KR102599803B1 - Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치 - Google Patents

Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치 Download PDF

Info

Publication number
KR102599803B1
KR102599803B1 KR1020200171923A KR20200171923A KR102599803B1 KR 102599803 B1 KR102599803 B1 KR 102599803B1 KR 1020200171923 A KR1020200171923 A KR 1020200171923A KR 20200171923 A KR20200171923 A KR 20200171923A KR 102599803 B1 KR102599803 B1 KR 102599803B1
Authority
KR
South Korea
Prior art keywords
soc
battery
measurement value
value
condition diagnosis
Prior art date
Application number
KR1020200171923A
Other languages
English (en)
Other versions
KR20220082234A (ko
Inventor
고희상
남양현
김찬수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020200171923A priority Critical patent/KR102599803B1/ko
Publication of KR20220082234A publication Critical patent/KR20220082234A/ko
Application granted granted Critical
Publication of KR102599803B1 publication Critical patent/KR102599803B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

일 실시예는, 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신하는 단계; 상기 SOC측정값 및 상기 적어도 하나의 배터리측정값을 뉴럴네트워크에 입력시켜 SOC추정값을 계산하는 단계; 상기 SOC추정값을 퍼지예측기에 입력시켜 SOC예측범위를 계산하는 단계; 및 상기 SOC측정값을 상기 SOC예측범위와 비교하고, 상기 SOC측정값이 상기 SOC예측범위를 벗어나는 경우, 상기 배터리장치를 비정상으로 판단하는 단계를 포함하는 배터리상태진단방법를 제공한다.

