KR102577695B1 - Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same - Google Patents

Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same Download PDF

Info

Publication number
KR102577695B1
KR102577695B1 KR1020230033212A KR20230033212A KR102577695B1 KR 102577695 B1 KR102577695 B1 KR 102577695B1 KR 1020230033212 A KR1020230033212 A KR 1020230033212A KR 20230033212 A KR20230033212 A KR 20230033212A KR 102577695 B1 KR102577695 B1 KR 102577695B1
Authority
KR
South Korea
Prior art keywords
weight
backfill
subbase
water
stone dust
Prior art date
Application number
KR1020230033212A
Other languages
Korean (ko)
Inventor
백철민
안덕순
양성린
박희범
이종원
한수현
권봉주
Original Assignee
한국건설기술연구원
주식회사 오에이티엠엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 주식회사 오에이티엠엔씨 filed Critical 한국건설기술연구원
Priority to KR1020230033212A priority Critical patent/KR102577695B1/en
Application granted granted Critical
Publication of KR102577695B1 publication Critical patent/KR102577695B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4206Control apparatus; Drive systems, e.g. coupled to the vehicle drive-system
    • B28C5/422Controlling or measuring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4234Charge or discharge systems therefor
    • B28C5/4237Charging, e.g. hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4234Charge or discharge systems therefor
    • B28C5/4244Discharging; Concrete conveyor means, chutes or spouts therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0418Wet materials, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/005Methods or materials for repairing pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/36Coherent pavings made in situ by subjecting soil to stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Road Paving Structures (AREA)

Abstract

본 발명은 석분슬러지를 이용한 되메움재, 보조기층재, 도로포장 시스템 및 그 시공방법에 관한 것으로서, 보다 상세하게는, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지를 혼합시킨 되메움재 조성물이고, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지와 골재를 혼합시킨 보조기층재 조성물 및 이를 이용한 도로포장 시스템 및 시공방법에 관한 것이다.The present invention relates to a backfill material using stone dust sludge, a subbase material, a road paving system, and a construction method thereof. More specifically, it is a backfill composition obtained by mixing stone dust sludge with CLSM, which is a mixture of water and Portland cement, It relates to a subbase material composition made by mixing stone sludge and aggregate with CLSM mixed with water and Portland cement, and a road paving system and construction method using the same.

Description

도로 굴착복구 공사용 석분슬러지를 활용한 되메움재, 보조기층재 및 이를 이용한 도로포장 시스템 및 시공방법{Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same}Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same}

본 발명은 석분슬러지를 이용한 되메움재, 보조기층재, 도로포장 시스템 및 그 시공방법에 관한 것으로서, 보다 상세하게는, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지를 혼합시킨 되메움재 조성물이고, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지와 골재를 혼합시킨 보조기층재 조성물 및 이를 이용한 도로포장 시스템 및 시공방법에 관한 것이다.The present invention relates to a backfill material using stone dust sludge, a subbase material, a road paving system, and a construction method thereof. More specifically, it is a backfill composition obtained by mixing stone dust sludge with CLSM, which is a mixture of water and Portland cement, It relates to a subbase material composition made by mixing stone sludge and aggregate with CLSM mixed with water and Portland cement, and a road paving system and construction method using the same.

일반적으로, CLSM(Controlled Low Strength Material)이란 재령 28 일의 압축강도가 8.3 MPa 이하가 되도록 제어된 시멘트계 슬러리 재료를 가리킨다.Generally, CLSM (Controlled Low Strength Material) refers to a cement-based slurry material whose compressive strength at 28 days is controlled to be 8.3 MPa or less.

상기 CLSM 는 유동성 뒷채움재, 급결성 유동화 뒷채움재, 다짐조절 충전재(Controlled Density Fill, CDF), 강도조절 충전재(Controlled Strength Fill, CSF), 유동성 플라이애시(Flowable ash)로도 불리우며, 자가수평능력, 자가다짐, 유동성, 강도조절이 가능하고, 시공후 재굴착이 용이하다.The CLSM is also called fluid backfill, quick-setting fluidized backfill, Controlled Density Fill (CDF), Controlled Strength Fill (CSF), and flowable fly ash, and has self-leveling ability and self-leveling properties. Compaction, fluidity, and strength can be adjusted, and re-excavation is easy after construction.

이러한 CLSM 는 물, 포틀랜드 시멘트, 플라이애시, 조립 및 세립 골재, 현장토 등의 재료를 주로 첨가하여 제작하고 있는데, 일부 CLSM 은 물과 포틀랜드 시멘트 그리고 플라이애시만 사용하여 제작하기도 한다.These CLSMs are mainly manufactured by adding materials such as water, Portland cement, fly ash, coarse and fine-grained aggregates, and in-situ soil, but some CLSMs are manufactured using only water, Portland cement, and fly ash.

그리고, CLSM 의 혼합은 레미콘트럭, 퍼그밀, 콘크리트 믹서 등을 이용하며, 일반적으로, 레미콘 트럭을 이용한 혼합방법을 많이 사용하고 있으나, 대량의 CLSM을 혼합하는 경우에는 플랜트형의 혼합장치를 사용하기도 한다.Also, mixing of CLSM uses ready-mix concrete trucks, pug mills, concrete mixers, etc. In general, the mixing method using ready-mix concrete trucks is widely used, but when mixing large quantities of CLSM, a plant-type mixing device may be used. do.

이러한 CLSM 은 구조물 기초, 하수관로, 옹벽 등을 시공하기 위해 터파기한 부분에 구조물 시공후 원지반 표면까지 되메움하는 구조물 뒤채움 공정, 관로 매설시 굴착면 하부에 시공하는 관로 베딩 공정, 도로함몰의 원인이 되는 도로하부 공동 채움 공정 등에 널리 이용되고 있다.This CLSM is a structure backfilling process that backfills the original ground surface after construction of the structure in the excavated area to construct the structure foundation, sewer pipe, retaining wall, etc., a pipe bedding process that is constructed on the lower part of the excavated surface when burying a pipe, and a cause of road cave-in. It is widely used in the cavity filling process under roads.

한편, 골재나 석재의 가공시 발생하는 폐석분은 건축 토목공사의 성토재, 도로기층재, 복토용 등의 매립재로 활용된다.Meanwhile, waste rock dust generated during the processing of aggregates or stones is used as landfill material for building civil engineering work, as fill material, road base material, and for covering soil.

세부적으로, 석분은 재활용 대상 폐기물 중 무기성 오니로 분류되는데, 물질의 특성상 분진 발생이 우려되어 일반적으로 수처리 공정을 거쳐 석분 슬러지의 형태로 이용된다.In detail, stone dust is classified as inorganic sludge among waste materials subject to recycling. Due to the nature of the material, there is concern about dust generation, so it is generally used in the form of stone dust sludge after going through a water treatment process.

석분 슬러지를 제조하기 위하여 습윤 상태의 석분 슬러지를 건조한 후, 분말상으로 가공한 후, 고온 고압의 오토클레이브(autoclave)에 의한 수열합성 또는 로타리 킬른(rotary kiln)을 통한 소성 공정을 거쳐서 석분 슬러지를 생산하고 있다.To produce stone dust sludge, wet stone dust sludge is dried, processed into powder, and then subjected to hydrothermal synthesis using a high-temperature and high-pressure autoclave or a calcination process using a rotary kiln to produce stone dust sludge. I'm doing it.

다만, 상기와 같은 특성을 가지는 CLSM 및 석분슬러지를 활용하여 도로 굴착복구 공사용으로 사용하기 위한 되매움재 및 보조기층재로 활용하기 위한 연구는 부족하였으며, 시공에 요구되는 유동성 및 시공후 양호한 강도를 나타내는 되매움재 및 보조기층재를 개발할 필요성이 상존한다.However, there has been insufficient research on using CLSM and stone dust sludge, which has the above characteristics, as backfill and subbase material for road excavation and restoration construction, and shows the fluidity required for construction and good strength after construction. There is a constant need to develop backfill and subbase materials.

