KR102565884B1 - Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof - Google Patents

Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof Download PDF

Info

Publication number
KR102565884B1
KR102565884B1 KR1020230055253A KR20230055253A KR102565884B1 KR 102565884 B1 KR102565884 B1 KR 102565884B1 KR 1020230055253 A KR1020230055253 A KR 1020230055253A KR 20230055253 A KR20230055253 A KR 20230055253A KR 102565884 B1 KR102565884 B1 KR 102565884B1
Authority
KR
South Korea
Prior art keywords
lattice
tension member
variable
connector
tunnel
Prior art date
Application number
KR1020230055253A
Other languages
Korean (ko)
Inventor
이희주
Original Assignee
(주)티알이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티알이엔씨 filed Critical (주)티알이엔씨
Priority to KR1020230055253A priority Critical patent/KR102565884B1/en
Application granted granted Critical
Publication of KR102565884B1 publication Critical patent/KR102565884B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • E21D11/22Clamps or other yieldable means for interconnecting adjacent arch members either rigidly, or allowing arch member parts to slide when subjected to excessive pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/40Devices or apparatus specially adapted for handling or placing units of linings or supporting units for tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/02Non-telescopic props
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/50Component parts or details of props
    • E21D15/502Prop bodies characterised by their shape, e.g. of specified cross-section

Abstract

본 발명은 터널 격자지보의 가변확장형 연결재구조 및 이를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템에 관한 것으로, 이를 좀 더 구체적으로 말하면, 격자지보를 설치함에 있어 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 격자지보가 조립 연결되는 크라운 천단점(J)과 상하연결점(E)사이 각각에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 삽입하여 그 양측 격자지보와 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되게 한 발명이다. The present invention relates to a variable expandable connection structure of a tunnel grid support and a tunnel grid support installation system according to the minimization of the overexcavation distance using the same. More specifically, in installing the grid support, the crown apex (J ), the arched tunnel section is divided into left and right symmetrical half sections with respect to the vertical line of gravity, and the half sections are divided into upper half sections (SA) and lower half sections (SB) based on the upper and lower connection points (E), and the upper and lower half sections Install lattice supports on both symmetrical sides of (SA) (SB), but between the crown ceiling point (J) and the top and bottom connection points (E) where the lattice supports are assembled and connected, a variable expandable ceiling connector (400A) and a variable expandable top and bottom connector (400B) ) is inserted and connected to the lattice supports on both sides, thereby extending the length in the horizontal direction by the variable expansion type ceiling connector (400A) at the top point (J) of the crown, and the variable expansion type top and bottom connector (400B) at the top and bottom connection point (E) The height expansion in the vertical direction is made by the "design construction line" where the factory-manufactured lattice support will be installed is moved as close as possible to the "tunnel excavation section line", minimizing the overexcavation distance (d) "actual lattice support installation" space-time line” is an invention.

Description

터널 격자지보의 가변확장형 연결재구조 및 이를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템{Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof}Tunnel lattice support installation system according to variable expansion type connection structure of tunnel lattice support and overexcavation distance minimization using the same

본 발명은 터널 격자지보의 가변확장형 연결재구조 및 이를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템에 관한 것으로, 이를 좀 더 구체적으로 말하면, 격자지보를 설치함에 있어 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 격자지보가 조립 연결되는 크라운 천단점(J)과 상하연결점(E)사이 각각에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 삽입하여 그 양측 격자지보와 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되게 한 발명이다. The present invention relates to a variable expandable connection structure of a tunnel grid support and a tunnel grid support installation system according to the minimization of the overexcavation distance using the same. More specifically, in installing the grid support, the crown apex (J ), the arched tunnel section is divided into left and right symmetrical half sections with respect to the vertical line of gravity, and the half sections are divided into upper half sections (SA) and lower half sections (SB) based on the upper and lower connection points (E), and the upper and lower half sections Install lattice supports on both symmetrical sides of (SA) (SB), but between the crown ceiling point (J) and the top and bottom connection points (E) where the lattice supports are assembled and connected, a variable expandable ceiling connector (400A) and a variable expandable top and bottom connector (400B) ) is inserted and connected to the lattice supports on both sides, thereby extending the length in the horizontal direction by the variable expansion type ceiling connector (400A) at the top point (J) of the crown, and the variable expansion type top and bottom connector (400B) at the top and bottom connection point (E) The height expansion in the vertical direction is made by the "design construction line" where the factory-manufactured lattice support will be installed is moved as close as possible to the "tunnel excavation section line", minimizing the overexcavation distance (d) "actual lattice support installation" space-time line” is an invention.

NATM공법은 지반이 갖고 있는 지지력을 최대한 활용할 수 있고, 현장계측에 의한 관리가 가능하여 오늘날 거의 모든 발파식 터널굴착에서 이 NATM공법을 적용하고 있다. NATM공법은 록볼트나 숏크리트, ‘강지보재'등의 가시적인 「인공지보」에 의한 효과를 기대함과 동시에 암반자체가 갖고 있는 강도, 즉 하중지지력을 충분히 이용하여 최적의 경제성과 높은 품질의 터널을 추구하는 공법이다. The NATM method can make the most of the bearing capacity of the ground and can be managed by on-site measurement, so the NATM method is applied to almost all blast tunnel excavations today. The NATM method expects the effects of visible “artificial supports” such as rock bolts, shotcrete, and “steel supports” and at the same time fully utilizes the strength of the bedrock itself, that is, the load-bearing capacity, to provide optimal economic feasibility and high-quality tunnels. It is a technique that pursues

이러한 장점에도 불구하고 발파식 터널굴착으로서의 NATM공법은 발파로 인한 굴착단면의 예측이 사실상 불가능할 뿐 아니라, 특히 굴진효율을 높이기 위해 과(過)장약할 경우 그 예측은 더더욱 그 예측이 어렵다. Despite these advantages, the NATM method as a blast tunnel excavation is virtually impossible to predict the excavation cross section due to blasting, and especially when overcharged to increase excavation efficiency, the prediction is even more difficult.

굴착단면의 예측이 불가능하기 때문에 일반적으로 “설계 시공선”을 기준으로 격자지보가 설계된다. 격자지보가 “설계 시공선”에 설치된 것으로 보고 격자지보의 공장 제작이 이루어진다. Since it is impossible to predict the excavation section, grid support is generally designed based on the “design construction line”. It is considered that the lattice beam is installed on the "design construction line" and the factory manufacture of the lattice beam is performed.

발파에 의한 “실제터널굴착단면선”은 “설계 시공선”보다 더 깊게 과굴 된다. The “actual tunnel excavation section line” by blasting is overexcavated deeper than the “design construction line”.

“설계 시공선”과 “실제터널굴착단면선”과의 과굴거리(d)가 불가피한 것도 이 때문이다. 여기서 “설계 시공선”은 설계도면상의 시공선이다.This is why the overexcavation distance (d) between the “design construction line” and the “actual tunnel excavation section line” is unavoidable. Here, the “design construction line” is the construction line on the design drawing.

“설계 시공선”에 설치된 격자지보와 “실제터널굴착단면선”사이의 과굴거리(d)에는 숏크리트(S)가 충진 된다. Shotcrete (S) is filled in the overexcavation distance (d) between the lattice support installed on the “design construction line” and the “actual tunnel excavation section line”.

격자지보는 터널굴착 직후 숏크리트(S) 타설 전에 설치하여 숏크리트(S)가 경화될 때까지 지반하중을 지지하는 구조재로서의 기능을 한다. 숏크리트(S)가 경화된 후에는 숏크리트(S)와 격자지보가 합성부재(shell)로서 터널지반하중을 지지하는 기능을 한다. The lattice support is installed immediately after tunnel excavation and before shotcrete (S) is poured, and functions as a structural material that supports the ground load until the shotcrete (S) is hardened. After the shotcrete (S) is hardened, the shotcrete (S) and the lattice support function as a composite member (shell) to support the tunnel ground load.

과굴거리(d)가 클수록 숏크리트(S)의 충진량이 커져 비경적이 되는 것은 말할 것도 없다. 숏크리트 충진량이 과굴거리(d)에 비례하기 때문이다. 그뿐 아니라 과굴거리(d)가 클수록 숏크리트(S)경화속도가 느려 합성부재(shell)로서의 기능이 신속하게 이루어지지 않음으로써 터널지반지지구조의 불안정상태가 길어지는 문제점이 있다. Needless to say, the greater the overexcavation distance (d), the greater the filling amount of shotcrete (S), resulting in a non-horn. This is because the amount of shotcrete filling is proportional to the overexcavation distance (d). In addition, as the overexcavation distance (d) increases, the curing speed of the shotcrete (S) is slow, so that the function as a composite member (shell) is not quickly achieved, so there is a problem in that the unstable state of the tunnel ground support structure is prolonged.