Description

SOC추정을 통해 배터리 상태를 진단하는 방법 및 장치{METHOD AND APPARATUS FOR DIAGNOSING BATTERY STATUS THROUGH SOC ESTIMATION}
본 실시예는 배터리의 상태를 진단하는 기술에 관한 것이다.
전기기기로 안정적인 전력을 공급하기 위해 혹은 신재생발전기로부터 생산되는 전력을 저장하기 위해 에너지저장장치(ESS: Energy Storage System)가 이용되고 있다.
에너지저장장치는 전기에너지를 다른 형태의 에너지로 저장했다가 필요할 때, 다시 다른 형태의 에너지를 전기에너지로 변환시켜 주는 장치로서, 전기에너지를 화학에너지로 변환하여 저장하는 배터리가 대표적이다.
리튬이온계열의 배터리는 에너지의 저장밀도가 높고, 에너지의 변환속도가 빨라 전기자동차, 신재생발전기를 위한 대용량 에너지저장장치 등에 널리 사용되고 있다.
그런데, 이러한 배터리는 내부가 밀봉된 상태로 사용되기 때문에, 내부의 상태를 확인하기 어려운 문제가 있다. 그래서, 배터리는 에너지의 잔량을 정확하게 측정하기 어렵고, 내부에서 문제가 발생하여도 그 문제를 정확히 알아내기 어렵다.
배터리는 전기에너지를 화학에너지로 변환하거나 화학에너지를 전기에너지로 변환하는 정반응 뿐만 아니라 그 주변의 물질들이 반응하는 부반응도 자주 일어나는데, 이러한 부반응에 의해 내부에 문제가 발생하여도 내부가 밀봉된 상태이기 때문에 그 문제를 파악하기가 쉽지 않다.
이러한 배경에서, 본 실시예의 목적은, 일 측면에서, 배터리의 내부 상태를 진단하는 기술을 제공하는 것이다. 다른 측면에서, 본 실시예의 목적은, 배터리의 밀봉 상태를 해제시키는 파괴적인 방법을 사용하지 않고, 비파괴적인 방법으로 배터리의 내부 상태를 진단하는 기술을 제공하는 것이다. 또 다른 측면에서, 본 실시예의 목적은, 기존의 배터리관리시스템을 통해 획득할 수 있는 기본 정보를 이용하여 배터리의 내부 상태를 진단하는 기술을 제공하는 것이다.
전술한 목적을 달성하기 위하여, 일 실시예는, 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신하는 단계; 상기 SOC측정값 및 상기 적어도 하나의 배터리측정값을 뉴럴네트워크에 입력시켜 SOC추정값을 계산하는 단계; 상기 SOC추정값을 퍼지예측기에 입력시켜 SOC예측범위를 계산하는 단계; 및 상기 SOC측정값을 상기 SOC예측범위와 비교하고, 상기 SOC측정값이 상기 SOC예측범위를 벗어나는 경우, 상기 배터리장치를 비정상으로 판단하는 단계를 포함하는 배터리상태진단방법를 제공한다.
상기 적어도 하나의 배터리측정값은, 상기 배터리장치의 단자전압측정값을 포함할 수 있다.
상기 적어도 하나의 배터리측정값은, 상기 배터리장치의 온도측정값을 포함할 수 있다.
상기 배터리상태진단방법은 상기 SOC측정값을 상기 SOC예측범위와 비교하는 단계 이전에, 상기 SOC측정값과 상기 SOC추정값의 RMS(root-mean-square)오차를 계산하는 단계를 더 포함하고, 상기 RMS오차를 계산하는 단계에서, 상기 RMS오차가 기준값을 초과하는 경우, 상기 배터리장치를 비정상으로 판단할 수 있다.
상기 뉴럴네트워크는 복수의 히든레이어를 포함하고, 각각의 히든레이어는 선형함수로 구성될 수 있다.
다른 실시예는, 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신하는 수신부; 상기 SOC측정값 및 상기 적어도 하나의 배터리측정값을 이용하여 SOC추정값을 계산하는 뉴럴네트워크; 상기 SOC추정값을 이용하여 SOC예측범위를 계산하는 퍼지예측기; 및 상기 SOC측정값을 상기 SOC예측범위와 비교하고, 상기 SOC측정값이 상기 SOC예측범위를 벗어나는 경우, 상기 배터리장치를 비정상으로 판단하는 제어부를 포함하는 배터리상태진단장치를 제공한다.
상기 배터리관리시스템은, 뉴럴네트워크 기법과 다른 기법으로 상기 SOC측정값을 생성할 수 있다.
상기 배터리관리시스템은, 전류적산법을 이용하여 상기 SOC측정값을 생성할 수 있다.
상기 배터리장치는 전기자동차에 탑재될 수 있다.
상기 제어부는 상기 SOC측정값과 상기 SOC추정값의 RMS(root-mean-square)오차를 계산하고, 상기 RMS오차가 기준값을 초과하는 경우, 상기 배터리장치를 비정상으로 판단할 수 있다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 배터리의 내부 상태를 진단할 수 있다. 그리고, 본 실시예에 의하면, 배터리의 밀봉 상태를 해제시키는 파괴적인 방법을 사용하지 않고, 비파괴적인 방법으로 배터리의 내부 상태를 진단할 수 있다. 그리고, 본 실시예에 의하면, 기존의 배터리관리시스템을 통해 획득할 수 있는 기본 정보를 이용하여 배터리의 내부 상태를 진단할 수 있다.
도 1은 일 실시예에 따른 배터리시스템의 구성도이다.
도 2는 일 실시예에 따른 배터리상태진단장치의 구성도이다.
도 3은 일 실시예에 따른 뉴럴네트워크의 구성도이다.
도 4는 일 실시예에 따른 배터리상태진단방법의 흐름도이다.
도 5는 비주기적인 배터리상태진단방법의 일 예시를 나타내는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 일 실시예에 따른 배터리시스템의 구성도이다.
도 1을 참조하면, 배터리시스템(100)은 에너지저장시스템(140), 배터리관리시스템(120) 및 배터리상태진단장치(110) 등을 포함할 수 있다.
에너지저장시스템(140)은 복수의 배터리장치들(130)을 포함할 수 있다.
복수의 배터리장치들(130)은 서로 직렬로 연결될 수 있고, 서로 병렬로 연결될 수 있다. 본 명세서에서는 설명의 편의를 위해 배터리장치들(130)이 서로 병렬로 연결되는 것으로 설명되나, 본 실시예가 이로 제한되는 것은 아니다.
배터리장치들(130)은 리튬계열 배터리셀들을 다수 포함할 수 있으나, 다른 계열의 배터리셀들을 다수 포함할 수도 있고, 배터리셀을 하나만 포함할 수도 있다.
배터리관리시스템(120)은 배터리장치들(130)의 입출력을 모니터링하고 배터리장치들(130)의 SOC(state-of-charge)를 측정하고, 다른 파라미터들을 측정할 수 있다.
배터리관리시스템(120)은 배터리장치들(130)의 단자전압 및 충방전전류를 측정할 수 있다. 그리고, 배터리관리시스템(120)은 배터리장치들(130)의 단자전압 및 충방전전류를 이용하여 SOC를 측정할 수 있다.
SOC는 배터리장치(130)의 에너지잔량으로서, OCV(open circuit voltage)에 의해 측정될 수 있는 것으로 알려져 있다. 예를 들어, 에너지잔량이 많으면 OCV가 높게 나오고 에너지잔량이 낮으면 OCV가 낮게 나오는 것이다. OCV는 배터리장치(130)에서 충방전이 이루어지지 않고, 배터리장치(130)가 안정된 상태에서 측정되는 단자전압과 같을 수 있는데, 배터리장치(130)가 장시간 사용되지 않은 상태에서 측정되는 단자전압이 OCV에 대응될 수 있다.
배터리관리시스템(120)은 배터리장치(130)를 모니터링하고 배터리장치(130)의 단자전압이 OCV에 대응되는 시점에서, 배터리장치(130)의 단자전압을 측정하여 OCV를 획득할 수 있다. 그리고, 배터리관리시스템(120)은 OCV를 이용하여 SOC를 측정할 수 있다. 배터리관리시스템(120)은 OCV 테이블을 저장하고 있으면서 OCV가 확인되면 OCV 테이블에서 해당 OCV에 대응되는 SOC를 찾아 SOC측정값으로 결정할 수 있다.
OCV에 의한 SOC 측정방법은 시간이 많이 걸리고, 경우에 따라서는 배터리장치(130)가 그러한 OCV 상태에 이르지 못하는 경우가 발생할 수 있기 때문에 OCV에 의한 SOC 측정방법은 보조적으로만 사용되는 경우가 많다.
OCV에 의한 SOC 측정방법을 대체할 수 있는 방법으로 배터리관리시스템(120)은 전류적산법을 이용할 수 있다. 전류적산법은 쿨롱카운팅법이라고 불리우기도 하는데, 배터리장치(130)로부터 입출력되는 전하량을 카운팅하여 배터리장치(130)의 에너지잔량을 측정하는 방법이다. 이러한 배터리장치(130)로부터 방전된 전하량과 충전된 전하량을 모두 합산하면 배터리장치(130)의 에너지잔량과 같다는 원리에 기반한 방법이다.
전술한 것과 같이 배터리장치(130)에서는 정반응 뿐만 아니라 부반응도 일어나기 때문에 배터리관리시스템(120)은 배터리장치(130)로부터 입출력되는 전하량에 일정한 게인을 곱해서 전하량을 카운팅하기도 한다.
적류적산법은 실시간으로 SOC를 측정할 수 있기 때문에 배터리관리시스템(120)은 적류적산법을 SOC 측정의 메인 방법으로 사용할 수 있다. 그리고, 배터리관리시스템(120)은 OCV 상태가 발생할 때마다 보조적으로 OCV 방법을 이용하여 SOC측정값을 교정할 수 있다.
그러나, 이러한 방법들에 의하더라도 배터리관리시스템(120)의 SOC측정값에는 오류가 발생할 수 있다. 이러한 오류는 적류적산법의 누적 오차에 의해 발생할 수도 있고, 배터리관리시스템(120)의 시스템 오류에 기인할 수도 있고, 배터리장치(130)의 내부 상태 문제에 기인할 수도 있다.
배터리상태진단장치(110)는 배터리관리시스템(120)으로부터 SOC측정값(SOCm) 및 적어도 하나의 배터리측정값(Vm, Tm)을 수신하고, SOC측정값(SOCm) 및 적어도 하나의 배터리측정값(Vm, Tm)을 이용하여 배터리장치(130)의 SOC추정값을 계산할 수 있다.
배터리상태진단장치(110)는 배터리관리시스템(120)의 SOC 측정방법과 다른 방법으로 SOC를 추정할 수 있다. 예를 들어, 배터리상태진단장치(110)는 뉴럴네트워크 기법을 이용하여 배터리장치(130)의 SOC를 추정할 수 있다.
배터리상태진단장치(110) 혹은 다른 학습장치는 뉴럴네트워크의 히든레이어들을 생성해 놓고, 학습데이터를 이용하여 히든레이어들의 내부 파라미터들을 학습시킬 수 있다. 이러한 학습에 의해 내부 파라미터들이 결정되면 배터리상태진단장치(110)는 파라미터가 결정된 뉴럴네트워크를 내부에 장착하고, 이를 이용하여 배터리장치(130)의 SOC를 추정할 수 있다.
배터리관리시스템(120)은 주로 적류적산법을 이용하여 SOC를 측정하는데, 이러한 SOC측정값은 배터리상태에 따라 오차가 크게 발생할 수 있다. 전술한 것과 같이 배터리장치(130)에서는 부반응이 일어나는데, 이러한 부반응은 배터리장치(130)의 전압 및 온도에 따라 다르게 발생할 수 있다. 예를 들어, 배터리상태가 고온의 상태인 경우, 부반응이 더 많이 일어날 수 있다. 그런데, 배터리관리시스템(120)은 이러한 배터리상태를 반영하여 SOC를 측정하기 어렵기 때문에 오차가 발생할 수 있다.
배터리상태진단장치(110)는 SOC측정값과 적어도 하나의 배터리측정값(Vm, Tm)을 더 이용하기 때문에 배터리관리시스템(120)보다 정확하게 SOC를 추정할 수 있다.
배터리측정값은 배터리장치(130)의 단자전압측정값(Vm)일 수 있고, 배터리장치(130)의 온도측정값(Tm)일 수 있다. 배터리상태진단장치(110)는 이러한 배터리측정값(Vm, Tm)을 더 이용하여 SOC를 보다 더 정확하게 추정할 수 있다.
배터리상태진단장치(110)는 1차적으로 배터리관리시스템(120)으로부터 수신하는 SOC측정값(SOCm)과 자신이 추정한 SOC추정값을 비교하고, SOC측정값과 SOC추정값의 차이가 일정 범위를 벗어나는 경우, 배터리장치(130)를 비정상으로 판단할 수 있다.
배터리상태진단장치(110)는 SOC측정값과 SOC추정값 사이에 일시적으로 차이가 발생할 수 있다는 것을 감안하여, 일정 시간의 범위에서 계산되는 RMS(root-mean-square)오차를 계산하고 RMS오차가 기준값을 벗어나는 경우 배터리장치(130)를 비정상으로 판단할 수 있다.
배터리상태진단장치(110)는 SOC추정값을 퍼지예측기에 입력하고 퍼지예측기를 통해 SOC예측값을 계산할 수 있다.
퍼지예측기는 과거의 일련의 데이터를 입력받고 이를 통해 바로 다음 시점의 값의 범위를 예측하는 기법이다. 배터리상태진단장치(110)는 일정 계산 주기마다 산출되는 SOC추정값을 퍼지예측기에 투입시킬 수 있다. 그리고, 배터리상태진단장치(110)는 퍼지예측기를 통해 SOC예측값을 계산할 수 있다.
여기서, SOC예측값은 SOC상한예측값과 SOC하한예측값으로 구성될 수 있다. 그리고, SOC상한예측값과 SOC하한예측값은 그 사이의 범위에서 SOC예측범위를 형성할 수 있다.
배터리상태진단장치(110)는 이렇게 형성된 SOC예측범위와 SOC측정값을 비교하고, SOC측정값이 SOC예측범위를 벗어나는 경우, 배터리장치(130)를 비정상으로 판단할 수 있다.
SOC측정값과 SOC추정값의 비교가 배터리장치(130)에 대한 1차적인 정상판단 프로세스라고 한다면, SOC측정값과 SOC예측범위의 비교가 배터리장치(130)에 대한 2차적인 정상판단 프로세스라고 할 수 있다.
배터리상태진단장치(110)는 이러한 1차와 2차의 정상판단 프로세스를 통해 배터리장치(130)를 보다 정확하게 진단할 수 있다.
도 2는 일 실시예에 따른 배터리상태진단장치의 구성도이다.
도 2를 참조하면, 배터리상태진단장치(110)는 수신부(210), 뉴럴네트워크(220), 퍼지예측기(230) 및 제어부(240) 등을 포함할 수 있다.