본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위하여 창안된 것으로서, CLSM 및 석분슬러지와 골재를 활용하여 도로 굴착 복구 공사용으로 사용하기 위한 되매움재 및 보조기층재로 활용하기 위한 되매움재 및 보조기층재의 구성과 이를 이용한 도로포장 시스템 및 시공방법을 제공한다. The present invention was created to solve the above-described conventional problems, and is a backfill and auxiliary material for use as a backfill and subbase material for road excavation and restoration construction using CLSM, stone dust sludge, and aggregate. Provides the composition of layer materials and road paving systems and construction methods using them.

상기와 같은 기술적 과제를 달성하기 위한 본 발명의 석분슬러지를 이용한 되메움재, 보조기층재, 시공장비 및 그 시공방법의 구성은, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지를 혼합시킨 되메움재 조성물이고, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지와 골재를 혼합시킨 보조기층재 조성물 및 이를 이용한 도로포장 시스템 및 시공방법을 특징으로 한다.The composition of the backfill material, subbase material, construction equipment, and construction method using stone dust sludge of the present invention to achieve the above technical problem is a backfill material mixed with stone dust sludge in CLSM mixed with water and Portland cement. The composition is characterized by a subbase material composition made by mixing stone sludge and aggregate with CLSM mixed with water and Portland cement, and a road paving system and construction method using the same.

상기와 같은 구성을 가지는 본 발명의 석분슬러지를 이용한 되메움재와 보조기층재는, 도로 굴착 복구시 균질한 다짐도를 확보할 수 있는 효과가 있다.The backfill material and subbase material using stone dust sludge of the present invention having the above configuration are effective in ensuring a uniform degree of compaction during road excavation restoration.

또한, 도로상의 되메움 및 보조기층 시공에 요구되는 유동성 및 강도를 충족하는 효과를 발현한다.In addition, it has the effect of satisfying the fluidity and strength required for backfill and subbase construction on roads.

도 1 은 본 발명의 실시예의 되메움재 또는 보조기층재의 혼합장치의 구성도,
도 2 는 본 발명 실시예의 되메움재 또는 보조기층재의 재료를 공급하는 호퍼장치의 구성도,
도 3 은 본 발명의 되메움재 및 보조기층재를 이용하여 시공된 도로의 단면 모식도,
도 4 는 본 발명의 시공방법의 순서도이다.
1 is a block diagram of a mixing device for backfill or subbase material according to an embodiment of the present invention;
Figure 2 is a configuration diagram of a hopper device for supplying backfill or subbase material in an embodiment of the present invention;
Figure 3 is a cross-sectional schematic diagram of a road constructed using the backfill and subbase material of the present invention;
Figure 4 is a flowchart of the construction method of the present invention.

이하, 도면을 참조하여 본 발명의 석분슬러지를 이용한 되메움재, 보조기층재, 이를 이용한 도로 포장 시스템 및 시공방법의 구성을 설명한다.Hereinafter, with reference to the drawings, the configuration of the backfill material and subbase material using stone dust sludge of the present invention, and the road paving system and construction method using the same will be described.

단, 개시된 도면들은 당업자에게 본 발명의 사상이 충분하게 전달될 수 있도록 하기 위한 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 태양으로 구체화될 수도 있다.However, the disclosed drawings are provided as examples so that the idea of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other aspects.

또한, 본 발명 명세서에서 사용되는 용어에 있어서 다른 정의가 없다면, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.In addition, if there is no other definition in the terms used in the present invention specification, they have meanings commonly understood by those skilled in the art to which the present invention pertains, and the gist of the present invention is summarized in the following description and accompanying drawings. Detailed descriptions of known functions and configurations that may be unnecessarily obscure are omitted.

먼저, 본 발명의 석분슬러지를 이용한 되메움재의 구성을 설명한다.First, the configuration of the backfill using stone dust sludge of the present invention will be described.

본 발명의 석분슬러지를 이용한 되메움재는, CLSM 과 석분슬러지가 혼합된 조성물이며, 구체적으로, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지를 혼합시킨 조성물이다.The backfill material using stone dust sludge of the present invention is a composition in which CLSM and stone dust sludge are mixed. Specifically, it is a composition in which stone dust sludge is mixed with CLSM, which is a mixture of water and Portland cement.

상기와 같은 구성의 본 발명의 되메움재는, 도로 굴착 복구 공사시 공동을 매우는 공사에 주로 이용된다.The backfill material of the present invention having the above configuration is mainly used for filling cavities during road excavation and restoration work.

본 발명의 되메움재의 조성물은, 시멘트 9~23 중량%, 물 30~35 중량%, 석분슬러지 47~56 중량% 을 포함한다.The composition of the backfill material of the present invention includes 9 to 23% by weight of cement, 30 to 35% by weight of water, and 47 to 56% by weight of stone dust sludge.

이에 하기 표 1 과 같이 본 발명의 되메움재의 실시예들의 조성물을 시멘트 148~283 Kg, 물 487~510 Kg 및 석분슬러지 762~797 Kg 을 포함하도록 조성하였다.Accordingly, as shown in Table 1 below, the compositions of the examples of the backfill material of the present invention were formulated to include 148 to 283 Kg of cement, 487 to 510 Kg of water, and 762 to 797 Kg of stone dust sludge.

또한, 각 실시예에 따라서 상기 석분슬러지속의 물의 양을 222~232 Kg 이 되도록 조성하였으며, W/B 를 250~500% 이 되도록 조성하였다.In addition, according to each example, the amount of water in the stone dust sludge was formulated to be 222 to 232 Kg, and the W/B was formulated to be 250 to 500%.

구분division 시멘(Kg)Cement (Kg) 물 (Kg)Water (Kg) 석분슬러지(Kg)Stone dust sludge (Kg) 석분슬러지 속
물의 양(Kg)
In stone dust sludge
Quantity of water (Kg)
W/B(물-결합재비(Water Binder Ratio)(%)W/B (Water Binder Ratio) (%)
실시예 1Example 1 148148 510510 797797 232232 500%500% 실시예 2Example 2 164164 508508 792792 230230 450%450% 실시예 3Example 3 183183 504504 788788 229229 400%400% 실시예 4Example 4 208208 500500 782782 227227 350%350% 실시예 5Example 5 240240 495495 773773 225225 300%300% 실시예 6Example 6 283283 487487 762762 222222 250%250%

여기서, 상기 석분슬러지는 경기도 소재의 부순골재 생산업체인 국내 L 사에서 생산한 석분슬러지를 이용하였으며, 5mm체통과율 100%, 0.075mm 체 통과율 47.54%이며, 최대건조밀도가 1.694g/cm3 인 석분슬러지를 사용하였다. Here, the stone dust sludge produced by domestic company L, a crushed aggregate producer located in Gyeonggi-do, was used, and the rate of passage through a 5 mm sieve was 100%, the rate of passage through a 0.075 mm sieve was 47.54%, and the maximum dry density was 1.694 g/ cm3 . Stone dust sludge was used.

또한, 상기 시멘트는 KS L 5210의 규정에 적합한 국내 A사 제품의 보통 포틀랜드 시멘트를 사용하였다.In addition, the cement used was ordinary Portland cement manufactured by domestic company A that complies with the regulations of KS L 5210.

그리고, 상기 석분슬러지를 활용한 되메움재의 배합은 석분슬러지의 함수비를 고려하여 사전에 유동성(Flow) 시험을 실시하고, W/B 가 250 내지 500% 되도록 각 재료의 양을 조절하였다. In addition, when mixing the backfill using the stone dust sludge, a flow test was conducted in advance considering the water content of the stone dust sludge, and the amount of each material was adjusted so that the W/B was 250 to 500%.

상기와 같은 본 발명의 되메움재의 실시예들의 유동성을 평가하기 위하여, 미국의 ASTM D 6103 "Standard Test Method for Flow Consistency of Controlled Low Strength Material" 방법으로 되메움재의 유동성을 평가하였다.In order to evaluate the fluidity of the examples of the backfill of the present invention as described above, the fluidity of the backfill was evaluated using the American ASTM D 6103 "Standard Test Method for Flow Consistency of Controlled Low Strength Material" method.

또한, 석분슬러지를 활용한 되메움재의 재료분리 저항성 평가(블리딩,bleeding)를 위하여 일본 유동화처리공법연구기구 유동화처리공법기술관리연구회의 "흙의 유동화처리공법"에서 소개하고 있는 시험방법을 채택하여 평가를 수행하였다. In addition, in order to evaluate the material separation resistance (bleeding) of backfill using stone dust sludge, the test method introduced in "Fluidization Treatment Method of Soil" of the Fluidization Treatment Technology Management Research Group of the Japan Fluidization Treatment Technology Research Organization was adopted. An evaluation was performed.

또한, 석분슬러지를 활용한 되메움재의 압축강도를 측정하기 위하여, ASTM D 4832 "Standard Test Method for Preparation and Testing of Controlled Low Strength Material(CLSM Test Cylinders)"에 준하며, 시험편은 높이와 지름의 비율이 2:1 의 실린더 형태인 몰드를 사용하여 높이 100mm, 지름 50mm 의 공시체를 제작하여 실험을 실시하였다.In addition, in order to measure the compressive strength of backfill using stone dust sludge, ASTM D 4832 "Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM Test Cylinders)" is followed, and the test specimen has a ratio of height and diameter. The experiment was conducted by manufacturing a specimen with a height of 100 mm and a diameter of 50 mm using a 2:1 cylindrical mold.

또한, 석분슬러지를 활용한 되메움재의 수화반응에서 생성된 물질 분석 및 미세구조 분석을 위해 재령 7 일 및 28 일의 시료를 채취하여 SEM 및 XRD 분석을 수행하였다.In addition, samples were collected at 7 and 28 days of age and SEM and

상기와 같은 본 발명의 석분슬러지를 활용한 되메움재의 특성을 시험한 결과, 본 발명의 되메움재의 실시예들의 유동성은 W/B 가 감소함에 따라서 유동성이 감소하는 경향을 보였다.As a result of testing the characteristics of the backfill material using the stone dust sludge of the present invention as described above, the fluidity of the examples of the backfill material of the present invention tended to decrease as W/B decreased.

그리고, 다짐성 및 충진성 확보를 위한 되메움재의 적정 유동성은 ACI 229R에서 200mm 이상으로 보고되고 있는데, 본 발명 실시예들의 되메움재는 W/B가 250%이상에서 목표값을 모두 만족하였다.In addition, the appropriate fluidity of the backfill to ensure compaction and filling properties is reported to be 200 mm or more in ACI 229R, and the backfill in the embodiments of the present invention all satisfied the target value at a W/B of 250% or more.

또한, 석분슬러지를 활용한 본 발명 실시예들의 되메움재의 블리딩 시험 결과, 0.76%∼0.86%로 측정되었으며, W/B 에 따른 일정한 경향이 보이지는 않았다.In addition, as a result of the bleeding test of the backfill of the examples of the present invention using stone dust sludge, it was measured at 0.76% to 0.86%, and there was no consistent trend according to W/B.

이는 석분슬러지의 함수상태에 따라 미소하게 블리딩이 차이나는 것으로 판단되며, 블리딩에 관한 품질기준은 일본의 관련 규준에서 규정되어 있는 되메움재의 요구성능은 3.0% 미만으로서, 본 발명의 실시예들의 되메움재들은 이 기준을 만족하였다.It is believed that bleeding varies slightly depending on the water content state of the stone dust sludge, and the quality standard for bleeding is that the required performance of the backfill specified in the relevant Japanese standards is less than 3.0%, which is consistent with the examples of the present invention. The fillers met these criteria.

또한, 석분슬러지를 활용한 본 발명 실시예들의 되메움재의 압축강도의 시험 결과, ACI 229R 기준치인 재령 7일의 초기강도는 0.3MPa 이상으로 모든 W/B에서 만족하였으며, 재굴착성 검토를 위한 재령 28일 압축강도는 초기강도와 동일하게 W/B 값이 증가할수록 강도발현성은 저하되는 것으로 나타났다. In addition, as a result of testing the compressive strength of the backfill material of the embodiments of the present invention using stone dust sludge, the initial strength at 7 days, which is the ACI 229R standard, was 0.3 MPa or more and was satisfied in all W/Bs, and for review of re-excavability The compressive strength at 28 days of age was the same as the initial strength, and as the W/B value increased, the strength development decreased.

그러므로, 관련 기술자료 및 표준 등을 검토하여 되메움재의 재굴착성을 위한 강도 조건을 ACI 229R에 따라 1.4MPa(재령 28일 강도) 이하로 선정하고, 재령 28 일에 1.4MPa 이하의 강도를 확보하기 위해서는 W/B 를 300% 이상으로 배합하여야 할 것으로 판단된다.Therefore, by reviewing related technical data and standards, the strength condition for re-excavability of backfill was selected as 1.4 MPa (28-day strength) or less according to ACI 229R, and secured a strength of 1.4 MPa or less at 28 days. In order to do this, it is judged that the W/B must be mixed at more than 300%.

한편, 본 발명 실시예들의 되메움재의 재령별 압축강도 시험 결과를 수행하였으며, 석분슬러지를 활용한 되메움재의 SEM 및 EDS 분석 결과, W/B가 감소할수록, 재령이 증가할수록 시멘트와의 수화반응이 활발해져 내부 조직이 치밀해지고 Ca 원소 함량도 증가함을 확인하였다.Meanwhile, the compressive strength test results of the backfill materials of the examples of the present invention were performed by age, and the results of SEM and EDS analysis of the backfill materials using stone dust sludge showed that as W/B decreases and age increases, hydration reaction with cement occurs. It was confirmed that the internal tissue became more dense and the Ca element content increased.

또한, 본 발명 실시예들의 되메움재의 XRD 분석 결과, 모든 배합에서 시멘트를 결합재로 사용함에 따라 생성되는 Ca(OH)2, Ettringite, C-S-H 수화물이 확인되었으며, 재령이 지남에 따라 관련 피크(Peek)가 증가되었다. In addition, as a result of has increased.

그러므로, CLSM 관련 기준 및 표준(ACI 229R 및 일본의 관련 규정 등)을 검토하여, 바람직하게는, 본 발명의 되메움재의 W/B 가 300% 이상이며, 배합요인별 되메움재의 충진성, 작업성 평가, 후속공정 및 재굴착성 등을 고려한 결과, 보다 바람직하게는, 본 발명의 되메움재의 W/B 는 350% 이다.Therefore, by reviewing CLSM-related standards and standards (ACI 229R and Japanese related regulations, etc.), preferably, the W/B of the backfill of the present invention is 300% or more, and the fillability and workability of the backfill by mixing factor As a result of considering performance evaluation, subsequent processes, re-excavability, etc., more preferably, the W/B of the backfill of the present invention is 350%.

다음으로, 본 발명의 석분슬러지를 이용한 보조기층재의 구성을 설명한다.Next, the configuration of the subbase material using stone dust sludge of the present invention will be described.

본 발명 실시예의 석분슬러지를 이용한 보조기층재는, CLSM, 석분슬러지 및 골재가 혼합된 조성물이며, 구체적으로, 물과 포틀랜드 시멘트가 혼합된 CLSM 에 석분슬러지와 골재를 혼합시킨 조성물이다.The subbase material using stone dust sludge in an embodiment of the present invention is a composition that is a mixture of CLSM, stone dust sludge, and aggregate. Specifically, it is a composition in which stone dust sludge and aggregate are mixed with CLSM, which is a mixture of water and Portland cement.

상기와 같은 구성의 본 발명의 보조기층재는, 도로 굴착복구 공사시 도로상의 공동을 매우는 작업에서 전술한 되메움재의 상측으로 적층되며, 이와 같이 적층된 보조기층재의 상측으로 도로의 표층을 이루는 아스팔트층이 적층되게 된다.The subbase material of the present invention having the above-mentioned configuration is laminated on the upper side of the above-described backfill material in the work of filling cavities on the road during road excavation and restoration work, and asphalt forming the surface layer of the road is on the upper side of the subbase material laminated in this way. The layers are stacked.

본 발명의 보조기층재의 조성물은, 시멘트 11~18 중량%, 물 30~33 중량%, 석분슬러지 48~50 중량% 및 순환잔골재 4~10 중량% 을 포함한다.The composition of the subbase material of the present invention includes 11 to 18% by weight of cement, 30 to 33% by weight of water, 48 to 50% by weight of stone sludge, and 4 to 10% by weight of recycled fine aggregate.

이에 하기 표 2 와 같이 본 발명의 보조기층재의 실시예들의 조성물을 시멘트 183 Kg, 물 504 Kg 및 석분슬러지 788 Kg, 순환잔골재 79~158 Kg 를 포함하도록 조성하였다. 비교예 1 은 순환잔골재를 포함하지 않도록 조성한 실시예이다.Accordingly, as shown in Table 2 below, the compositions of examples of the subbase material of the present invention were formulated to include 183 Kg of cement, 504 Kg of water, 788 Kg of stone dust sludge, and 79 to 158 Kg of recycled fine aggregate. Comparative Example 1 is an example in which the composition did not contain recycled fine aggregate.

또한, 각 실시예에 따라서 석분슬러지속의 물의 양은 229 Kg 이 되도록 조성하였으며, 순환잔골재의 비율(wt.%)을 0~20% 이 되도록 조성하였다.In addition, according to each example, the amount of water in the stone dust sludge was formulated to be 229 kg, and the proportion of recycled fine aggregate (wt.%) was formulated to be 0 to 20%.

구분division 순환잔골재
비율(wt.%)
recycled fine aggregate
Proportion (wt.%)
시멘트(Kg)Cement (Kg) 물(Kg)Water (Kg) 석분슬러지
(Kg)
stone sludge
(Kg)
순환잔골재
(Kg)
recycled fine aggregate
(Kg)
석분슬러지 속 물의 양(Kg)Amount of water in stone dust sludge (Kg)
비교예 1Comparative Example 1 0%0% 183183 504504 788788 229229 실시예 1Example 1 10%10% 183183 504504 788788 7979 229229 실시예 2Example 2 20%20% 183183 504504 788788 158158 229229

또한, 본 발명의 보조기층재의 다른 실시예의 조성물은, 시멘트 9~19 중량%, 물 13~15 중량%, 석분슬러지 41~45 중량% 및 굵은 골재 27~31 중량% 을 포함한다.In addition, the composition of another example of the subbase material of the present invention includes 9 to 19% by weight of cement, 13 to 15% by weight of water, 41 to 45% by weight of stone dust sludge, and 27 to 31% by weight of coarse aggregate.

이에 하기 표 3 과 같이 본 발명의 보조기층재의 다른 실시예들의 조성물을 시멘트 183~275 Kg, 물 261~269 Kg, 석분슬러지 812~837 Kg, 굵은 골재 542~558 Kg 를 포함하도록 조성하였다. Accordingly, as shown in Table 3 below, compositions of other examples of the subbase material of the present invention were formulated to include 183 to 275 Kg of cement, 261 to 269 Kg of water, 812 to 837 Kg of stone dust sludge, and 542 to 558 Kg of coarse aggregate.

또한, 각 실시예들에 따라서 석분슬러지속의 물의 양은 322~332 Kg 이 되도록 조성하였으며, 조성물의 W/B 가 212~317% 이 되도록 조성하였다.In addition, according to each example, the amount of water in the stone dust sludge was formulated to be 322 to 332 Kg, and the W/B of the composition was formulated to be 212 to 317%.

구분division W/B(물-결합재비(Water Binder Ratio)(%)W/B (Water Binder Ratio) (%) 시멘트
(Kg)
cement
(Kg)

(Kg)
water
(Kg)
석분슬러지
(Kg)
stone sludge
(Kg)
굵은 골재
(Kg)
coarse aggregate
(Kg)
석분슬러지
속 물의 양
(Kg)
stone sludge
amount of water in
(Kg)
실시예 3Example 3 317%317% 189189 269269 837837 558558 332332 실시예 4Example 4 212%212% 275275 261261 812812 542542 322322

또한, 본 발명 보조기층재의 또 다른 실시예의 조성물은, 시멘트 14~21 중량%, 물 10~13 중량%, 급결재 1~3 중량%, 석분슬러지 41~44 중량%, 굵은 골재 27-29 중량% 를 포함한다.In addition, the composition of another example of the subbase material of the present invention is 14 to 21% by weight of cement, 10 to 13% by weight of water, 1 to 3% by weight of quick setting material, 41 to 44% by weight of stone dust sludge, and 27 to 29% by weight of coarse aggregate. Includes %.

이에 하기 표 4 와 같이 본 발명의 보조기층재의 또 다른 실시예들의 조성물을 시멘트 275 Kg, 물 208.8~234.9 Kg, 급결재 26.1~52.2 Kg, 석분슬러지 812 Kg, 굵은 골재 542 를 포함하도록 조성하였다. Accordingly, as shown in Table 4 below, compositions of other examples of the subbase material of the present invention were formulated to include 275 Kg of cement, 208.8 to 234.9 Kg of water, 26.1 to 52.2 Kg of quick-setting material, 812 Kg of stone dust sludge, and 542 kg of coarse aggregate.

또한, 각 실시예들에 따라서 상기 석분슬러지속의 물의 양은 322 Kg 이 되도록 조성하였으며, 조성물의 W/B 가 212% 이 되도록 조성하였다.In addition, according to each example, the amount of water in the stone dust sludge was formulated to be 322 Kg, and the W/B of the composition was formulated to be 212%.

구분division W/B(물-결합재비(Water Binder Ratio)(%)W/B (Water Binder Ratio) (%) 시멘트
(Kg)
cement
(Kg)

(Kg)
water
(Kg)
급결재
(Kg)
quick payment
(Kg)
석분슬러지
(Kg)
stone sludge
(Kg)
굵은 골재
(Kg)
coarse aggregate
(Kg)
석분슬러지
속 물의 양
(Kg)
stone sludge
amount of water in
(Kg)
실시예 5Example 5 212212 275275 234.9234.9 26.126.1 812812 542542 322322 실시예 6Example 6 212212 275275 221.9221.9 39.139.1 812812 542542 322322 실시예 7Example 7 212212 275275 208.8208.8 52.252.2 812812 542542 322322

상기 본 발명 실시예들의 보조기층재의 석분슬러지는, 경기도 소재의 부순골재 생산업체인 국내 L 사에서 생산한 석분슬러지로서 5mm체통과율 100%, 0.075mm 체 통과율 47.54%이며, 최대건조밀도가 1.694g/cm3, 평균 함수비 39.67% 인 석분슬러지를 사용하였다. The stone dust sludge of the subbase material of the embodiments of the present invention is produced by domestic company L, a crushed aggregate producer located in Gyeonggi-do, and has a 5 mm sieve passing rate of 100% and a 0.075 mm sieve passing rate of 47.54%, and a maximum dry density of 1.694 g. /cm3, stone dust sludge with an average water content of 39.67% was used.

또한, 본 발명 실시예들의 보조기층재의 시멘트는, KS L 5210의 규정에 적합한 국내 A사 제품의 보통 포틀랜드 시멘트를 사용하였다.In addition, the cement of the subbase material in the examples of the present invention was ordinary Portland cement manufactured by a domestic company A that complied with the provisions of KS L 5210.