국토부 터널시방기준에 의하면, 숏크리트 1회 타설 두께를 10cm이내로 규제관리하고 있다. According to the tunnel specification standards of the Ministry of Land, Infrastructure and Transport, the thickness of one shotcrete is regulated and managed within 10 cm.

예컨대, 과굴거리(d)가 50cm라고 한다면, 숏크리트를 5회로 나누어 타설되어야한다. 5회의 타설 시간과 5회의 양생시간을 합한 총소요시간은, 1일 2막장 굴진 시 60시간이 된다. 결과적으로 터널 막장이 60시간동안 무지보상태가 되어 터널 구조적 안정성에 심각한 문제점이 있다. For example, if the overexcavation distance (d) is 50 cm, the shotcrete should be divided into 5 times and poured. The total time required by adding 5 casting times and 5 curing times is 60 hours when excavating 2 sections per day. As a result, there is a serious problem in the structural stability of the tunnel because the tunnel face is in a non-reinforced state for 60 hours.

또한 50cm를 한꺼번에 타설하게 되면, 특히 아치터널의 천단부근처에 타설된 숏크리트는 양생되지 않은 미경화상태이므로 숏크리트의 부착응집력이 그 중량을 이기지 못하고 아래로 전도(떨어짐)되게 된다. 숏크리트 1회 타설 두께를 10cm이내로 규제한 것도 바로 이러한 전도를 방지하기 위해서다. In addition, when 50 cm is poured at once, the shotcrete placed near the top of the arch tunnel is in an uncured, uncured state, so the adhesive cohesion of the shotcrete does not overcome its weight and is conducted (falls) downward. The reason why the thickness of one shotcrete is regulated within 10 cm is to prevent such conduction.

과굴거리(d)가 최소화될수록 숏크리트 타설 회수가 최소화됨으로써 양생속도도 그만큼 빨라 격자지보와 합성된 숏크리트 최소강도(10Mpa이상)가 빠르게 발휘될 뿐 아니라, 타설 회수별 불균형이 최소화되어 합성 숏크리트 품질강도가 균등하게 이루어져 터널 구조적 안정성이 확보되게 된다.As the overexcavation distance (d) is minimized, the number of shotcrete placements is minimized, so the curing speed is so fast that the minimum strength (more than 10Mpa) of the lattice support and synthesized shotcrete is quickly exhibited. It is made evenly so that the structural stability of the tunnel is secured.

따라서 “설계 시공선”을 기준으로 공장 제작된 격자지보의 설치위치를 “설계 시공선”에서 “실제터널굴착단면선”쪽으로 이동할 수 있다면, 과굴거리(d)가 그만큼 작아져 숏크리트(S)의 충진량 및 숏크리트 타설 회수가 작아짐으로써 시공상 유리한 이점이 있게 된다. 과굴거리(d)가 최소화될수록 터널 구조적 안정성 및 시공의 효율성과 경제성이 최대화되기 때문이다. Therefore, if the installation position of the factory-manufactured lattice beam can be moved from the “design construction line” to the “actual tunnel excavation section line” based on the “design construction line,” the overexcavation distance (d) is reduced by that much, and the shotcrete (S) As the amount of filling and the number of times of pouring shotcrete are reduced, there are advantages in terms of construction. This is because as the overexcavation distance (d) is minimized, the structural stability of the tunnel and the efficiency and economic feasibility of construction are maximized.

이렇게 “설계 시공선”을 따라 공장제작의 격자지보에는 과굴거리(d)에 대한 거리조정기능이 없는 구조로서 과굴거리(d)의 장단과는 상관없이 오직 “설계 시공선” 에만 설치될 뿐이어서 숏크리트 충진량의 가늠을 할 수 없어 시공이 불합리적(비효율적 비경제적)으로 이루어지는 문제점이 있다.In this way, factory-manufactured lattice supports along the “design construction line” have no distance adjustment function for the overextension distance (d), and are installed only on the “design construction line” regardless of the length and length of the overexcursion distance (d). There is a problem in that the construction is unreasonable (inefficient and uneconomical) because the amount of shotcrete cannot be estimated.

이와 같이 발파식 굴착은 예측이 불가능한 갑작스런 불규칙적 과굴의 “터널굴착단면”이 불가피하므로 결과적으로 무지보상태의 불안정구조 및 타설된 숏크리트 품질저하의 문제점뿐만 아니라, 비효율적 비경제적인 시공 상의 문제점은 바로 발파식 굴착이 갖는 태생적 문제이다.As such, blasting excavation inevitably results in a “tunnel excavation cross section” of unpredictable sudden and irregular overexcavation, and as a result, the problem of inefficient and uneconomical construction as well as the problem of unstable structure in an unreinforced state and deterioration of the quality of the poured shotcrete is blasting type excavation. It is an inherent problem with excavation.

다음으로, '강지보재'의 종류에 따른 특성에 대하여 살펴보면 다음과 같다. Next, look at the characteristics according to the type of 'steel support' as follows.

'강지보재'의 대표적인 것으로 격자지보(30)와 H형강 지보재(20)가 있다. Representative examples of the 'steel support' include the lattice support 30 and the H-beam support 20.

도7은, 격자지보와 H형강 지보재의 단면형상과 단면성능[단면적, 단면2차모멘트(Ⅰ)]을 비교한 대비표이다.7 is a comparison table comparing the cross-sectional shape and cross-sectional performance (sectional area, cross-sectional moment of inertia (I)) of the lattice support and the H-beam support.

그 대비표에 의해 격자지보를 기준으로 단면성능을 비교해보면, 첫째, 격자지보의 단면적에 대하여 H형강 지보재의 단면적이 64% 더 크다. 단면적이 64%만큼 더 크다는 것은 철제량의 중량역시 그만큼 무겁다는 것을 의미하며, 그 가격역시 비싸다는 의미한다. H형강 지보재가 그만큼 중량이 무겁기 때문에 격자지보에 비해 설치에 따른 취급이 용이하지 않은 단점이 있다. 이와 반대로 중량이 가볍고 취급이 용이한 것이 격자지보가 갖는 장점이다.If the cross-sectional performance is compared based on the grid support by the comparison table, first, the cross-sectional area of the H-beam support is 64% larger than the cross-sectional area of the grid support. A larger cross section by 64% means that the weight of the steel is also heavier, and the price is also expensive. Since the H-beam support is that heavy, it has a disadvantage in that it is not easy to handle according to installation compared to the lattice support. On the contrary, the advantage of the grid support is that it is light in weight and easy to handle.

그 다음으로, 통상 표준형 격자지보의 구조는 도1과 같다. Next, the structure of the normal standard lattice support is as shown in FIG.

도1에서 보는바와 같이 격자지보는 3개의 강봉으로 구성되고 직경이 큰 상부 강봉(A)이 터널의 내벽 쪽에 오도록 시공된다. 상부 강봉(A)에 대하여 하부 강봉(B)의 직경이 작다. 격자지보는 상하부 강봉(A)(B)에 의해 3각 형태를 이루고 그 사이에 연결부재(stiffener)인 스파이더(spider)(C)가 연결 용접된다. As shown in Figure 1, the lattice support is composed of three steel bars and is constructed so that the upper steel bar (A) with a large diameter comes to the inner wall of the tunnel. The diameter of the lower steel bar (B) is smaller than the upper steel bar (A). The lattice support is formed in a triangular shape by the upper and lower steel bars A and B, and a spider (C), which is a stiffener, is connected and welded therebetween.

스파이더(C)는 상부 강봉(A)과 하부 강봉(B)을 상호연결하며, 철선을 길이방향 삼각 트러스 형상, 즉 3차원 폐다각형의 형태로 절곡시켜 용접 제작된다.The spider (C) interconnects the upper steel bar (A) and the lower steel bar (B), and is welded by bending the steel wire into a triangular truss shape in the longitudinal direction, that is, in the form of a three-dimensional closed polygon.

스파이더(C)는 길이방향 삼각 트러스 형상으로 상부 강봉(A)과 하부 강봉(B)을 상호 연결하는 연결재, 즉 3차원 폐 다각형의 형태로 절곡된 연결재이다. The spider (C) is a connecting material that interconnects the upper steel bar (A) and the lower steel bar (B) in the shape of a longitudinal triangular truss, that is, a connecting material bent in the form of a three-dimensional closed polygon.

스파이더(C)는 상하부 강봉(A)(B)사이의 간격을 일정하게 유지시킴과 동시에 터널하중에 대한 격자지보의 굽힘 강도를 증가시켜 구조적 안정성을 향상시키는 역할을 한다(도1 참조). The spider (C) serves to improve structural stability by maintaining a constant distance between the upper and lower steel bars (A) (B) and at the same time increasing the bending strength of the lattice support against the tunnel load (see Fig. 1).

격자지보의 설치는 일반적으로 시공의 편의상 도3에서와 같이 아치형 터널단면을 크라운 천단점(J)의 중력수직선에 대하여 좌우 대칭과, 그리고 상하연결점(E)을 중심으로 상하부(SA)(SB)으로 나누어 시공된다. 크라운 천단점(J)과 상하연결점(E)에서 격자지보의 양측 접면된 수직 체결판(350B)을 체결볼트(360)에 의해 서로 연결된다(도2 참조). 도2에 의하면, 격자지보의 양측 각각의 상부 강봉(A)과 하부 강봉(B)에 용접 고정된 고정판(350A)과, 그리고 고정판(350A)대하여 수직방향으로 일체로 돌출된 플랜지 수직 체결판(350B)으로 이루어진 체결구조이다. 수직 체결판(350B)을 맞대고 체결볼트(360)로 체결함으로써 양측 격자지보가 하나로 연결 체결되게 된다.The installation of lattice beams is generally symmetrical with respect to the vertical line of gravity of the crown apex point (J), and the upper and lower parts (SA) (SB) centered on the upper and lower connection points (E), as shown in FIG. 3 for the convenience of construction. It is built by dividing The vertical fastening plates 350B contacted on both sides of the lattice support at the crown apex point J and the upper and lower connection points E are connected to each other by fastening bolts 360 (see FIG. 2). According to Figure 2, a fixed plate (350A) welded and fixed to the upper steel bar (A) and the lower steel bar (B) on both sides of the lattice support, and a flange vertical fastening plate ( 350B) is a fastening structure. By facing the vertical fastening plate 350B and fastening with the fastening bolt 360, both lattice supports are connected and fastened as one.

이와 같이 H형강지보는 강성은 좋으나 자체중량이 너무 무거워 취급이 곤란하여 설치가 어려웠던 문제점을 자체중량이 가볍고, 취급이 용이하면서 강성도 좋은 격자지보에 대하여 가변확장형 연결재(400)를 적용한 것이 본 발명이다.In this way, the present invention applies the variable expandable connector 400 to the lattice support that is light in weight, easy to handle, and has good rigidity to solve the problem that H-beams have good rigidity but are too heavy to handle and difficult to install. .

⒜ 본 발명은 격자지보를 설치함에 있어 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 격자지보가 조립 연결되는 크라운 천단점(J)과 상하연결점(E)사이 각각에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 삽입하여 그 양측 격자지보와 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되게 함에 그 목적이 있고, (a) In the present invention, in installing the lattice support, the arched tunnel section is divided into left and right symmetrical half sections with respect to the vertical line of gravity of the crown apex point (J) of the arched tunnel section, and the half section is based on the vertical connection point (E) It is divided into an upper half section (SA) and a lower half section (SB), and lattice supports are installed on both symmetrical sides of the upper and lower half sections (SA) (SB), but the crown apex point (J) and the upper and lower connection points where the lattice supports are assembled and connected ( E) by inserting a variable expandable ceiling connector (400A) and a variable expandable upper and lower connector (400B) into each of the gaps and connecting them with the lattice supports on both sides, the horizontal direction by the variable expandable ceiling connector (400A) at the top point of the crown (J). The height expansion in the vertical direction is made by the length expansion of the vertical connection point (E) and the height expansion in the vertical direction by the variable expansion type vertical connector (400B) of the vertical connection point (E), and the "design construction line" where the factory-manufactured lattice support is installed is the "tunnel excavation section line" The purpose is to make the "actual grid support installation construction line" with the minimized overexcavation distance (d) by moving as close as possible to the side,

⒝ 크라운 천단점(J)의 가변확장형 천단연결재(400A)와 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 공장 제작의 격자지보의 「실제설치시공선」이 “터널굴착단면선”쪽으로 최대한 이동밀착 되어 과굴거리(d)가 최소화됨으로써 숏크리트의 타설 충진량의 최소화 및 그 타설 회수의 최소화가 되면서 숏크리트와 격자지보와의 안전한 합성강도(10Mpa)에 신속하게 이르게 되면서 지반지지력의 구조적 안정성확보역시 신속하게 이루어지는 한편, 가변확장형 천단연결재(400A) 및 가변확장형 상하연결재(400B)의 구조가 간단하여 「실제격자지보설치시공선」으로의 밀착작업이 용이할 뿐 아니라, 효율적 경제적인 지지구조의 안정성을 확보하고자함에 다른 목적이 있다.⒝ The “actual installation construction line” of the factory-manufactured lattice support is “tunnel excavation section line” by the variable expandable top connector 400A at the top point of the crown (J) and the variable expandable top and bottom connector 400B at the top and bottom connection point E. As the overexcavation distance (d) is minimized by moving closely to the side as much as possible, the amount of filling and the number of castings of shotcrete are minimized, and the safe composite strength (10Mpa) of shotcrete and lattice beam is quickly reached, securing structural stability of ground bearing capacity. On the other hand, the structure of the variable expandable ceiling connector (400A) and the variable expandable top and bottom connector (400B) is simple, so it is easy to adhere to the "actual grid support installation line", and it is an efficient and economical support structure. Another purpose is to secure stability.

본 발명 터널 격자지보의 가변확장형 연결재구조의 구성에 대하여 설명하면 다음과 같다.The configuration of the variable expandable connection structure of the tunnel grid support of the present invention will be described as follows.

과굴이 불가피한 아치형 터널발파 굴착단면선(G)에 대하여 공장 제작된 격자지보를 “설계 시공선”에 설치하되 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상하부 반단면(SA)(SB)으로 나누어 그 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)에 위치된 양측 격자지보의 각각에 설치된 고정판(350A)에 대한 수직 체결판(350B)을 서로 맞대고 체결볼트(360)에 의해 격자지보가 체결되는 연결구조에 있어서 Install factory-manufactured lattice beams on the “design construction line” for the arched tunnel blasting excavation cross-section line (G), where overexcavation is unavoidable, but make the arched tunnel cross-section symmetric It is divided into half sections, and the half sections are divided into upper and lower half sections (SA) (SB) based on the upper and lower connecting points (E), and the upper and lower connecting points of the crown apex (J) and the upper and lower half sections (SA) (SB) ( In the connection structure in which the vertical fastening plates 350B for the fixed plates 350A installed on each of the grid supports on both sides located at E) are butted with each other and the grid supports are fastened by the fastening bolts 360

상기 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)의 양측 격자지보사이에 삽입되는 가변확장형 연결재(400)와;A variable expandable connecting member 400 inserted between the lattice supports on both sides of the crown apex point (J) and the upper and lower connection points (E) of the upper and lower half sections (SA) (SB);

가변확장형 연결재(400)는 삽입위치만 다르고, 그 구조가 동일한 가변확장형 천단연결재(400A 및 가변확장형 상하연결재(400B)와; The variable expandable connector 400 differs only in the insertion position and has the same structure as the variable expandable ceiling connector 400A and the variable expandable upper and lower connector 400B;

가변확장형 천단연결재(400A 및 가변확장형 상하연결재(400B)는 3각형 기둥형상의 콘크리트 블록(410) 몸체와, 그 몸체의 매설인장재(420A) 및 노출인장재(420B)가 하나로 일체화된 인장재(420)와, 그리고 콘크리트 블록(410)의 양단부에 형성되되 플랜지 체결부(430A)와 중앙부(430B)가 하나로 일체로 된 평행사변형 플랜지 체결판(430)으로 형성됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조이다. The variable expandable ceiling connector 400A and the variable expandable upper and lower connector 400B are a triangular columnar concrete block 410 body, a tension member 420 in which the buried tension member 420A and the exposed tension member 420B of the body are integrated into one. And, it is formed at both ends of the concrete block 410, and the flange fastening part 430A and the central part 430B are formed as a parallelogram flange fastening plate 430 in one body. Variable expansion type connector of tunnel lattice beam, characterized in that It is a structure.

여기에다, here,

상기 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)의 양측 격자지보사이에 가변확장형 연결재(400)를 각각 삽입하여 양측 격자지보의 수직 체결판(350B)과 가변확장형 연결재(400)의 돌출된 플랜지 체결부(430A)을 서로 맞대고 체결볼트(360)에 의해 연결 체결하되, 가변확장형 연결재(400)는 3각형 기둥형상의 콘크리트 블록(410)과 인장재(420)와 평행사변형 플랜지 체결판(430)으로 이루어지고, 인장재(420)는매설인장재(420A)와 노출인장재(420B)가 하나로 된 인장재(420)로서 매설인장재(420A)는 콘크리트 블록(410)에 매설되며, 노출인장재(420B)는 콘크리트 블록(410) 양단부로 노출되고, 노출인장재(420B)가 관통된 평행사변형 플랜지 체결판(430)은 콘크리트 블록(410)에 대하여 그 플랜지 체결부(430A)가 콘크리트 블록(410)의 양 단부를 넘어 연장 돌출되며, 수직면을 이루면서 평행사변형 플랜지 체결판(430)이 콘크리트 블록(410)의 양단부에 위치된 상태로 고정되고, 이때 그 고정은 노출인장재(420B)와 노출인장재 관통공(432B)의 용접에 의해 고정되고, 연장 돌출된 플랜지 체결부(430A)는 격자지보의 수직 체결판(350B)과 동일한 형상과 크기로서 플랜지 체결부(430A)와 수직 체결판(350B)이 완전 접면된 상태에서 체결볼트(360)에 의해 연결 체결되어 가변확장형 연결재(400)와 격자지보가 체결되며, 이때 상기 양측 노출인장재(420B)는 각 격자지보의 처음 스파이더(330)까지 연장 설치된 상태가 됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조이다.By inserting the variable expandable connector 400 between the lattice supports on both sides of the upper and lower connection points (E) of the crown apex (J) and the upper and lower half sections (SA) (SB), respectively, the vertical fastening plates (350B) of the lattice supports on both sides The protruding flange fastening parts 430A of the variable expandable connector 400 are butted to each other and connected and fastened by fastening bolts 360, but the variable expandable connector 400 is a triangular columnar concrete block 410 and the tension member 420. ) and a parallelogram flange fastening plate 430, and the tension member 420 is a tension member 420 in which the buried tension member 420A and the exposed tension member 420B are one, and the buried tension member 420A is attached to the concrete block 410. It is buried, and the exposed tension member 420B is exposed to both ends of the concrete block 410, and the parallelogram flange fastening plate 430 through which the exposed tension member 420B penetrates is the flange fastening portion 430A with respect to the concrete block 410. protrudes beyond both ends of the concrete block 410, and while forming a vertical plane, the parallelogram flange fastening plate 430 is fixed while being positioned at both ends of the concrete block 410, and at this time, the fixing is the exposed tension member 420B ) and the exposed tension member through hole 432B are fixed by welding, and the extended protruding flange fastening part 430A is vertically fastened with the flange fastening part 430A in the same shape and size as the vertical fastening plate 350B of the lattice support. The plate 350B is connected and fastened by the fastening bolt 360 in a state of complete contact, and the variable expandable connector 400 and the lattice support are fastened. At this time, the both exposed tension member 420B is the first spider 330 ) It is a variable expansion type connection structure of tunnel grid support, characterized in that it is installed extended to.

그뿐 아니라, Not only that,

노출인장재 관통공(432B)은 평행사변형 플랜지 체결판(430)의 중앙부(430B)의 중심에 형성됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조이다.The exposed tension member through hole 432B is a variable expansion type connecting member structure of the tunnel grid support, characterized in that it is formed at the center of the central portion 430B of the parallelogram flange fastening plate 430.

또한,also,

매설인장재(420A)와 노출인장재(420B)는 이형철근이고, 노출인장재(420B)의 단부가 훅크(420C)형상임을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조이다.The buried tension member 420A and the exposed tension member 420B are deformed reinforcing bars, and the end of the exposed tension member 420B is a variable expansion type connecting member structure of the tunnel lattice support, characterized in that it has a hook 420C shape.

가) 격자지보의 제작과 과굴거리(d)의 충진에 대하여A) Regarding the production of lattice beams and the filling of the overexcavation distance (d)

격자지보는 “설계 시공선”에 맞춰 공장 제작된다. 통상 격자지보가 설치되는 곳도 “설계 시공선”이다. 발파식 “터널굴착단면선”은 “설계 시공선”보다 더 크게 굴착되므로 그만큼 과굴이 불가피하다. “설계 시공선”에 맞춰 공장 제작된 격자지보는 “설계 시공선”에 설치되므로 “설계 시공선”과 실제 발파식 “터널굴착단면선”사이에는 과굴거리(d)가 불가피하다. 과굴거리(d)에는 숏크리트(를 충진함으로써 격자지보와의 합성단면지지구조를 이루게 된다. 과굴거리(d)가 클수록 충진량이 많아 비경제적이다. Grid supports are factory-manufactured according to the “design construction line”. The place where the grid support is usually installed is also the “design construction line”. Blasting-type “tunnel excavation section line” excavates larger than “design construction line”, so overexcavation is unavoidable. Since the lattice beams manufactured at the factory according to the “design construction line” are installed on the “design construction line”, an overexcavation distance (d) is inevitable between the “design construction line” and the actual “tunnel excavation section line”. By filling the overexcavation distance (d) with shotcrete, a composite cross-section support structure with lattice beams is formed.

예컨대, 일반적으로 과굴이 50cm 발생된 경우, 과굴된 50cm의 체적을 숏크리트로 채울 경우, 지보재 1조당 3~4㎥ 정도의 강섬유 숏크리트가 사용되어 격자지보 2조만큼의 비용이 소용되므로 비경제적이다. For example, in general, when overexcavation occurs by 50 cm, when the overexcavated volume of 50 cm is filled with shotcrete, about 3 to 4 m of steel fiber shotcrete is used per set of support materials, which is uneconomical because it costs as much as 2 sets of lattice supports.

나) 격자지보설치 “설계 시공선”의 위치이동에 대하여 B) Regarding the movement of the location of the grid support installation “design construction line”

아치형 터널 “설계 시공선”은 크라운 천단점(J)의 중력수직선에 대하여 좌우 대칭으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누어지고, 상하연결점(E)이 상하부 반단면(SA)(SB)의 연결부이다. 격자지보는 “설계 시공선”의 상하부 반단면(SA)(SB)을 따라 각기 설치되므로 공장 제작된 격자지보의 형상이 상하부 반단면(SA)(SB)의 형상과 동일하다. 이와 같이 격자지보가 “설계 시공선”에 의해 공장 제작되는 것과, 그리고 공장 제작의 격자지보가 “설계 시공선”에 설치되는 것은 통상적이다. 그런데 여기에다 본원은 격자지보의 크라운 천단점(J)과 상하연결점(E)에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(EC)를 각기 삽입하고, 그 양측 격자지보와 서로 연결체결함으로써 수평방향으로의 길이확장과, 그리고 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이, “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 된다. The arched tunnel “design construction line” is divided into an upper half section (SA) and a lower half section (SB) symmetrically with respect to the vertical line of gravity at the apex point (J) of the crown, and the upper and lower connection point (E) is the upper and lower half section (SA). ) (SB). Since the lattice supports are installed along the upper and lower half sections (SA) (SB) of the “design construction line”, the shape of the factory-made lattice beams is the same as the shape of the upper and lower half sections (SA) (SB). In this way, it is common for lattice beams to be factory-manufactured by the "design construction line" and for factory-manufactured lattice beams to be installed on the "design construction line". However, here, the present application inserts the variable expandable ceiling connector (400A) and the variable expandable upper and lower connector (EC) at the crown apex point (J) and the upper and lower connection point (E) of the lattice beam, respectively, and connects them with the lattice beams on both sides to ensure a horizontal level. Length expansion in the direction, and height expansion in the vertical direction, so that the “design construction line” where the factory-made lattice beams will be installed is moved to the “tunnel excavation section line” as much as possible, so that the overexcavation distance (d) is It becomes the minimized 「actual grid support installation construction line」.

다) 과굴거리(d)가 최소화된 「실제격자지보설치시공선」의 이점에 대하여 C) Regarding the advantage of 「actual grid support installation construction line」with minimized overexcavation distance (d)

과굴거리(d)가 최소화된 「실제격자지보설치시공선」에 격자지보가 설치되게 되면, 숏크리트(S)의 충진량이 최소화됨과 동시에 숏크리트(S) 타설 회수 또한 최소화되고, 그 결과 격자지보와의 합성강도가 신속하게 이루어져 무지보상태가 최소화되어 지반지지력확보 및 그 구조적 안정성확보가 신속히 이루어지는 이점이 있다.When the grid support is installed on the "actual grid support installation construction line" where the overexcavation distance (d) is minimized, the filling amount of shotcrete (S) is minimized and the number of shotcrete (S) placement is also minimized. As a result, There is an advantage in that the ground bearing capacity and its structural stability are quickly achieved because the composite strength is quickly made and the unsupported state is minimized.

라) 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)의 구조D) Structure of the variable expandable ceiling connector (400A) and the variable expandable top and bottom connector (400B)

① 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)는 동일구조를 갖는 가변확장형 연결재(400)이다. 다만 설명의 편의상 그 삽입위치만을 구분했을 뿐이다. ① The variable expandable top connector 400A and the variable expandable upper and lower connector 400B are variable expandable connectors 400 having the same structure. However, for convenience of explanation, only the insertion position is distinguished.

② 가변확장형 연결재(400)의 콘크리트 블록(410)은 3각기둥형상으로서 격자지보의 3각 단면과 동일한 형상이다. 인장재(420)는 매설인장재(420A)와 노출인장재(420B)가 한 개의 인장재이다. 매설인장재(420A)는 콘크리트 블록(410)에 ?模났? 인장재이고, 매설인장재(420A)가 콘크리트 블록(410) 양단부로 돌출된 것이 노출인장재(420B)이다. 인장재는 숏크리트(S)와의 부착을 위해 이형철근이 바람직하다. ② The concrete block 410 of the variable expandable connector 400 is in the shape of a triangular column and has the same shape as the triangular cross section of the lattice support. In the tension member 420, the buried tension member 420A and the exposed tension member 420B are one tension member. Is the buried tension member (420A) buried in the concrete block (410)? It is a tension member, and the exposed tension member 420B is an exposed tension member 420A in which the buried tension member 420A protrudes to both ends of the concrete block 410. The tension member is preferably a deformed reinforcing bar for attachment with the shotcrete (S).

③ 가변확장형 연결재(400)의 노출인장재(420B)는 양측 격자지보의 최초 스파이더(330)까지 연장 설치된다. 연장 설치된 상태에서 숏크리트(S)가 타설되므로 가변확장형 연결재(400)와 양측 격자지보가 하나로 합성단면을 이룬다. 노출인장재(420B)의 끝단은 훅크(420C)형상이다. 숏크리트(S)와의 인발력 향상을 위해서다.③ The exposed tension member 420B of the variable expandable connector 400 is extended and installed to the first spider 330 of the grid support on both sides. Since the shotcrete (S) is poured in the extended installed state, the variable expansion type connector 400 and the grid supports on both sides form a composite cross section. The end of the exposed tension member 420B has a hook 420C shape. This is to improve the pulling force with shotcrete (S).

④ 콘크리트 블록(410)의 양단부에는 3각형 중앙부(430B)와 평행사변형 플랜지 체결부(430A)가 일체화된 평행사변형 플랜지 체결판(430)이 밀접 된 구조이다. 노출인장재(420B)가 3각형 중앙부(430B)의 관통공(432B)을 통해 관통된다. 노출인장재(420B)와 관통공(432B)의 접면부가 용접됨으로써 평행사변형 플랜지 체결판(430)이 콘크리트 블록(410)의 양단부에 고정된다. 평행사변형 플랜지 체결부(430A)는 콘크리트 블록(410) 양단부의 돌출부로서 격자지보의 수직 체결판(350B)에 대응되는 접면부이다. 평행사변형 플랜지 체결부(430A)와 격자지보의 수직 체결판(350B)은 체결볼트에 의해 체결되는 체결부이므로 양자는 동일형상의 동일 면적이다. ④ At both ends of the concrete block 410, the parallelogram flange fastening plate 430, in which the triangular central portion 430B and the parallelogram flange fastening portion 430A are integrated, has a structure in close contact. The exposed tension member 420B passes through the through hole 432B of the triangular central portion 430B. The parallelogram flange fastening plate 430 is fixed to both ends of the concrete block 410 by welding the contact surfaces of the exposed tension member 420B and the through hole 432B. The parallelogram flange fastening part 430A is a protrusion at both ends of the concrete block 410 and is a contact surface corresponding to the vertical fastening plate 350B of the grid support. Since the parallelogram flange fastening part 430A and the vertical fastening plate 350B of the lattice support are fastening parts fastened by fastening bolts, both have the same shape and the same area.

⑤ 평행사변형 플랜지 체결부(430A)와 격자지보의 수직 체결판(350B)이 완전 접면된 상태에서 체결볼트에 의해 가변확장형 연결재(400)를 매개로 양측 격자지보가 일체로 체결된다.⑤ In a state where the parallelogram flange fastening part 430A and the vertical fastening plate 350B of the lattice beam are completely in contact with each other, both lattice beams are integrally fastened via the variable expandable connector 400 via the fastening bolts.

⑥ 가변확장형 연결재(400)와 양측 격자지보가 「실제격자지보설치시공선」에 설치된 후, 숏크리트(S)를 타설하여 격자지보와 합성단면이 되게 한다.⑥ After the variable expandable connector 400 and the grid support on both sides are installed on the "actual grid support installation construction line", shotcrete (S) is cast to make the grid support and composite cross section.

마) 크라운 천단점(J)과 상하연결점(E)의 연결에 있어 종래 격자지보끼리만의 연결단면적과, 그리고 본 발명 가변확장형 연결재(400)의 삽입에 의한 격자지보의 연결단면적에 따른 전단력 성능에 대하여 E) In the connection between the crown apex point (J) and the upper and lower connection points (E), the shear force performance according to the connection cross-sectional area of the conventional lattice beams alone and the connection sectional area of the lattice beams by inserting the variable expandable connector 400 of the present invention about

크라운 천단점(J)과 상하연결점(E)의 격자지보의 기존연결은 도2에서와 같이 격자지보의 수직 체결판(350B)(350B)끼리 맞대고 체결볼트(360)(M20볼트)를 양측에 1개씩 2개가 체결됨으로써 연결부의 단면적이 작아 전단력이 취약하였는데, 도6a와 같이 본 발명 가변확장형 연결재(400)가 좌우 격자지보와 M20볼트 2개로 체결되고, 또 관통된 인장재(420B)의 이형철근 단면적만큼 격자지보안쪽으로 연장 위치됨으로써 격자지보의 연결부 전단력 성능, 즉 연결단면적 증가율이 기존에 비해 32~71%향상됨을 알 수 있다(아래 표 1 참조). As shown in FIG. 2, the existing connection of the lattice supports at the crown apex point (J) and the upper and lower connection points (E) is performed by abutting the vertical fastening plates (350B) (350B) of the lattice beams and fastening bolts 360 (M20 bolts) on both sides. As two of them are fastened one by one, the cross-sectional area of the connection part is small and the shear force is weak. As shown in FIG. It can be seen that by being extended toward the grid support by the cross-sectional area, the shear force performance of the connection part of the grid support, that is, the increase rate of the connection cross-section area, is improved by 32 to 71% compared to the previous one (see Table 1 below).

기존 격자지보끼리의 연결Connection between existing lattice supports 본 발명 가변확장형 연결재와 격자지보와의 연결Connection between the present invention variable expandable connector and lattice support 체결방식fastening method 체결볼트fastening bolt 체결볼트 및 이형철근Fastening bolts and deformed bars 볼트 갯수number of bolts M20 2개2 M20 M20 2개2 M20 배근 이형철근Arrangement Deformed Rebar 없음.doesn't exist. 이형철근16~24mm 1개1 deformed rebar 16~24mm 전체 단면적total cross-sectional area 628.3㎟628.3㎟ 829.3~1080.7㎟829.3~1080.7㎟ 연결단면적 증가율Connection cross-sectional area increase rate 100%100% 132~171%132-171%

⒜ 본 발명은 격자지보를 설치함에 있어 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 격자지보가 조립 연결되는 크라운 천단점(J)과 상하연결점(E)사이 각각에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 삽입하여 그 양측 격자지보와 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되는데 그 효과가 있고, (a) In the present invention, in installing the lattice support, the arched tunnel section is divided into left and right symmetrical half sections with respect to the vertical line of gravity of the crown apex point (J) of the arched tunnel section, and the half section is based on the vertical connection point (E) It is divided into an upper half section (SA) and a lower half section (SB), and lattice supports are installed on both symmetrical sides of the upper and lower half sections (SA) (SB), but the crown apex point (J) and the upper and lower connection points where the lattice supports are assembled and connected ( E) by inserting a variable expandable ceiling connector (400A) and a variable expandable upper and lower connector (400B) into each of the gaps and connecting them with the lattice supports on both sides, the horizontal direction by the variable expandable ceiling connector (400A) at the top point of the crown (J). The height expansion in the vertical direction is made by the length expansion of the vertical connection point (E) and the height expansion in the vertical direction by the variable expansion type vertical connector (400B) of the vertical connection point (E), and the "design construction line" where the factory-manufactured lattice support is installed is the "tunnel excavation section line" It is effective in becoming a "real grid support installation construction line" with a minimized overexcavation distance (d) by moving as close as possible to the side.

⒝ 크라운 천단점(J)의 가변확장형 천단연결재(400A)와 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 공장 제작의 격자지보의 「실제설치시공선」이 “터널굴착단면선”쪽으로 최대한 이동밀착 되어 과굴거리(d)가 최소화됨으로써 숏크리트의 타설 충진량의 최소화 및 그 타설 회수의 최소화가 되면서 숏크리트와 격자지보와의 안전한 합성강도(10Mpa)에 신속하게 이르게 되면서 지반지지력의 구조적 안정성확보역시 신속하게 이루어지는 한편, 가변확장형 천단연결재(400A) 및 가변확장형 상하연결재(400B)의 구조가 간단하여 「실제격자지보설치시공선」으로의 밀착작업이 용이할 뿐 아니라, 효율적 경제적인 지지구조의 안정성이 확보되는 효과를 지닌 유용한 발명이다. ⒝ The “actual installation construction line” of the factory-manufactured lattice support is “tunnel excavation section line” by the variable expandable top connector 400A at the top point of the crown (J) and the variable expandable top and bottom connector 400B at the top and bottom connection point E. As the overexcavation distance (d) is minimized by moving closely to the side as much as possible, the amount of filling and the number of castings of shotcrete are minimized, and the safe composite strength (10Mpa) of shotcrete and lattice beam is quickly reached, securing structural stability of ground bearing capacity. On the other hand, the structure of the variable expandable ceiling connector (400A) and the variable expandable top and bottom connector (400B) is simple, so it is easy to adhere to the "actual grid support installation line", and it is an efficient and economical support structure. It is a useful invention having the effect of ensuring stability.

[도 1] 표준형 격자지보의 구조
[도 2] 크라운 천단점(J)과 상하연결점(E)에서의 격자지보의 연결모습을 보인 결합상태도
[도 3] 본 발명 격자지보의 크라운 천단점(J)과 상ㆍ하부 반단면(SA)(SB)의 상하연결점(E)에 가변확장형 연결재(EC)의 삽입위치를 보인 아치형 터널단면도
[도 4] 가변확장형 연결재(EC)를 삽입체결하기 위해 크라운 천단점(J)과 상하연결점(E)의 격자지보를 서로 벌린 분해상태도
[도 5a] 가변확장형 연결재(EC)의 사시도
[도 5b] 도 5a의 길이방향으로의 단면도
[도 5c] 가변확장형 연결재(EC)의 평행사변형 플랜지 체결판의 사시도
[도 5d] 도 5a의 C-C 단면도
[도 6a] 본 발명의 가변확장형 연결재(EC)가 격자지보의 크라운 천단점(J)과 상하연결점(E)에 삽입 연결된 상태를 보인 단면도
[도 6b] 도6a의 A-A 단면도
[도6c] 도6a의 B-B 단면도
[도7] 격자지보와 H형강 지보재의 단면성능[단면적, 단면2차모멘트(Ⅰ)] 대비표
[Figure 1] Structure of standard lattice support
[Figure 2] A combined state diagram showing the connection of lattice supports at the crown apex point (J) and the top and bottom connection points (E)
[Figure 3] An arched tunnel cross-sectional view showing the insertion position of the variable expandable connector (EC) at the crown apex point (J) of the lattice beam of the present invention and the upper and lower connection points (E) of the upper and lower half sections (SA) (SB)
[Figure 4] An exploded state diagram in which the lattice supports of the crown apex point (J) and the upper and lower connection points (E) are spread apart to insert and fasten the variable expandable connector (EC)
[Figure 5a] a perspective view of a variable expandable connector (EC)
[Fig. 5b] Sectional view in the longitudinal direction of Fig. 5a
[Fig. 5c] a perspective view of a parallelogram flange fastening plate of a variable expandable connector (EC)
[Fig. 5d] CC cross-sectional view of Fig. 5a
[Figure 6a] A cross-sectional view showing a state in which the variable expandable connector (EC) of the present invention is inserted and connected to the crown apex point (J) and the upper and lower connection point (E) of the lattice beam
[Fig. 6b] AA cross section of Fig. 6a
[Fig. 6c] BB sectional view of Fig. 6a
[Figure 7] Comparison table of section performance [section area, moment of inertia (Ⅰ)] of lattice support and H-beam support

본 발명 가변확장형 연결재구조를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템의 구성에 대하여 설명하면 다음과 같다. The configuration of the tunnel lattice support installation system according to the minimization of the over-bending distance using the variable expandable connector structure of the present invention will be described as follows.

과굴이 불가피한 아치형 터널발파 굴착단면선(G)에 대하여 공장 제작된 격자지보를 “설계 시공선”에 설치하되 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 크라운 천단점(J)과 상하연결점(E)에 위치된 양측 격자지보의 각각에 설치된 고정판(350A)에 대한 수직 체결판(350B)을 서로 맞대고 체결볼트(360)에 의해 체결 연결되는 격자지보의 “설계 시공선”설치 시스템에 있어서Install factory-manufactured lattice beams on the “design construction line” for the arched tunnel blasting excavation cross-section line (G), where overexcavation is unavoidable, but make the arched tunnel cross-section symmetric It is divided into half sections, and it is divided into upper half sections (SA) and lower half sections (SB) based on the upper and lower connection points (E), and lattice supports are installed on both sides of the upper and lower half sections (SA) (SB) symmetrically, but the crown cloth The “design of the lattice beams in which the vertical fastening plates 350B for the fixed plates 350A installed on each of the lattice beams on both sides located at the point J and the upper and lower connection points E are butted with each other and fastened and connected by the fastening bolts 360. In the construction line "installation system

상기 크라운 천단점(J)과 상하반 상하연결점(E)의 양측 격자지보사이에, 3각형 기둥형상의 콘크리트 블록(410)과 인장재(420) 및 평행사변형 플랜지 체결판(430)으로 이루어진 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 각각 삽입하되 양측 격자지보의 수직 체결판(350B)에 대하여 가변확장형 천단연결재(400A) 및 가변확장형 상하연결재(400B)의 돌출된 양측 플랜지 체결부(430A)을 서로 맞대고 체결볼트(360)에 의해 상기 수직 체결판(350B)과 상기 플랜지 체결부(430A)를 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되게 함을 특징으로 하는 가변확장형 연결재구조를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템이다.A variable expansion type consisting of a concrete block 410 in the shape of a triangular column, a tension member 420, and a parallelogram flange fastening plate 430 between the crown apex point (J) and the lattice beams on both sides of the upper and lower half connection points (E). Insert the ceiling connector (400A) and the variable expandable vertical connector (400B), respectively, but fasten both protruding flanges of the variable expandable ceiling connector (400A) and the variable expandable upper and lower connector (400B) with respect to the vertical fastening plates (350B) of the lattice beams on both sides. By connecting and fastening the vertical fastening plate 350B and the flange fastening part 430A by connecting the vertical fastening plate 350B and the flange fastening part 430A by butting the parts 430A against each other, the variable expansion type ceiling connecting member 400A at the apex point J of the crown makes the horizontal horizontal fastening. The length expansion in the direction and the height expansion in the vertical direction are made by the variable expandable top and bottom connectors (400B) at the top and bottom connection points (E), so that the “design construction line” where the factory-manufactured lattice support will be installed is the “tunnel excavation cross-section.” It is a tunnel lattice support installation system according to the minimization of the overextension distance using a variable expansion type connecting material structure, characterized in that it becomes a "real grid support installation construction line" with a minimized overextension distance (d) by being moved as close as possible to the "line".

여기에다, here,

공장 제작의 격자지보의 “설계 시공선”의 위치가 “터널굴착단면선”쪽으로 최대한 이동 밀착되어 과굴거리(d)가 최소화된 상태에서 숏크리트(S)를 타설함으로써 가변확장형 천단연결재(400A) 및 가변확장형 상하연결재(400B)가 포함된 격자지보와의 안전한 합성강도가 신속하게 이루어지면서 숏크리트(S) 타설 충진량 및 그 타설 회수가 최소화됨을 특징으로 하는 가변확장형 연결재구조를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템이다. The position of the “design construction line” of the factory-made lattice beam is moved as close as possible to the “tunnel excavation section line” and the shotcrete (S) is placed in a state where the overexcavation distance (d) is minimized. Tunnel according to minimization of overexcavation distance using variable expandable connector structure, characterized in that safe composite strength with lattice beams including variable expandable upper and lower connectors (400B) is achieved quickly, while minimizing the amount of shotcrete (S) casting and the number of castings It is a grid support installation system.

또한, also,

매설인장재(420A)와 노출인장재(420B)는 이형철근이고, 노출인장재(420B)의 단부가 훅크(420C)형상임을 특징으로 하는 가변확장형 연결재구조를 이용한 과굴 거리최소화에 따른 터널 격자지보설치시스템이다.The buried tension member (420A) and the exposed tension member (420B) are deformed reinforcing bars, and the end of the exposed tension member (420B) is a hook (420C) shape. It is a tunnel grid support installation system according to the minimization of the overbending distance using a variable expansion type connector structure .

이와 같이 격자지보가 조립 연결되는 크라운 천단점(J)과 상하연결점(E)사이 각각에 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 삽입하여 그 양측 격자지보와 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 된다. In this way, by inserting a variable expansion type ceiling connection member (400A) and a variable expansion type top and bottom connection member (400B) between the crown apex point (J) and the upper and lower connection point (E), respectively, where the lattice support is assembled and connected, and connecting them with the lattice support on both sides of the crown, the crown Length expansion in the horizontal direction by the variable expandable top connector 400A at the top point J, and height expansion in the vertical direction by the variable expandable top and bottom connector 400B at the top and bottom connection points E The “design construction line” on which the grid support will be installed is moved as close as possible to the “tunnel excavation section line” to become the “actual grid support installation construction line” with the minimized overexcavation distance (d).

과굴거리(d)가 최소화됨으로써 숏크리트의 타설 충진량의 최소화 및 그 타설 회수의 최소화가 되면서 숏크리트와 격자지보와의 안전한 합성강도(10Mpa)에 신속하게 이르게 되면서 지반지지력의 구조적 안정성확보역시 신속하게 이루어지는 유용한 발명이다. As the overexcavation distance (d) is minimized, the amount of filling of shotcrete is minimized and the number of times of casting is minimized, quickly reaching a safe composite strength (10Mpa) between shotcrete and lattice beams, and securing structural stability of ground bearing capacity is also useful. It is an invention.

SA; 상부 반단면(SA), SB; 하부 반단면(SB)
100A; 상부 반단면 격자지보(100A), 200B; 하부 반단면 격자지보,
J; 크라운 천단점(J), E; 하반연결점(E), G; 터널굴착단면선(G), F; 설계 시공선(F), S; 숏크리트(S), W; 용접(W),
300; 격자지보(100A)(200B) 구조(300), 310; 상부강봉(310), 320; 하부강봉(320), 330; 스파이더(330), 340; 용접부(340), 350; 연결체결부(350), 350A; 고정판(350A), 350B; 수직 체결판(350B), 360; 체결볼트(360), 370; 볼트공
400; 가변확장형 연결재(400), 400A; 가변확장형 천단연결재(400A), 400B; 가변확장형 상하연결재(400B), 410; 콘크리트 블록(410), 420; 인장재(420), 420A; 매설인장재(420A), 420B; 노출인장재(420B), 420C; 훅크(420C), 430; 평행사변형 플랜지 체결판(430), 430A; 플랜지 체결부(430A), 432A; 체결 볼트공(432A), 430B; 중앙부(430B), 432B; 노출인장재 관통공(432B),
SA; upper half section (SA), SB; Bottom Half Section (SB)
100A; Upper half-section lattice supports (100A), 200B; Lower half section lattice beam,
J; crown apex (J), E; lower junction point (E), G; Tunnel excavation section line (G), F; design construction line (F), S; shotcrete (S), W; welding (W),
300; Lattice support (100A) (200B) structure (300), 310; Upper steel bar (310), 320; Lower steel bar (320), 330; Spiders 330, 340; welds 340 and 350; Connection fastening part 350, 350A; fixing plates 350A, 350B; Vertical fastening plate (350B), 360; fastening bolts (360), 370; bolt hole
400; Variable expandable connector 400, 400A; Variable expandable ceiling connectors (400A), 400B; Variable expandable upper and lower connectors (400B), 410; concrete blocks 410, 420; Tension member 420, 420A; Buried tension member (420A), 420B; exposed tension member (420B), 420C; hook (420C), 430; Parallelogram flange fastening plate 430, 430A; Flange fastening part (430A), 432A; fastening bolt holes 432A, 430B; central portions 430B, 432B; Exposed tension member through hole (432B),

Claims (7)

과굴이 불가피한 아치형 터널발파 굴착단면선(G)에 대하여 공장 제작된 격자지보를 “설계 시공선”에 설치하되 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 그 반단면을 상하연결점(E)을 기준으로 상하부 반단면(SA)(SB)으로 나누어 그 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)에 위치된 양측 격자지보의 각각에 설치된 고정판(350A)에 대한 수직 체결판(350B)을 서로 맞대고 체결볼트(360)에 의해 격자지보가 체결되는 연결구조에 있어서
상기 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)의 양측 격자지보사이에 삽입되는 가변확장형 연결재(400)와;
가변확장형 연결재(400)는 삽입위치만 다르고, 그 구조가 동일한 가변확장형 천단연결재(400A 및 가변확장형 상하연결재(400B)와;
가변확장형 천단연결재(400A 및 가변확장형 상하연결재(400B)는 3각형 기둥형상의 콘크리트 블록(410) 몸체와, 그 몸체의 매설인장재(420A) 및 노출인장재(420B)가 하나로 일체화된 인장재(420)와, 그리고 콘크리트 블록(410)의 양단부에 형성되되 플랜지 체결부(430A)와 중앙부(430B)가 하나로 일체로 된 평행사변형 플랜지 체결판(430)으로 형성됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조
Install factory-manufactured lattice beams on the “design construction line” for the arched tunnel blasting excavation cross-section line (G), where overexcavation is unavoidable, but make the arched tunnel cross-section symmetric It is divided into half sections, and the half sections are divided into upper and lower half sections (SA) (SB) based on the upper and lower connecting points (E), and the upper and lower connecting points of the crown apex (J) and the upper and lower half sections (SA) (SB) ( In the connection structure in which the vertical fastening plates 350B for the fixed plates 350A installed on each of the grid supports on both sides located at E) are butted with each other and the grid supports are fastened by the fastening bolts 360
A variable expandable connecting member 400 inserted between the lattice supports on both sides of the crown apex point (J) and the upper and lower connection points (E) of the upper and lower half sections (SA) (SB);
The variable expandable connector 400 differs only in the insertion position and has the same structure as the variable expandable ceiling connector 400A and the variable expandable upper and lower connector 400B;
The variable expandable ceiling connector 400A and the variable expandable upper and lower connector 400B are a triangular columnar concrete block 410 body, a tension member 420 in which the buried tension member 420A and the exposed tension member 420B of the body are integrated into one. And, it is formed at both ends of the concrete block 410, and the flange fastening part 430A and the central part 430B are formed as a parallelogram flange fastening plate 430 in one body. Variable expansion type connector of tunnel lattice beam, characterized in that structure
제1항에 있어서
상기 크라운 천단점(J)과 상하부 반단면(SA)(SB)의 상하연결점(E)의 양측 격자지보사이에 가변확장형 연결재(400)를 각각 삽입하여 양측 격자지보의 수직 체결판(350B)과 가변확장형 연결재(400)의 돌출된 플랜지 체결부(430A)을 서로 맞대고 체결볼트(360)에 의해 연결 체결하되, 가변확장형 연결재(400)는 3각형 기둥형상의 콘크리트 블록(410)과 인장재(420)와 평행사변형 플랜지 체결판(430)으로 이루어지고, 인장재(420)는매설인장재(420A)와 노출인장재(420B)가 하나로 된 인장재(420)로서 매설인장재(420A)는 콘크리트 블록(410)에 매설되며, 노출인장재(420B)는 콘크리트 블록(410) 양단부로 노출되고, 노출인장재(420B)가 관통된 평행사변형 플랜지 체결판(430)은 콘크리트 블록(410)에 대하여 그 플랜지 체결부(430A)가 콘크리트 블록(410)의 양 단부를 넘어 연장 돌출되며, 수직면을 이루면서 평행사변형 플랜지 체결판(430)이 콘크리트 블록(410)의 양단부에 위치된 상태로 고정되고, 이때 그 고정은 노출인장재(420B)와 노출인장재 관통공(432B)의 용접에 의해 고정되고, 연장 돌출된 플랜지 체결부(430A)는 격자지보의 수직 체결판(350B)과 동일한 형상과 크기로서 플랜지 체결부(430A)와 수직 체결판(350B)이 완전 접면된 상태에서 체결볼트(360)에 의해 연결 체결되어 가변확장형 연결재(400)와 격자지보가 체결되며, 이때 상기 양측 노출인장재(420B)는 각 격자지보의 처음 스파이더(330)까지 연장 설치된 상태가 됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조
According to claim 1
By inserting the variable expandable connector 400 between the lattice supports on both sides of the upper and lower connection points (E) of the crown apex (J) and the upper and lower half sections (SA) (SB), respectively, the vertical fastening plates (350B) of the lattice supports on both sides The protruding flange fastening parts 430A of the variable expandable connector 400 are butted to each other and connected and fastened by fastening bolts 360, but the variable expandable connector 400 is a triangular columnar concrete block 410 and the tension member 420. ) and a parallelogram flange fastening plate 430, and the tension member 420 is a tension member 420 in which the buried tension member 420A and the exposed tension member 420B are one, and the buried tension member 420A is attached to the concrete block 410. It is buried, and the exposed tension member 420B is exposed to both ends of the concrete block 410, and the parallelogram flange fastening plate 430 through which the exposed tension member 420B penetrates is the flange fastening portion 430A with respect to the concrete block 410. protrudes beyond both ends of the concrete block 410, and while forming a vertical plane, the parallelogram flange fastening plate 430 is fixed while being located at both ends of the concrete block 410, and at this time, the fixing is the exposed tension member 420B ) and the exposed tension member through hole 432B are fixed by welding, and the extended protruding flange fastening part 430A is vertically fastened with the flange fastening part 430A in the same shape and size as the vertical fastening plate 350B of the lattice support. The plate 350B is connected and fastened by the fastening bolt 360 in a state in which it is completely in contact with the variable expandable connector 400 and the lattice support, and at this time, the exposed tension member 420B on both sides is the first spider 330 ) Variable expansion type connection reconstruction structure of tunnel grid support, characterized in that it is installed extended to
제1항에 있어서
노출인장재 관통공(432B)은 평행사변형 플랜지 체결판(430)의 중앙부(430B)의 중심에 형성됨을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조
According to claim 1
The exposed tension member through-hole (432B) is a variable expansion type connecting member structure of the tunnel lattice support, characterized in that it is formed at the center of the central portion (430B) of the parallelogram flange fastening plate (430)
제1항에 있어서
매설인장재(420A)와 노출인장재(420B)는 이형철근이고, 노출인장재(420B)의 단부가 훅크(420C)형상임을 특징으로 하는 터널 격자지보의 가변확장형 연결재구조
According to claim 1
The buried tension member (420A) and the exposed tension member (420B) are deformed reinforcing bars, and the end of the exposed tension member (420B) has a hook (420C) shape.
삭제delete 삭제delete 과굴이 불가피한 아치형 터널발파 굴착단면선(G)에 대하여 공장 제작된 격자지보를 “설계 시공선”에 설치하되 아치형 터널단면의 크라운 천단점(J)의 중력수직선에 대하여 아치형 터널단면을 좌우 대칭의 반단면으로 나누고, 또 상하연결점(E)을 기준으로 상부 반단면(SA)과 하부 반단면(SB)으로 나누며, 상하부 반단면(SA)(SB)의 대칭양측에 격자지보를 설치하되 크라운 천단점(J)과 상하연결점(E)에 위치된 양측 격자지보의 각각에 설치된 고정판(350A)에 대한 수직 체결판(350B)을 서로 맞대고 체결볼트(360)에 의해 체결 연결되는 격자지보의 “설계 시공선”설치시스템에 있어서 상기 크라운 천단점(J)과 상하반 상하연결점(E)의 양측 격자지보사이에, 3각형 기둥형상의 콘크리트 블록(410)과 인장재(420) 및 평행사변형 플랜지 체결판(430)으로 이루어진 가변확장형 천단연결재(400A)와 가변확장형 상하연결재(400B)를 각각 삽입하되 양측 격자지보의 수직 체결판(350B)에 대하여 가변확장형 천단연결재(400A) 및 가변확장형 상하연결재(400B)의 돌출된 양측 플랜지 체결부(430A)을 서로 맞대고 체결볼트(360)에 의해 상기 수직 체결판(350B)과 상기 플랜지 체결부(430A)를 연결체결함으로써 크라운 천단점(J)의 가변확장형 천단연결재(400A)에 의해 수평방향으로의 길이확장과, 그리고 상하연결점(E)의 가변확장형 상하연결재(400B)에 의해 상하수직방향으로의 높이확장이 이루어져 공장 제작의 격자지보가 설치될 “설계 시공선”이 “터널굴착단면선”쪽으로 최대한 확장밀착 이동되어 과굴거리(d)가 최소화된 「실제격자지보설치시공선」이 되게 하고, 매설인장재(420A)와 노출인장재(420B)는 이형철근이고, 노출인장재(420B)의단부가 훅크(420C)형상임을 특징으로 하는 가변확장형 연결재구조를 이용한 과굴거리최소화에 따른 터널 격자지보설치시스템Install factory-manufactured lattice beams on the “design construction line” for the arched tunnel blasting excavation cross-section line (G), where overexcavation is unavoidable, but make the arched tunnel cross-section symmetric It is divided into half sections, and it is divided into upper half sections (SA) and lower half sections (SB) based on the upper and lower connection points (E), and lattice supports are installed on both sides of the upper and lower half sections (SA) (SB) symmetrically, but the crown cloth The “design of the lattice beams in which the vertical fastening plates 350B for the fixed plates 350A installed on each of the lattice beams on both sides located at the point J and the upper and lower connection points E are butted with each other and fastened and connected by the fastening bolts 360. In the "construction line" installation system, between the lattice supports on both sides of the crown apex point (J) and the upper and lower half upper and lower connection points (E), a concrete block 410 in the shape of a triangular column, a tension member 420 and a parallelogram flange fastening plate The variable expandable ceiling connector 400A and the variable expandable top and bottom connector 400B made of 430 are inserted, respectively, but the variable extendable ceiling connector 400A and the variable expandable top and bottom connector 400B are inserted with respect to the vertical fastening plates 350B of the lattice beams on both sides. The variable expandable top of the crown peak point (J) by connecting the flange fastening parts 430A on both sides of the protruding side to each other and connecting the vertical fastening plate 350B and the flange fastening part 430A by the fastening bolt 360. The length expansion in the horizontal direction by the connecting material (400A) and the height expansion in the vertical direction by the variable expandable vertical connecting material (400B) at the top and bottom connection point (E) are made, so that the factory-manufactured lattice support will be installed. The "line" is moved to the "tunnel excavation section line" as much as possible to make it an "actual grid support installation construction line" with a minimized over-excavation distance (d), and the buried tension member (420A) and the exposed tension member (420B) are deformed reinforcing bars , Tunnel lattice support installation system according to the minimization of the overextension distance using a variable expandable connector structure, characterized in that the end of the exposed tension member (420B) is in the shape of a hook (420C)
KR1020230055253A 2023-04-27 2023-04-27 Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof KR102565884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230055253A KR102565884B1 (en) 2023-04-27 2023-04-27 Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230055253A KR102565884B1 (en) 2023-04-27 2023-04-27 Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof

Publications (1)

Publication Number Publication Date
KR102565884B1 true KR102565884B1 (en) 2023-08-11

Family

ID=87565843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230055253A KR102565884B1 (en) 2023-04-27 2023-04-27 Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof

Country Status (1)

Country Link
KR (1) KR102565884B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112614A (en) * 2012-04-04 2013-10-14 허억준 Lattice girders for tunnel using concrete space block
KR101899441B1 (en) * 2015-09-15 2018-09-17 한국건설기술연구원 Double order system adjusting horizontal length of steel pipe supporter in the tunnel and the structure of the pipe supporter and method constructing thereof
US20210156251A1 (en) * 2019-11-25 2021-05-27 Fci Holdings Delaware, Inc. Adjustable Lattice Girder
JP2022148697A (en) * 2021-03-24 2022-10-06 株式会社フジタ Steel support
JP2022149366A (en) * 2021-03-25 2022-10-06 株式会社フジタ Steel support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112614A (en) * 2012-04-04 2013-10-14 허억준 Lattice girders for tunnel using concrete space block
KR101899441B1 (en) * 2015-09-15 2018-09-17 한국건설기술연구원 Double order system adjusting horizontal length of steel pipe supporter in the tunnel and the structure of the pipe supporter and method constructing thereof
US20210156251A1 (en) * 2019-11-25 2021-05-27 Fci Holdings Delaware, Inc. Adjustable Lattice Girder
JP2022148697A (en) * 2021-03-24 2022-10-06 株式会社フジタ Steel support
JP2022149366A (en) * 2021-03-25 2022-10-06 株式会社フジタ Steel support

Similar Documents

Publication Publication Date Title
KR100534456B1 (en) Tunnel support lattice girder
KR101743509B1 (en) Rahmen bridge with temporary hinge structure reinforced seismic capability and the con struction method therefor
AU636603B2 (en) A fire-resistant prefabricated steel beam
KR20060042561A (en) Hybrid beam structure using thin steel plate and concrete
KR100991497B1 (en) Integrated structure of reinforced concrete column and steel beam
KR102108335B1 (en) Composite Steel Structure with Seismic Performance Joint
KR102565884B1 (en) Connector structure for changeable extension in the tunnel lattice girder and system constructing the tunnel lattice girder thereof
KR101750908B1 (en) System of the shotcrete lining reinforced the adhesion/tension by wire mesh and assembly structure thereof and method setting up the wire mesh to the steel rib for tunnel
KR101521946B1 (en) Enlarged capital of steel framed reinforced concrete column
KR102433621B1 (en) Unidirectional structure of wide double composite girder in which steel members is placed in the lower section thereof
KR101836165B1 (en) System constructing the tunnel by Concrete-Filled Tube(CFT) manufacturing in the factory and fabricating it in the site and method constructing the tunnel thereof
KR101942567B1 (en) Rigid joint structures using end face of beam as mold support and, construction methods using the same
CN205840052U (en) Reinforced concrete wall and attachment structure thereof is filled out in a kind of assembled steel framework
KR102204901B1 (en) Shear wall reinforced with steel plate
JP3116990B2 (en) Precast reinforced concrete foundation structure
CN219298868U (en) Reinforcing component of masonry structure
JP3892764B2 (en) Slope pressure plate
CN220035723U (en) Be used for box girder steel and concrete beam node connection structure
CN216616289U (en) Assembled system frame beam column connection structure
JP3760609B2 (en) Leg anchorage of steel columns
KR102272531B1 (en) Fully composited structure for tunnel lining-lattice girder support system with steel-pipe socketed joint
CN212535701U (en) Spatial joint steel arch structure at cross-shaped tunnel intersection
CN215671273U (en) Rear-added cantilever structure
CN220266515U (en) Rock foundation reinforcing structure
CN211421053U (en) Hydraulic building plane gate rail installation embedded part

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant