KR102574101B1 - Method of preparing catalyst which MOF structure applied for watergas shift reaction - Google Patents

Method of preparing catalyst which MOF structure applied for watergas shift reaction Download PDF

Info

Publication number
KR102574101B1
KR102574101B1 KR1020220154762A KR20220154762A KR102574101B1 KR 102574101 B1 KR102574101 B1 KR 102574101B1 KR 1020220154762 A KR1020220154762 A KR 1020220154762A KR 20220154762 A KR20220154762 A KR 20220154762A KR 102574101 B1 KR102574101 B1 KR 102574101B1
Authority
KR
South Korea
Prior art keywords
delete delete
catalyst
temperature
reaction
water gas
Prior art date
Application number
KR1020220154762A
Other languages
Korean (ko)
Other versions
KR102574101B9 (en
Inventor
정대운
김학민
박민주
진홍덕
윤영식
Original Assignee
창원대학교 산학협력단
주식회사 현진이엔피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단, 주식회사 현진이엔피 filed Critical 창원대학교 산학협력단
Priority to KR1020220154762A priority Critical patent/KR102574101B1/en
Application granted granted Critical
Publication of KR102574101B1 publication Critical patent/KR102574101B1/en
Publication of KR102574101B9 publication Critical patent/KR102574101B9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a manufacturing method of a catalyst for a water gas transfer reaction using a metal organic structure, and more specifically, to a manufacturing method of a catalyst for a water gas transfer reaction using a metal organic structure, as a to a manufacturing method of a catalyst for a water gas transfer reaction, which comprises: a first step of manufacturing a cerium support based on an organic metal structure; and a second step of supporting a transition metal on the support.

Description

금속유기구조체 적용 수성가스 전이반응용 촉매의 제조방법{Method of preparing catalyst which MOF structure applied for watergas shift reaction}Method of preparing catalyst which MOF structure applied for watergas shift reaction}

본 발명은 금속유기구조체 적용 수성가스 전이반응용 촉매의 제조방법에 관한 것이다. 본 발명은 주식회사 현진이엔피의 지원을 받아 수행된 폐플라스틱 유래 수소생산기술 개발의 연구결과이다. 또한 본 발명은 중소벤처기업부에서 지원하는 2022년도 산학연 플랫폼 협력기술개발사업의 연구수행으로 인한 결과물이며, 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2022R1F1A1074648)의 성과물이다. The present invention relates to a method for preparing a catalyst for a water gas transfer reaction applied to a metal organic structure. The present invention is a research result of the development of waste plastic-derived hydrogen production technology carried out with the support of Hyunjin ENP. In addition, the present invention is the result of the research of the 2022 Industry-University-Institute Platform Cooperation Technology Development Project supported by the Ministry of SMEs and Startups, and the basic research project (No. 2022R1F1A1074648).

최근 들어 수소를 에너지원으로 이용하기 위한 연료전지 기술이 여러 분야에서 개발되고 있으며, 특히 수소를 이용하여 발전하는 연료전지 기술 중 고체 고분자 연료전지(PEMFC)는 기술의 완성도가 높아 가정용 열병합시스템으로 상용화에 근접하였으며, 일본 및 미국을 중심으로 가정용 연료전지 보급사업을 시작하고 있는 추세이다.Recently, fuel cell technology for using hydrogen as an energy source has been developed in various fields. In particular, among fuel cell technologies that generate power using hydrogen, PEMFC has been commercialized as a home heat and power cogeneration system due to its high degree of technological maturity. is approaching, and the trend is to start household fuel cell supply business centered on Japan and the United States.

수소는 연료전지의 연료극 반응에서 일어나는 전기화학 반응에 있어서 가장 반응성이 뛰어나고 산소와 반응한 후, 물을 생성하여 공해 물질을 배출하지 않기 때문에 연료전지의 연료로 가장 적합하다. 하지만 수소는 자연상태에서 거의 존재하지 않기 때문에 연료전지에 사용하기 위해서는 다른 연료 자원으로부터 생산하여야만 한다.Hydrogen is the most suitable fuel for fuel cells because it is most reactive in electrochemical reactions occurring in the anode reaction of fuel cells and does not emit pollutants by generating water after reacting with oxygen. However, since hydrogen hardly exists in nature, it must be produced from other fuel sources for use in fuel cells.

일반적으로 수소는 물의 전기 분해, 생물학적 방법 등 여러 가지 기술로 생산할 수 있지만 현재까지 가장 경제적으로 수소를 대량생산할 수 있는 방법은 천연가스, 가솔린과 같은 화석연료를 개질하여 생산하는 방법이다.In general, hydrogen can be produced by various technologies such as electrolysis of water and biological methods, but the most economical way to mass-produce hydrogen is to reform fossil fuels such as natural gas and gasoline.

가정용 연료전지의 경우에는 이미 기반시설이 구축된 도시 가스가 이용될 수 있다. 여러 종류의 화석연료 중에 대량 생산 및 공급의 용이성, 에너지 밀도, 개질의 용이성, 경제성 등을 고려할 경우 현재까지 가장 주목을 받는 연료는 천연 가스, 가솔린, 메탄올 등이다.In the case of household fuel cells, city gas for which infrastructure has already been built can be used. Among various types of fossil fuels, natural gas, gasoline, methanol, and the like are the fuels that have received the most attention so far when considering ease of mass production and supply, energy density, ease of reforming, and economic feasibility.

천연가스는 다른 화석연료에 비해 비교적 풍부한 매장량을 가지고 있는 연료로 주성분이 메탄으로 되어 있다.Natural gas is a fuel with relatively abundant reserves compared to other fossil fuels, and its main component is methane.

따라서 매우 경제적이며 천연가스의 수증기 개질은 가장 경제적인 수소 생산 방법으로 알려져 있다. 비교적 높은 온도인 500℃ 이상에서 개질이 일어나며 주성분이 메탄이기 때문에 수소 생산량에 비해 탄소화합물이 적게 배출된다는 장점을 가지고 있다. 또한 도시 가스와 같은 기존의 기반시설을 이용할 수 있기 때문에 추가의 기반시설의 구축 없이 가정용 연료전지 그리고 대용량 발전용 연료전지에 공급될 수 있다는 장점도 있다.Therefore, it is very economical and steam reforming of natural gas is known as the most economical hydrogen production method. Reformation takes place at a relatively high temperature of 500 ° C or higher, and since the main component is methane, it has the advantage that less carbon compounds are emitted compared to hydrogen production. In addition, since existing infrastructure such as city gas can be used, there is an advantage that it can be supplied to household fuel cells and fuel cells for large-capacity power generation without building additional infrastructure.

그러나 수증기 개질과정에서, 개질기(STR)로부터 배출되는 일산화탄소의 농도는 일반적으로 약 7 내지 13%로서 상당히 높은 수준이므로 이를 낮추기 위한 반응공정으로 수성가스 전이(water gas shift) 반응이 필요하다. 수증기 개질 반응에서 부산물로 생성되는 일산화탄소는, 수소 연료전지에서 불순물로 작용하여 촉매의 성능을 급격히 저하시킨다. 따라서, 일산화탄소 농도를 낮추고 수소의 생성을 증가시킬 수 있는 수성가스 전이반응 공정은 수증기 개질기에 있어서 필연적인 공정이다.However, in the steam reforming process, the concentration of carbon monoxide emitted from the reformer (STR) is generally about 7 to 13%, which is quite high, so a water gas shift reaction is required as a reaction process to lower it. Carbon monoxide, which is produced as a by-product in the steam reforming reaction, acts as an impurity in a hydrogen fuel cell and rapidly degrades the performance of the catalyst. Therefore, the water gas shift reaction process capable of lowering the carbon monoxide concentration and increasing the production of hydrogen is an inevitable process in the steam reformer.

이 반응은 1차로 생성된 일산화탄소가 수증기와 반응함으로써 이산화탄소로 전환됨과 동시에 수소 농도를 증가시키게 되며 반응식은 아래와 같다.In this reaction, the primarily produced carbon monoxide reacts with water vapor to convert to carbon dioxide and simultaneously increase the hydrogen concentration, and the reaction formula is as follows.

CO + H2O → CO2 + H2 (발열반응)CO + H 2 O → CO 2 + H 2 (exothermic reaction)

상기 반응은 발열반응이므로 높은 전환율을 얻기 위해서는 저온반응이 유리하며, 압력에는 영향을 받지 않는다. 이러한 열역학적 제한을 줄이기 위한 보편적인 방법으로서, 반응기를 2단계(고온전이공정(HTS)-저온전이공정(LTS))로 운영하게 되는데, 전자는 반응 속도를 높이는 것이 주목적이며, 후자의 저온 공정은 상기한 바와 같이 발열 반응에 있어서 높은 전환율을 얻기 위함이다. 저온전이공정을 거치는 구체적인 이유로는, 수성가스 전이반응의 전환율은 평형전환율(equilbrium conversion)의 지배를 받아 온도와 압력에 의해 반응 조성이 결정되며, 이 경우 발열반응이므로 온도가 높으면 역반응이 진행되어 수소를 소모하여 일산화탄소를 생성하게 되기 때문에 저온에서 수행되는 것이 바람직하다. 일반적인 2단 반응기의 사용온도는 고온전이공정의 경우 300 ~ 450℃ 근처이며, 저온전이공정의 경우 180 ~ 280℃ 근처이다.Since the above reaction is an exothermic reaction, a low-temperature reaction is advantageous in order to obtain a high conversion rate and is not affected by pressure. As a universal method for reducing these thermodynamic limitations, the reactor is operated in two steps (high temperature transition process (HTS) - low temperature transition process (LTS)). The former aims to increase the reaction rate, and the latter low temperature process This is to obtain a high conversion rate in the exothermic reaction as described above. The specific reason for going through the low-temperature transition process is that the conversion rate of the water gas shift reaction is governed by the equilibrium conversion rate, and the reaction composition is determined by temperature and pressure. Since carbon monoxide is produced by consuming it, it is preferably performed at a low temperature. The operating temperature of a general two-stage reactor is around 300 ~ 450 ℃ in the case of a high temperature transition process, and around 180 ~ 280 ℃ in the case of a low temperature transition process.

이러한 2단 반응기에서 대표적으로 상용화되고 있는 고온전이(HTS)촉매로는 8 ~ 15 중량%의 CrO3가 포함된 Fe3O4 가 사용되고 있으며, 여기서 산화크롬은 산화철이 고온에서 소결(sintering)이 일어나지 않도록 하여 철 표면적이 감소되는 것을 방지시켜주는 역할을 한다. HTS 촉매는 황 성분에 대한 내구성과 기계적 강도에 대한 선택도를 향상하기 위해 산화마그네슘 및 산화아연을 부가적으로 첨가하기도 한다.Fe 3 O 4 containing 8 to 15% by weight of CrO 3 is used as a typical commercially available high-temperature transition (HTS) catalyst in these two-stage reactors, where chromium oxide is iron oxide that is sintered at high temperature. It plays a role in preventing the reduction of the iron surface area by preventing this from occurring. In the HTS catalyst, magnesium oxide and zinc oxide are additionally added to improve durability and selectivity for mechanical strength against sulfur components.

저온전이(LTS) 촉매는 주로 Cu와 Zn계로 구성되어 있으며, 일반적으로 금속질산화합물과 탄산나트륨 수용액을 사용하여 제조한다. 산업용에서는 대부분 Cu/ZnO/Al2O3계 산화물 촉매를 가장 많이 사용하고 있고, ICI사에 의해 개발된 LTS 촉매는 30 중량%의 CuO, 45 중량%의 ZnO, 13 중량%의 Al2O3로 구성되어 있다.Low-temperature transition (LTS) catalysts are mainly composed of Cu and Zn, and are generally prepared using a metal oxide compound and an aqueous solution of sodium carbonate. In industrial use, Cu/ZnO/Al 2 O 3 -based oxide catalysts are most commonly used, and the LTS catalyst developed by ICI contains 30% by weight of CuO, 45% by weight of ZnO, and 13% by weight of Al 2 O 3 It consists of

최근 발표된 여러 종류의 수성전이반응(WGS reaction, water gas shift reaction)용 촉매 중에 산화세륨(CeO2)에 Pt, Pd, Ru, Ni 등을 담지한 촉매가 WGS(water gas shift) 반응에 반응 활성이 우수하다고 보고되어 있다.Among several recently announced catalysts for water gas shift reaction (WGS reaction), catalysts carrying Pt, Pd, Ru, Ni, etc. on cerium oxide (CeO2) are active in WGS (water gas shift) reaction. It is reported to be excellent.

세리아(산화세륨, ceria)가 높은 활성을 보이는 이유는 높은 산소저장용량(oxygen storage capacity)과 산소 이동도(oxygen mobility)를 갖고 있기 때문이다.The reason ceria shows high activity is that it has high oxygen storage capacity and oxygen mobility.

또한 수소의 효율적인 활용을 위해서는 현장에서 수소를 생산할 수 있는 컴팩트 개질기가 필요하다. 현장 생산형 수소를 만들기 위한 컴팩트 개질기의 수성가스 반응기는 공간적 제약으로 인해 높은 처리용량을 요구한다. 현재 대용량 수소생산을 위한 개질기의 수성가스 전이반응에서 사용되는 상용 촉매는 높은 처리용량에서 낮은 활성 및 안정성을 나타내고 있다. In addition, for efficient use of hydrogen, a compact reformer capable of producing hydrogen on site is required. The compact reformer's water gas reactor for producing on-site hydrogen requires high throughput due to space constraints. Currently, commercial catalysts used in the water gas transfer reaction of a reformer for large-capacity hydrogen production show low activity and stability at high processing capacity.

우수한 성능의 수성가스전이 반응용 촉매를 개발하기 위해서는 높은 표면적과 Cu분산도를 지닌 촉매를 제조하여야 한다.In order to develop a catalyst for water gas shift reaction with excellent performance, it is necessary to prepare a catalyst with a high surface area and Cu dispersion.

금속 유기 구조체(Metal organic framework, 이하 MOF)는 유기 및 무기 물질의 결합을 통해 높은 표면적과 균일한 형태를 나타낸다. 그러나 MOF에 포함된 탄소 성분은 촉매의 비활성화 원인인 탄소침적을 유발할 수 있으며, 열적 안정성을 저하시킬 수 있다. A metal organic framework (MOF) exhibits a high surface area and uniform shape through a combination of organic and inorganic materials. However, the carbon component included in the MOF may cause carbon deposition, which is a cause of deactivation of the catalyst, and may deteriorate thermal stability.

따라서, MOF 구조체의 탄소 성분은 제거하고 구조적인 특성을 활용할 수 있는 수성가스 전이반응용 촉매의 개발이 요구되었다. Therefore, the development of a catalyst for water gas shift reaction that can remove the carbon component of the MOF structure and utilize the structural characteristics has been required.

대한민국 등록특허 제10-0976789호Republic of Korea Patent No. 10-0976789 일본 등록특허 제6626023호Japanese Patent Registration No. 6626023 대한민국 등록특허 제10-2023267호Republic of Korea Patent No. 10-2023267 대한민국 등록특허 제10-2218762호Republic of Korea Patent No. 10-2218762 대한민국 공개특허 제10-2007-0067457호Republic of Korea Patent Publication No. 10-2007-0067457

따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, MOF 구조체를 활용한 수성가스전이 반응용 Cu/CeO2 촉매 제조방법을 제공하는데 그 목적이 있다. Therefore, the present invention has been made to solve the above conventional problems, and according to an embodiment of the present invention, an object of the present invention is to provide a method for preparing a Cu / CeO 2 catalyst for water gas shift reaction using a MOF structure. .

본 발명의 실시예에 따르면, 수성가스전이 반응에 적용이 용이한 MOF 구조체를 갖는 CeO2 담체를 확보하고, 컴팩트 개질기에 필요한 높은 처리용량에서도 우수한 성능을 나타내는 수성가스전이 반응용 Cu/CeO2 촉매를 제공하는데 그 목적이 있다. According to an embodiment of the present invention, a Cu/CeO 2 catalyst for water gas shift reaction secures a CeO 2 support having a MOF structure that is easily applicable to water gas shift reaction and exhibits excellent performance even at a high capacity required for a compact reformer. Its purpose is to provide

한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned will become clear to those skilled in the art from the description below. You will be able to understand.

본 발명의 제1목적은 수성가스 전이반응용 촉매의 제조방법으로서, 유기금속구조체 기반 세륨 지지체를 제조하는 제1단계; 및 상기 지지체에 전이금속을 담지시키는 제2단계;를 포함하는 것을 특징으로 하는 금속유기구조체 적용 수성가스 전이반응용 촉매의 제조방법으로서 달성될 수 있다. A first object of the present invention is a method for preparing a catalyst for water gas shift reaction, comprising: a first step of preparing a cerium support based on an organometallic structure; And a second step of supporting the transition metal on the support; it can be achieved as a method for producing a catalyst for water gas shift reaction applied to a metal-organic structure, characterized in that it comprises a.

그리고 상기 제1단계는, 트라이메스산과 질산세륨수화물을 수열합성하는 것을 특징으로 할 수 있다. And, the first step may be characterized by hydrothermal synthesis of trimesic acid and cerium nitrate hydrate.

또한 트라이메스산과 질산세륨수화물을 디메틸포름아미드에 녹여 수열합성반응기에서 130~ 150℃의 온도로 22 ~ 26시간 유지시키는 것을 특징으로 할 수 있다. In addition, trimesic acid and cerium nitrate hydrate may be dissolved in dimethylformamide and maintained at a temperature of 130 to 150 ° C. for 22 to 26 hours in a hydrothermal synthesis reactor.

그리고 수열합성후, 원심분리기를 통해 세척하는 단계와, 건조단계와, 소성단계를 진행하는 것을 특징으로 할 수 있다. And after the hydrothermal synthesis, it may be characterized in that a step of washing through a centrifugal separator, a drying step, and a firing step are performed.

또한 상기 건조단계는 90 ~ 110℃에서 11 ~ 13시간 진행되고, 상기 소성단계는 200~ 800℃에서 5 ~ 7시간 진행하여 MOF 기반 CeO2 지지체를 제조하는 것을 특징으로 할 수 있다. In addition, the drying step is performed at 90 to 110 ° C. for 11 to 13 hours, and the firing step is performed at 200 to 800 ° C. for 5 to 7 hours to prepare the MOF-based CeO 2 support.

그리고 상기 제2단계에서, 상기 지지체와 질산제이구리수화물을 에탄올에 녹이고 암모니아를 첨가하여 교반하는 것을 특징으로 할 수 있다. And in the second step, it may be characterized in that the support and cupric nitrate hydrate are dissolved in ethanol, and ammonia is added and stirred.

또한 교반시키며 승온하고 70 ~ 80℃에 도달한 시점부터 100 ~ 140분 숙성하는 것을 특징으로 할 수 있다. In addition, it may be characterized in that the temperature is raised while stirring and aged for 100 to 140 minutes from the time of reaching 70 to 80 ° C.

그리고 숙성 후, 세척 여과 단계와, 건조단계와 소성단계를 진행하는 것을 특징으로 할 수 있다. And after aging, it may be characterized in that a washing and filtering step, a drying step and a firing step are performed.

또한 상기 세척 여과단계는 에탄올을 이용하여 감압여과기로 세척하며 여과하고, 상기 건조단계는 90 ~ 110℃에서 100 ~ 140분 진행되는 것을 특징으로 할 수 있다. In addition, the washing and filtration step may be characterized in that washing and filtering with a vacuum filter using ethanol, and the drying step is performed at 90 to 110 ° C. for 100 to 140 minutes.

그리고 상기 소성단계는, 350 ~ 450℃에서 320 ~ 400분 진행되는 것을 특징으로 할 수 있다. In addition, the firing step may be performed at 350 to 450° C. for 320 to 400 minutes.

본 발명의 제2목적은 앞서 언급한 제 1목적에 따라 제조된 것을 특징으로 하는 금속유기구조체 적용 수성가스 전이반응용 촉매로서 달성될 수 있다. A second object of the present invention can be achieved as a catalyst for water gas transfer reaction applied to a metal organic structure, characterized in that it is prepared according to the first object mentioned above.

그리고 금속유기구조체 적용 수성가스 전이반응용 촉매는 반응온도 360 ℃, 처리용량 50,233 mL·gcat -1·h-1의 반응 조건에서 75%이상의 CO전환율을 갖는 것을 특징으로 할 수 있다. In addition, the catalyst for water gas transfer reaction applied to the metal organic structure may be characterized by having a CO conversion rate of 75% or more under reaction conditions of a reaction temperature of 360 ° C and a treatment capacity of 50,233 mL·g cat -1 ·h -1 .

본 발명의 실시예에 따르면, MOF 구조체를 활용한 수성가스전이 반응용 Cu/CeO2 촉매 제조방법을 제공할 수 있다. According to an embodiment of the present invention, it is possible to provide a method for preparing a Cu/CeO 2 catalyst for water gas shift reaction using a MOF structure.

본 발명의 실시예에 따른 수성가스 전이반응을 위한 금속유기구조체 적용 촉매의 제조방법에 따르면, 수성가스전이 반응에 적용이 용이한 MOF 구조체를 갖는 CeO2 담체를 확보하고, 컴팩트 개질기에 필요한 높은 처리용량에서도 우수한 성능을 가질 수 있는 효과를 갖는다. According to the method for preparing a metal organic structure-applied catalyst for water gas shift reaction according to an embodiment of the present invention, a CeO 2 support having a MOF structure that can be easily applied to water gas shift reaction is secured, and high processing required for a compact reformer is obtained. It has the effect of having excellent performance even in capacity.

한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1 및 도 2는 본 발명의 실시예에 따른 수성가스 전이반응을 위한 금속유기구조체 적용 촉매의 제조방법의 흐름도,
도 3은 본 발명의 실시예에 따라 제조된 금속유기구조체 적용 Cu/CeO2 촉매의 전자현미경 이미지,
도 4는 본 발명의 실시예에 따른 MOF 기반 CeO2 지지체 제조방법의 흐름도,
도 5는 본 발명의 실시예에 따른 Cu 담지방법의 흐름도,
도 6은 본 발명의 실험예에 따른 수성가스 전이반응실험 구성도,
도 7은 본 발명의 실험예에 따른, 본 발명의 금속유기구조체 적용 Cu/CeO2 촉매의 CO전환율 그래프를 도시한 것이다.
The following drawings attached to this specification illustrate preferred embodiments of the present invention, and together with the detailed description of the invention serve to further understand the technical idea of the present invention, the present invention is limited only to those described in the drawings. and should not be interpreted.
1 and 2 are flowcharts of a method for preparing a catalyst applied to a metal organic structure for water gas transfer reaction according to an embodiment of the present invention;
3 is an electron microscope image of a Cu/CeO 2 catalyst applied with a metal organic structure prepared according to an embodiment of the present invention;
4 is a flowchart of a method for manufacturing a MOF-based CeO 2 scaffold according to an embodiment of the present invention;
5 is a flowchart of a Cu supporting method according to an embodiment of the present invention;
6 is a water gas transfer reaction test configuration diagram according to an experimental example of the present invention;
7 shows a graph of CO conversion of the metal organic structure-applied Cu/CeO 2 catalyst of the present invention according to an experimental example of the present invention.

이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be easily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content will be thorough and complete and the spirit of the present invention will be sufficiently conveyed to those skilled in the art.

본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In this specification, when an element is referred to as being on another element, it means that it may be directly formed on the other element or a third element may be interposed therebetween. Also, in the drawings, the thickness of components is exaggerated for effective description of technical content.

본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서 도면에서 예시된 영역들은 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.Embodiments described in this specification will be described with reference to cross-sectional views and/or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical content. Accordingly, the shape of the illustrated drawings may be modified due to manufacturing techniques and/or tolerances. Therefore, embodiments of the present invention are not limited to the specific shape shown, but also include changes in the shape generated according to the manufacturing process. For example, a region shown at right angles may be rounded or have a predetermined curvature. Accordingly, the regions illustrated in the drawings have attributes, and the shapes of the regions illustrated in the drawings are intended to illustrate a specific shape of a region of a device and are not intended to limit the scope of the invention. Although terms such as first and second are used to describe various elements in various embodiments of the present specification, these elements should not be limited by these terms. These terms are only used to distinguish one component from another. Embodiments described and illustrated herein also include complementary embodiments thereof.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.Terminology used herein is for describing the embodiments and is not intended to limit the present invention. In this specification, singular forms also include plural forms unless specifically stated otherwise in a phrase. The terms 'comprises' and/or 'comprising' used in the specification do not exclude the presence or addition of one or more other elements.

아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.In describing the specific embodiments below, several specific contents are prepared to more specifically describe the invention and aid understanding. However, readers who have knowledge in this field to the extent that they can understand the present invention can recognize that it can be used without these various specific details. In some cases, it is mentioned in advance that parts that are commonly known in describing the invention and are not greatly related to the invention are not described in order to prevent confusion for no particular reason in explaining the present invention.

이하에서는 본 발명의 실시예에 따른 수성가스 전이반응을 위한 금속유기구조체 적용 촉매의 제조방법 및 구성에 대해 설명하도록 한다. Hereinafter, a manufacturing method and configuration of a catalyst applied to a metal organic structure for a water gas transfer reaction according to an embodiment of the present invention will be described.

먼저, 도 1 및 도 2는 본 발명의 실시예에 따른 수성가스 전이반응을 위한 금속유기구조체 적용 촉매의 제조방법의 흐름도를 도시한 것이다. 그리고 도 3은 본 발명의 실시예에 따라 제조된 금속유기구조체 적용 Cu/CeO2 촉매의 전자현미경 이미지를 도시한 것이다. First, FIGS. 1 and 2 show a flow chart of a method for preparing a catalyst applied to a metal organic structure for a water gas shift reaction according to an embodiment of the present invention. And Figure 3 shows an electron microscope image of the metal organic structure applied Cu / CeO 2 catalyst prepared according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 수성가스 전이반응용 촉매는 전체적으로 유기금속구조체(이하 MOF)기반 CeO2 지지체를 제조하는 단계(S1)와, 이러한 지지체에 구리를 담지시키는 단계(S2)를 포함하여 구성된다. As shown in FIG. 1, the catalyst for water gas transfer reaction according to an embodiment of the present invention includes preparing an organic metal structure (hereinafter referred to as MOF)-based CeO 2 support as a whole (S1), and supporting copper on the support It is configured to include step S2.

이하에서는 MOF 기반 CeO2 지지체를 제조하는 본 발명의 구체적 실시예에 대해 설명하도록 한다. 도 4는 본 발명의 실시예에 따른 MOF 기반 CeO2 지지체 제조방법의 흐름도를 도시한 것이다. Hereinafter, specific embodiments of the present invention for preparing a MOF-based CeO2 scaffold will be described. 4 is a flowchart of a method for manufacturing a MOF-based CeO 2 scaffold according to an embodiment of the present invention.

먼저, 트라이메스산과 질산세륨수화물을 수열합성한다. 구체적으로, 10 mmol의 트라이메스산(Trimesic acid(H3-BTC)) 2.1g과, 10 mmol의 질산세륨수화물(Cerium (III) nitrate hexahydrate) 4.34g을 60 mL의 디메틸포름아미드(DMF)에 녹이고(S11), 130 ~ 150 oC에서 수열합성반응기(hydrothermal reactor)로 24시간동안 유지한다(S12). First, trimesic acid and cerium nitrate hydrate are hydrothermally synthesized. Specifically, 2.1 g of 10 mmol of trimesic acid (H 3 -BTC) and 4.34 g of 10 mmol of cerium (III) nitrate hexahydrate were mixed in 60 mL of dimethylformamide (DMF). Melt (S11), and maintain for 24 hours in a hydrothermal reactor at 130 ~ 150 ° C (S12).

그리고 수열합성 후의 용액을 증류수와 에탄올로 세척하며(S13), 이러한 세척은 원심분리기를 사용하여 수행하게 된다. 구체적으로 원심분리기를 통해 50 mL의 DMF로 3회 세척, 50 mL의 아세톤으로 3회 세척을 진행한다. And the solution after hydrothermal synthesis is washed with distilled water and ethanol (S13), and this washing is performed using a centrifuge. Specifically, washing is performed three times with 50 mL of DMF and three times with 50 mL of acetone through a centrifuge.

그리고 건조 오븐을 사용하여 세척 후 회수한 분말(Powder)을 100 oC로 12시간 동안 건조시킨다(S14). Then, the powder recovered after washing is dried using a drying oven at 100 ° C for 12 hours (S14).

그리고 건조된 분말을 200~800 oC에서 6시간 동안 소성시켜 MOF 기반 CeO2 담체(Ce-BTC)를 제조한다(S15). Then, the dried powder is calcined at 200 to 800 ° C for 6 hours to prepare a MOF-based CeO 2 carrier (Ce-BTC) (S15).

구체적인 온도별 소성방법은, 먼저, 소성하지 않은 Ce-BTC 1.5g 을 도가니에 담아 준비한다. 1h동안 110℃까지 승온 한 후, 1h 동안 유지한다(STEP 1).For the specific firing method for each temperature, first, prepare 1.5 g of unfired Ce-BTC in a crucible. After raising the temperature to 110 ° C. for 1 h, it is maintained for 1 h (STEP 1).

그리고 목표온도까지 승온시킨 후, 6시간동안 유지한다(STEP 2). 이때 1℃/min 승온율로 110℃부터 목표온도까지 승온하게 된다. 목표온도는 200 ~ 800℃이다. 그리고 25℃까지 약 1시간에 걸쳐 온도를 하강시키고 약 1시간 동안 유지한다. And after raising the temperature to the target temperature, it is maintained for 6 hours (STEP 2). At this time, the temperature is raised from 110 ° C to the target temperature at a heating rate of 1 ° C / min. The target temperature is 200 ~ 800 ℃. Then, the temperature is lowered to 25° C. over about 1 hour and maintained for about 1 hour.

이하에서는 MOF 기반 CeO2 지지체에 Cu를 담지시켜 촉매를 제조하는 본 발명의 구체적 실시예에 대해 설명하도록 한다.도 5는 본 발명의 실시예에 따른 Cu 담지방법의 흐름도를 도시한 것이다. Hereinafter, a specific embodiment of the present invention in which a catalyst is prepared by supporting Cu on a MOF-based CeO 2 support will be described. FIG. 5 is a flowchart of a method for supporting Cu according to an embodiment of the present invention.

제조된 MOF 기반 CeO2 지지체 0.450g과 Cu(NO3)2·xH2O(질산제이구리수화물 (Copper nitrate hydrate)) 0.1328g을 삼목플라스크에 넣고(S21), 에탄올 250 mL과 암모니아 0.59 mL를 삼목플라스크에 첨가한다(S22). 즉, 금속유기구조체 적용 수성가스 전이반응용 촉매에서 구리의 담지량은 8 ~ 10중량% 정도의 범위를 갖는다.0.450 g of the prepared MOF-based CeO 2 scaffold and 0.1328 g of Cu(NO 3 ) 2 xH 2 O (Copper nitrate hydrate) were put into a cedar flask (S21), and 250 mL of ethanol and 0.59 mL of ammonia were added thereto. It is added to the cedar flask (S22). That is, the supported amount of copper in the metal organic structure-applied catalyst for water gas transfer reaction has a range of about 8 to 10% by weight.

그리고, 교반시키며 승온하고 70 ~ 80 ℃에 도달한 시점부터 2시간 동안 숙성한다(S23).Then, while stirring, the temperature is raised and aged for 2 hours from the time of reaching 70 ~ 80 ℃ (S23).

그리고 고체상 물질과 에탄올 15L을 동시에 부으며 세척하여 여과한다(S24). 세척은 감압여과기를 사용하여 수행한다. Then, the solid material and 15L of ethanol are poured at the same time, washed, and filtered (S24). Washing is performed using a vacuum filter.

그리고 회수한 고체는 건조 오븐에서 100 ℃로 2시간 건조시킨 후(S25), 400 ℃에서 4시간 동안 소성시킨다(S26). And the recovered solid is dried in a drying oven at 100 ° C. for 2 hours (S25), and then calcined at 400 ° C. for 4 hours (S26).

구체적인 온도별 소성방법은, 먼저, STEP 01 : 110℃ 까지 1시간에 걸쳐 승온시킨 후, 1시간을 유지한다(STEP 1). 그리고 1시간에 걸쳐 400 ℃까지 승온시킨 후, 6시단 동안 유지하고(STEP2), 1시간에 걸쳐 25 ℃까지 온도를 하강시킨 후, 1시간동안 유지한다. In the specific firing method for each temperature, first, STEP 01: The temperature is raised to 110 ° C over 1 hour, and then maintained for 1 hour (STEP 1). And after raising the temperature to 400 ° C over 1 hour, maintaining it for 6 hours (STEP2), lowering the temperature to 25 ° C over 1 hour, and maintaining it for 1 hour.

이하에서는 앞서 언급한 본 발명의 실시예에 따른 제조된 MOF 기반 Cu/CeO2 촉매의 실험결과에 대해 설명하도록 한다. 도 6은 본 발명의 실험예에 따른 수성가스 전이반응실험 구성도를 도시한 것이다. 도 7은 본 발명의 실험예에 따른, 본 발명의 금속유기구조체 적용 Cu/CeO2 촉매의 CO전환율 그래프를 도시한 것이다.Hereinafter, experimental results of the MOF-based Cu/CeO 2 catalyst prepared according to the above-mentioned embodiment of the present invention will be described. Figure 6 shows a configuration diagram of water gas transfer reaction experiment according to the experimental example of the present invention. 7 shows a graph of CO conversion of the metal organic structure-applied Cu/CeO 2 catalyst of the present invention according to an experimental example of the present invention.

실험에 적용된 반응가스는 개질반응 후단 가스를 모사하였으며, 가스조성은 CO (8.99%), CO2 (10.00%), CH4 (0.998%), H2 (60.00%), N2 (19.92%)이다. The reaction gas applied to the experiment simulated the gas at the end of the reforming reaction, and the gas composition was CO (8.99%), CO 2 (10.00%), CH 4 (0.998%), H 2 (60.00%), N 2 (19.92%) am.

촉매활성화를 위해 촉매의 활성점을 환원시켰으며, 환원조건은 400 oC (환원온도), 5% H2/N2 balance (환원가스), 1시간 (환원시간)이다. For catalyst activation, the active site of the catalyst was reduced, and the reduction conditions were 400 o C (reduction temperature), 5% H 2 /N 2 balance (reduction gas), and 1 hour (reduction time).

본 발명의 실험예에서, 직경 6~8 mm의 석영관 중간 부분에 석영솜을 설치하고 Cu/CeO2 촉매를 0.1g을 주입하였다. In the experimental example of the present invention, quartz cotton was installed in the middle of a quartz tube having a diameter of 6 to 8 mm, and 0.1 g of Cu/CeO 2 catalyst was injected.

촉매활성화를 위해 촉매의 활성점을 환원시켰으며, 환원조건은 400 oC (환원온도), 5% H2/N2 balance (환원가스), 1시간 (환원시간)이다. For catalyst activation, the active site of the catalyst was reduced, and the reduction conditions were 400 o C (reduction temperature), 5% H 2 /N 2 balance (reduction gas), and 1 hour (reduction time).

반응 가스의 조성은 천연가스 개질 반응 후의 출구 가스 농도를 모사하였으며, 가스조성은 CO (8.99%), CO2 (10.00%), CH4 (0.998%), H2 (60.00%), N2 (19.92%)이다. The composition of the reaction gas simulated the outlet gas concentration after the natural gas reforming reaction, and the gas composition was CO (8.99%), CO 2 (10.00%), CH 4 (0.998%), H 2 (60.00%), N 2 ( 19.92%).

촉매의 처리용량은 상용 천연가스 개질 공정 (6,000~8,000 h-1)보다 5배 이상 높은 50233 ml·gcat -1·h-1으로 설정하였다. 처리용량은 이하의 수학식 1에 의해 산출된다. The treatment capacity of the catalyst was set to 50233 ml·g cat -1 ·h -1 , which is more than 5 times higher than that of the commercial natural gas reforming process (6,000~8,000 h-1). The processing capacity is calculated by Equation 1 below.

[수학식 1][Equation 1]

= 50233 ml·gcat -1·h-1 = 50233 ml g cat -1 h -1

수증기는 반응가스 중 탄소(CH4+CO+CO2)의 3.0으로 공급되며, 이는 수증기 개질에서 탄소침적을 피하기 위한 조건이다.Steam is supplied at 3.0 of carbon (CH 4 +CO+CO 2 ) in the reaction gas, which is a condition to avoid carbon deposition in steam reforming.

수증기는 시린지, 시린지 펌프, 프리히터를 통해 공급되었으며 프리히터의 온도는 170 ~ 200 ℃로 유지하였다.Water vapor was supplied through a syringe, a syringe pump, and a pre-heater, and the temperature of the pre-heater was maintained at 170 to 200 °C.

반응 후 가스는 Chiller를 통해 수증기를 제거하고 Micro-GC를 통해서 실시간 분석하여 촉매의 성능을 판단하였다. After the reaction, water vapor was removed from the gas through a chiller, and the performance of the catalyst was judged by real-time analysis through a Micro-GC.

도 7은 본 발명의 실험예에 따른, 본 발명의 금속유기구조체 적용 Cu/CeO2 촉매의 CO전환율 그래프를 도시한 것이다.7 shows a graph of CO conversion of the metal organic structure-applied Cu/CeO 2 catalyst of the present invention according to an experimental example of the present invention.

도 7에 도시된 바와 같이, 반응온도 360 ℃, 처리용량 50,233 mL·gcat -1·h-1의 반응 조건에서 75%이상의 CO전환율을 가짐을 알 수 있다. As shown in FIG. 7, it can be seen that the CO conversion rate is 75% or more under the reaction conditions of a reaction temperature of 360 °C and a treatment capacity of 50,233 mL·g cat -1 ·h -1 .

CO전환율은 이하의 수학식 2에 의해 산출된다. The CO conversion rate is calculated by Equation 2 below.

[수학식 2][Equation 2]

또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In addition, the device and method described above are not limited to the configuration and method of the above-described embodiments, but all or part of each embodiment is selectively combined so that various modifications can be made. may be configured.

Claims (12)

수성가스 전이반응용 촉매의 제조방법으로서,
유기금속구조체 기반 세륨 지지체를 제조하는 제1단계; 및
상기 제1단계에서 세륨 지지체를 제조한 후, 상기 지지체에 전이금속을 담지시키는 제2단계;를 포함하고,
상기 제1단계는,
트라이메스산과 질산세륨수화물을 수열합성하며, 트라이메스산과 질산세륨수화물을 디메틸포름아미드에 녹여 수열합성반응기에서 130~ 150℃의 온도로 22 ~ 26시간 유지시키고, 수열합성후, 원심분리기를 통해 세척하는 단계와, 건조단계와, 소성단계를 진행하고,
상기 건조단계는 90 ~ 110℃에서 11 ~ 13시간 진행되고,
상기 소성단계는 200 ~ 800℃에서 5 ~ 7시간 진행하여 MOF 기반 CeO2 지지체를 제조하며,
상기 소성단계는, 1시간 동안 110℃까지 승온 한 후, 1시간 동안 유지한 후, 1℃/min 승온률로 110℃부터 목표온도인 200~800℃까지 승온시킨 후, 6시간동안 유지하며,
상기 제2단계에서,
상기 지지체와 질산제이구리수화물을 에탄올에 녹이고 암모니아를 첨가하여 교반하며 승온시키고 70 ~ 80℃에 도달한 시점부터 100 ~ 140분 숙성하고, 숙성 후, 에탄올을 이용하여 감압여과기로 세척 여과하는 단계와, 90 ~ 110℃에서 100 ~ 140분 진행하는 건조단계와, 350 ~ 450℃에서 320 ~ 400분 진행되는 소성단계를 진행하고,
상기 유기금속구조체 적용 수성가스 전이반응용 촉매는,
반응온도 360 ℃, 처리용량 50,233 mL·gcat -1·h-1의 반응 조건에서 75%이상의 CO전환율을 갖는 것을 특징으로 하는 금속유기구조체 적용 수성가스 전이반응용 촉매의 제조방법.
As a method for producing a catalyst for water gas shift reaction,
A first step of preparing an organometallic structure-based cerium support; and
A second step of supporting a transition metal on the support after preparing the cerium support in the first step;
The first step is
Trimesic acid and cerium nitrate hydrate are hydrothermally synthesized, and trimesic acid and cerium nitrate hydrate are dissolved in dimethylformamide, maintained at a temperature of 130 to 150 ° C for 22 to 26 hours in a hydrothermal synthesis reactor, and washed through a centrifugal separator after hydrothermal synthesis. The step of doing, the drying step, the firing step,
The drying step is carried out at 90 ~ 110 ℃ for 11 ~ 13 hours,
The firing step is performed at 200 to 800 ° C. for 5 to 7 hours to prepare a MOF-based CeO 2 support,
In the firing step, after raising the temperature to 110 ° C for 1 hour, maintaining it for 1 hour, raising the temperature from 110 ° C to the target temperature of 200 ~ 800 ° C at a heating rate of 1 ° C / min, and maintaining it for 6 hours,
In the second step,
Dissolving the support and cupric nitrate hydrate in ethanol, adding ammonia, stirring, raising the temperature, aging for 100 to 140 minutes from the time of reaching 70 ~ 80 ℃, and after aging, washing and filtering with a vacuum filter using ethanol; , a drying step at 90 to 110 ° C for 100 to 140 minutes and a firing step at 350 to 450 ° C for 320 to 400 minutes,
The organometallic structure applied catalyst for water gas transfer reaction,
A method for producing a catalyst for water gas transfer reaction applied to a metal organic structure, characterized in that it has a CO conversion rate of 75% or more under reaction conditions of a reaction temperature of 360 ° C and a treatment capacity of 50,233 mL g cat -1 h -1 .
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020220154762A 2022-11-17 2022-11-17 Method of preparing catalyst which MOF structure applied for watergas shift reaction KR102574101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220154762A KR102574101B1 (en) 2022-11-17 2022-11-17 Method of preparing catalyst which MOF structure applied for watergas shift reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220154762A KR102574101B1 (en) 2022-11-17 2022-11-17 Method of preparing catalyst which MOF structure applied for watergas shift reaction

Publications (2)

Publication Number Publication Date
KR102574101B1 true KR102574101B1 (en) 2023-09-04
KR102574101B9 KR102574101B9 (en) 2024-04-08

Family

ID=88018428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220154762A KR102574101B1 (en) 2022-11-17 2022-11-17 Method of preparing catalyst which MOF structure applied for watergas shift reaction

Country Status (1)

Country Link
KR (1) KR102574101B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326023Y2 (en) 1981-03-10 1991-06-05
KR20070067457A (en) 2005-12-23 2007-06-28 에스케이 주식회사 Platinum based catalyst for oxidation/reduction reaction and its use
KR100976789B1 (en) 2007-12-03 2010-08-19 주식회사 에코프로 Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
KR102023267B1 (en) 2017-02-10 2019-09-19 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction
KR102218762B1 (en) 2019-08-12 2021-02-19 포항공과대학교 산학협력단 Ceria based composite catalyst with improved catalyst activity by controlling support reducibility and method of preparing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326023Y2 (en) 1981-03-10 1991-06-05
KR20070067457A (en) 2005-12-23 2007-06-28 에스케이 주식회사 Platinum based catalyst for oxidation/reduction reaction and its use
KR100976789B1 (en) 2007-12-03 2010-08-19 주식회사 에코프로 Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
KR102023267B1 (en) 2017-02-10 2019-09-19 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction
KR102218762B1 (en) 2019-08-12 2021-02-19 포항공과대학교 산학협력단 Ceria based composite catalyst with improved catalyst activity by controlling support reducibility and method of preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Deshetti Jampaiah et al., "MOF-derived noble-metal-free Cu/CeO2 with high porosity for efficient water.gas shift reaction at low temperatures", The Royal Society of Chemistry, pp.1-18(2019.)* *

Also Published As

Publication number Publication date
KR102574101B9 (en) 2024-04-08

Similar Documents

Publication Publication Date Title
Vozniuk et al. Spinel mixed oxides for chemical-loop reforming: from solid state to potential application
Sreedhar et al. Developmental trends in CO 2 methanation using various catalysts
Daza et al. Carbon dioxide conversion by reverse water–gas shift chemical looping on perovskite-type oxides
Carrillo et al. La0. 6Sr0. 4Cr0. 8Co0. 2O3 perovskite decorated with exsolved Co nanoparticles for stable CO2 splitting and syngas production
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
CN114272950A (en) CH (physical channel)4、CO2Catalyst for reforming preparation of synthesis gas and preparation method and application thereof
Yu et al. Effective low-temperature methanol aqueous phase reforming with metal-free carbon dots/C3N4 composites
KR20140020492A (en) Nickel catalysts for reforming hydrocarbons
US20190039890A1 (en) High purity hydrogen production device and high purity hydrogen production method
KR20080043161A (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
KR102271431B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
KR102574101B1 (en) Method of preparing catalyst which MOF structure applied for watergas shift reaction
US10233077B2 (en) Photocatalysis-induced partial oxidation of methanol reforming process for producing hydrogen
TWI403459B (en) Process for producing hydrogen with high yield under low temperature
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
KR100891903B1 (en) Nickel catalysts supported on alumina-zirconia oxide complex for steam reforming of liquefied natural gas and preparation methods therof
KR102225612B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
CN114260016A (en) Pd/ZnFexAl2-xO4Method for preparing hydrogen by reforming methanol by using catalyst
CN114471549A (en) Catalyst and preparation method and application thereof
TWI381992B (en) Self-started process at reactor temperature for hydrogen production
Yang et al. Oxygen release and reduction kinetics of La0. 35Sr0. 35Ba0. 3Fe1-xCoxO3 as oxygen carriers for chemical looping dry reforming of methane
CN117923534B (en) Preparation method of CeNCl material and preparation method and application of derivative catalyst thereof
KR101661412B1 (en) Synthesis and applications of metal impregnated carbon catalyst from gases containing carbon dioxide

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]