수신부(210)는 배터리관리시스템과 통신하면서, 배터리관리시스템으로부터 SOC측정값(SOCm) 및 적어도 하나의 배터리측정값(Vm, Tm)을 수신할 수 있다.
적어도 하나의 배터리측정값(Vm, Tm)은 배터리장치의 단자전압측정값(Vm) 및/또는 배터리장치의 온도측정값(Tm)을 포함할 수 있다.
뉴럴네트워크(220)는 수신부(210)로부터 SOC측정값(SOCm) 및 적어도 하나의 배터리측정값(Vm, Tm)을 입력받고 내부 히든레이어들을 이용하여 SOC추정값(SOCe)을 계산할 수 있다. 그리고, 뉴럴네트워크(220)는 SOC추정값(SOCe)을 퍼지예측기(230)로 전달할 수 있다.
퍼지예측기(230)는 매계산주기마다 입력되는 SOC추정값(SOCe)을 이용하여 SOC예측값을 계산할 수 있다. SOC예측값은 SOC상한예측값(SOCp+)과 SOC하한예측값(SOCp-)으로 구성될 수 있다.
제어부(240)는 수신부(210)로부터 SOC측정값(SOCm)을 전달받고, 뉴럴네트워크(220)로부터 SOC측정값(SOCm)을 전달받을 수 있다.
그리고, 제어부(240)는 SOC측정값(SOCm)과 SOC추정값(SOCe)에 대하여 RMS오차를 계산하고, RMS오차가 기준값을 초과하는 경우, 배터리장치를 비정상으로 판단할 수 있다.
SOC측정값(SOCm)과 SOC추정값(SOCe)에 대한 RMS오차가 기준값보다 작은 경우, 제어부(240)는 퍼지예측기(230)로부터 SOC예측값을 전달받고 이를 분석할 수 있다.
제어부(240)는 SOC측정값(SOCm)이 SOC예측범위-SOCp-에서 SOCp+ 사이의 범위-에 해당되는 경우, 배터리장치를 정상으로 판단하고, SOC측정값(SOCm)이 SOC예측범위를 벗어나는 경우, 배터리장치를 비정상으로 판단할 수 있다.
도 3은 일 실시예에 따른 뉴럴네트워크의 구성도이다.
도 3을 참조하면, 뉴럴네트워크(220)는 입력레이어(310), 제1히든레이어(320), 제2히든레이어(330) 및 출력레이어(340) 등으로 구성될 수 있다.
그리고, 각각의 레이어(310~340)는 적어도 하나의 뉴럴(NR)을 포함할 수 있다.
입력레이어(310)는 SOC측정값(SOCm), 단자전압측정값(Vm) 및 온도측정값(Tm)을 입력받을 수 있다.
계산함수들은 주로 히든레이더들(320, 330)에 형성되는데, 이러한 계산함수들은 선형함수일 수 있다.
도 4는 일 실시예에 따른 배터리상태진단방법의 흐름도이다.
도 4를 참조하면, 장치는 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신할 수 있다(S402).
여기서, 적어도 하나의 배터리측정값은 배터리장치의 단자전압측정값을 포함할 수 있고, 배터리장치의 온도측정값을 포함할 수 있다.
그리고, 장치는 SOC측정값 및 적어도 하나의 배터리측정값을 뉴럴네트워크에 입력시켜 SOC추정값을 계산할 수 있다(S404).
여기서, 뉴럴네트워크는 복수의 히든레이어를 포함하고, 각각의 히든레이어는 선형함수로 구성될 수 있다.
그리고, 장치는 SOC추정값을 퍼지예측기에 입력시켜 SOC예측범위를 계산할 수 있다(S406).
그리고, 장치는 SOC측정값과 SOC추정값의 RMS(root-mean-square)오차를 계산할 수 있다.
그리고, 장치는 RMS오차를 기준값과 비교하고(S408), RMS오차가 기준값을 초과하는 경우(S408에서 No), 배터리장치를 비정상으로 판단할 수 있다(S412).
RMS오차가 기준값보다 작거나 같은 경우(S408에서 Yes), 장치는 SOC측정값을 SOC예측범위와 비교하고(S410), SOC측정값이 SOC예측범위를 벗어나는 경우(S410에서 No), 배터리장치를 비정상으로 판단할 수 있다(S412).
그리고, 장치는 SOC측정값이 SOC예측범위를 벗어나지 않는 경우(S410에서 Yes), 배터리장치를 정상으로 판단할 수 있다(S414).
배터리상태진단은 실시간으로 이루어질 수도 있고, 주기적으로 혹은 비주기적으로 이루어질 수도 있다.
도 5는 비주기적인 배터리상태진단방법의 일 예시를 나타내는 도면이다.
도 5를 참조하면, 배터리장치는 전기자동차(500)와 같은 전기운송수단에 탑재될 수 있다. 그리고, 배터리상태진단장치(110)는 배터리장치가 탑재되는 장치의 외곽에 배치될 수 있다.
그리고, 배터리장치가 탑재된 전기자동차(500)는 주기적으로 혹은 비주기적으로 배터리관리시스템데이터(BMSDT)를 배터리상태진단장치(110)로 송신할 수 있다.
배터리관리시스템데이터(BMSDT)에는 일정 시간 간격으로 저장된 SOC측정값들 및 적어도 하나의 배터리측정값들-예를 들어, 단자전압측정값들 혹은 온도측정값들-이 포함될 수 있다.
배터리상태진단장치(110)는 배터리관리시스템데이터(BMSDT)에 포함된 SOC측정값들 및 적어도 하나의 배터리측정값들을 이용하여 전기자동차(500)에 탑재된 배터리장치의 상태를 진단할 수 있다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 배터리의 내부 상태를 진단할 수 있다. 그리고, 본 실시예에 의하면, 배터리의 밀봉 상태를 해제시키는 파괴적인 방법을 사용하지 않고, 비파괴적인 방법으로 배터리의 내부 상태를 진단할 수 있다. 그리고, 본 실시예에 의하면, 기존의 배터리관리시스템을 통해 획득할 수 있는 기본 정보를 이용하여 배터리의 내부 상태를 진단할 수 있다.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신하는 단계;
    상기 SOC측정값 및 상기 적어도 하나의 배터리측정값을 뉴럴네트워크에 입력시켜 SOC추정값을 계산하는 단계;
    상기 SOC측정값과 상기 SOC추정값의 RMS(root-mean-square)오차를 계산하고, 상기 RMS오차가 기준값을 초과하는 경우, 상기 배터리장치를 비정상으로 판단하는 단계;
    상기 SOC추정값을 퍼지예측기에 입력시켜 SOC예측범위를 계산하는 단계; 및
    상기 SOC측정값을 상기 SOC예측범위와 비교하고, 상기 SOC측정값이 상기 SOC예측범위를 벗어나는 경우, 상기 배터리장치를 비정상으로 판단하는 단계
    를 포함하는 배터리상태진단방법.
  2. 제1항에 있어서,
    상기 적어도 하나의 배터리측정값은,
    상기 배터리장치의 단자전압측정값을 포함하는 배터리상태진단방법.
  3. 제1항에 있어서,
    상기 적어도 하나의 배터리측정값은,
    상기 배터리장치의 온도측정값을 포함하는 배터리상태진단방법.
  4. 삭제
  5. 제1항에 있어서,
    상기 뉴럴네트워크는 복수의 히든레이어를 포함하고,
    각각의 히든레이어는 선형함수로 구성되는 배터리상태진단방법.
  6. 배터리관리시스템으로부터 배터리장치에 대한 SOC(state-of-charge)측정값 및 적어도 하나의 배터리측정값을 수신하는 수신부;
    상기 SOC측정값 및 상기 적어도 하나의 배터리측정값을 이용하여 SOC추정값을 계산하는 뉴럴네트워크;
    상기 SOC추정값을 이용하여 SOC예측범위를 계산하는 퍼지예측기; 및
    상기 SOC측정값을 상기 SOC예측범위와 비교하고 상기 SOC측정값이 상기 SOC예측범위를 벗어나는 경우 상기 배터리장치를 비정상으로 판단하고, 상기 SOC측정값과 상기 SOC추정값의 RMS(root-mean-square)오차를 계산하고 상기 RMS오차가 기준값을 초과하는 경우 상기 배터리장치를 비정상으로 판단하는 제어부
    를 포함하는 배터리상태진단장치.
  7. 제6항에 있어서,
    상기 배터리관리시스템은,
    뉴럴네트워크 기법과 다른 기법으로 상기 SOC측정값을 생성하는 배터리상태진단장치.
  8. 제6항에 있어서,
    상기 배터리관리시스템은,
    전류적산법을 이용하여 상기 SOC측정값을 생성하는 배터리상태진단장치.
  9. 제6항에 있어서,
    상기 배터리장치는 전기자동차에 탑재되는 배터리상태진단장치.
  10. 삭제
KR1020200171923A 2020-12-10 2020-12-10 Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치 KR102599803B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200171923A KR102599803B1 (ko) 2020-12-10 2020-12-10 Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200171923A KR102599803B1 (ko) 2020-12-10 2020-12-10 Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20220082234A KR20220082234A (ko) 2022-06-17
KR102599803B1 true KR102599803B1 (ko) 2023-11-09

Family

ID=82268847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200171923A KR102599803B1 (ko) 2020-12-10 2020-12-10 Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치

Country Status (1)

Country Link
KR (1) KR102599803B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240015240A (ko) 2022-07-26 2024-02-05 경북대학교 산학협력단 신경망 모델 뱅크를 기반으로 하는 리튬 배터리의 온라인 충전 상태 및 건강 상태 추정 방법 및 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127973A (ja) * 2009-12-16 2011-06-30 Kawasaki Heavy Ind Ltd 二次電池の充電状態推定方法及び装置
JP2018072265A (ja) * 2016-11-02 2018-05-10 カルソニックカンセイ株式会社 充電率推定装置及び充電率推定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793616B1 (ko) * 2005-06-13 2008-01-10 주식회사 엘지화학 배터리 잔존량 추정 장치 및 방법
WO2019138286A1 (ja) * 2018-01-11 2019-07-18 株式会社半導体エネルギー研究所 二次電池の異常検知装置、異常検知方法、及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127973A (ja) * 2009-12-16 2011-06-30 Kawasaki Heavy Ind Ltd 二次電池の充電状態推定方法及び装置
JP2018072265A (ja) * 2016-11-02 2018-05-10 カルソニックカンセイ株式会社 充電率推定装置及び充電率推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
전기학회논문지 63권 8호(2014년 8월)*

Also Published As

Publication number Publication date
KR20220082234A (ko) 2022-06-17

Similar Documents

Publication Publication Date Title
Park et al. Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems
Cen et al. Lithium‐ion battery SOC/SOH adaptive estimation via simplified single particle model
US9454888B2 (en) Advanced battery early warning and monitoring system
KR102633335B1 (ko) 리튬이온 배터리팩의 비정상 셀 검출 및 soh 예측 방법
Ranjbar et al. Online estimation of state of charge in Li-ion batteries using impulse response concept
Pop et al. State-of-the-art of battery state-of-charge determination
Sun et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
US12040458B2 (en) Slave BMS inspection system and method
KR20190075684A (ko) 배터리의 전하 균형을 탐지하는 배터리 모니터링 장치 및 방법
US11815559B2 (en) Apparatus and method for diagnosing battery cell
KR101227417B1 (ko) 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
US12044747B2 (en) Apparatus and method for diagnosing battery
Samadani et al. A review study of methods for lithium-ion battery health monitoring and remaining life estimation in hybrid electric vehicles
US20220341997A1 (en) Apparatus and Method for Diagnosing a Battery
KR20120075754A (ko) 2차 전지의 잔존용량 연산 방법 및 장치
Ablay Online condition monitoring of battery systems with a nonlinear estimator
Alsabari et al. Modeling and validation of lithium-ion battery with initial state of charge estimation
KR102599803B1 (ko) Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치
US20230184838A1 (en) Device and method for diagnosing battery
Vatani et al. Cycling lifetime prediction model for lithium-ion batteries based on artificial neural networks
KR20230136998A (ko) 불균형도 기반 배터리 상태 판단 방법 및 전자 장치
CN111190112B (zh) 一种基于大数据分析的电池充放电预测方法及系统
Kustiman et al. Battery state of charge estimation based on coulomb counting combined with recursive least square and pi controller
Gandoman et al. The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications
EP4435450A1 (en) Battery management device and method for operating same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right