또한, 본 발명 실시예의 보조기층재에 이용된 순환 잔골재는, 대전 G 업체의 폐콘크리트 파쇄과정에서 생산된 8mm 이하, 건조밀도는 2.45g/cm3 인 폐콘크리트 잔골재를 사용하였다. In addition, the recycled fine aggregate used in the subbase material of the embodiment of the present invention was waste concrete fine aggregate of 8 mm or less and a dry density of 2.45 g/cm3 produced during the waste concrete crushing process of Daejeon G company.

또한, 본 발명의 다른 실시예 및 또 다른 실시예의 보조기층재에 이용된 굵은 골재는, 충남의 화강암질 부순돌로서 굵은 골재 최대치수가 25mm 인 골재를 사용하였다. In addition, the coarse aggregate used in the subbase material of another example and another example of the present invention was crushed granite from Chungcheongnam-do and had a maximum coarse aggregate size of 25 mm.

그리고, 상기 본 발명의 실시예의 보조기층재는 W/B 를 400%로 고정하고, 순환 잔골재는 석분슬러지의 무게 비율로 10% 및 20% 로 첨가하였다.In addition, the W/B of the subbase material in the examples of the present invention was fixed at 400%, and the recycled fine aggregate was added at 10% and 20% by weight of stone dust sludge.

또한, 상기 본 발명의 다른 실시예의 보조기층재는, W/B를 212% 및 317% 로 설정하고, 굵은 골재의 혼입량은 석분슬러지와 굵은 골재의 총 양에 대하여 40% 를 혼입하였다.In addition, in the subbase material of another example of the present invention, W/B was set to 212% and 317%, and the amount of coarse aggregate mixed was 40% of the total amount of stone dust sludge and coarse aggregate.

상기와 같이 구성된 본 발명의 실시예의 순환 잔골재를 이용한 보조기층재의 유동성을 평가하기 위하여, 미국의 ASTM D 6103 "Standard Test Method for Flow Consistency of Controlled Low Strength Material"에 준하여 유동성을 시험하였다. In order to evaluate the fluidity of the subbase material using the recycled fine aggregate of the embodiment of the present invention constructed as described above, the fluidity was tested in accordance with the American ASTM D 6103 "Standard Test Method for Flow Consistency of Controlled Low Strength Material".

또한, 본 발명의 다른 실시예의 굵은 골재를 이용한 보조기층재의 유동성을 시험하기 위하여, KS F 2402 "콘크리트의 슬럼프 시험방법"에 준하여 실험을 실시하였다. In addition, in order to test the fluidity of the subbase material using the coarse aggregate of another example of the present invention, an experiment was conducted in accordance with KS F 2402 "Slump test method for concrete."

또한, 본 발명의 실시예의 순환 잔골재를 이용한 보조기층재의 강도를 시험하기 위하여, 미국의 ASTM D 4832 "Standard Test Method for Preparation and Testing of Controlled Low Strength Material(CLSM Test Cylinders)"에 준하여 강도를 시험하였다. In addition, in order to test the strength of the subbase material using the recycled fine aggregate of the embodiment of the present invention, the strength was tested in accordance with ASTM D 4832 "Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM Test Cylinders)" in the United States. .

또한, 본 발명의 다른 실시예의 굵은 골재를 이용한 보조기층재의 압축 강도를 평가하기 위하여, KS F 2405 "콘크리트의 압축강도 시험방법"에 준하여 압축 강도를 시험하였다.In addition, in order to evaluate the compressive strength of the subbase material using coarse aggregate in another example of the present invention, the compressive strength was tested in accordance with KS F 2405 "Testing method for compressive strength of concrete."

그 결과, 본 발명 실시예의 순환 잔골재를 이용한 보조기층재의 유동성은 순환잔골재의 첨가량이 증가함에 따라 유동성이 감소하는 경향을 보였다.As a result, the fluidity of the subbase material using the recycled fine aggregate of the embodiment of the present invention tended to decrease as the amount of recycled fine aggregate added increased.

또한, 본 발명 실시예의 순환 잔골재를 이용한 보조기층재의 유동성은 순환잔골재의 첨가량이 10% 및 20%일 때 유동성은 각각 4.8% 및 7.1% 감소하였는데, 이는 순환 잔골재가 구제모르타르에 의해 높은 흡수율의 성질을 가지고 물의 양을 증가시키기 않은 상태에서 (결합재+석분슬러지+골재)/물의 비율이 증가되었기 때문으로 판단된다. In addition, the fluidity of the subbase material using the recycled fine aggregate of the embodiment of the present invention decreased by 4.8% and 7.1%, respectively, when the added amount of the recycled fine aggregate was 10% and 20%, which is due to the nature of the high absorption rate of the recycled fine aggregate by the relief mortar. It is believed that this is because the ratio (binder + stone sludge + aggregate) / water was increased without increasing the amount of water.

또한, 본 발명 다른 실시예의 굵은 골재를 이용한 보조기층재의 슬럼프 시험 결과, 굵은 골재의 혼입 비율이 40% 에서 W/B가 317% 및 212%일 때 각각 130mm 및 120mm 로 확인되었다.In addition, as a result of the slump test of the subbase material using the coarse aggregate of another example of the present invention, it was confirmed that the mixing ratio of coarse aggregate was 40% and W/B was 317% and 212%, respectively, at 130 mm and 120 mm.

또한, 본 발명 실시예의 순환 잔골재를 이용한 보조기층재의 압축강도를 시험한 결과, 순환 잔골재가 증가할수록 압축강도는 다소 증가하는 경향을 보였다.In addition, as a result of testing the compressive strength of the subbase material using the recycled fine aggregate of the embodiment of the present invention, the compressive strength tended to increase somewhat as the recycled fine aggregate increased.

구체적으로, 순환 잔골재의 첨가량이 10% 및 20%일 때 재령 28 일 강도는 각각 7.5% 및 14.8% 증가하였으며, 이러한 경향도 순환 잔골재의 높은 흡수율과 ((결합재+석분슬러지+골재)/물의 비율이 증가되었기 때문으로 판단된다. Specifically, when the added amount of recycled fine aggregate was 10% and 20%, the 28-day strength increased by 7.5% and 14.8%, respectively, and this trend was also due to the high absorption rate of recycled fine aggregate and the ratio of ((binder + stone sludge + aggregate) / water. It is believed that this is due to an increase.

또한, 본 발명 다른 실시예의 굵은 골재를 이용한 보조기층재의 압축강도 시험 결과, W/B 가 감소할수록 압축강도는 증가되는 것으로 평가되었다.In addition, as a result of the compressive strength test of the subbase material using the coarse aggregate of another example of the present invention, it was evaluated that the compressive strength increased as W/B decreased.

또한, 본 발명의 또 다른 실시예의 굵은 골재를 이용한 보조기층재에 급결제를 혼입하여 양생 시간에 따른 쪼갬 인장강도 시험을 실시하였다.In addition, a splitting tensile strength test according to curing time was conducted by mixing an accelerator into the subbase material using coarse aggregate of another example of the present invention.

그 결과, 급결제의 양이 증가할수록 양생시간은 빠르게 단축되는 것으로 나타났으며, 급결제 혼입 후 3 시간 뒤 쪼갬 인장 강도가 최대 0.82 MPa로 측정되었다. As a result, it was found that the curing time was rapidly shortened as the amount of accelerator increased, and the splitting tensile strength was measured to be up to 0.82 MPa 3 hours after mixing the accelerator.

상기와 같은 시험 결과, 본 발명 실시예의 순환 잔골재 및 굵은 골재를 이용한 보조기층재의 유동성 및 압축 강도는 관련 기준 및 표준을 만족하였다.As a result of the above test, the fluidity and compressive strength of the subbase material using recycled fine aggregate and coarse aggregate of the embodiment of the present invention satisfied the relevant standards and standards.

바람직한 본 발명의 보조기층재는, 상대적으로 재료 수급이 용이하며 표층 아스팔트 포설시 초기 강도를 충분히 확보할 수 있도록, W/B 가 212% 이며, 굵은 골재를 이용한 실시예의 보조기층재이다.The preferred subbase material of the present invention is relatively easy to supply and has a W/B of 212% to ensure sufficient initial strength when laying surface asphalt, and is a subbase material of the embodiment using coarse aggregate.

다음으로, 상기와 같이 이루어진 본 발명의 실시예의 되메움재 또는 보조기층재를 혼합시키기 위한 혼합장치(Mixer)의 구성을 설명하기로 한다.Next, the configuration of a mixing device (Mixer) for mixing the backfill material or subbase material of the embodiment of the present invention as described above will be described.

도 1 을 참조하면, 본 발명 실시예의 되메움재 또는 보조기층재의 혼합장치(1)는 도로 굴착 복구 공사 현장에서의 배합 및 현장으로의 이동이 가능한 혼합장치로서, 상술한 바와 같은 본 발명의 되메움재 또는 보조기층재를 구성하는 성분들을 투입하여 혼합시키는 혼합기(10)와, 상기 혼합기(10)에 물을 투입하는 물 분사기(20)와, 혼합기(10)와 물분사기(20)의 작동을 제어하는 제어반(30)과, 상기 혼합기(10), 물분사기(20) 및 제어반(30)을 프레임(41)에 결합시킨 상하차 구조물(40)을 포함하여 구성된다.Referring to Figure 1, the mixing device 1 of the backfill or subbase material of the embodiment of the present invention is a mixing device capable of mixing at the road excavation and restoration construction site and moving to the site, and is a mixing device of the present invention as described above. A mixer (10) for mixing the ingredients constituting the filler or sub-base material, a water sprayer (20) for injecting water into the mixer (10), and the operation of the mixer (10) and the water sprayer (20). It is composed of a control panel 30 for controlling, a loading and unloading structure 40 combining the mixer 10, the water sprayer 20, and the control panel 30 to a frame 41.

상기 혼합기(10)는 유압탱크(11) 및 유압펌프(12)와, 상기 유압펌프(12)에 의하여 공급된 유압에 의하여 혼합기(10)에 설치된 임펠라(미도시)를 가동시키는 유압실린더(13)가 구비되며, 제어반(30)으로부터의 제어신호에 의하여 혼합 속도의 조절이 가능하다.The mixer 10 includes a hydraulic tank 11, a hydraulic pump 12, and a hydraulic cylinder 13 that operates an impeller (not shown) installed in the mixer 10 by hydraulic pressure supplied by the hydraulic pump 12. ) is provided, and the mixing speed can be adjusted by a control signal from the control panel 30.

본 발명 실시예의 혼합기(10)는 500L 의 용량의 것을 사용하였으며, 유압 압력은 100~200 bar 인 혼합기를 채용하였다.The mixer 10 in the embodiment of the present invention was used with a capacity of 500 L, and a mixer with a hydraulic pressure of 100 to 200 bar was adopted.

상기 물분사기(20)는, 되메움재의 주 재료인 석분슬러지의 원활한 믹싱을 위하여 되메움재의 함수율을 조절할 수 있는 것이 바람직하며, 본 발명 실시예의 물 분사기(20)는, 함수율을 조절할 수 있는 분당 10 리터(liter) 이상의 고압의 물 분사기이다. The water sprayer 20 is preferably capable of adjusting the water content of the backfill material for smooth mixing of stone dust sludge, which is the main material of the backfill material. The water sprayer 20 of the embodiment of the present invention has a water content per minute that can control the water content. It is a high-pressure water sprayer of more than 10 liters.

또한, 상기 상하차 구조물(40)은 트럭과 같은 차량에 상하차가 용이하도록 철골 재질의 프레임(41)을 육면체 형상으로 결합시켜 제작하였다.In addition, the loading and unloading structure 40 was manufactured by combining a frame 41 made of steel into a hexahedral shape to facilitate loading and unloading on a vehicle such as a truck.

한편, 미설명부호 14 는 유압제어밸브, 15 는 보조엔진이고, 21 은 물탱크이다.Meanwhile, the unexplained symbol 14 is a hydraulic control valve, 15 is an auxiliary engine, and 21 is a water tank.

도 2 를 참조하면, 전술한 본 발명 실시예의 되메움재 또는 보조기층재의 혼합장치(1)에 이용되는 석분슬러지, 시멘트 및 골재를 적재하고 현장으로 이동하여 재료를 공급하는 호퍼(hopper)장치(2)를 나타낸다. Referring to Figure 2, a hopper device (hopper) for loading stone sludge, cement and aggregate used in the mixing device (1) for backfill or subbase material of the above-described embodiment of the present invention and moving to the site to supply the materials ( It represents 2).

상기 호퍼장치(2)는 도로 굴착 복구 공사 현장에서의 배합 및 현장으로의 이동이 가능하도록 차량(50)의 화물적재공간(51)에 고정된 프레임 구조물(52)에 각각 설치된 석분슬러지용 호퍼(hopper)(60), 시멘트와 같은 분체를 수용하는 분체용 호퍼(70), 골재용 호퍼(80)를 포함한다. The hopper device (2) is a hopper ( hopper (60), a hopper (70) for powder that accommodates powder such as cement, and a hopper (80) for aggregate.

또한, 상기 각 호퍼(60,70,80)의 하부에 배치되도록 설치되어 수용된 재료를 투입시켜 차량 외부로 이송시키는 이송기(90) 및 상기 이송기(90)를 통하여 이송된 재료를 차량 외부로 토출시키는 토출기(100)를 포함하여 구성된다.In addition, a transfer device 90 is installed at the lower part of each hopper 60, 70, and 80 to input the received material and transfer it to the outside of the vehicle, and the material transferred through the transfer device 90 to the outside of the vehicle. It is configured to include an ejector 100 that discharges the liquid.

또한, 상기 호퍼(60,70,80)들과 이송기(90) 및 토출기(100)의 작동을 제어하는 제어반(110)이 구비된다.In addition, a control panel 110 is provided to control the operation of the hoppers 60, 70, and 80, the conveyor 90, and the ejector 100.

바람직하게는, 상기 각 호퍼(60,70,80)들은 외형이 마름모 또는 원뿔형 형상으로 이루어지며, 상기 이송기(90)는 내부에 재료를 이송시킬 수 있도록 스크류 또는 컨베이어가 설치되고, 상기 각 호퍼(61,70,80)들의 하부 배출구 측으로 이동가능하게 설치되는 것이 바람직하다.Preferably, each of the hoppers 60, 70, and 80 has a diamond or cone shape, and the conveyor 90 is installed with a screw or conveyor to transport materials therein, and each hopper It is desirable to be movably installed toward the lower discharge ports (61, 70, 80).

그리고, 상기 골재용 호퍼(80)는 상부에 불순물을 걸러내기 위한 메쉬(mesh) 및 스크린(screen)이 설치되는 것이 바람직하다.In addition, it is preferable that a mesh and a screen for filtering out impurities are installed at the top of the aggregate hopper 80.

또한, 상기 석분슬러지용 호퍼(60), 분체용 호퍼(70) 및 골재용 호퍼(80)에는 계량기가 설치되고, 바람직하게는, 상기 계량기로서 로드셀(Load cell)을 이용한다.In addition, a meter is installed in the hopper 60 for stone dust sludge, the hopper 70 for powder, and the hopper 80 for aggregate. Preferably, a load cell is used as the meter.

또한, 상기 토출기(100)는 유압식의 자동계폐장치를 구비하고, 석분슬러지를 활용한 CLSM 의 잔여물이 남지 않도록 토출 압력을 적절하게 설정하는 것이 바람직하다. In addition, the discharger 100 is preferably equipped with a hydraulic automatic closing device, and the discharge pressure is appropriately set so that no residue of CLSM using stone dust sludge remains.

다음으로, 상술한 되메움재 및 보조기층재를 이용한 도로 굴착 복구 공사시의 시공방법을 설명하기로 한다.Next, the construction method for road excavation and restoration work using the above-described backfill and subbase materials will be explained.

도 3 은 본 발명의 되메움재 및 보조기층재를 이용하여 시공된 도로의 단면 모식도이고, 도 4 는 본 발명의 시공방법의 순서도이다.Figure 3 is a cross-sectional schematic diagram of a road constructed using the backfill material and subbase material of the present invention, and Figure 4 is a flowchart of the construction method of the present invention.

도면을 참조하면, 본 발명의 되메움재 및 보조기층재를 이용하여 시공된 도로상 단면은, 도로상에 형성된 공동의 바닥면에 되메움재를 적층하여 되메움재층(F1)을 형성하고, 상기 되메움재층(F1)의 상측에 보조기층재를 적층하여 보조기층재층(F2)를 형성하고, 상기 보조기층재층(F2)의 상측에 아스팔트재를 적층하여 표층(F3)을 형성하는 구성이다.Referring to the drawing, a cross-section of a road constructed using the backfill and subbase material of the present invention is formed by stacking backfill on the bottom surface of a cavity formed on the road to form a backfill layer (F1), The subbase material layer (F2) is formed by laminating the subbase material layer on the backfill layer (F1), and the asphalt material is stacked on the upper side of the subbase material layer (F2) to form the surface layer (F3).

이하, 도 4 의 순서도를 참조하여 본 발명의 되메움재와 보조기층재를 이용한 도로 굴착 복구 공사의 시공방법을 개조식으로 설명하기로 한다.Hereinafter, with reference to the flow chart of FIG. 4, the construction method of road excavation and restoration work using the backfill material and subbase material of the present invention will be described in a modified form.

1) 되메움재층 형성 단계(S1)1) Backfill layer formation step (S1)

도로상에 굴착되어 일정한 높이를 형상한 공동의 바닥면에 시멘트 9~23 중량%, 물 30~35 중량%, 석분슬러지 47~56 중량% 을 혼합하여 이루어진 되메움재를 투입하여 일정한 높이로 되메움재층(F1)을 형성한다. Cement 9 to 23 is placed on the bottom of a cavity excavated on the road and shaped at a certain height.% by weight, 30-35% by weight of water, and 47-56% by weight of stone dust sludge are added to form a backfill layer (F1) at a certain height.

2) 보조기층재층 형성 단계(S2) 2) Subbase material layer formation step (S2)

상기 되메움재층(F1)의 상측으로 시멘트 11~18 중량%, 물 30~33 중량%, 석분슬러지 48~50 중량% 및 순환잔골재 4~10 중량% 을 혼합하여 이루어진 보조기층재를 투입하여 일정한 높이로 보조기층재층(F2)을 형성한다.A subbase material consisting of a mixture of 11 to 18% by weight of cement, 30 to 33% by weight of water, 48 to 50% by weight of stone dust sludge, and 4 to 10% by weight of recycled fine aggregate was added to the upper side of the backfill layer (F1) to maintain a constant height. A subbase material layer (F2) is formed.

또한, 선택적으로, 상기 되메움재층(F1)의 상측으로 시멘트 9~19 중량%, 물 13~15 중량%, 석분슬러지 41~45 중량% 및 굵은 골재 27~31 중량% 을 혼합하여 이루어진 보조기층재를 투입하여 일정한 높이로 보조기층재층(F2)을 형성할 수 있다. In addition, optionally, a subbase material made by mixing 9 to 19% by weight of cement, 13 to 15% by weight of water, 41 to 45% by weight of stone dust sludge, and 27 to 31% by weight of coarse aggregate on the upper side of the backfill layer (F1). The subbase material layer (F2) can be formed at a certain height by adding .

또한, 선택적으로, 상기 되메움재층(F1)의 상측으로 시멘트 14~21 중량%, 물 10~13 중량%, 급결재 1~3 중량%, 석분슬러지 41~44 중량%, 굵은 골재 27-29 중량% 을 혼합하여 이루어진 보조기층재를 투입하여 일정한 높이로 보조기층재층(F2)을 형성할 수 있다.Additionally, optionally, 14 to 21% by weight of cement, 10 to 13% by weight of water, 1 to 3% by weight of quick-setting material, 41 to 44% by weight of stone dust sludge, and 27-29% of coarse aggregate are added to the upper side of the backfill layer (F1). The subbase material layer (F2) can be formed at a certain height by adding subbase material mixed in % by weight.

3) 표층형성 단계(S3)3) Surface layer formation step (S3)

상기 보조기층재층(F2)의 상측으로 아스팔트재로 이루어진 표층(F3)을 형성한다.A surface layer (F3) made of asphalt material is formed on the upper side of the auxiliary base material layer (F2).

* 도면의 주요 부분에 대한 부호의 설명 *
1; 본 발명 혼합장치
2; 본 발명 호퍼장치
10; 혼합기
11; 유압탱크 12; 유압펌프
13; 유압실린더 14; 유압제어밸브
15; 보조엔진
20; 물 분사기
21; 물탱크
30; 제어반
40; 상하차 구조물
41; 프레임
50; 차량
51; 화물적재공간 52; 프레임 구조물
60; 석분슬러지용 호퍼
70; 분체용 호퍼
80; 골재용 호퍼
90; 이송기
100; 토출기
110; 제어반
* Explanation of symbols for main parts of the drawing *
One; Mixing device of the present invention
2; Hopper device of the present invention
10; mixer
11; Hydraulic tank 12; hydraulic pump
13; hydraulic cylinder 14; Hydraulic control valve
15; auxiliary engine
20; water sprayer
21; water tank
30; panel
40; loading and unloading structures
41; frame
50; vehicle
51; Cargo loading space 52; frame structure
60; Hopper for stone dust sludge
70; Hopper for powder
80; Hopper for aggregate
90; transfer machine
100; discharger
110; panel

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 되메움재 및 보조기층재를 이용한 도로 굴착 복구 공사의 시공방법에 있어서,
도로상에 굴착되어 일정한 높이를 형상한 공동의 바닥면에 시멘트 9~23 중량%, 물 30~35 중량%, 석분슬러지 47~56 중량%를 혼합하여 이루어진 되메움재를 투입하여 일정한 높이로 되메움재층(F1)을 형성하는 되메움재층 형성 단계(S1);
상기 되메움재층(F1)의 상측으로 시멘트 9~19 중량%, 물 13~15 중량%, 석분슬러지 41~45 중량% 및 굵은골재 27~31 중량%를 혼합하여 이루어진 보조기층재를 투입하여 일정한 높이로 보조기층재층(F2)을 형성하는 보조기층재층 형성 단계(S2);
상기 보조기층재층(F2)의 상측으로 아스팔트재로 표층(F3)을 형성하는 표층 형성 단계(S3); 를 포함하고,
상기 되메움재층 형성 단계(S1)에서 시멘트 9~23 중량%, 물 30~35 중량%, 석분슬러지 47~56 중량%는 혼합장치에 의해 혼합되어 상기 되메움재로 제조되고,
상기 보조기층재층 형성 단계(S2)에서 시멘트 9~19 중량%, 물 13~15 중량%, 석분슬러지 41~45 중량% 및 굵은골재 27~31 중량%는 상기 혼합장치에 의해 혼합되어 상기 보조기층재로 제조되고,
상기 혼합장치는 혼합기(10)와,
상기 혼합기(10)에 물을 투입하는 물 분사기(20)와,
혼합기(10)와 물분사기(20)의 작동을 제어하는 제어반(30)과,
상기 혼합기(10), 물분사기(20) 및 제어반(30)을 프레임(41)에 결합시킨 상하차 구조물(40)을 포함하여 구성되고,
상기 상하차 구조물(40)은 차량에 상하차가 용이하도록 철골 재질의 프레임(41)을 결합시켜 제작되고,
상기 되메움재층 형성 단계(S1)에서 되메움재는 호퍼장치에 의해 투입되고, 상기 상기 보조기층재층 형성 단계(S2)에서 상기 보조기층재는 상기 호퍼장치에 의해 투입되고,
차량(50)의 화물적재공간(51)에 고정된 프레임 구조물(52)에 각각 설치된 석분슬러지용 호퍼(hopper)(60), 분체용 호퍼(70) 및 골재용 호퍼(80)와,
상기 각 호퍼(60,70,80)의 하부에 배치되도록 설치되어 수용된 재료를 투입시켜 차량 외부로 이송시키는 이송기(90)와,
상기 이송기(90)를 통하여 이송된 재료를 차량 외부로 토출시키는 토출기(100)와,
상기 호퍼(60,70,80)들과 이송기(90) 및 토출기(100)의 작동을 제어하는 제어반(110)을 포함하는 것을 특징으로 하는 시공방법.
In the construction method of road excavation and restoration work using backfill and subbase materials,
Backfill made of a mixture of 9 to 23% by weight of cement, 30 to 35% by weight of water, and 47 to 56% by weight of stone dust sludge is added to the bottom of a cavity excavated on the road and shaped to a certain height to maintain a constant height. A backfilling layer forming step (S1) to form a filling layer (F1);
Subbase material consisting of a mixture of 9 to 19% by weight of cement, 13 to 15% by weight of water, 41 to 45% by weight of stone sludge, and 27 to 31% by weight of coarse aggregate is added to the upper side of the backfill layer (F1) to maintain a constant height. A subbase material layer forming step (S2) of forming a subbase material layer (F2);
A surface layer forming step (S3) of forming a surface layer (F3) with asphalt material on the upper side of the auxiliary base material layer (F2); Including,
In the backfill layer forming step (S1), 9 to 23% by weight of cement, 30 to 35% by weight of water, and 47 to 56% by weight of stone dust sludge are mixed by a mixing device to produce the backfill,
In the subbase layer forming step (S2), 9 to 19% by weight of cement, 13 to 15% by weight of water, 41 to 45% by weight of stone sludge, and 27 to 31% by weight of coarse aggregate are mixed by the mixing device to form the subbase material. It is manufactured with
The mixing device includes a mixer (10),
A water sprayer (20) for injecting water into the mixer (10),
A control panel (30) that controls the operation of the mixer (10) and the water sprayer (20),
It is configured to include a loading and unloading structure (40) combining the mixer (10), water sprayer (20), and control panel (30) with the frame (41),
The loading and unloading structure 40 is manufactured by combining a frame 41 made of steel to facilitate loading and unloading from the vehicle,
In the backfill layer forming step (S1), the backfill material is introduced by the hopper device, and in the subbase layer forming step (S2), the subbase material is introduced by the hopper device,
A hopper (60) for stone dust sludge, a hopper (70) for powder, and a hopper (80) for aggregates respectively installed on the frame structure (52) fixed to the cargo loading space (51) of the vehicle (50);
A transfer device (90) installed at the lower part of each of the hoppers (60, 70, and 80) to load the received materials and transfer them to the outside of the vehicle;
a discharger (100) that discharges the material transferred through the conveyor (90) to the outside of the vehicle;
A construction method comprising a control panel (110) that controls the operation of the hoppers (60, 70, 80), the conveyor (90), and the ejector (100).
삭제delete 삭제delete
KR1020230033212A 2023-03-14 2023-03-14 Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same KR102577695B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230033212A KR102577695B1 (en) 2023-03-14 2023-03-14 Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230033212A KR102577695B1 (en) 2023-03-14 2023-03-14 Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same

Publications (1)

Publication Number Publication Date
KR102577695B1 true KR102577695B1 (en) 2023-09-13

Family

ID=88020596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230033212A KR102577695B1 (en) 2023-03-14 2023-03-14 Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same

Country Status (1)

Country Link
KR (1) KR102577695B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280100A (en) * 2000-03-30 2001-10-10 Okumura Corp Back-filling shield excavator for existing tunnel
KR20020013459A (en) * 2001-12-28 2002-02-20 정혁규 Method of restoration about digging of paved road
KR101860943B1 (en) * 2017-06-29 2018-05-24 (주)케미우스코리아 Filling device for ground hole using rapid hardening and pseudo-plastic backfill material and filling method using that
KR20180056265A (en) * 2016-11-18 2018-05-28 조현준 Pavement and manufacturing method thereof
KR102133769B1 (en) * 2020-01-16 2020-07-15 제주국제대학교 산학협력단 fast constructing fluid filler composition using the recycled resource and construction methods thereof
KR102144340B1 (en) * 2019-10-22 2020-08-14 삼성물산 주식회사 High Flow-Low Strength Filler Composition Using Industrial Byproducts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280100A (en) * 2000-03-30 2001-10-10 Okumura Corp Back-filling shield excavator for existing tunnel
KR20020013459A (en) * 2001-12-28 2002-02-20 정혁규 Method of restoration about digging of paved road
KR20180056265A (en) * 2016-11-18 2018-05-28 조현준 Pavement and manufacturing method thereof
KR101860943B1 (en) * 2017-06-29 2018-05-24 (주)케미우스코리아 Filling device for ground hole using rapid hardening and pseudo-plastic backfill material and filling method using that
KR102144340B1 (en) * 2019-10-22 2020-08-14 삼성물산 주식회사 High Flow-Low Strength Filler Composition Using Industrial Byproducts
KR102133769B1 (en) * 2020-01-16 2020-07-15 제주국제대학교 산학협력단 fast constructing fluid filler composition using the recycled resource and construction methods thereof

Similar Documents

Publication Publication Date Title
CN108529966B (en) Seepage-proofing anti-cracking pumped concrete component design method and pouring forming method
EA020904B1 (en) Composite concrete for floor slabs and rafts
KR102021116B1 (en) Moltal agent and compaction grouting method thereby
Adamu et al. Optimizing the mechanical properties of pervious concrete containing calcium carbide and rice husk ash using response surface methodology
CN102659370A (en) Mineral admixture concrete and preparation method thereof
SK283995B6 (en) Chemical agent for improving the engineering properties of soil
EP1392614A1 (en) Aggregate for concrete and construction
KR102577695B1 (en) Backfilling composition and auxiliary base material composition using stone dust sludge for the road excavation restoration work, road paving system, and construction method using the same
KR20110045862A (en) Lightweight flowable fills and reclamation method using thereof
Ismail et al. Study of lightweight concrete behaviour
DE2541747A1 (en) Strong porous concrete for underwater constructions - withstanding press. of underground waters and erosion by waves
CN113265923B (en) Road base material of solidified gangue and manufacturing and construction method
CN114605119A (en) Anti-freezing and anti-cracking concrete
CN114315273A (en) Sandstone bone material system concrete and preparation method and application thereof
CN113929402A (en) Goaf filling method
KR100549973B1 (en) A sidewalk block and method of making it with waste concrete
CN114292064A (en) Semi-rigid base course of cement stabilized iron tailing road surface
KR101833676B1 (en) Manufacturing method for ground paving materials using bottom ash
Karasawa et al. Application of fly ash to concrete paving block
JP2004218337A (en) Soil-cement wall reclamation material
KR102504010B1 (en) A manufacturing device for a composition for strengthening soft ground and a construction method using the composition for strengthening the ground
KR101041207B1 (en) A loess pavement composition, manufacturing method and method for paving load using the same
Saidumov et al. Technogenic byproduct filler-based earthquake-resistant super concrete
KR102525169B1 (en) Cement strength enhancer and composion thereof
JP2003002725A (en) Construction material using site generated rock material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant