Application number
KR1020210061990A
Other languages
Korean (ko)
Other versions
KR20220154441A (en
Inventor
김용식
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR1020210061990A priority Critical patent/KR102606901B1/en
Publication of KR20220154441A publication Critical patent/KR20220154441A/en
Application granted granted Critical
Publication of KR102606901B1 publication Critical patent/KR102606901B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/06Preparations for care of the skin for countering cellulitis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1392Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from mesenchymal stem cells from other natural sources

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Birds (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 바이오카닌 A(Biochanin A, BioA) 또는 이의 약학적으로 허용 가능한 염을 포함하는 비만(obesity)의 예방 또는 치료용 약학적 조성물에 관한 것으로서, 보다 상세하게는, 개체(subjects)에 BioA 또는 이의 약학적으로 허용 가능한 염을 처리함으로써 상기 개체 내 중간엽 줄기 세포(mesenchymal stem cells, MSCs)를 갈색 지방 세포(brown adipose cells)로 분화시킴으로써 상기 개체의 비만을 예방 또는 치료하기 위한 약학적 용도 등에 관한 것이다. 본 발명의 BioA 또는 이의 약학적으로 허용 가능한 염을 개체에 처리할 경우, 개체 내 지방 조직을 갈색 지방으로 효과적으로 분화 유도시킬 수 있으므로 비만 및 이와 관련된 질환에 효과적으로 사용될 수 있어 제약, 식품 및 화장품 산업상 매우 유용한 발명이다.The present invention relates to a pharmaceutical composition for the prevention or treatment of obesity containing Biochanin A (BioA) or a pharmaceutically acceptable salt thereof, and more specifically, to a pharmaceutical composition for the prevention or treatment of obesity in subjects. Or pharmaceutical use for preventing or treating obesity in the subject by differentiating mesenchymal stem cells (MSCs) in the subject into brown adipose cells by treating a pharmaceutically acceptable salt thereof. It is about etc. When BioA of the present invention or a pharmaceutically acceptable salt thereof is treated with an object, it can effectively induce differentiation of adipose tissue within the object into brown fat, so it can be effectively used for obesity and diseases related thereto, making it suitable for use in the pharmaceutical, food and cosmetics industries. It's a very useful invention.

Description

바이오카닌 A 또는 이의 약학적으로 허용 가능한 염을 포함하는 비만의 예방 또는 치료용 약학적 조성물{A PHARMACEUTICAL COMPOSITION FOR PREVENTION OR TREATMENT OF OBESITY COMPRISING BIOCHANIN A OR PHARMACEUTICALLY ACCEPTED SALTS THEREOF AS AN EFFECTIVE COMPONENT}Pharmaceutical composition for preventing or treating obesity comprising biochanin A or a pharmaceutically acceptable salt thereof

본 발명은 바이오카닌 A(Biochanin A, BioA) 또는 이의 약학적으로 허용 가능한 염을 포함하는 비만(obesity)의 예방 또는 치료용 약학적 조성물에 관한 것으로서, 보다 상세하게는, 개체(subjects)에 BioA 또는 이의 약학적으로 허용 가능한 염을 처리함으로써 상기 개체 내 중간엽 줄기 세포(mesenchymal stem cells, MSCs)를 갈색 지방 세포(brown adipose cells)로 분화시킴으로써 상기 개체의 비만을 예방 또는 치료하기 위한 약학적 용도 등에 관한 것이다.The present invention relates to a pharmaceutical composition for the prevention or treatment of obesity containing Biochanin A (BioA) or a pharmaceutically acceptable salt thereof, and more specifically, to a pharmaceutical composition for the prevention or treatment of obesity in subjects. Or pharmaceutical use for preventing or treating obesity in the subject by differentiating mesenchymal stem cells (MSCs) in the subject into brown adipose cells by treating a pharmaceutically acceptable salt thereof. It is about etc.

지방 조직은 영양 섭취 및 과도한 에너지 저장부터 소비에 이르기까지 전신 에너지 대사를 조절한다(Choe, Huh, Hwang, Kim, & Kim, 2016). 포유동물에서, 에너지 항상성은 각각 독특한 형태와 기능을 가지고 있는 두 가지 유형의 지방 조직(흰색과 갈색)에 의해 제어된다. 갈색 지방 조직(brown adipose tissue, BAT)은 과도한 에너지를 열로 방출하는, 밀집된 편심 미토콘드리아를 포함하는 독특한 열발생 시스템에 특징이 있다. BAT는 다방성 세포질 지질 방울을 포함하고 다른 세포에 유리 지방산(free fatty acids, FFA)를 공급하기 보다는 지방세포 내에서 유리 지방산을 산화시켜서 지속적으로 열을 생성한다. 반대로, 백색 지방 조직(white adipose tissue, WAT)는 지방 형태의 과도한 에너지에 대한 우수한 저장 용량을 특징으로 한다(Coelho, Oliveira, & Fernandes, 2013). 그럼에도 불구하고, 광범위한 연구에서는, WAT에 상주하지만 다량의 미토콘드리아를 포함하여 갈색 지방 세포와 유사한 열 발생 기능을 갖는 베이지 색 세포로 알려진 새로운 유형의 열발생 세포가 확인되기도 하였다(Coelho 등, 2013; Kajimura, Spiegelman, & Seale, 2015).Adipose tissue regulates whole body energy metabolism, from nutrient intake and excess energy storage to consumption (Choe, Huh, Hwang, Kim, & Kim, 2016). In mammals, energy homeostasis is controlled by two types of adipose tissue (white and brown), each with unique morphology and function. Brown adipose tissue (BAT) is characterized by a unique thermogenic system containing densely packed eccentric mitochondria that release excess energy as heat. BAT contains pleiotropic cytoplasmic lipid droplets and continuously generates heat by oxidizing free fatty acids (FFA) within adipocytes rather than supplying them to other cells. In contrast, white adipose tissue (WAT) is characterized by an excellent storage capacity for excess energy in the form of fat (Coelho, Oliveira, & Fernandes, 2013). Nevertheless, extensive studies have also identified a new type of thermogenic cells known as beige cells, which reside in WAT but have thermogenic functions similar to brown adipocytes, including large amounts of mitochondria (Coelho et al., 2013; Kajimura , Spiegelman, & Seale, 2015).

지방 기능 장애는 식이 에너지 섭취 및 에너지 소비의 불균형으로 인해 발생되어, 비만 및 인슐린 저항성, 이상 지질 혈증, 간 지방증 및 제2형 당뇨병과 같은 관련 장애를 유발한다(Jung & Choi, 2014; Longo et al., 2019). 이러한 대사 문제는 주로 WAT 기능 장애로 인한 미토콘드리아 생성(biogenesis) 및 산화적 인산화(OXPHOS)의 조절 장애 및 지질 프로필 변경으로 인해 발생한다(Chouchani & Kajimura, 2019). 지방 기능 장애의 딜레마를 해결하기 위해, BAT 기능 유도, 중간엽 줄기 세포(mesenchymal stem cells, MSCs)의 갈색 지방 유사(brown-fat-like)(즉, 갈색 및 베이지) 지방 세포 분화, 또는 백색 지방 세포의 베이지색 지방세포로의 트랜스분화(갈색화(browning)로 알려진 과정)와 같은 여러 치료적 접근법이 알려져 왔다. 여러 전사 인자가 갈색 또는 베이지 지방 형성 동안 지방 세포 분화 및 지방 세포 운명에 관여하는 것으로 알려져 있다. 지방 생성의 마스터 조절인자인 PPARγ는 지방 세포 활성을 결정하는 반면, C/EBP는 PPARγ 발현을 유지하고 PPARγ와 상승적으로 작용하여 갈색 및 흰색 지방 세포 모두에서 활성이 있는 유전자의 발현을 촉진한다(Uldry 등, 2006). 또한, PPARγ는, WAT에서 PGC1α, UCP1, 및 DIO2의 발현을 유도하여 미토콘드리아 생물발생 및 세포 호흡을 조절하는 Prdm16 발현을 안정화시킨다(Becerril 등, 2013; Farmer, 2006; Seale 등, 2011).Fat dysfunction is caused by an imbalance between dietary energy intake and energy expenditure, leading to obesity and related disorders such as insulin resistance, dyslipidemia, hepatic steatosis, and type 2 diabetes (Jung & Choi, 2014; Longo et al. ., 2019). These metabolic problems are mainly caused by dysregulation of mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) and altered lipid profile due to WAT dysfunction (Chouchani & Kajimura, 2019). To solve the dilemma of adipose dysfunction, induction of BAT function, differentiation of mesenchymal stem cells (MSCs) into brown-fat-like (i.e. brown and beige) adipocytes, or white fat Several therapeutic approaches have been known, such as transdifferentiation of cells into beige adipocytes (a process known as browning). Several transcription factors are known to be involved in adipocyte differentiation and adipocyte fate during brown or beige adipogenesis. PPARγ, a master regulator of adipogenesis, determines adipocyte activity, while C/EBP maintains PPARγ expression and acts synergistically with PPARγ to promote the expression of genes active in both brown and white adipocytes (Uldry et al., 2006). Additionally, PPARγ stabilizes Prdm16 expression, which regulates mitochondrial biogenesis and cellular respiration by inducing the expression of PGC1α, UCP1, and DIO2 in WAT (Becerril et al., 2013; Farmer, 2006; Seale et al., 2011).

미토콘드리아 생성은 열발생에서 중요한 역할을 하고, PPARγ 보조 활성화제(coactivator)인 PGC1α에 의해 제어되고, 갈색 지방 세포 표현형(brown adipocyte signature)의 상향 조절을 통해 열발생을 활성화할 수 있다(Farmer, 2006; Sarjeant & Stephens, 2012). 특정 외부 신호에 반응하여 PGC1α는 연료 섭취, 지방산 산화, 미토콘드리아 생성, OXPHOS 및 산소 소비 증가를 포함하여, 갈색 지방에서 적응 열발생 프로그램을 활성화한다(Uldry 등, 2006). 미토콘드리아 생성은 미토콘드리아 β-산화를 위한 FFA를 공급할 수 있는 지방 분해로 직접 이어진다. 지방 분해는 지방 트리글리세라이드 리파제(ATGL)에 의해 개시되고, 열발생 유전자 유전자의 최대 유도에 필요하며, 미토콘드리아 β-산화를 위한 FFA를 공급하여 미토콘드리아 생물발생을 증가시킨다(Kershaw 등, 2007).Mitochondrion production plays an important role in thermogenesis, is controlled by PGC1α, a PPARγ coactivator, and can activate thermogenesis through upregulation of the brown adipocyte signature (Farmer, 2006 ; Sarjeant & Stephens, 2012). In response to specific external signals, PGC1α activates an adaptive thermogenic program in brown fat, including increased fuel intake, fatty acid oxidation, mitochondrial production, OXPHOS, and oxygen consumption (Uldry et al., 2006). Mitochondrion production leads directly to lipolysis, which can supply FFA for mitochondrial β-oxidation. Lipolysis is initiated by adipose triglyceride lipase (ATGL), is required for maximal induction of thermogenic genes, and increases mitochondrial biogenesis by supplying FFA for mitochondrial β-oxidation (Kershaw et al., 2007).

다양한 부류의 식물 화학물질이 갈색 지방-유사 지방 세포 형성 및 미토콘드리아 생성을 촉진하는 것으로 보고되었다(Hong 등, 2019; Imran 등, 2017; Liu 등, 2019; Qi 등, 2019; Rahman & Kim, 2020b; Rasbach & Schnellmann, 2008; Shen, Liu, Ng, Chan, & Yong, 2006; Velickovic 등, 2019; Wang 등, 2018; You 등, 2015; Zhang 등., 2019). Various classes of phytochemicals have been reported to promote brown fat-like adipocyte formation and mitochondrial production (Hong et al., 2019; Imran et al., 2017; Liu et al., 2019; Qi et al., 2019; Rahman & Kim, 2020b; Rasbach & Schnellmann, 2008; Shen, Liu, Ng, Chan, & Yong, 2006; Velickovic et al., 2019; Wang et al., 2018; You et al., 2015; Zhang et al., 2019).

레드 클로버, 알팔파, 양배추 및 기타 여러 식물에 존재하는 O-메틸화 이소플라본인 바이오카닌 A(Biochanin A, BioA)는 지질 저하, 항암 및 항염 활성을 갖는 것으로 알려져 있다(Cassady 등, 1988; Oza & Kulkarni, 2018). BioA는 PPARγ 및 SIRT1 작용제(agonist)로서 작용하고, 3T3-L1 전지방 세포(preadipocyte)에서 지방 생성을 유도하는 것으로 보고되었다(Oza & Kulkarni, 2018; Shen 등, 2006).Biochanin A (BioA), an O-methylated isoflavone present in red clover, alfalfa, cabbage and many other plants, is known to have lipid-lowering, anticancer and anti-inflammatory activities (Cassady et al., 1988; Oza & Kulkarni , 2018). BioA has been reported to act as a PPARγ and SIRT1 agonist and induce adipogenesis in 3T3-L1 preadipocytes (Oza & Kulkarni, 2018; Shen et al., 2006).

그러나, 현재까지 갈색 지방세포 형성에 미치는 BioA의 영향은 밝혀지지 않았다. However, to date, the effect of BioA on brown adipocyte formation has not been revealed.

본 발명에서 해결하고자 하는 과제는 BioA 또는 이의 약학적으로 허용 가능한 염을 개체에 처리함으로써 개체 내 지방 조직을 갈색 지방으로 분화시켜 개체의 비만을 효과적으로 예방 및 치료하기 위한 약학적 조성물 등을 제공하고자 하는 것이다.The problem to be solved by the present invention is to provide a pharmaceutical composition for effectively preventing and treating obesity in a subject by differentiating adipose tissue into brown fat by treating the subject with BioA or a pharmaceutically acceptable salt thereof. will be.

상기와 같은 과제를 해결하기 위하여, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 비만의 예방 또는 치료용 약학적 조성물을 제공한다.In order to solve the above problems, the present invention provides a pharmaceutical composition for preventing or treating obesity containing Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 비만의 예방 또는 개선용 건강 기능 식품을 제공한다.In addition, the present invention provides a health functional food for preventing or improving obesity containing Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 포함하는 슬리밍용 화장료 조성물을 제공한다.Additionally, the present invention provides a cosmetic composition for slimming containing Biochanin A or a pharmaceutically acceptable salt thereof.

상기 화장료 조성물은 로션, 화장수, 크림, 에센스, 폼 및 팩으로 이루어지는 군으로부터 선택되는 제형인 것이 바람직하다.The cosmetic composition is preferably in a formulation selected from the group consisting of lotion, lotion, cream, essence, foam, and pack.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 중간엽 줄기세포의 갈색 지방세포로의 분화 유도용 조성물을 제공한다.Additionally, the present invention provides a composition for inducing differentiation of mesenchymal stem cells into brown adipocytes, comprising Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

상기 분화 유도는 세포 내 트리글리세라이드(Triglyceride) 축적 감소, 지방 분해 유도, 세포 내 미토콘드리아 수의 증가, 세포의 갈색 지방 표현형의 유도 및 AMPK 신호 전달 활성화로 이루어지는 군으로부터 선택된 메커니즘에 의한 것이 바람직하다.The differentiation induction is preferably by a mechanism selected from the group consisting of reducing intracellular triglyceride accumulation, inducing lipolysis, increasing the number of intracellular mitochondria, inducing a brown fat phenotype in cells, and activating AMPK signaling.

또한, 본 발명은 인체로부터 분리된 중간엽 줄기세포에 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 처리하는 것을 포함하는 갈색 지방세포로의 분화 유도 방법을 제공한다. Additionally, the present invention provides a method of inducing differentiation into brown adipocytes, comprising treating mesenchymal stem cells isolated from the human body with Biochanin A or a pharmaceutically acceptable salt thereof.

본 발명의 BioA 또는 이의 약학적으로 허용 가능한 염을 개체에 처리할 경우, 개체 내 지방 조직을 갈색 지방으로 효과적으로 분화 유도시킬 수 있으므로 비만 및 이와 관련된 질환에 효과적으로 사용될 수 있어 제약, 식품 및 화장품 산업상 매우 유용한 발명이다.When BioA of the present invention or a pharmaceutically acceptable salt thereof is treated with an object, it can effectively induce differentiation of adipose tissue within the object into brown fat, so it can be effectively used for obesity and diseases related thereto, making it suitable for use in the pharmaceutical, food and cosmetics industries. It's a very useful invention.

도 1은 BioA 처리에 의한 C3H10T1/2 MSCs의 세포 생존력 (및 TG 축적)의 효과를 나타낸 것이다.
도 2는 BioA 처리에 의한 C3H10T1/2 MSCs의 지방 분해의 효과를 나타낸 것이다.
도 3은 BioA 처리에 의한 C3H10T1/2 MSCs의 미토콘드리아 생성의 효과를 나타낸 것이다.
도 4는 BioA 처리에 의한 C3H10T1/2 MSCs의 열형성 유전자, 지방형성 유전자, 베이지-지방 마커 유전자, 갈색-지방 마커 유전자 및 백색-지방 마커 유전자의 발현 양상을 나타낸 것이다.
도 5는 BioA 처리에 의한 C3H10T1/2 MSCs의 AMPK 신호 경로의 영향을 나타낸 것이다.
Figure 1 shows the effect on cell viability (and TG accumulation) of C3H10T1/2 MSCs by BioA treatment.
Figure 2 shows the effect of lipolysis of C3H10T1/2 MSCs by BioA treatment.
Figure 3 shows the effect of mitochondrial production in C3H10T1/2 MSCs by BioA treatment.
Figure 4 shows the expression patterns of thermogenic genes, adipogenic genes, beige-fat marker genes, brown-fat marker genes, and white-fat marker genes in C3H10T1/2 MSCs by BioA treatment.
Figure 5 shows the effect of AMPK signaling pathway in C3H10T1/2 MSCs by BioA treatment.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 발명자들은, O-메틸화 이소플라본인 바이오카닌 A(BioA)가 갈색 지방 표현형 형성에 미치는 영향 및 C3H10T1/2 MSC에서 미토콘드리아 생성 및 지방분해를 포함한 관련 열발생 프로그램에 미치는 영향을 조사하였다. 우리의 데이터는 지방 형성 분화 칵테일 내의 BioA를 사용한 처리가 분화의 초기 단계에서 알려진 갈색화 유도인자(로시글리타존 또는 T3)의 처리 없이도 C3H10T1/2 MSC로부터 갈색 지방 유사 지방 세포의 형성을 유도하였음을 보여준다. BioA 처리에 의한 갈색 지방 유사 지방세포의 형성은 주요 열발생 마커인 Ucp1, Pgc1α, Prdm16 및 Pparγ의 상향 조절에 의해 입증되었다. 추가적으로, BioA 처리는 Cox8b, Cidea, Dio2, Sirt1, Opa1 및 Fis1 유전자의 상향 조절에 의해 판단된 바와 같이 미토콘드리아 생성을 촉진시켰다. BioA 처리는 미토콘드리아 DNA 및 이의 암호화된 단백질인 산화적 인산화 복합체(I~V)의 양을 증가시켰는데, 이러한 변화는 C3H10T1/2 MSC에 의한 높은 산소 소비와 관련이 있었다. 작은 간섭 RNA에 의해 유도된 유전자 녹다운 및 도소모르핀-유발 경쟁 억제 실험은 BioA가 AMPK 신호전달의 활성화를 통해 열발생 작용을 발휘한다는 것을 보여주었다. 우리의 연구는 갈색 지방 표현형이 BioA에 의해 촉진되는 메커니즘을 보여준다. 그럼에도 불구하고, BioA가 갈색 지방 유사 표현형 유도인자(signature inducer)임을 확인하기 위한 추가적인 임상 연구가 필요하다.The inventors of the present invention investigated the effects of biochanin A (BioA), an O-methylated isoflavone, on brown fat phenotype formation and related thermogenic programs, including mitochondrial production and lipolysis, in C3H10T1/2 MSCs. Our data show that treatment with BioA in the adipogenic differentiation cocktail induced the formation of brown fat-like adipocytes from C3H10T1/2 MSCs even without treatment of known browning inducers (rosiglitazone or T3) in the early stages of differentiation. The formation of brown fat-like adipocytes by BioA treatment was evidenced by the upregulation of key thermogenic markers Ucp1, Pgc1α, Prdm16, and Pparγ. Additionally, BioA treatment promoted mitochondrial biogenesis as judged by upregulation of Cox8b, Cidea, Dio2, Sirt1, Opa1, and Fis1 genes. BioA treatment increased the amount of mitochondrial DNA and its encoded proteins, oxidative phosphorylation complexes (I-V), and these changes were associated with high oxygen consumption by C3H10T1/2 MSCs. Small interfering RNA-induced gene knockdown and dosomorphine-induced competitive inhibition experiments showed that BioA exerts its thermogenic action through activation of AMPK signaling. Our study reveals the mechanism by which the brown fat phenotype is promoted by BioA. Nevertheless, additional clinical studies are needed to confirm that BioA is a brown fat-like phenotype inducer.

따라서, 본 발명은 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 비만의 예방 또는 치료용 약학적 조성물을 제공한다.Accordingly, the present invention provides a pharmaceutical composition for preventing or treating obesity containing Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

상기 "비만"이라는 용어는 개체의 지방의 양이 정상 범위를 초과하는 임상적 증상을 의미한다. 또한, 상기 비만에는 비만과 관련된 각종 대사 이상에 의한 대사증후군을 포함한다.The term “obesity” refers to a clinical condition in which the amount of fat in an individual exceeds the normal range. Additionally, the obesity includes metabolic syndrome caused by various metabolic abnormalities related to obesity.

본 발명의 유효 성분을 포함하는 약학적 조성물은 각각의 사용 목적에 맞게 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽, 에어로졸 등의 경구 제형, 멸균 주사용액의 주사제 등 다양한 형태로 제형화하여 사용할 수 있으며, 경구 투여하거나 정맥 내, 복강 내, 피하, 직장, 국소 투여 등을 포함한 다양한 경로를 통해 투여될 수 있다.The pharmaceutical composition containing the active ingredient of the present invention can be formulated into oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., and injections of sterile injectable solutions according to conventional methods to suit each purpose of use. It can be formulated and used in various forms, and can be administered through various routes, including oral administration, intravenous, intraperitoneal, subcutaneous, rectal, and local administration.

이러한 약학적 조성물에는 추가적으로 담체, 부형제 또는 희석제 등이 더 포함될 수 있으며, 포함될 수 있는 적합한 담체, 부형제 또는 희석제의 예로는 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리쓰리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 비정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수 있다. 또한, 본 발명의 약학적 조성물은 충전제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 더 포함할 수도 있다.These pharmaceutical compositions may additionally contain carriers, excipients or diluents, and examples of suitable carriers, excipients or diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, Starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, amorphous cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. etc. can be mentioned. In addition, the pharmaceutical composition of the present invention may further include fillers, anti-coagulants, lubricants, wetting agents, flavorings, emulsifiers, preservatives, etc.

바람직한 구체예로서, 경구 투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 상기 약학적 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로오스, 락토오스, 젤라틴 등을 혼합하여 제형화한다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 등과 같은 윤활제가 사용될 수도 있다.In a preferred embodiment, solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and such solid preparations include at least one excipient in the pharmaceutical composition, such as starch, calcium carbonate, It is formulated by mixing sucrose, lactose, gelatin, etc. Additionally, in addition to simple excipients, lubricants such as magnesium stearate, talc, etc. may be used.

바람직한 구체예로서, 경구용 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 예시될 수 있으며, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.As a preferred embodiment, oral liquid preparations include suspensions, oral solutions, emulsions, syrups, etc., and in addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, Fragrances, preservatives, etc. may be included.

바람직한 구체예로서, 비경구 투여를 위한 제제에는 멸균된 수용액제, 비수성용제, 현탁제, 유제, 동결건조제, 좌제 등을 예시할 수 있다. 비수성용제, 현탁제에는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 포함될 수 있다. 주사제에는 용해제, 등장화제, 현탁화제, 유화제, 안정화제, 방부제 등과 같은 종래의 첨가제가 포함될 수 있다.As a preferred embodiment, preparations for parenteral administration may include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, suppositories, etc. Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. Injectables may contain conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, etc.

본 발명의 유효 성분은 약제학적으로 유효한 양으로 투여한다. 본 발명에서, "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The active ingredient of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, activity of the drug, and the type of patient's disease. It can be determined based on factors including sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the field of medicine. The pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.

바람직한 구체예로서, 본 발명의 약학적 조성물에서 유효성분의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 ㎏ 당 1 내지 5,000mg, 바람직하게는 100 내지 3,000mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.In a preferred embodiment, the effective amount of the active ingredient in the pharmaceutical composition of the present invention may vary depending on the patient's age, gender, and weight, and is generally 1 to 5,000 mg per kg of body weight, preferably 100 to 3,000 mg per day. Alternatively, it can be administered every other day or divided into 1 to 3 doses per day. However, since it may increase or decrease depending on the route of administration, severity of disease, gender, weight, age, etc., the above dosage does not limit the scope of the present invention in any way.

본 발명의 약학적 조성물은 다양한 경로를 통하여 대상에 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관 내(intracerebroventricular) 주사에 의해 투여될 수 있다.The pharmaceutical composition of the present invention can be administered to a subject through various routes. All modes of administration are contemplated, for example, oral, rectal or by intravenous, intramuscular, subcutaneous, intrathecal or intracerebroventricular injection.

본 발명에서 "투여"는 임의의 적절한 방법으로 환자에게 소정의 물질을 제공하는 것을 의미하며, 본 발명의 약학적 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 일반적인 모든 경로를 통하여 경구 또는 비경구 투여될 수 있다. 또한, 본 발명의 조성물은 유효성분을 표적 세포로 전달할 수 있는 임의의 장치를 이용해 투여될 수도 있다.In the present invention, "administration" means providing a predetermined substance to a patient by any appropriate method, and the route of administration of the pharmaceutical composition of the present invention is oral or parenteral through all general routes as long as it can reach the target tissue. It can be administered orally. Additionally, the composition of the present invention may be administered using any device capable of delivering the active ingredient to target cells.

본 발명에서 "대상"은, 특별히 한정되는 것은 아니지만, 예를 들어, 인간, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그를 포함하고, 바람직하게는 포유류, 보다 바람직하게는 인간을 의미한다.In the present invention, “subject” includes, but is not particularly limited to, for example, humans, monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs. And, preferably, it means mammals, and more preferably, humans.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 비만의 예방 또는 개선용 건강 기능 식품을 제공한다.In addition, the present invention provides a health functional food for preventing or improving obesity containing Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명의 건강 기능 식품은 비만과 관련된 각종 증상의 예방 또는 개선에 효과적인 식품 및 음료 등에 다양하게 이용될 수 있다. 본 발명의 유효성분을 포함하는 식품으로는, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있고, 분말, 과립, 정제, 캡슐 또는 음료인 형태로 사용할 수 있다.The health functional food of the present invention can be used in a variety of foods and beverages that are effective in preventing or improving various symptoms related to obesity. Foods containing the active ingredient of the present invention include, for example, various foods, beverages, gums, teas, vitamin complexes, health supplements, etc., and can be used in the form of powders, granules, tablets, capsules, or beverages. .

본 발명의 유효성분은 일반적으로 전체 식품 중량의 0.01 내지 15중량%로 가할 수 있으며, 건강음료 조성물은 100ml를 기준으로 0.02 내지 10g, 바람직하게는 0.3 내지 1g의 비율로 가할 수 있다.The active ingredient of the present invention can generally be added at 0.01 to 15% by weight of the total food weight, and the health drink composition can be added at a rate of 0.02 to 10g, preferably 0.3 to 1g, based on 100ml.

본 발명의 건강 기능 식품은 지시된 비율로 필수 성분으로서 상기 화합물을 함유하는 것 외에 식품학적으로 허용 가능한 식품보조 첨가제, 예컨대, 천연 탄수화물 및 다양한 향미제 등을 추가 성분으로서 함유할 수 있다. In addition to containing the above compounds as essential ingredients in the indicated ratio, the health functional food of the present invention may contain foodologically acceptable food additives, such as natural carbohydrates and various flavoring agents, as additional ingredients.

상기 천연 탄수화물의 예로는 포도당, 과당 등의 단당류, 말토오스, 수크로오스 등의 이당류 및 덱스트린, 시클로덱스트린 등의 다당류와 같은 통상적인 당 및 자일리톨, 소르비톨, 에리쓰리톨 등의 당알코올이 있다. Examples of the natural carbohydrates include common sugars such as monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.

상기 향미제로는 타우마틴, 레바우디오시드 A 또는 글리시르히진과 같은 스테비아 등의 천연 향미제 및 사카린, 아스파르탐 등의 합성 향미제를 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 건강 기능 식품 100ml당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g을 사용한다. 상기 외에 본 발명의 건강 기능 식품은 여러 가지 영양제, 비타민, 광물, 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 건강 기능 식품은 천연 과일 주스 및 과일 주스 음료 및 야채 음료 등의 제조를 위한 과육을 함유할 수도 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 본 발명의 유효성분 100중량부 당 0.01 내지 약 20중량부의 범위에서 선택되는 것이 일반적이다.As the flavoring agent, natural flavoring agents such as thaumatin, rebaudioside A, or stevia such as glycyrrhizin, and synthetic flavoring agents such as saccharin and aspartame may be used. The ratio of the natural carbohydrate is generally about 1 to 20 g, preferably about 5 to 12 g, per 100 ml of the health functional food of the present invention. In addition to the above, the health functional food of the present invention contains various nutrients, vitamins, minerals, flavoring agents such as synthetic and natural flavors, colorants and thickening agents, pectic acid and its salts, alginic acid and its salts, organic acids, and protective colloids. It may contain thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc. In addition, the health functional food of the present invention may contain pulp for the production of natural fruit juice, fruit juice drinks, vegetable drinks, etc. These ingredients can be used independently or in combination. The ratio of these additives is generally selected in the range of 0.01 to about 20 parts by weight per 100 parts by weight of the active ingredient of the present invention.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 포함하는 슬리밍용 화장료 조성물을 제공한다.Additionally, the present invention provides a cosmetic composition for slimming containing Biochanin A or a pharmaceutically acceptable salt thereof.

상기 "슬리밍"은 신체의 전체 또는 특정 부위의 체적이 감소되는 현상을 의미하며, 예를 들어, 신체의 전체 또는 특정 부위의 지방의 제거 또는 감소일 수 있다. The term “slimming” refers to a phenomenon in which the volume of the entire body or a specific area is reduced. For example, it may be the removal or reduction of fat in the entire body or a specific area.

본 발명의 화장료 조성물의 유효성분은 조성물 총 중량에 대해 0.01 내지 50중량%로 포함될 수 있으며, 바람직하게는 0.1 내지 20중량%, 더욱 바람직하게는 1 내지 10중량%이다. 이러한 함량 범위에서 적절한 제형 안정성을 확보할 수 있으며, 목적하는 슬리밍 효과를 기대할 수 있다.The active ingredient of the cosmetic composition of the present invention may be included in an amount of 0.01 to 50% by weight, preferably 0.1 to 20% by weight, and more preferably 1 to 10% by weight, based on the total weight of the composition. Within this content range, appropriate formulation stability can be secured and the desired slimming effect can be expected.

본 발명의 상기 조성물은 본 발명의 유효성분 외에도 본 발명의 유효 활성을 저해하지 않는 범위에서 항산화, 항노화, 보습, 피부 재생 촉진의 효과를 위한 공지의 천연물 추출물이나 기타 성분을 추가로 포함시켜 이용할 수 있다.In addition to the active ingredients of the present invention, the composition of the present invention can be used by additionally containing known natural extracts or other ingredients for antioxidant, anti-aging, moisturizing, and skin regeneration promotion effects to the extent that they do not impair the effective activity of the present invention. You can.

또한, 상기 조성물은 화장료 조성물에 통상적으로 첨가되는 성분들, 예를 들면, 지방 물질, 유기 용매, 용해제, 농축제, 겔화제, 연화제, 항산화제, 현탁화제, 안정화제, 발포제(foaming agent), 방향제, 계면활성제, 물, 이온형 또는 비이온형 유화제, 충전제, 금속이온 봉쇄제 및 킬레이트화제, 보존제, 비타민, 차단제, 습윤화제, 필수 오일, 염료, 안료, 친수성 또는 친유성 활성제와 같은 화장품학 또는 피부과학 분야에서 통상적으로 사용되는 보조제나 담체를 포함하여 특정 제형으로 성형될 수 있다.In addition, the composition may contain ingredients commonly added to cosmetic compositions, such as fatty substances, organic solvents, solubilizers, thickeners, gelling agents, softeners, antioxidants, suspending agents, stabilizers, foaming agents, Cosmetic or cosmetic applications such as fragrances, surfactants, water, ionic or non-ionic emulsifiers, fillers, sequestering and chelating agents, preservatives, vitamins, blocking agents, wetting agents, essential oils, dyes, pigments, hydrophilic or lipophilic activators. It can be molded into a specific formulation by including adjuvants or carriers commonly used in the field of dermatology.

본 발명의 화장료 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를 들면, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 팩, 비누, 계면활성제-함유 클린징, 오일 및 스프레이 등으로 제형화될 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로는, 로션, 화장수, 유연 화장수, 영양 화장수, 크림, 영양 크림, 마사지 크림, 에센스, 아이 크림, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션, 클렌징 크림, 폼, 클렌징 폼, 클렌징 워터, 팩, 스프레이, 파우더, 팩트, 립글로즈, 립스틱, 섀도우, 샴푸 및 린스 등의 제형으로 제조될 수 있다. The cosmetic composition of the present invention can be prepared in any formulation commonly prepared in the art, for example, solution, suspension, emulsion, paste, gel, cream, lotion, powder, pack, soap, surfactant- It can be formulated as a cleansing agent, oil, spray, etc., but is not limited to this. More specifically, lotion, lotion, softening lotion, nourishing lotion, cream, nourishing cream, massage cream, essence, eye cream, powder foundation, emulsion foundation, wax foundation, cleansing cream, foam, cleansing foam, cleansing water, pack. , spray, powder, pact, lip gloss, lipstick, shadow, shampoo, and rinse.

본 발명의 제형이 페이스트, 크림 또는 겔인 경우에는 담체 성분으로서 동물성유, 식물성유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크 또는 산화아연 등이 이용될 수 있다.When the formulation of the present invention is a paste, cream or gel, animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc or zinc oxide may be used as the carrier ingredient. You can.

본 발명의 제형이 파우더 또는 스프레이인 경우에는 담체 성분으로서 락토스, 탈크, 실리카, 알루미늄 히드록시드, 칼슘 실리케이트 또는 폴리아미드 파우더가 이용될 수 있고, 특히, 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판/부탄 또는 디메틸 에테르와 같은 추진체를 포함할 수 있다.When the formulation of the present invention is a powder or spray, lactose, talc, silica, aluminum hydroxide, calcium silicate, or polyamide powder can be used as the carrier ingredient. In particular, when the formulation is a spray, chlorofluorohydrocarbon, May contain propellants such as propane/butane or dimethyl ether.

본 발명의 제형이 용액 또는 유탁액인 경우에는 담체 성분으로서 용매, 용해화제 또는 유탁화제가 이용되고, 예컨대, 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸글리콜 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르가 있다.When the formulation of the present invention is a solution or emulsion, a solvent, solubilizing agent, or emulsifying agent is used as a carrier component, such as water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, These include 1,3-butyl glycol oil, glycerol aliphatic esters, polyethylene glycol or fatty acid esters of sorbitan.

본 발명의 제형이 현탁액인 경우에는 담체 성분으로서 물, 에탄올 또는 프로필렌 글리콜과 같은 액상의 희석제, 에톡실화이소스테아릴 알코올, 폴리옥시에틸렌 소르비톨 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가 또는 트라칸트 등이 이용될 수 있다.When the formulation of the present invention is a suspension, the carrier ingredients include water, a liquid diluent such as ethanol or propylene glycol, a suspending agent such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester, and polyoxyethylene sorbitan ester, and microcrystals. Cellulose, aluminum metahydroxide, bentonite, agar, or tracant may be used.

본 발명의 제형이 계면-활성제 함유 클린징인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코올 에테르설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코올, 지방산 글리세리드, 지방산 디에탄올아미드, 식물성 유, 라놀린유도체 또는 에톡실화 글리세롤 지방산 에스테르 등이 이용될 수 있다.When the formulation of the present invention is a surfactant-containing cleansing agent, the carrier ingredients include aliphatic alcohol sulfate, aliphatic alcohol ether sulfate, sulfosuccinic acid monoester, isethionate, imidazolinium derivative, methyl taurate, sarcosinate, and fatty acid amide. Ether sulfate, alkylamidobetaine, aliphatic alcohol, fatty acid glyceride, fatty acid diethanolamide, vegetable oil, lanolin derivative, or ethoxylated glycerol fatty acid ester can be used.

또한, 본 발명은 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 중간엽 줄기세포의 갈색 지방세포로의 분화 유도용 조성물을 제공한다.Additionally, the present invention provides a composition for inducing differentiation of mesenchymal stem cells into brown adipocytes, comprising Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient.

상기 분화 유도는 세포 내 트리글리세라이드(Triglyceride) 축적 감소, 지방 분해 유도, 세포 내 미토콘드리아 수의 증가, 세포의 갈색 지방 표현형의 유도 및 AMPK 신호 전달 활성화로 이루어지는 군으로부터 선택된 메커니즘에 의한 것이 바람직하다.The differentiation induction is preferably by a mechanism selected from the group consisting of reducing intracellular triglyceride accumulation, inducing lipolysis, increasing the number of intracellular mitochondria, inducing a brown fat phenotype in cells, and activating AMPK signaling.

상기 분화 유도용 조성물은 예를 들어 연구용 시약 조성물로서 적용될 수 있다. 통상 실험실 조건하에서 본 발명의 분화 유도용 조성물을 세포 또는 실험 동물에 투여할 수 있으며, 구체적인 투여 방법과 안전 규칙 등은 실험자의 각 실험실의 내부 준수 규정에 따라 수행되는 것이 바람직하다. The composition for inducing differentiation may be applied, for example, as a reagent composition for research. The composition for inducing differentiation of the present invention can be administered to cells or experimental animals under normal laboratory conditions, and it is preferable that specific administration methods and safety rules are carried out in accordance with the internal compliance regulations of each experimenter's laboratory.

또한, 본 발명은 인체로부터 분리된 중간엽 줄기세포에 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 처리하는 것을 포함하는 갈색 지방세포로의 분화 유도 방법을 제공한다. Additionally, the present invention provides a method of inducing differentiation into brown adipocytes, comprising treating mesenchymal stem cells isolated from the human body with Biochanin A or a pharmaceutically acceptable salt thereof.

상기 중간엽 줄기세포는 개체로부터 자연적 또는 인위적 방법으로 분리된 것을 대상으로 한다. 개체로부터 분리된 상기 세포들은 적절한 배양 조건하에서 수일 내지 수주 동안 배양될 수 있으며, 경우에 따라서 동결보관될 수도 있다. The mesenchymal stem cells are those isolated from an individual by natural or artificial methods. The cells isolated from an individual can be cultured for several days to several weeks under appropriate culture conditions, and in some cases, may be stored frozen.

분리된 상기 세포에 본 발명의 유효성분을 투여하는 방법은 통상의 기술자에게 자명한 사항이며, 바람직하게는 본 명세서의 하기 실시예에 기재된 바를 따를 수 있을 것이다. The method of administering the active ingredient of the present invention to the separated cells is obvious to those skilled in the art, and can preferably be followed as described in the examples below in this specification.

이하에서는 구체적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 하기 실시예는 본 발명의 바람직한 일 구체예를 기재한 것이며, 하기 실시예에 기재된 사항에 의하여 본 발명의 권리범위가 한정되어 해석되는 것이 아님은 명백하다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples describe a preferred embodiment of the present invention, and it is clear that the scope of the present invention is not to be construed as limited by the matters described in the following examples.

[[ 실시예Example ]]

1. 물질 및 방법1. Materials and methods

1.1. 화학 물질, 시약 및 항체1.1. Chemicals, Reagents and Antibodies

BioA(도 1A; # D2016), 인슐린, 덱사메타손, IBMX, 로시글리타존(Rosi), 도소모르핀(DRS), Oil Red O 염료(ORO), 3-(4,5-디메틸티아졸-2-일)-2,5-디메틸테트라졸륨 브로마이드(MTT), 4% 포름아미드, 미메틸 설폭사이드 및 40,6-디아미디노-2-페닐인돌(DAPI)은 Sigma-Aldrich사(St. Louis, MO)로부터 구입했고, 카르보닐 시아나이드 p-트리플루오로-메톡시페닐 히드라진(FCCP)는 Cayman Chemicals사(Ann Arbor, MI)로부터 구입했다. 우태혈청(FBS) 및 고글루코오스(high-glucose) Dulbecco's modified Eagle's 배지(DMEM)는 Atlas Biologicals사(Fort Collins, CO)로부터 구입했고, 페니실린-스트렙토마이신 용액은 Hyclone Laboratories Inc.사(South Logan, NY)로부터 구입했다. PGC1α, PRDM16 및 OXPHOS 단백질에 대한 항체는 Abcam사(Cambridge, MA)로부터 구입했다. HSL, ATGL, phospho-(p-)HSL (Ser563 및 Ser660), Sirt1, aP2, C/EBPβ, AMPK, p-AMPK(Thr172), p38 MAPK, p-p38 MAPK(Thr180/Tyr182) 및 p-PKA 기질에 대한 항체 및 항-토끼 IgG (H + L), F(ab')2 단편 항체(Alexa Fluor 488 접합체), 양고추냉이 과산화효소가 접합된 항-토끼 IgG 항체, 양고추냉이 과산화효소가 접합된 항-마우스 IgG 항체, 및 MitoTracker® Red CMXRos는 Cell Signaling Technology사(Danvers, MA)로부터 구입한 반면, UCP1, PPARγ 및 β-actin은 Santa Cruz Biotechnology사(Dallas, TX)로부터 구입했다. BCA 단백질 분석 키트는 Thermo Fisher Scientific사(Rockford, IL)로부터 얻었고, 단백질 로딩 버퍼는 Bio-Rad Laboratories, Inc.사(Hercules, CA)로부터 얻었다.BioA (Figure 1A; #D2016), insulin, dexamethasone, IBMX, rosiglitazone (Rosi), dosomorphine (DRS), Oil Red O dye (ORO), 3-(4,5-dimethylthiazol-2-yl)- 2,5-Dimethyltetrazolium bromide (MTT), 4% formamide, mimethyl sulfoxide, and 40,6-diamidino-2-phenylindole (DAPI) were from Sigma-Aldrich (St. Louis, MO). Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazine (FCCP) was purchased from Cayman Chemicals (Ann Arbor, MI). Fetal bovine serum (FBS) and high-glucose Dulbecco's modified Eagle's medium (DMEM) were purchased from Atlas Biologicals (Fort Collins, CO), and penicillin-streptomycin solution was purchased from Hyclone Laboratories Inc. (South Logan, NY). ) was purchased from Antibodies against PGC1α, PRDM16, and OXPHOS proteins were purchased from Abcam (Cambridge, MA). HSL, ATGL, phospho-(p-)HSL (Ser563 and Ser660), Sirt1, aP2, C/EBPβ, AMPK, p-AMPK (Thr172), p38 MAPK, p-p38 MAPK (Thr180/Tyr182), and p-PKA. Antibodies to the substrate and anti-rabbit IgG (H + L), F(ab')2 fragment antibody (Alexa Fluor 488 conjugate), anti-rabbit IgG antibody conjugated to horseradish peroxidase, horseradish peroxidase Conjugated anti-mouse IgG antibodies, and MitoTracker ® Red CMXRos were purchased from Cell Signaling Technology (Danvers, MA), while UCP1, PPARγ, and β-actin were purchased from Santa Cruz Biotechnology (Dallas, TX). The BCA protein assay kit was obtained from Thermo Fisher Scientific (Rockford, IL), and protein loading buffer was obtained from Bio-Rad Laboratories, Inc. (Hercules, CA).

1.2. 세포 배양, 분화, 및 처리1.2. Cell culture, differentiation, and processing

C3H10T1/2 MSC(KCLB-10226; 계대수 ≥ 10)는 37 ℃의 가습 5 % CO2 인큐베이터에서 10 %의 FBS 및 1 %의 페니실린-스트렙토마이신 용액이 첨가된 DMEM GlutaMax에서 배양하였다. 지방 생성 분화를 위해, 충분히 자란 C3H10T1/2 세포(컨플루언시 후 2 일, 0 일로 지정, 도 1B)를 10 %의 FBS가 첨가된 DMEM에서 BioA의 존재 또는 부재하에서 지방 생성 분화 칵테일, 즉, MDI(0.5 mM IBMX, 1 μM 덱사메타손 및 10 μg/mL 인슐린)와 함께 배양했다. 2 일을 초과하는 처리는 4 일까지 계속하였다. 이 경우, 우리는 3 일과 4 일에 세포 배양을 위해 DMEM, 인슐린 및 10 %의 FBS를 함유하는 성숙 배지(maturation medium)와 BioA를 혼합했다. 4 일 후에는, 수확할 때까지 성숙 배지만 사용했다. 완전히 분화된 C3H10T1/2 MSC는 6 일에 수확하여 본 연구에서 사용했다. MDI에서의 배양은 음성 대조군으로 사용했고, DMEM 배지에서 Rosi(1 μM)와의 배양은 양성 대조군으로 사용하였다.C3H10T1/2 MSC (KCLB-10226; passage number ≥ 10) were cultured in DMEM GlutaMax supplemented with 10% FBS and 1% penicillin-streptomycin solution in a humidified 5% CO 2 incubator at 37°C. For adipogenic differentiation, fully grown C3H10T1/2 cells (2 days after confluency, designated as day 0, Figure 1B) were incubated with the adipogenic differentiation cocktail, i.e., in the presence or absence of BioA in DMEM supplemented with 10% FBS. , incubated with MDI (0.5 mM IBMX, 1 μM dexamethasone, and 10 μg/mL insulin). Treatments exceeding 2 days were continued until the 4th day. In this case, we mixed BioA with maturation medium containing DMEM, insulin, and 10% FBS for cell culture on days 3 and 4. After 4 days, only the maturation medium was used until harvest. Fully differentiated C3H10T1/2 MSCs were harvested on day 6 and used in this study. Culture in MDI was used as a negative control, and culture with Rosi (1 μM) in DMEM medium was used as a positive control.

1.3. 세포 생존률 분석1.3. Cell viability analysis

C3H10T1/2 MSC를 96-웰 플레이트에, 다음 날 세포가 80 % 내지 90 % 컨플루언시가 되는 밀도로 접종한 다음, 10, 20 또는 40 μM BioA와 함께 24, 48 또는 72 시간 동안 배양했다. 그 후, 200 μL의 배양 배지를 함유하는 각 웰에 5 mg/mL MTT 용액 20 μL를 첨가하고, 세포를 37 ℃에서 4 시간 동안 배양하여 포르마잔 결정이 형성되도록 하였다. 그 후, 포르마잔 결정을 150 μL의 디메틸 설폭사이드에 용해시키고 Victor™ X3 멀티 라벨 리더(Perkin Elmer사, Waltham, MA)를 사용하여 590 nm의 파장에서 흡광도를 측정했다.C3H10T1/2 MSCs were seeded in 96-well plates at a density of 80% to 90% confluency the next day and incubated with 10, 20, or 40 μM BioA for 24, 48, or 72 hours. . Afterwards, 20 μL of 5 mg/mL MTT solution was added to each well containing 200 μL of culture medium, and the cells were cultured at 37°C for 4 hours to allow formazan crystals to form. Afterwards, formazan crystals were dissolved in 150 μL of dimethyl sulfoxide and absorbance was measured at a wavelength of 590 nm using a Victor™ X3 multi-label reader (Perkin Elmer, Waltham, MA).

1.4. ORO 염색 분석1.4. ORO staining analysis

총 트리글리세라이드(TG) 함량은 ORO 염색에 의해 측정하였다. C3H10T1/2 MSC는 위에서 설명한 바와 같이 BioA가 있거나 없는 MDI를 갖는 6-웰 플레이트에서 6 일 동안 분화시켰다. 성숙한 세포를 1x 인산 완충 식염수(PBS)로 2 회 세척하고 10 % 포르말린으로 1 시간 고정한 후, 여과된 0.3 % ORO 용액으로 20 분 동안 염색하였다. 염색된 세포를 증류수로 4 번 세척하고 Axiovert-25 현미경(Carl Zeiss사, Jena, Germany)을 사용하여 표현형의 변화를 사진촬영했다. ORO를 정량하기 위해, 염색된 세포로부터 100 % 이소프로판올을 이용하여 염료를 용출하고, Victor™ X3 기기 (Perkin Elmer사)에서 520 nm에서 흡광도를 측정했다.Total triglyceride (TG) content was measured by ORO staining. C3H10T1/2 MSCs were differentiated for 6 days in 6-well plates with MDI with or without BioA as described above. Mature cells were washed twice with 1x phosphate-buffered saline (PBS), fixed with 10% formalin for 1 hour, and then stained with filtered 0.3% ORO solution for 20 minutes. Stained cells were washed four times with distilled water, and phenotypic changes were photographed using an Axiovert-25 microscope (Carl Zeiss, Jena, Germany). To quantify ORO, the dye was eluted from stained cells using 100% isopropanol, and absorbance was measured at 520 nm on a Victor™ X3 instrument (Perkin Elmer).

1.5. 유전자 발현 분석1.5. Gene expression analysis

미분화 및 분화된 C3H10T1/2 MSC를 수확하고, RNA 추출 키트(Qiagen사, Valencia, CA)를 사용하여 총 RNA를 추출하고, 총 RNA 농도를 Scandrop 분광 광도계(Analytik Jena AG사; Jena, Germany)에서 측정했다.Undifferentiated and differentiated C3H10T1/2 MSCs were harvested, total RNA was extracted using an RNA extraction kit (Qiagen, Valencia, CA), and total RNA concentration was determined on a Scandrop spectrophotometer (Analytik Jena AG; Jena, Germany). Measured.

Maxime RT PreMix Kit(Intron Biotechnology사, Seoul, Korea)를 이용하여 총 1 μg의 RNA를 역전사 PCR(RTPCR)하여 cDNA를 합성하고, 반응을 Veriti 96-Well Thermal Cycler(Applied Biosystems사, 싱가포르)에서 진행했다. 정량적 PCR(qPCR)은 CFX96™ Real-Time PCR 검출 시스템(Bio-Rad사, 싱가포르)에서 iQTM SYBR Green Supermix Kit(Bio-Rad사, 싱가포르)를 사용하여 수행하였으며, 이때 Tbp를 내부 제어 유전자로 사용했다. 프라이머의 서열은 표 1에 나열되어 있다(서열번호 1 내지 서열번호 88).cDNA was synthesized by reverse transcription PCR (RTPCR) of a total of 1 μg of RNA using the Maxime RT PreMix Kit (Intron Biotechnology, Seoul, Korea), and the reaction was performed in a Veriti 96-Well Thermal Cycler (Applied Biosystems, Singapore). did. Quantitative PCR (qPCR) was performed using the iQTM SYBR Green Supermix Kit (Bio-Rad, Singapore) on a CFX96™ Real-Time PCR detection system (Bio-Rad, Singapore), using Tbp as an internal control gene. did. The sequences of the primers are listed in Table 1 (SEQ ID NO: 1 to SEQ ID NO: 88).

[표 1] 프라이머 서열[Table 1] Primer sequences

1.6. 웨스턴 블롯 분석1.6. Western blot analysis

전지방세포 샘플 및 분화된 지방세포 샘플을 얼음 냉각 1x PBS로 2 회 세척하고 프로테아제 억제제 칵테일, 2 mM 페닐 메틸설포닐 플루오라이드, 1 mM 나트륨 오르토바나데이트(Santa Cruz Biotechnology사) 및 포스파타제 억제제 칵테일(Sigma-Aldrich사)가 첨가된 RIPA 용해 완충액에서 용해시켰다. 그 용해물을 긁어 모아 얼음 위에서 15 분 동안 배양하고, 4 ℃에서 15 분 동안 14,000 x g에서 원심 분리하여 상등액을 수집했다. BCA 단백질 분석 키트를 사용하여 총 단백질 농도를 측정했다. 각 샘플에 대해 동일한 양의 총 단백질을 로딩하고 나트륨 도데실 설페이트 4-20 % 폴리아크릴 아미드 구배 젤(Mini-PROTEAN Precast Gel, Bio-Rad사)에서 분리했다. 그 후, 단백질을 13 V에서 1.2 시간 동안 반건식 전달 셀(Bio-Rad사)에서 폴리비닐리덴 디플루오라이드 멤브레인(Trans-Blot SD Semi-Dry Cell, Bio-Rad사)에 전달했다. 이어서, 멤브레인을 진탕기에서 실온에서 1 시간 동안 0.1 %의 Tween 20(TBST)을 함유하는 1x Tris-완충 식염수(TBS)에 용해된 5 % 건조 탈지유로 블로킹한 다음, 4 ℃에서 밤새 1 차 항체와 함께 배양하였다. 그 후, 멤브레인을 실온에서 5 분 동안 3 회 세척하였다. 폴리비닐리덴 디플루오라이드 멤브레인은 TBST에 희석된 특정 양고추냉이 퍼옥시다아제-접합된 2 차 항체와 함께 진탕기에서 실온에서 1.5 시간 동안 배양한 다음 각각 5 분 동안 3 회 세척하였다. 모든 세척 단계는 TBST에서 수행하였다. 면역반응성 단백질 신호는 화학발광 ECL 분석(Advansta사)에 의해 검출하였으며 이미지는 분자 이미징 소프트웨어 ImageLab 2.0(Bio-Rad)을 통해 획득하였다. 데이터의 더 나은 시각화를 위해 밝기와 콘트라스트를 약간 조정했지만, 전체 이미지 패널에 동일한 변경 사항이 적용되었으며, 어느 이미지로부터도 정보가 손실되지 않았다. 항-β-actin 항체를 이용한 염색은 각 단백질 발현 분석에 대한 로딩 대조구로서 이용되었다.Preadipocyte samples and differentiated adipocyte samples were washed twice with ice-cold 1x PBS and incubated with protease inhibitor cocktail, 2 mM phenyl methylsulfonyl fluoride, 1 mM sodium orthovanadate (Santa Cruz Biotechnology), and phosphatase inhibitor cocktail ( It was dissolved in RIPA lysis buffer containing Sigma-Aldrich (Sigma-Aldrich). The lysate was scraped, incubated on ice for 15 min, and the supernatant was collected by centrifugation at 14,000 × g for 15 min at 4 °C. Total protein concentration was measured using the BCA protein assay kit. For each sample, equal amounts of total protein were loaded and separated on a sodium dodecyl sulfate 4-20% polyacrylamide gradient gel (Mini-PROTEAN Precast Gel, Bio-Rad). Afterwards, the protein was transferred to a polyvinylidene difluoride membrane (Trans-Blot SD Semi-Dry Cell, Bio-Rad) in a semi-dry transfer cell (Bio-Rad) at 13 V for 1.2 hours. The membrane was then blocked with 5% dry skim milk dissolved in 1x Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBST) for 1 h at room temperature on a shaker and then incubated with primary antibody overnight at 4 °C. was cultured with. Afterwards, the membrane was washed three times for 5 minutes at room temperature. Polyvinylidene difluoride membranes were incubated with specific horseradish peroxidase-conjugated secondary antibodies diluted in TBST for 1.5 h at room temperature on a shaker and then washed three times for 5 min each. All washing steps were performed in TBST. Immunoreactive protein signals were detected by chemiluminescence ECL analysis (Advansta), and images were acquired using molecular imaging software ImageLab 2.0 (Bio-Rad). Brightness and contrast were slightly adjusted for better visualization of the data, but the same changes were made to the entire image panel and no information was lost from any of the images. Staining with anti-β-actin antibody was used as a loading control for each protein expression analysis.

1.7. 미토콘드리아 함량 분석1.7. Mitochondrial content analysis

C3H10T1/2 MSC를 공초점 접시에서 배양하고 6 일 동안 분화시켰다. 그런 다음, 세포 단층을 1x PBS로 2 회 세척하고 37 ℃에서 15 분 동안 MitoTracker 염료(성장 배지에서 100 nM의 농도로 희석)과 함께 배양했다. 그 후, 세포를 -20 ℃에서 15분 동안 얼음 냉각 메탄올에 고정시키고, PBS로 각각 5 분 동안 3 회 세척했다. 다음으로, 세포를 3 % BSA에서 15 분 동안 0.1 % Triton X-100으로 투과성화(permeabilized)시키고 실온에서 1 시간 동안 1X PBS에서 1 % BSA, 5 % 염소 혈청 및 0.3 % Triton X-100으로 블로킹했다. 그런 다음, 세포를 Ucp1(Abcam)에 대한 1 차 항체와 함께 4 ℃에서 밤새 배양한 다음, Alexa Fluor 488-접합된 항 토끼 IgG(2 차) 항체(Cell Signaling Technology사)와 함께 실온에서 1 시간 동안 배양했다. DNA 염색을 위해, 세포를 1 μg/mL DAPI와 함께 실온에서 1 분 동안 배양한 다음 0.25 %의 Tween 20을 함유하는 1x PBS로 3 회 세척했다. 커버슬립에 페이딩방지제(anti-fading agent)(Dako사, CA)를 포함하는 형광 마운트 배지를 마운트했다. 공초점 현미경(Olympus사, 일본 도쿄)을 사용하여 이미지를 캡처하고, FV10i-ASW 3.0 뷰어 소프트웨어에서 분석했다. 미토콘드리아 함량은 nDNA 카피 수가 일정하는 가정 아래, qPCR에 의해 정량화된 미토콘드리아 DNA(mtDNA) 카피 수에 대한 핵 DNA(nDNA) 카피 수의 비율로 평가하였다. 각 DNA 추출물에 대해, 핵 유전자, 리보솜 단백질 p0 및 미토콘드리아 유전자인 사이토크롬 c 옥시다제 서브유닛 I(CoxI)를 qPCR에 의해 개별적으로 정량했다. 데이터는 핵 유전자 p0 DNA로 정규화했다.C3H10T1/2 MSCs were cultured in confocal dishes and differentiated for 6 days. Cell monolayers were then washed twice with 1x PBS and incubated with MitoTracker dye (diluted to a concentration of 100 nM in growth medium) for 15 min at 37 °C. Afterwards, cells were fixed in ice-cold methanol for 15 min at -20 °C and washed three times with PBS for 5 min each. Next, cells were permeabilized with 0.1% Triton X-100 in 3% BSA for 15 min and blocked with 1% BSA, 5% goat serum, and 0.3% Triton did. Cells were then incubated with primary antibody against Ucp1 (Abcam) overnight at 4°C, followed by Alexa Fluor 488-conjugated anti-rabbit IgG (secondary) antibody (Cell Signaling Technology) for 1 hour at room temperature. cultured for a while. For DNA staining, cells were incubated with 1 μg/mL DAPI for 1 min at room temperature and then washed three times with 1x PBS containing 0.25% Tween 20. The coverslip was mounted with a fluorescent mounting medium containing an anti-fading agent (Dako, CA). Images were captured using a confocal microscope (Olympus, Tokyo, Japan) and analyzed in FV10i-ASW 3.0 viewer software. Mitochondrial content was assessed as the ratio of nuclear DNA (nDNA) copy number to mitochondrial DNA (mtDNA) copy number quantified by qPCR, under the assumption that nDNA copy number is constant. For each DNA extract, the nuclear gene, ribosomal protein p0, and the mitochondrial gene cytochrome c oxidase subunit I (CoxI) were quantified individually by qPCR. Data were normalized to nuclear gene p0 DNA.

1.8. Ampkα 녹다운1.8. Ampkα knockdown

작은 간섭 RNA(siRNA) 올리고뉴클레오티드 듀플렉스인 siAmpkα(Santa Cruz Biotechnology, Inc.사)를 80 % 내지 90 % 컨플루언시에서 Lipofectamine 2000을 사용하여 C3H10T1/2 MSC에 형질감염시켰다. 즉, 100 pM siRNA를 웰당 6 μL의 Lipofectamine 2000과 혼합하고 6웰 플레이트의 세포에 형질감염시켰다. 세포를 2 mL의 Opti-MEM 배지로 간단히 세척하고 800 μL의이 배지를 각각의 웰에 첨가했다. siRNA 및 Lipofectamine 2000은 100 μL (웰당)의 Opti-MEM 배지에 개별적으로 희석하고, 5 분 동안 배양하고, 혼합하고, 실온에서 30 분 동안 배양한 다음, 웰당 200 μL를 6-웰 플레이트의 지정된 웰에 첨가했다. 8 시간 후, 1 mL의 성장 배지를 각 웰에 첨가하고 37℃에서 밤새 배양하였다. 배지는 BioA의 유무에 관계없이 컨플루언시 후 2 일 째에 유도 배지로 교체하였다. siRNA 기반 녹다운의 효율성은 Ampkα 프라이머(Santa Cruz Biotechnology사)를 사용한 qRT-PCR에 의해 결정했다. 단백질 및 RNA 샘플은 분화 6 일째에 준비하고, 하류측 유전자의 발현 분석을 위해 웨스턴 블롯팅 및 qRT-PCR을 실시했다.siAmpkα (Santa Cruz Biotechnology, Inc.), a small interfering RNA (siRNA) oligonucleotide duplex, was transfected into C3H10T1/2 MSCs using Lipofectamine 2000 at 80% to 90% confluency. That is, 100 pM siRNA was mixed with 6 μL of Lipofectamine 2000 per well and transfected into cells in a 6-well plate. Cells were briefly washed with 2 mL of Opti-MEM medium and 800 μL of this medium was added to each well. siRNA and Lipofectamine 2000 were individually diluted in 100 μL (per well) of Opti-MEM medium, incubated for 5 min, mixed, incubated for 30 min at room temperature, and then 200 μL per well into the designated wells of a 6-well plate. added to After 8 hours, 1 mL of growth medium was added to each well and incubated overnight at 37°C. The medium was replaced with induction medium 2 days after confluency, with or without BioA. The efficiency of siRNA-based knockdown was determined by qRT-PCR using Ampkα primers (Santa Cruz Biotechnology). Protein and RNA samples were prepared on day 6 of differentiation, and Western blotting and qRT-PCR were performed to analyze the expression of downstream genes.

1.9. 산소 소비 분석1.9. Oxygen Consumption Analysis

C3H10T1/2 MSC를 200 μL의 배양 배지에서 웰당 약 4 × 104 내지 6 × 104 세포의 밀도로 96-웰 플레이트에 접종하고 37 ℃의 CO2 인큐베이터에서 밤새 유지하였다. 분화 6 일 후, FAO-구동 산소 소비 분석은 제조사의 지시에 따라 지방산 산화 완전 분석 키트(Abcam사, MA)를 사용하여 수행했다. 양성 대조구로는 미토콘드리아 OXPHOS 언커플러 FCCP를 사용하고, 음성 대조구로는 Etomoxir(CPT1α 억제제)를 사용했다. Victor™ X3 다중라벨 판독기(Perkin Elmer사)에서 각각 380 및 650 nm의 여기 및 방출 파장에서 판독을 수행했다.C3H10T1/2 MSCs were seeded in 96-well plates at a density of approximately 4 × 10 4 to 6 × 10 4 cells per well in 200 μL of culture medium and maintained overnight in a CO 2 incubator at 37°C. Six days after differentiation, FAO-driven oxygen consumption analysis was performed using the fatty acid oxidation complete assay kit (Abcam, MA) according to the manufacturer's instructions. The mitochondrial OXPHOS uncoupler FCCP was used as a positive control, and Etomoxir (CPT1α inhibitor) was used as a negative control. Readings were performed on a Victor™ X3 multilabel reader (Perkin Elmer) at excitation and emission wavelengths of 380 and 650 nm, respectively.

1.10. 미토콘드리아 막 전위 분석1.10. Mitochondrial membrane potential analysis

미토콘드리아 막 전위는 벤즈이미다졸카르보시아닌 요오드화물(JC-1) 미토콘드리아 막 전위 분석 키트(Abcam사)를 통해 측정하였다. 세포를 암소에서 37 ℃에서 30 분 동안 JC-1 염색 용액(Abcam사)과 함께 배양하고, Victor™ X3 다중라벨 판독기(Perkin Elmer사)에서 535 nm(여기)/590 nm(방출)에서 형광을 측정했다(Tak 등, 2014).Mitochondrial membrane potential was measured using the benzimidazolecarbocyanine iodide (JC-1) mitochondrial membrane potential analysis kit (Abcam). Cells were incubated with JC-1 staining solution (Abcam) for 30 minutes at 37°C in the dark, and fluorescence was measured at 535 nm (excitation)/590 nm (emission) on a Victor™ measured (Tak et al., 2014).

1.11. 투과전자 현미경 분석1.11. Transmission electron microscopy analysis

분화된 C3H10T1/2 MSC의 절편을 4 ℃에서 밤새 100 mM 포스페이트 완충액(pH 7.2)에서 2.5 % 글루타르 알데히드에 고정시켰다. 그런 다음, 절편을 1 % 오스뮴 사산화물에 후고정시키고, 에탄올 농도를 높이면서 탈수하고 새로운 에폭시 수지 618에 포매했다. 초박형 절편을 준비하고 시험 전에 구연산납으로 염색했다. 본 실험에 사용된 기기는 TEM H-7000(일본 히타치사) 및 Ultra microtome Ultracut-S(독일 라이카사)였다(Bartelt 등, 2011).Sections of differentiated C3H10T1/2 MSCs were fixed in 2.5% glutaraldehyde in 100 mM phosphate buffer (pH 7.2) overnight at 4 °C. The sections were then postfixed in 1% osmium tetroxide, dehydrated in increasing concentrations of ethanol, and embedded in fresh epoxy resin 618. Ultrathin sections were prepared and stained with lead citrate before testing. The instruments used in this experiment were TEM H-7000 (Hitachi, Japan) and Ultra microtome Ultracut-S (Lica, Germany) (Bartelt et al., 2011).

1.12. ImageJ에서의 밀도 측정1.12. Density measurements in ImageJ

면역 블롯 및 면역형광 염색 이미지는 ImageJ 소프트웨어(NIH사, Bethesda, MD)에서 정량하였다. 정량 전에, 면역형광 이미지를 가중치가 적용된(weighted) 8-비트 회색조 포맷으로 변환한 다음 반전시켰다.Immunoblot and immunofluorescence staining images were quantified in ImageJ software (NIH, Bethesda, MD). Before quantification, immunofluorescence images were converted to a weighted 8-bit grayscale format and then inverted.

1.13. 통계 분석1.13. statistical analysis

모든 값은 삼중 생물학적 샘플의 평균 (SEM)의 평균 ± SE로 표현되었다. 실험에 따라, student's t- 검정 또는 dunnett의 다중 비교 검정을 사용한 ANOVA를 수행하여 하기의 확률에 따라 차이의 유의성을 결정했다: < 0.05 (도면에서 *로 표시됨), < 0.01 (**), < 0.001 (***) 및 > 0.05 (ns; 유의하지 않음). 모든 통계 분석은 GraphPad Prism 8 (GraphPad Software사, La Jolla, CA)을 사용하여 수행하였다.All values were expressed as mean ± SE of the mean (SEM) of triplicate biological samples. Depending on the experiment, ANOVA with student's t-test or Dunnett's multiple comparison test was performed to determine the significance of differences according to the following probabilities: < 0.05 (indicated by * in the figure), < 0.01 (**), < 0.001 (***) and > 0.05 (ns; not significant). All statistical analyzes were performed using GraphPad Prism 8 (GraphPad Software, La Jolla, CA).

2. 결 과2. Results

2.1. BioA는 C3H10T1/2 MSC에서 세포내 TG 축적을 개선2.1. BioA improves intracellular TG accumulation in C3H10T1/2 MSCs

BioA의 치료 용량을 찾기 위해, 우리는 MTT 분석을 통해 24, 48 및 72 시간 동안 3 가지 용량의 BioA(10, 20 및 40 μM)의 세포 생존력을 조사했다. 도 1C에서 볼 수 있듯이 ≤40 μM BioA 처리는 눈에 띄는 세포 독성 효과가 없었고, 오히려 세포 생존력을 향상시켰다. 또한, 우리는 ORO 염색에 의해 세포내 TG 축적에 미치는 BioA의 영향을 측정했다. 도 1D에 제시된 바와 같이, 분화 배지(MDI)로 처리된 세포는 전지방 세포군(무처리 대조군)과 비교하여 TG 축적을 나타냈다. 이와 대조로, 로시글리타존(Rosi; PPARγ agonist)으로 처리된 세포는 MDI로 처리된 대조군 세포보다 더 큰 TG 축적을 나타냈다. BioA로 처리된 세포는 TG 축적을 보였지만, TG 함량은 용량 의존적으로 BioA에 의해 감소되었다. 40 μM BioA 처리는 Rosi로 처리된 세포에 비해 TG 축적을 감소시켰다. 이러한 결과를 바탕으로, 추가 실험을 위해 40 μM BioA를 사용하기로 결정했다.To find the therapeutic dose of BioA, we investigated the cell viability of three doses of BioA (10, 20, and 40 μM) for 24, 48, and 72 h via MTT assay. As shown in Figure 1C, treatment with ≤40 μM BioA had no noticeable cytotoxic effect, but rather improved cell viability. Additionally, we measured the effect of BioA on intracellular TG accumulation by ORO staining. As shown in Figure 1D, cells treated with differentiation medium (MDI) exhibited TG accumulation compared to the preadipocyte population (untreated control). In contrast, cells treated with rosiglitazone (Rosi; a PPARγ agonist) showed greater TG accumulation than control cells treated with MDI. Cells treated with BioA showed TG accumulation, but TG content was reduced by BioA in a dose-dependent manner. Treatment with 40 μM BioA reduced TG accumulation compared to cells treated with Rosi. Based on these results, it was decided to use 40 μM BioA for further experiments.

2.2. BioA는 C3H10T1/2 MSC에서 지방 분해를 유도2.2. BioA induces lipolysis in C3H10T1/2 MSCs

우리는 BioA가 지방분해에 기여할 수 있다고 가정했다. 따라서, 우리는 주요 지방분해 관련 유전자인 Hsl 및 Atgl의 발현을 측정했다. 도 2A 및 2B에 예시된 바와 같이, BioA 처리는 Hsl 및 Atgl의 발현을 크게 향상시켰으며(각각 최대 11.4 배 및 7.0 배), S660 및 S563에서 HSL의 인산화를 유발했다. 또한, BioA 처리는 Mgll (약 2.4 배) 및 Abhd5 (19.2 배)를 포함한 다른 지방분해 유전자의 발현을 증가시켰다. 참고로, BioA 처리는 미토콘드리아 β-산화 관련 유전자(Lcad; 최대 2.7 배)의 발현 및 β3-AR 유전자(Adrb3)의 발현을 향상시키면서 지방생성 관련 유전자 Acc(0.1 배) 및 Dgat2(0.2 배)를 포괄적으로 하향조절했다. 다음으로, BioA로 인한 형태학적 변화를 조사하기 위해, 우리는 완전히 분화된 C3H10T1/2 MSC의 투과 전자 현미경 검사를 수행했다. 도 2C의 전자 현미경 사진에 도시된 바와 같이, BioA 처리된 세포는 MDI 및 Rosi 처리된 세포와 비교하여 더 작은 지질 방울을 포함했다. 이러한 데이터를 통해 BioA는 분화된 C3H10T1/2 MSC에서 미토콘드리아 β-산화를 촉진하면서 지방 분해를 유도한다는 것을 추측할 수 있었다.We hypothesized that BioA may contribute to lipolysis. Therefore, we measured the expression of the key lipolysis-related genes, Hsl and Atgl. As illustrated in Figures 2A and 2B, BioA treatment significantly enhanced the expression of Hsl and Atgl (up to 11.4-fold and 7.0-fold, respectively) and caused phosphorylation of HSL at S660 and S563. Additionally, BioA treatment increased the expression of other lipolytic genes, including Mgll (approximately 2.4-fold) and Abhd5 (19.2-fold). For reference, BioA treatment enhanced the expression of the mitochondrial β-oxidation-related gene (Lcad; up to 2.7-fold) and the expression of the β3-AR gene (Adrb3), while upregulating the adipogenesis-related genes Acc (0.1-fold) and Dgat2 (0.2-fold). It was comprehensively downregulated. Next, to investigate morphological changes caused by BioA, we performed transmission electron microscopy of fully differentiated C3H10T1/2 MSCs. As shown in the electron micrograph in Figure 2C, BioA-treated cells contained smaller lipid droplets compared to MDI- and Rosi-treated cells. From these data, it could be inferred that BioA induces lipolysis while promoting mitochondrial β-oxidation in differentiated C3H10T1/2 MSCs.

2.3. BioA는 C3H10T1/2 MSC에서 미토콘드리아 생물 발생 및 호흡을 촉진2.3. BioA promotes mitochondrial biogenesis and respiration in C3H10T1/2 MSCs

BioA가 미토콘드리아 특성에 미치는 영향을 평가하기 위해, 우리는 미토콘드리아-생물 발생 관련 유전자의 발현을 조사했다. BioA 처리는 MDI- 및 Rosi-처리된 세포(4.5 배, 도 3A 및 3D)에 비해 Sirt1 mRNA(최대 9.2 배) 및 단백질의 수준을 크게 증가시켰다. 또한, 우리는 BioA 처리가 NAD+ 항상성 및 SIRT1 활성을 약간 향상시키는 것을 관찰했다. 또한, BioA는 MDI 처리된 세포와 비교하여 다른 미토콘드리아-생물 발생 관련 유전자(즉, Cox8b, Cidea 및 Dio2) 및 미토퓨전-분열(mitofusion-fission) 관련 유전자인 Opa1 및 Fis1을 약간 상향 조절했다(도 3A). BioA가 미토콘드리아 생물 발생에 미치는 영향을 확인하기 위해, 우리는 DAPI가 있는 mtDNA, MitoTracker red가 있는 미토콘드리아, 면역 블 롯팅에 의한 결합해제 단백질 1(UCP1) 단백질과 같은 미토콘드리아 내용물의 면역 형광 염색을 수행했다. 도 3B에 나타난 바와 같이, BioA 처리는 미토콘드리아 함량 및 미토콘드리아 UCP1의 발현을 증가시켰다. mtDNA 유전자(Cox1)의 발현을 정량한 결과, BioA 처리는 MDI 처리 및 및 Rosi 처리된 세포에 비해 mtDNA 카피 수를 증가시킨 것으로 확인되었다(도 3C). 다음으로, 우리는 BioA가 미토콘드리아 호흡 능력과 건강에 미치는 영향을 조사했다. BioA가 미토콘드리아 호흡에 미치는 영향을 이해하기 위해, 먼저 우리는 주요 전자 수송 사슬에 내장된 mtDNA 인코딩 OXPHOS 단백질(복합체 I 내지 V: CI~CV)을 정량했다. 도 3D에 제시된 바와 같이, BioA 처리는 OXPHOS 복합체 I 내지 V의 높은 발현에 의해 판단된 바와 같이 OXPHOS 및 ATP 생성을 향상시켰다. 그럼에도 불구하고, ATP 합성효소(CV)의 발현 변화는 아마도 OXPHOS 단백질의 소수성 특성으로 인해 명확하게 보이지 않았다. OXPHOS 활성을 확인하기 위해, 우리는 OXPHOS 단백질의 발현과 관련된 지방산 산화에 의한 산소 소비율을 분석했다. 도 3E에 예시된 바와 같이, BioA 처리는 MDI- 및 Etomoxir(CPT1α 억제제; 음성 대조군)-처리된 세포에 비해 산소 소비를 증가시켰다. 이와 대조로, 산소 소비율은 알려진 미토콘드리아 OXPHOS 언커플러(uncoupler) FCCP로 처리된 세포 그룹보다 BioA로 처리된 세포에서 더 낮았다. 다음에, 우리는 JC-1 응집체의 형성을 측정하는 JC-1 염색을 통해 미토콘드리아 막 전위를 평가했다(도 3F). JC-1 응집체의 높은 축적은 BioA로 처리된 C3H10T1/2 세포에서 정상적인 수의 건강하고 기능적인 미토콘드리아를 확인시켜 주었다. 도 3F에 표시된 바와 같이, BioA 처리는 MDI로 처리된 세포(양성 대조군)와 비교하여 미토콘드리아 건강에 악영향을 미치지 않았다. 그러나, FCCP 처리(음성 대조군)는 미토콘드리아 막 전위를 감소시켰고, FCCP와 BioA 동시처리는 FCCP 처리의 억제 효과를 역전시키지 않았다. 이러한 데이터는 BioA 보충이 미토콘드리아 생물 발생을 촉진하여 UCP1의 높은 발현을 초래함을 암시한다.To assess the effect of BioA on mitochondrial properties, we examined the expression of mitochondria-biogenesis-related genes. BioA treatment significantly increased the levels of Sirt1 mRNA (up to 9.2-fold) and protein compared to MDI- and Rosi-treated cells (4.5-fold, Figure 3A and 3D). Additionally, we observed that BioA treatment slightly improved NAD + homeostasis and SIRT1 activity. Additionally, BioA slightly upregulated other mitochondria-biogenesis-related genes (i.e., Cox8b, Cidea, and Dio2) and mitofusion-fission-related genes Opa1 and Fis1 compared to MDI-treated cells (Figure 3A). To determine the effect of BioA on mitochondrial biogenesis, we performed immunofluorescence staining of mitochondrial contents: mtDNA with DAPI, mitochondria with MitoTracker red, and uncoupling protein 1 (UCP1) protein by immunoblotting. . As shown in Figure 3B, BioA treatment increased mitochondrial content and expression of mitochondrial UCP1. As a result of quantifying the expression of the mtDNA gene (Cox1), it was confirmed that BioA treatment increased mtDNA copy number compared to MDI-treated and Rosi-treated cells (Figure 3C). Next, we investigated the effects of BioA on mitochondrial respiratory capacity and health. To understand the effect of BioA on mitochondrial respiration, we first quantified the mtDNA-encoded OXPHOS proteins (complexes I to V: CI to CV), which are embedded in the major electron transport chain. As shown in Figure 3D, BioA treatment enhanced OXPHOS and ATP production as judged by high expression of OXPHOS complexes I to V. Nevertheless, changes in the expression of ATP synthase (CV) were not clearly visible, probably due to the hydrophobic nature of the OXPHOS protein. To determine OXPHOS activity, we analyzed the oxygen consumption rate by fatty acid oxidation associated with the expression of OXPHOS proteins. As illustrated in Figure 3E , BioA treatment increased oxygen consumption compared to MDI- and Etomoxir (CPT1α inhibitor; negative control)-treated cells. In contrast, oxygen consumption rates were lower in cells treated with BioA than in the cell group treated with the known mitochondrial OXPHOS uncoupler FCCP. Next, we assessed mitochondrial membrane potential through JC-1 staining, which measures the formation of JC-1 aggregates (Figure 3F). High accumulation of JC-1 aggregates confirmed normal numbers of healthy and functional mitochondria in C3H10T1/2 cells treated with BioA. As shown in Figure 3F, BioA treatment did not adversely affect mitochondrial health compared to cells treated with MDI (positive control). However, FCCP treatment (negative control) decreased mitochondrial membrane potential, and co-treatment with FCCP and BioA did not reverse the inhibitory effect of FCCP treatment. These data suggest that BioA supplementation promotes mitochondrial biogenesis, resulting in high expression of UCP1.

2.4. BioA는 C3H10T1/2 MSC에서 갈색 지방 표현형을 유도2.4. BioA induces a brown fat phenotype in C3H10T1/2 MSCs

BioA가 열 발생에 미치는 영향을 확인하기 위해, 먼저 우리는 단백질 발현을 포함한 일반적인 열 발생 유전자의 발현을 조사했다. BioA 처리는 MDI로 처리된 세포에 비해 Ucp1, Pgc1α, Prdm16 및 Pparγ 유전자(각각 3.7, 2.2, 1.5 및 5.8 배)의 mRNA 발현과 이들의 단백질 발현을 유의하게 크게 증가시켰다(도 4A 및 4B). BioA 처리는 MDI로 처리된 세포와 비교하여 Pparγ 발현을 유의하게 증가시켰으며, 또한 Pparγ 발현이 BioA 및 Rosi(PPARγ 작용제)로 처리된 세포 모두에서 유사하다는 것도 주목할 만하다. 예전에, BioA가 PPARγ 활성화제로서 작용한다고 것이 보고되었다(Wang 등, 2014). 현재 및 이전 연구 결과를 바탕으로, 우리는 BioA가 Pparγ 의존적 방식으로 갈색 지방 표현형을 촉진했다고 추측했다. 다음에, 우리는 일반적인 지방 분화 유전자 및 이의 단백질 발현을 평가했다. 도 4C 및 4D에서 볼 수 있듯이, BioA는 aP2 및 Cebpβ의 발현을 향상시켰다. 다음으로, 우리는 베이지 색 및 갈색 특이적인 유전자의 발현을 측정했다. BioA 처리는 MDI 처리된 세포에 비해 베이지 색인 CD137(1.5 배) 및 Fgf21(2.2 배) 및 갈색인 Cox2(1.2 배), Elovl3(5.0 배) 및 Zic1(1.8 배) 마커의 발현을 증가시켰지만, 다른 베이지 색 특이적 유전자인 Tbx1 및 Tmem26은 유의하게 영향을 받지 않았다(도 4E). 예상대로, BioA는 leptin, Asc1, Serpina3K, Psat1 및 Tcf21과 같은 백색 지방 특이적 유전자의 발현을 감소시켰다(도 4F). 또한, BioA는 근원성(myogenic) 및 연골원성(chondrogenic) 유전자의 발현을 감소시켰다. 이러한 확인사항은 BioA가 갈색 지방 표현형을 유도할 수 있음을 시사했다.To determine the effect of BioA on thermogenesis, we first examined the expression of common thermogenic genes, including protein expression. BioA treatment significantly increased the mRNA expression of Ucp1, Pgc1α, Prdm16, and Pparγ genes (3.7-, 2.2-, 1.5-, and 5.8-fold, respectively) and their protein expression compared to cells treated with MDI ( Figures 4A and 4B ). BioA treatment significantly increased Pparγ expression compared to cells treated with MDI, and it is also notable that Pparγ expression was similar in both cells treated with BioA and Rosi (a PPARγ agonist). Previously, it was reported that BioA acts as a PPARγ activator (Wang et al., 2014). Based on the current and previous findings, we speculated that BioA promoted the brown fat phenotype in a Pparγ-dependent manner. Next, we assessed common adipogenic differentiation genes and their protein expression. As shown in Figures 4C and 4D, BioA enhanced the expression of aP2 and Cebpβ. Next, we measured the expression of beige- and brown-specific genes. BioA treatment increased the expression of markers CD137 (1.5-fold) and Fgf21 (2.2-fold) in beige and Cox2 (1.2-fold), Elovl3 (5.0-fold) and Zic1 (1.8-fold) in brown compared to MDI-treated cells, but not others. The beige-specific genes Tbx1 and Tmem26 were not significantly affected (Figure 4E). As expected, BioA reduced the expression of white fat-specific genes such as leptin, Asc1, Serpina3K, Psat1, and Tcf21 (Figure 4F). Additionally, BioA reduced the expression of myogenic and chondrogenic genes. These findings suggested that BioA could induce a brown fat phenotype.

2.5. BioA는 C3H10T1/2 MSC에서 갈색 지방 표현형 향상 동안 AMPK 신호 전달을 활성화2.5. BioA activates AMPK signaling during brown fat phenotype enhancement in C3H10T1/2 MSCs

BioA가 AMPK 신호전달를 통해 갈색 지방 표현형을 촉진하는지 여부를 테스트하기 위해, 총 AMPK 단백질과 p-AMPK의 양을 0, 10, 30 및 60 분의 다른 시점에서 측정했다. 도 5A에 제시된 바와 같이, p-AMPK의 양은 MDI-처리된 세포에서 10 분에서 60 분으로 시간에 따라 감소한 반면, BioA가 보충된 MDI 처리는 p-AMPK 단백질의 하향 조절을 반전시켰다. 따라서, 우리는 BioA가 DRS의 억제 효과를 약화시킬 수 있는지 확인하기 위해 알려진 AMPK 억제제인 DRS(10 μM)로 화학적 억제 실험을 수행하기 위해 BioA 처리의 60 분 시점을 선택했다. 도 5B에 예시된 바와 같이, p-AMPK의 양은 DRS 처리된 세포에서 훨씬 더 낮았다. 대조적으로, BioA 처리는 p-AMPK를 유의하게 상향 조절하고 p-AMPK의 DRS-유도된 하향 조절을 약화시켰다. 또한, 우리는 AMPK 활성화제, AICAR 및 BioA와 함께 배양한 후 AMPK의 인산화 유도 및 하류측 단백질의 발현을 관찰했다. AMPK 신호에 미치는 BioA의 활성화 효과를 확인하고 화학적 억제 실험으로부터 위양성 결과를 제거하기 위해, 우리는 siAmpkα 매개 유전자 녹다운을 수행하고 단백질 수준을 포함한 Ampkα 및 이의 하류측 유전자의 발현을 평가했다. 도 5C에 제시된 바와 같이, siAmpkα 형질 감염은 Ampkα(Prkaa1) 유전자의 mRNA 발현을 약 90 % 감소시켰지만, siAmpkα 형질 감염된 세포를 BioA와 함께 배양했을 때, 이러한 유전자의 발현이 2 배 이상(약 2.8 배; siAmpkα-형질 감염된 세포의 수준) 회복되었습니다. 그럼에도 불구하고, 분화 칵테일(MDI)에서 BioA 단독 처리가 Ampkα의 발현을 최대 22.7 배 향상시킨 것은 주목할만하다. 다음으로, 우리는 처리 그룹인 "MDI", "BioA 및 MDI", "siCont 및 MDI" 및 "siAmpkα 및/또는 BioA 및 MDI”에서 Ampkα의 하류측 열 발생 유전자(Ucp1, Pgc1α, Prdm16, Pparγ 및 Sirt1)의 발현을 확인했다. 도 5C 및 도 5D에 표시된 바와 같이, siAmpkα 형질 감염 그룹에서 Ucp1, Pgc1α, Prdm16 및 Pparγ의 mRNA 및 단백질 발현 수준은 훨씬 더 낮았다. 또한, 미토콘드리아 생성 관련 유전자인 Sirt1의 발현은 siAmpkα-형질 감염된 세포에서 현저히 더 낮았다. 대조적으로, BioA로 처리된 siAmpkα-transfected 세포 그룹에서는, 열 발생 마커의 발현이 mRNA 측면에서 약간 회복되었지만 단백질 양의 측면에서 유의하게 회복되었다. 참고로, Pparγ mRNA 발현은 BioA 단독으로 처리된 세포보다 BioA로 처리된 siAmpkα-형질감염된 세포에서 훨씬 더 높았다. 또한, MDI 처리된 세포와 siCont 처리된 세포간에 열 발생 마커의 발현 수준이 유사하여, siAmpkα 녹다운을 사용한 실험이 유효한 것으로 확인되었다. 이와 대조로, BioA 처리는 MDI 처리된 세포에 비해 열 발생 마커의 발현을 증가시켰다. 이러한 데이터는 BioA가 AMPK 신호 전달 경로를 통해 열 발생을 유도하고, AMPK 활성이 DRS 또는 siAmpkα 기반 녹다운에 의해 억제될 때 AMPK 활성을 촉진할 수 있다는 증거를 제공했다.To test whether BioA promotes the brown fat phenotype through AMPK signaling, the amounts of total AMPK protein and p-AMPK were measured at different time points: 0, 10, 30, and 60 min. As shown in Figure 5A, the amount of p-AMPK decreased over time from 10 to 60 min in MDI-treated cells, whereas MDI treatment supplemented with BioA reversed the downregulation of p-AMPK protein. Therefore, we chose the 60 min time point of BioA treatment to perform chemical inhibition experiments with DRS (10 μM), a known AMPK inhibitor, to determine whether BioA could attenuate the inhibitory effect of DRS. As illustrated in Figure 5B, the amount of p-AMPK was much lower in DRS treated cells. In contrast, BioA treatment significantly upregulated p-AMPK and attenuated DRS-induced downregulation of p-AMPK. Additionally, we observed induction of phosphorylation of AMPK and expression of downstream proteins after incubation with AMPK activators, AICAR and BioA. To confirm the activating effect of BioA on AMPK signaling and eliminate false positive results from chemical inhibition experiments, we performed siAmpkα-mediated gene knockdown and assessed the expression of Ampkα and its downstream genes, including protein levels. As shown in Figure 5C, siAmpkα transfection reduced the mRNA expression of the Ampkα (Prkaa1) gene by approximately 90%, but when siAmpkα transfected cells were incubated with BioA, the expression of these genes increased more than two-fold (approximately 2.8-fold). ; levels in siAmpkα-transfected cells) were restored. Nevertheless, it is noteworthy that treatment with BioA alone in differentiation cocktail (MDI) enhanced the expression of Ampkα by up to 22.7-fold. Next, we identified thermogenic genes downstream of Ampkα (Ucp1, Pgc1α, Prdm16, Pparγ and We confirmed the expression of Sirt1). As shown in Figures 5C and 5D, the mRNA and protein expression levels of Ucp1, Pgc1α, Prdm16, and Pparγ in the siAmpkα transfection group were much lower. Additionally, the expression of Sirt1, a mitochondrial biogenesis-related gene, was significantly lower. Expression was significantly lower in siAmpkα-transfected cells.In contrast, in the group of siAmpkα-transfected cells treated with BioA, expression of thermogenic markers was restored slightly in terms of mRNA but significantly in terms of protein amount. , Pparγ mRNA expression was significantly higher in siAmpkα-transfected cells treated with BioA than in cells treated with BioA alone. Additionally, expression levels of thermogenic markers were similar between MDI-treated and siCont-treated cells, suggesting that siAmpkα knockdown The experiment using was confirmed to be valid. In contrast, BioA treatment increased the expression of thermogenic markers compared to MDI-treated cells. These data suggest that BioA induces thermogenesis through the AMPK signaling pathway and AMPK activation. This provided evidence that AMPK activity can be promoted when inhibited by DRS or siAmpkα-based knockdown.

3. 고 찰3. Considerations

플라보노이드는 지방 조직의 열발생 조절에의 그의 관여와 관련하여 널리 연구된 다양한 식물 화학물질의 한 부류이다(Rasbach & Schnellmann, 2008; Zhang 등, 2019). 대두 이소플라본인 BioA는 체중 감소, 항 당뇨 효과, 지질 축적 억제, 골 형성 활성, 및 지방 분화를 비롯한 다양한 약리학 적 특성을 가지고 있어 비만 및 비만 관련 대사 질환을 완화하는 것으로 알려져 있다(Harini, Ezhumalai, & Pugalendi, 2012; Oza & Kulkarni, 2018; Raheja, Girdhar, Lather, & Pandita, 2018). 임상 연구에 따르면, BioA 투여는 인간에서 LDL 콜레스테롤 수준을 낮추는 것으로 확인되었다(Nestel 등, 2004). 지방 조직에서, BioA는 1차 지방 유래 줄기 세포에서 항지방생성 작용(Su 등, 2013), 3T3-L1 전지방 세포에서 지방 생성 자극(Shen 등, 2006), 미토콘드리아 생성의 촉진(Rasbach & Schnellmann, 2008)과 같은 다양한 치료 효과를 발휘한다. 지방 조직에 미치는 BioA 영향에 대한 광범위한 유용한 정보가 있지만, MSC로부터 갈색 지방 유사 지방 세포의 형성에 대한 BioA의 영향은 아직 연구되지 않았다. 따라서, 여기서 우리는 BioA가 C3H10T1/2 MSC에서 갈색 지방 표현형 촉진의 주요 기여 인자인 미토콘드리아 생물 발생 및 지방 분해와 함께 갈색 지방 표현형 발현을 유도한다는 것을 입증했다. Flavonoids are a class of diverse phytochemicals that have been widely studied for their involvement in regulating thermogenesis in adipose tissue (Rasbach & Schnellmann, 2008; Zhang et al., 2019). BioA, a soy isoflavone, is known to have various pharmacological properties, including weight loss, anti-diabetic effects, inhibition of lipid accumulation, osteogenic activity, and adipogenic differentiation, thereby alleviating obesity and obesity-related metabolic diseases (Harini, Ezhumalai, & Pugalendi, 2012; Oza & Kulkarni, 2018; Raheja, Girdhar, Lather, & Pandita, 2018). According to a clinical study, BioA administration was found to lower LDL cholesterol levels in humans (Nestel et al., 2004). In adipose tissue, BioA has anti-adipogenic activity in primary adipose-derived stem cells (Su et al., 2013), stimulation of adipogenesis in 3T3-L1 preadipocytes (Shen et al., 2006), and promotion of mitochondrial biogenesis (Rasbach & Schnellmann, 2008), and has various therapeutic effects. Although there is extensive available information on the impact of BioA on adipose tissue, the impact of BioA on the formation of brown fat-like adipocytes from MSCs has not yet been studied. Accordingly, here we demonstrated that BioA induces brown fat phenotype expression, with mitochondrial biogenesis and lipolysis being the major contributing factors in promoting brown fat phenotype in C3H10T1/2 MSCs.

C3H10T1/2 MSC는 지방 분화의 초기 단계에서 Rosi, T3 및 BMP7을 함유하는 지방 생성 유도 배지와 함께 배양하면 갈색-유사 지방 세포로 분화하는 경향이 있다(Imran 등, 2017; Wang 등, 2018; Yoon, Imran, & Kim, 2018). 본 연구에서, 우리는 Ucp1, Pgc1α, Prdm16 및 Pparγ의 상향 조절에 의해 입증된 바와 같이, BioA를 사용한 단독 처리가 C3H10T1/2 MSC에서 갈색 유사 지방 세포 특성을 유도할 수 있음을 관찰했다. 예전에, 형광 PPARγ 리간드-결합 분석 및 키메라 Gal-PPAR 리포터 유전자 생물학적 분석(bioassay)은 피오글리타존(pioglitazone) 및 BioA 모두가 각각 3.0(PPARγ 활성이 약 40 배 증가) 및 3.7 μmol/L의 최대 유효 농도(EC50)을 갖는 강력한 PPARγ 활성화제임을 보여주었다(Shen 등, 2006). 같은 연구에서, 그들은 BioA가 분화된 3 개의 T3-L1 지방 세포에 대한 PPAR-유도 리포터 유전자(CYP4A6-PPRE-Luciferase) 분석 결과로 판단된 바와 같이 PPARγ 활성을 최대 7.6 배까지 향상시킨다는 것을 입증했습니다(Shen 등, 2006). 우리의 연구에서, BioA 단독 처리는 PPARγ 발현을 최대 4 배까지 향상시켰지만, siAmpkα-형질감염 (Ampkα 녹다운) 세포에 적용했을 때 그 발현이 최대 7.6 배 증가했음을 관찰했다. 널리 연구된 PPARγ 작용제 Rosi는 인간 지방 유래 MSC에서 갈변 과정을 유도하는 것으로 알려져 있으며(Loft 등, 2015), 본 연구에서 우리는 Rosi와 유사하게 BioA가 PPARγ 활성을 증가시킨다는 것을 확인했다. 따라서, 우리는 BioA가 PPARγ 의존적 방식으로 갈색 지방 표현형을 촉진한다고 추측했다. 게다가 BioA는 PRDM16을 약간 상향 조절했다. PPARγ는 PRDM16의 발현을 안정화시킴으로써 WAT의 갈변을 유도할 수 있는 것으로 보고되었다(Ohno, Shinoda, Spiegelman, & Kajimura, 2012). 따라서, BioA가 PPARγ 및/또는 PRDM16 활성화에 의해 갈색 지방 표현형을 촉진한다고 가정할 수 있다. PPARγ 보조활성화제인 PGC1α는 미토콘드리아 생물발생, β-산화 및 지질 대사와 같은 여러 열발생 과정에서 광범위한 활성으로 인해 광범위하게 연구되어 왔다(Cheng, Ku, & Lin, 2018). 우리의 확인 결과 및 이전의 연구 결과는 BioA가 갈색 지방 표현형의 발현 동안 PGC1α 발현을 증가 시킨다는 것을 나타낸다(Rasbach & Schnellmann, 2008). 또한, BioA 보충은 주요한 베이지(Cd137 및 Fgf21) 및 갈색(Elovl3 및 Zic1) 특이적 마커 및 초기 지방 분화 마커 CEBPβ를 상향 조절했다. 이는 BioA는 C3H10T1/2 MSC로 하여금 분화 초기 단계에서 갈색 및 부분적인 베이지색 특이적 혈통을 만들 수 있게 한다는 것을 의미한다.C3H10T1/2 MSCs tend to differentiate into brown-like adipocytes when cultured with adipogenic induction medium containing Rosi, T3, and BMP7 in the early stages of adipogenic differentiation (Imran et al., 2017; Wang et al., 2018; Yoon , Imran, & Kim, 2018). In this study, we observed that treatment with BioA alone could induce brown-like adipocyte characteristics in C3H10T1/2 MSCs, as evidenced by upregulation of Ucp1, Pgc1α, Prdm16 and Pparγ. Previously, a fluorescent PPARγ ligand-binding assay and a chimeric Gal-PPAR reporter gene bioassay showed that both pioglitazone and BioA had maximal effective concentrations of 3.0 (approximately 40-fold increase in PPARγ activity) and 3.7 μmol/L, respectively. It has been shown to be a potent PPARγ activator with (EC 50 ) (Shen et al., 2006). In the same study, they demonstrated that BioA enhances PPARγ activity by up to 7.6-fold, as judged by a PPAR-induced reporter gene (CYP4A6-PPRE-Luciferase) assay on three differentiated T3-L1 adipocytes ( Shen et al., 2006). In our study, we observed that treatment with BioA alone enhanced PPARγ expression by up to 4-fold, but when applied to siAmpkα-transfected (Ampkα knockdown) cells, its expression increased by up to 7.6-fold. The widely studied PPARγ agonist Rosi is known to induce the browning process in human adipose-derived MSCs (Loft et al., 2015), and in this study, we confirmed that, similar to Rosi, BioA increases PPARγ activity. Therefore, we speculated that BioA promotes the brown fat phenotype in a PPARγ-dependent manner. Moreover, BioA slightly upregulated PRDM16. It has been reported that PPARγ can induce browning of WAT by stabilizing the expression of PRDM16 (Ohno, Shinoda, Spiegelman, & Kajimura, 2012). Therefore, it can be assumed that BioA promotes the brown fat phenotype by activating PPARγ and/or PRDM16. PGC1α, a PPARγ coactivator, has been extensively studied due to its broad activity in several thermogenic processes, such as mitochondrial biogenesis, β-oxidation, and lipid metabolism (Cheng, Ku, & Lin, 2018). Our confirmation results and previous findings indicate that BioA increases PGC1α expression during the development of the brown fat phenotype (Rasbach & Schnellmann, 2008). Additionally, BioA supplementation upregulated key beige (Cd137 and Fgf21) and brown (Elovl3 and Zic1) specific markers and the early adipogenic differentiation marker CEBPβ. This means that BioA enables C3H10T1/2 MSCs to generate brown and partially beige-specific lineages in the early stages of differentiation.

갈색 지방 유사 표현형의 발현은 미토콘드리아 생물 발생과 밀접한 관련이 있다. 지난 10 년 동안, 연구 활동은 유전자 조작 또는 약리학적 개입을 통해 미토콘드리아 생물 발생을 개선하는 방법을 발견하는 데 초점을 두었다(Mueller, 2016; Villena 등, 2002). 이소플라본은 미토콘드리아 생물 발생을 촉진하여 열 발생을 개선하는 것으로 보고되었다. BioA 및 이화작용의 산물인 게니스테인(genistein)은 PGC1α 및 SIRT1의 활성화를 통해 미토콘드리아 생물발생을 유도하는 것으로 입증되었다(Rasbach & Schnellmann, 2008). 미토콘드리아 생물 발생의 PGC1α 및 SIRT1 의존적 유도는 AMPK 신호전달에 의해 조절되어, 높은 산소 소비 및 세포 ATP 생산을 초래한다(Artsi 등, 2019; Rasbach & Schnellmann, 2008). 또한, 우리는 BioA 처리가 SIRT1 발현을 유의하게 향상시키고, 다른 미토콘드리아-생물 발성 마커인 COX8b, CIDEA 및 DIO2의 발현이 약간 유도되었다는 것을 관찰했다. 또한, BioA는 ATP 생산 동안에 OXPHOS와 결부되는 것으로 알려진 산소 소비를 상향 조절했다. BioA 투여는 미토콘드리아 막 전위에 영향을 미치지 않고 mtDNA 양 및 FIS1 발현을 증가시켰다는 점은 주목할만하다. 이와 대조로, BioA는 미토콘드리아 언커플러 FCCP의 억제 효과를 반전시킬 수 없지만 단독으로 적용할 경우 심각한 부작용이 없다는 것을 주목할만하다. 이러한 확인사항으로부터, BioA가 기능적인 미토콘드리아를 분해하지 않고 열 발생을 촉진한다고 믿어진다. 따라서, BioA는 C3H10T1/2 MSC에서 기능적 미토콘드리아를 방해하지 않고 활성화 미토콘드리아 분열을 통해 mtDNA 양을 증가시킬 수 있다.The expression of brown fat-like phenotype is closely related to mitochondrial biogenesis. Over the past decade, research activities have focused on discovering ways to improve mitochondrial biogenesis through genetic manipulation or pharmacological intervention (Mueller, 2016; Villena et al., 2002). Isoflavones have been reported to improve thermogenesis by promoting mitochondrial biogenesis. BioA and its catabolic product, genistein, have been demonstrated to induce mitochondrial biogenesis through activation of PGC1α and SIRT1 (Rasbach & Schnellmann, 2008). PGC1α and SIRT1-dependent induction of mitochondrial biogenesis is regulated by AMPK signaling, resulting in high oxygen consumption and cellular ATP production (Artsi et al., 2019; Rasbach & Schnellmann, 2008). Additionally, we observed that BioA treatment significantly enhanced SIRT1 expression and slightly induced the expression of other mitochondrial-biogenesis markers COX8b, CIDEA and DIO2. Additionally, BioA upregulated oxygen consumption, which is known to be coupled to OXPHOS during ATP production. It is noteworthy that BioA administration increased mtDNA amount and FIS1 expression without affecting mitochondrial membrane potential. In contrast, BioA cannot reverse the inhibitory effect of the mitochondrial uncoupler FCCP, but it is noteworthy that it has no serious side effects when applied alone. From these findings, it is believed that BioA promotes thermogenesis without degrading functional mitochondria. Therefore, BioA can increase the amount of mtDNA through activated mitochondrial fission without disrupting functional mitochondria in C3H10T1/2 MSCs.

미토콘드리아 생물 발생의 개선을 통한 열 발생 유도에는 지방 분해에 의해 생성되는 연료 공급원으로 FFA가 필요하다(Chouchani & Kajimura, 2019). 지방 분해는 일반적으로 갈변 과정 동안에 WAT에서 일어난다(Bolsoni-Lopes & Alonso-Vale, 2015). 우리의 이전 연구에서, 우리는 두 가지 일반적인 지방 분해 마커인 HSL 및 ATGL이 지방 분해 과정에서 고도로 상향 조절된다는 것을 입증했다(Yoon 등, 2018). AMPK 및 PKA 신호전달 캐스케이드가 모두 지방 분해를 유도하기 위해 S406에서 ATGL의 인산화에 관여하는지 여부에 대한 논쟁이 있었다. 또한, AMPK 인산화는 S565에서 HSL 인산화를 초래하여 S563 및 S660에서 PKA 매개 인산화를 억제하는 것으로 알려져 있다(Ahmadian 등, 2011). 이와 대조로, 우리는 BioA가 유전자인 Hsl, Atgl, Mgll 및 Abhd5의 발현을 증가시킨다는 것을 확인했다. 단백질 발현의 경우, BioA 처리는 S660 및 S563에서 인산화된 ATGL 및 HSL을 상향 조절했다. 그럼에도 불구하고, AMPK 매개 지방 분해에서는, S660 및 S563에서의 HSL 인산화가 일반적으로 억제된다(Kim 등, 2016; Larsson, Jones, Goransson, Degerman, & Holm, 2016). BioA 처리에 의한 지질 방울 크기의 변경과 같은 형태학적 변화는 C3H10T1/2 MSC에서 지방 분해를 확보한다. BioA가 지방 분해를 유도한다는 것은 분명하지만 그 작용 메커니즘을 확인하기 위해서는 추가 연구가 필요하다. 지방분해 외에도, BioA는 미토콘드리아 β-산화 유전자인 Lcad를 상향조절하면서 지방생성 유전자 및 백색 지방세포 특이적 유전자를 하향조절했다. 또한, BioA 처리는 근모세포, 조골 세포 및 연골 세포와 같은 다른 세포 유형으로의 분화를 종료하고 C3H10T1/2 MSC에서 갈색 지방 유사 지방 세포 형성만을 유도한다는 점도 언급할 가치가 있다. Induction of thermogenesis through improvement of mitochondrial biogenesis requires FFAs as a fuel source produced by lipolysis (Chouchani & Kajimura, 2019). Lipolysis generally occurs in WAT during the browning process (Bolsoni-Lopes & Alonso-Vale, 2015). In our previous study, we demonstrated that HSL and ATGL, two common lipolysis markers, are highly upregulated during lipolysis (Yoon et al., 2018). There has been debate as to whether both AMPK and PKA signaling cascades are involved in the phosphorylation of ATGL at S406 to induce lipolysis. Additionally, AMPK phosphorylation is known to result in HSL phosphorylation at S565, thereby inhibiting PKA-mediated phosphorylation at S563 and S660 (Ahmadian et al., 2011). In contrast, we found that BioA increased the expression of the genes Hsl, Atgl, Mgll, and Abhd5. For protein expression, BioA treatment upregulated ATGL and HSL phosphorylated at S660 and S563. Nevertheless, in AMPK-mediated lipolysis, HSL phosphorylation at S660 and S563 is generally suppressed (Kim et al., 2016; Larsson, Jones, Goransson, Degerman, & Holm, 2016). Morphological changes, such as alterations in lipid droplet size, by BioA treatment ensure lipolysis in C3H10T1/2 MSCs. Although it is clear that BioA induces lipolysis, further studies are needed to confirm its mechanism of action. In addition to lipolysis, BioA upregulated the mitochondrial β-oxidation gene Lcad while downregulating adipogenic genes and white adipocyte-specific genes. It is also worth mentioning that BioA treatment terminates differentiation into other cell types such as myoblasts, osteoblasts and chondrocytes and only induces brown fat-like adipocyte formation in C3H10T1/2 MSCs.

여러 연구에 따르면, AMPK 신호전달 경로는 WAT의 갈변, BAT 활성화, MSC의 갈색 지방 유사 분화, 미토콘드리아 생물 발생, 호흡, 지방 분해 및 지질의 β-산화 동안 핵심적인 열발생 과정을 조절한다는 것이 밝혀졌다(Ahmadian 등, 2011; Imran 등, 2017; Rahman & Kim, 2020a; Zhang 등, 2019). 우리의 연구에서, 우리는 BioA가 미토콘드리아 생물 발생 및 호흡, 지방 분해, 지질 β-산화 및 AMPK 신호의 활성화를 유도함으로써 갈색 지방 유사 표현형을 상향 조절한다는 것을 확인했다. 우리의 유전자 녹다운 및 경쟁적 화학 억제 실험은 열발생 관련 유전자 및 미토콘드리아-생물 발생 관련 유전자의 상향 조절이 BioA 처리된 세포에서 AMPK 신호전달에 의해 매개됨을 보여주었다. AMPK는 중간엽 줄기 세포로부터 갈색 또는 베이지색 지방 세포의 분화 및 기능에 중추적인 역할을 하는 것으로 보고되었다(Abdul-Rahman 등, 2016; Imran 등, 2017; Imran, Yoon, & Kim, 2018; Jeong 등, 2017; Nagy 등, 2019). AMPK 신호의 자극은, PPARγ의 SIRT1 매개 탈아세틸화를 일으켜 갈색 지방-유사 특징을 생성하고 결과적으로 미토콘드리아 생물 발생을 개선한다. AMPK 및 SIRT1의 활성은 NAD+와 같은 소분자 효소 보조 인자에 의해 상호 연결되고 조절된다(Canto 등, 2009). NAD+ 또는 AMPK 발현이 중단되면 갈색 지방 유사 표현형이 손실되는 것으로 알려져 있다(Abdul-Rahman 등, 2016; Canto 등, 2009; Nagy 등, 2019; Qiang 등, 2012). 따라서 이전 연구를 고려하면, 우리는 BioA가 뮤린 C3H10T1/2 MSC에서 미토콘드리아 생물발생 및 AMPK-SIRT1-PPARγ 신호 전달의 활성화를 통해 갈색 지방 표현형을 강화한다고 제안했다.Several studies have shown that the AMPK signaling pathway regulates key thermogenic processes during browning of WAT, BAT activation, brown fat-like differentiation of MSCs, mitochondrial biogenesis, respiration, lipolysis, and β-oxidation of lipids. (Ahmadian et al., 2011; Imran et al., 2017; Rahman & Kim, 2020a; Zhang et al., 2019). In our study, we confirmed that BioA upregulates brown fat-like phenotypes by inducing mitochondrial biogenesis and respiration, lipolysis, lipid β-oxidation, and activation of AMPK signaling. Our gene knockdown and competitive chemical inhibition experiments showed that upregulation of thermogenesis-related genes and mitochondria-biogenesis-related genes was mediated by AMPK signaling in BioA-treated cells. AMPK has been reported to play a pivotal role in the differentiation and function of brown or beige adipocytes from mesenchymal stem cells (Abdul-Rahman et al., 2016; Imran et al., 2017; Imran, Yoon, & Kim, 2018; Jeong et al. , 2017; Nagy et al., 2019). Stimulation of AMPK signaling causes SIRT1-mediated deacetylation of PPARγ, producing brown fat-like features and consequently improving mitochondrial biogenesis. The activities of AMPK and SIRT1 are interconnected and regulated by small molecule enzyme cofactors such as NAD + (Canto et al., 2009). It is known that disruption of NAD + or AMPK expression results in loss of brown fat-like phenotype ( Abdul-Rahman et al., 2016 ; Canto et al., 2009 ; Nagy et al., 2019 ; Qiang et al., 2012 ). Therefore, considering previous studies, we proposed that BioA enhances the brown fat phenotype through activation of mitochondrial biogenesis and AMPK-SIRT1-PPARγ signaling in murine C3H10T1/2 MSCs.

그러나, 또한 우리는 PKA, Smad1/5 및 p38 MAPK와 같은 몇몇의 다른 신호 전달 경로가 갈색 지방 유사 지방 세포의 형성에 기여할 수 있는지를 조사했다. 우리의 확인 결과는 BioA가 AMPK 신호전달을 통해서만 작용하고 다른 신호가 뮤린 C3H10T1/2 MSC에서 갈색 유사 지방 형성에 관여하지 않을 수 있음을 암시했다.However, we also investigated whether several other signaling pathways, such as PKA, Smad1/5 and p38 MAPK, may contribute to the formation of brown fat-like adipocytes. Our validation results suggested that BioA acts only through AMPK signaling and other signals may not be involved in brown-like adipogenesis in murine C3H10T1/2 MSCs.

4. 결 론4. Conclusion

본 연구는 BioA가 AMPK 신호전달의 활성화를 통해 C3H10T1/2 MSC에서 갈색 지방 표현형 상향조절을 유도한다는 포괄적인 증거를 제공한다. 또한, BioA 처리가 열 발생 과정을 조절하는, 미토콘드리아 생물 발생 및 지방 분해를 촉진한다는 것을 나타낸다. BioA는 세포의 기능적 미토콘드리아를 방해하지 않고 미토콘드리아 호흡을 촉진함으로써 에너지 소비를 개선한다. 이러한 확인 결과는 BioA가 새로운 항비만제일 수 있지만 임상 연구를 필요로 한다는 것을 시사한다.This study provides comprehensive evidence that BioA induces brown fat phenotype upregulation in C3H10T1/2 MSCs through activation of AMPK signaling. Additionally, it indicates that BioA treatment promotes mitochondrial biogenesis and lipolysis, which regulates the thermogenic process. BioA improves energy expenditure by promoting mitochondrial respiration without disrupting the cell's functional mitochondria. These confirmatory results suggest that BioA may be a new anti-obesity drug but requires clinical studies.

<110> SOONCHUNHYANG INDUSTRY-ACADEMY COOPERATION FOUNDATION <120> A PHARMACEUTICAL COMPOSITION FOR PREVENTION OR TREATMENT OF OBESITY COMPRISING BIOCHANIN A OR PHARMACEUTICALLY ACCEPTED SALTS THEREOF AS AN EFFECTIVE COMPONENT <130> YP200028 <160> 88 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Ucp1 forward primer <400> 1 ggcattcaga ggcaaatcag ct 22 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Ucp1 reverse primer <400> 2 caatgaacac tgccacacct c 21 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Prdm16 forward primer <400> 3 cagcacggtg aagccattc 19 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Prdm16 reverse primer <400> 4 gcgtgcatcc gcttgtg 17 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Sox9 reverse primer <400> 5 acagctttct gggtggatt 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Pgc1a reverse primer <400> 6 tgaggaccgc tagcaagttt 20 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Pparg forward primer <400> 7 tttgaaagaa gcggtgaacc ac 22 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Pparg reverse primer <400> 8 accattgggt cagctcttgt g 21 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> aP2 forward primer <400> 9 gtgatgcctt tgtgggaaac ctggaag 27 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> aP2 reverse primer <400> 10 tcataaactc ttgtggaagt cacgcc 26 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Psat1 forward primer <400> 11 taccgccttg tcaagaaacc 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Psat1 reverse primer <400> 12 agtggagcgc cagaatagaa 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Leptin forward primer <400> 13 cacacacgca gtcggtatcc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Leptin reverse primer <400> 14 agcccaggaa tgaagtccaa 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Asc1 forward primer <400> 15 gggtggcact caagaaagag 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Asc1 reverse primer <400> 16 agtgttccag gacacccttg 20 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Serpina3K forward primer <400> 17 ggctgaaggc aaagtcagtg t 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Serpina3K reverse primer <400> 18 tggaatctgt cctgctgtcc t 21 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Tcf21 forward primer <400> 19 cattcaccca gtcaacctga 20 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tcf21 reverse primer <400> 20 ttccttcagg tcattctctg g 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD137 forward primer <400> 21 cgtgcagaac tcctgtgata ac 22 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CD137 reverse primer <400> 22 gtccacctat gctggagaag g 21 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tbx1 forward primer <400> 23 ggcaggcaga cgaatgttc 19 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbx1 reverse primer <400> 24 ttgtcatcta cgggcacaaa g 21 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Zic1 forward primer <400> 25 ctgttgtggg agacacgatg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Zic1 reverse primer <400> 26 ctgttgtggg agacacgatg 20 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Cox2 forward primer <400> 27 gactgggcca tggagtgg 18 <210> 28 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Cox2 reverse primer <400> 28 cacctctcca ccaatgacc 19 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox1 forward primer <400> 29 tctactattc ggagcctgag 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox1 reverse primer <400> 30 ctactgatgc tcctgcatgg 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Adrb3 forward primer <400> 31 tgaaacagca gacagggaca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Adrb3 reverse primer <400> 32 ggcgtcctgt cttgacactc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Hsl forward primer <400> 33 acagtgcagg tgggaatctc 20 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Hsl reverse primer <400> 34 gcctagtgcc ttctggtct 19 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Atgl forward primer <400> 35 caacgccact cacatctacg g 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Atgl reverse primer <400> 36 tcaccaggtt gaaggaggga t 21 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Mg2 forward primer <400> 37 tgatttcacc tctggtcctt g 21 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Mg2 reverse primer <400> 38 gtcaacctcc gacttgttcc 20 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Abhd5 forward primer <400> 39 tggtgtccca catctacatc a 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Abhd5 reverse primer <400> 40 cagcgtccat attctgtttc ca 22 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dgat2 forward primer <400> 41 ccgcaaaggc tttgtgaa 18 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Dgat2 reverse primer <400> 42 ggaataagtg ggaaccagat cag 23 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Acc forward primer <400> 43 tgaccgtggg cacaaagtt 19 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Acc reverse primer <400> 44 aggaggaacc gcatttatcg a 21 <210> 45 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LCAD forward primer <400> 45 aaggatttat taagggcaag aagc 24 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> LCAD reverse primer <400> 46 ggaagcggag gcggagtc 18 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Mfn1 forward primer <400> 47 tctccaagcc caacatcttc a 21 <210> 48 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Mfn1 reverse primer <400> 48 actccggctc cgaagca 17 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Mfn2 forward primer <400> 49 acagcctcag ccgacagcat 20 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Mfn2 reverse primer <400> 50 tgccgaagga gcagacctt 19 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Opa1 forward primer <400> 51 cagctggcag aagatctcaa g 21 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Opa1 reverse primer <400> 52 tatgagcagg attttgacca c 21 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Drp1 forward primer <400> 53 ctgacgcttg tggatttacc 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Drp1 reverse primer <400> 54 cccttcccat caatacatcc 20 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Fis1 forward primer <400> 55 gcccctgcta ctggaccat 19 <210> 56 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Fis1 reverse primer <400> 56 ccctgaaagc ctcacactaa gg 22 <210> 57 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Sirt1 forward primer <400> 57 gcatagatac cgtctcttga tctgaa 26 <210> 58 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Sirt1 reverse primer <400> 58 tgtgaagtta ctgcaggagt gtaaa 25 <210> 59 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Dio2 forward primer <400> 59 cagtgtggtg cacgtctcca atc 23 <210> 60 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dio2 reverse primer <400> 60 tgaacccccg ttgaccacca g 21 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nrf1 forward primer <400> 61 caacagggaa gaaacggaaa 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nrf1 reverse primer <400> 62 gcaccacatt ctccaaaggt 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cebpb forward primer <400> 63 cagctgctcc accttcttct 20 <210> 64 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Cebpb reverse primer <400> 64 caagctgagc gagtaca 17 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Fgf21 forward primer <400> 65 agatcaggga ggatggaaca 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Fgf21 reverse primer <400> 66 tcaaagtgag gcgatccata 20 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> p0 forward primer <400> 67 gcactttcgc tttctggagg gtgt 24 <210> 68 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> p0 reverse primer <400> 68 tgacttggtt gctttggcgg gatt 24 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox7a forward primer <400> 69 cagcgtcatg gtcagtctgt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox7a reverse primer <400> 70 agaaaaccgt gtggcagaga 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox8b forward primer <400> 71 gaaccatgaa gccaacgact 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox8b reverse primer <400> 72 cgcaagttca cagtcgttcc 20 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tmen26 forward primer <400> 73 accctgtcat cccacagag 19 <210> 74 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Tmem26 reverse primer <400> 74 tgtttggtgg agtcctaagg tc 22 <210> 75 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Elov13 forward primer <400> 75 tccgcgttct catgtaggtc t 21 <210> 76 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Elov13 reverse primer <400> 76 ggacctgatg caaccctatg a 21 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Cidea forward primer <400> 77 tgctcttctg tatcgcccag t 21 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Cidea reverse primer <400> 78 gccgtgttaa ggaatctgct g 21 <210> 79 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbp forward primer <400> 79 gaagctgcgg tacaattcca g 21 <210> 80 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbp reverse primer <400> 80 ccccttgtac ccttcaccaa t 21 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MyoD forward primer <400> 81 cgccactccg ggacatag 18 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MyoD reverse primer <400> 82 gaagtcgtct gctgtctcaa agg 23 <210> 83 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> MyoG forward primer <400> 83 agcgcaggct caagaaagtg aatg 24 <210> 84 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> MyoG reverse primer <400> 84 ctgtaggcgc tcaatgtact ggat 24 <210> 85 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Sox9 forward primer <400> 85 cggaggaagt cggtgaaga 19 <210> 86 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Sox9 reverse primer <400> 86 gtcggttttg ggagtggtg 19 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Collal forward primer <400> 87 tggtgtccca catctacatc a 21 <210> 88 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Collal reverse primer <400> 88 cctcgggttt ccacgtctc 19 <110> SOONCHUNHYANG INDUSTRY-ACADEMY COOPERATION FOUNDATION <120> A PHARMACEUTICAL COMPOSITION FOR PREVENTION OR TREATMENT OF OBESITY COMPRISING BIOCHANIN A OR PHARMACEUTICALLY ACCEPTED SALTS THEREOF AS AN EFFECTIVE COMPONENT <130> YP200028 <160> 88 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Ucp1 forward primer <400> 1 ggcattcaga ggcaaatcag ct 22 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Ucp1 reverse primer <400> 2 caatgaacac tgccacacct c 21 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Prdm16 forward primer <400> 3 cagcacggtg aagccattc 19 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Prdm16 reverse primer <400> 4 gcgtgcatcc gcttgtg 17 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Sox9 reverse primer <400> 5 acagctttct gggtggatt 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Pgc1a reverse primer <400> 6 tgaggaccgc tagcaagttt 20 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Pparg forward primer <400> 7 tttgaaagaa gcggtgaacc ac 22 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Pparg reverse primer <400> 8 accattgggt cagctcttgt g 21 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> aP2 forward primer <400> 9 gtgatgcctt tgtgggaaac ctggaag 27 <210 > 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> aP2 reverse primer <400> 10 tcataaactc ttgtggaagt cacgcc 26 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence < 220> <223> Psat1 forward primer <400> 11 taccgccttg tcaagaaacc 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Psat1 reverse primer <400> 12 agtggagcgc cagaatagaa 20 <210 > 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Leptin forward primer <400> 13 cacacacgca gtcggtatcc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> Leptin reverse primer <400> 14 agcccaggaa tgaagtccaa 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Asc1 forward primer <400> 15 gggtggcact caagaaagag 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Asc1 reverse primer <400> 16 agtgttccag gacacccttg 20 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Serpina3K forward primer <400> 17 ggctgaaggc aaagtcagtg t 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Serpina3K reverse primer <400> 18 tggaatctgt cctgctgtcc t 21 <210 > 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Tcf21 forward primer <400> 19 cattcaccca gtcaacctga 20 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220 > <223> Tcf21 reverse primer <400> 20 ttccttcagg tcattctctg g 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD137 forward primer <400> 21 cgtgcagaac tcctgtgata ac 22 < 210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CD137 reverse primer <400> 22 gtccacctat gctggagaag g 21 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tbx1 forward primer <400> 23 ggcaggcaga cgaatgttc 19 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbx1 reverse primer <400> 24 ttgtcatcta cgggcacaaa g 21 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Zic1 forward primer <400> 25 ctgttgtggg agacacgatg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Zic1 reverse primer <400> 26 ctgttgtggg agacacgatg 20 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Cox2 forward primer <400> 27 gactgggcca tggagtgg 18 < 210> 28 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Cox2 reverse primer <400> 28 cacctctcca ccaatgacc 19 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence < 220> <223> Cox1 forward primer <400> 29 tctactattc ggagcctgag 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox1 reverse primer <400> 30 ctactgatgc tcctgcatgg 20 <210 > 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Adrb3 forward primer <400> 31 tgaaacagca gacagggaca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> Adrb3 reverse primer <400> 32 ggcgtcctgt cttgacactc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Hsl forward primer <400> 33 acagtgcagg tgggaatctc 20 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Hsl reverse primer <400> 34 gcctagtgcc ttctggtct 19 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Atgl forward primer <400> 35 caacgccact cacatctacg g 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Atgl reverse primer <400> 36 tcaccaggtt gaaggaggga t 21 <210 > 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Mg2 forward primer <400> 37 tgatttcacc tctggtcctt g 21 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence < 220> <223> Mg2 reverse primer <400> 38 gtcaacctcc gacttgttcc 20 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Abhd5 forward primer <400> 39 tggtgtccca catctacatc a 21 < 210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Abhd5 reverse primer <400> 40 cagcgtccat attctgtttc ca 22 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dgat2 forward primer <400> 41 ccgcaaaggc tttgtgaa 18 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Dgat2 reverse primer <400> 42 ggaataagtg ggaaccagat cag 23 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Acc forward primer <400> 43 tgaccgtggg cacaaagtt 19 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Acc reverse primer <400> 44 aggaggaacc gcatttatcg a 21 <210> 45 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LCAD forward primer <400> 45 aaggatttat taagggcaag aagc 24 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> LCAD reverse primer <400> 46 ggaagcggag gcggagtc 18 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Mfn1 forward primer <400> 47 tctccaagcc caacatcttc a 21 <210> 48 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Mfn1 reverse primer <400> 48 actccggctc cgaagca 17 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Mfn2 forward primer <400> 49 acagcctcag ccgacagcat 20 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Mfn2 reverse primer <400> 50 tgccgaagga gcagacctt 19 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Opa1 forward primer <400> 51 cagctggcag aagatctcaa g 21 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Opa1 reverse primer <400> 52 tatgagcagg attttgacca c 21 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Drp1 forward primer <400> 53 ctgacgcttg tggatttacc 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Drp1 reverse primer <400> 54 cccttcccat caatacatcc 20 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Fis1 forward primer <400> 55 gcccctgcta ctggaccat 19 <210> 56 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Fis1 reverse primer <400> 56 ccctgaaagc ctcacactaa gg 22 <210> 57 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Sirt1 forward primer <400> 57 gcatagatac cgtctcttga tctgaa 26 <210> 58 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Sirt1 reverse primer <400> 58 tgtgaagtta ctgcaggagt gtaaa 25 <210> 59 <211> 23 <212> DNA <213 > Artificial Sequence <220> <223> Dio2 forward primer <400> 59 cagtgtggtg cacgtctcca atc 23 <210> 60 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dio2 reverse primer <400> 60 tgaacccccg ttgaccacca g 21 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nrf1 forward primer <400> 61 caacagggaa gaaacggaaa 20 <210> 62 <211> 20 <212> DNA < 213> Artificial Sequence <220> <223> Nrf1 reverse primer <400> 62 gcaccacatt ctccaaaggt 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cebpb forward primer <400> 63 cagctgctcc accttcttct 20 <210> 64 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Cebpb reverse primer <400> 64 caagctgagc gagtaca 17 <210> 65 <211> 20 <212> DNA <213 > Artificial Sequence <220> <223> Fgf21 forward primer <400> 65 agatcaggga ggatggaaca 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Fgf21 reverse primer <400> 66 tcaaagtgag gcgatccata 20 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> p0 forward primer <400> 67 gcactttcgc tttctggagg gtgt 24 <210> 68 <211> 24 <212> DNA <213 > Artificial Sequence <220> <223> p0 reverse primer <400> 68 tgacttggtt gctttggcgg gatt 24 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox7a forward primer <400> 69 cagcgtcatg gtcagtctgt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox7a reverse primer <400> 70 agaaaaccgt gtggcagaga 20 <210> 71 <211> 20 <212> DNA <213 > Artificial Sequence <220> <223> Cox8b forward primer <400> 71 gaaccatgaa gccaacgact 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cox8b reverse primer <400> 72 cgcaagttca cagtcgttcc 20 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Tmen26 forward primer <400> 73 accctgtcat cccacagag 19 <210> 74 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Tmem26 reverse primer <400> 74 tgtttggtgg agtcctaagg tc 22 <210> 75 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Elov13 forward primer <400> 75 tccgcgttct catgtaggtc t 21 <210> 76 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Elov13 reverse primer <400> 76 ggacctgatg caaccctatg a 21 <210> 77 <211> 21 <212> DNA < 213> Artificial Sequence <220> <223> Cidea forward primer <400> 77 tgctcttctg tatcgcccag t 21 <210> 78 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Cidea reverse primer <400> 78 gccgtgttaa ggaatctgct g 21 <210> 79 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbp forward primer <400> 79 gaagctgcgg tacaattcca g 21 <210> 80 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Tbp reverse primer <400> 80 ccccttgtac ccttcaccaa t 21 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MyoD forward primer < 400> 81 cgccactccg ggacatag 18 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MyoD reverse primer <400> 82 gaagtcgtct gctgtctcaa agg 23 <210> 83 <211> 24 <212 > DNA <213> Artificial Sequence <220> <223> MyoG forward primer <400> 83 agcgcaggct caagaaagtg aatg 24 <210> 84 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> MyoG reverse primer <400> 84 ctgtaggcgc tcaatgtact ggat 24 <210> 85 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Sox9 forward primer <400> 85 cggaggaagt cggtgaaga 19 <210> 86 <211> 19 < 212> DNA <213> Artificial Sequence <220> <223> Sox9 reverse primer <400> 86 gtcggttttg ggagtggtg 19 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Collal forward primer <400> 87 tggtgtccca catctacatc a 21 <210> 88 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Collal reverse primer<400> 88 cctcgggttt ccacgtctc 19

Claims (7)

삭제delete 삭제delete 삭제delete 삭제delete 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 포함하는 인 비트로(in vitro)에서 중간엽 줄기세포의 갈색 지방세포로의 분화 유도용 조성물.A composition for inducing differentiation of mesenchymal stem cells into brown adipocytes in vitro, comprising Biochanin A or a pharmaceutically acceptable salt thereof as an active ingredient. 제 5항에 있어서, 상기 분화 유도는 세포 내 트리글리세라이드(Triglyceride) 축적 감소, 지방 분해 유도, 세포 내 미토콘드리아 수의 증가, 세포의 갈색 지방 표현형의 유도 및 AMPK 신호 전달 활성화로 이루어지는 군으로부터 선택된 메커니즘에 의한 것임을 특징으로 하는 분화 유도용 조성물.The method of claim 5, wherein the induction of differentiation occurs through a mechanism selected from the group consisting of reducing intracellular triglyceride accumulation, inducing lipolysis, increasing the number of intracellular mitochondria, inducing a brown fat phenotype in cells, and activating AMPK signaling. A composition for inducing differentiation, characterized in that: 인체로부터 분리된 중간엽 줄기세포에 바이오카닌 A(Biochanin A) 또는 이의 약학적으로 허용 가능한 염을 처리하는 것을 포함하는 갈색 지방세포로의 분화 유도 방법. A method of inducing differentiation into brown adipocytes comprising treating mesenchymal stem cells isolated from the human body with Biochanin A or a pharmaceutically acceptable salt thereof.
KR1020210061990A 2021-05-13 2021-05-13 A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component KR102606901B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210061990A KR102606901B1 (en) 2021-05-13 2021-05-13 A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210061990A KR102606901B1 (en) 2021-05-13 2021-05-13 A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component

Publications (2)

Publication Number Publication Date
KR20220154441A KR20220154441A (en) 2022-11-22
KR102606901B1 true KR102606901B1 (en) 2023-11-29

Family

ID=84236195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210061990A KR102606901B1 (en) 2021-05-13 2021-05-13 A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component

Country Status (1)

Country Link
KR (1) KR102606901B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KS RANGASAMY COLLEGE OF ARTS AND SCIENCE(AUTONOMOUS), pp.20-23 (2019) 1부.*

Also Published As

Publication number Publication date
KR20220154441A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
RU2252772C2 (en) Composition for treating cancer and method for applying natural vegetable oils
Forbes-Hernández et al. Strawberry (Fragaria× ananassa cv. Romina) methanolic extract promotes browning in 3T3-L1 cells
KR101523820B1 (en) Pharmaceutical composition for preventing or treating obesity or metabolic disorders comprising Aster glehni extract as an active ingredient
Kim et al. The AMPK pathway mediates an anti-adipogenic effect of fruits of Hovenia dulcis Thunb.
KR102054391B1 (en) Composition for Preventing or Treating Inflammation or Cancer Containing Extract of Micractinium sp.
KR102232873B1 (en) Composition for preventing hair loss or promoting hair growth comprising lagerstroemia indica extract
CN110312510A (en) Composition is used in myofibrosis inhibition
Rahman et al. Biochanin A induces a brown‐fat phenotype via improvement of mitochondrial biogenesis and activation of AMPK signaling in murine C3H10T1/2 mesenchymal stem cells
Li et al. The transported active mulberry leaf phenolics inhibited adipogenesis through PPAR‐γ and Leptin signaling pathway
KR102534210B1 (en) Pharmaceutical Composition comprising Nidus vespae extract as an active ingredient for Preventing or Treating obesity
KR101567465B1 (en) Herbal extract as sensitivity enhancer toward insulin and antidiabetes
US11324706B2 (en) Composition for inhibiting growth of breast cancer stem cells containing phenylacetaldehyde
JP5819209B2 (en) Differentiation promoter from stem cells to brown adipocytes
KR102606901B1 (en) A pharmaceutical composition for prevention or treatment of obesity comprising biochanin a or pharmaceutically accepted salts thereof as an effective component
JP6034107B2 (en) Differentiation promoter from stem cells to brown adipocytes
JP2007291081A (en) Composition having bone resorption inhibition-related effect
KR101958236B1 (en) Pharmaceutical composition for prevention or treatment of obesity comprising licarin a or pharmaceutically acceptable salts thereof as an effective component
KR101958235B1 (en) A pharmaceutical composition for prevention or treatment of obesity comprising cryptotanshinone or pharmaceutically accepted salts thereof as an effective component
KR102073759B1 (en) Composition comprising NADH for preventing or treating metabolic disease
TW201927326A (en) Method for producing fermentation product derived from green tea extract, and koji fermentation product derived from green tea extract
KR102559516B1 (en) Composition comprising milk exosomes for inducing browning of white adipose tissue
KR101921735B1 (en) Pharmaceutical composition for prevention or treatment of obesity comprising medicarpin or pharmaceutically acceptable salts thereof as an effective component
KR101542694B1 (en) Composition comprising water extract of hulled barley for preventing and treating obesity
KR102199537B1 (en) Composition for preventing and treating of obesity or metabolic disease comprising extract from Jeju Udo peanut Sprouts
KR101895850B1 (en) Composition for preventing, improving or treating prostate disease comprising extract of Ixeris polycephala as effective component

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right