KR102561131B1 - Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same - Google Patents
Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same Download PDFInfo
- Publication number
- KR102561131B1 KR102561131B1 KR1020220189616A KR20220189616A KR102561131B1 KR 102561131 B1 KR102561131 B1 KR 102561131B1 KR 1020220189616 A KR1020220189616 A KR 1020220189616A KR 20220189616 A KR20220189616 A KR 20220189616A KR 102561131 B1 KR102561131 B1 KR 102561131B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- concrete
- strength
- parts
- powder
- Prior art date
Links
- 239000011230 binding agent Substances 0.000 title claims abstract description 41
- 239000000203 mixture Substances 0.000 title claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 56
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002893 slag Substances 0.000 claims abstract description 32
- 239000010881 fly ash Substances 0.000 claims abstract description 26
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims abstract description 24
- 238000000227 grinding Methods 0.000 claims abstract description 24
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 18
- 238000009412 basement excavation Methods 0.000 claims abstract description 18
- 229910052938 sodium sulfate Inorganic materials 0.000 claims abstract description 18
- 235000011152 sodium sulphate Nutrition 0.000 claims abstract description 18
- 235000021355 Stearic acid Nutrition 0.000 claims abstract description 17
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims abstract description 17
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 17
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 17
- 239000008117 stearic acid Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910021487 silica fume Inorganic materials 0.000 claims abstract description 10
- 239000011398 Portland cement Substances 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 239000002956 ash Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 31
- 238000012360 testing method Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- 239000000654 additive Substances 0.000 description 13
- 239000004568 cement Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000035699 permeability Effects 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 230000001976 improved effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 229910001653 ettringite Inorganic materials 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000036314 physical performance Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011041 water permeability test Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0006—Waste inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/008—Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/085—Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/143—Calcium-sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/147—Alkali-metal sulfates; Ammonium sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/08—Fats; Fatty oils; Ester type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C04B24/085—Higher fatty acids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
- C04B7/153—Mixtures thereof with other inorganic cementitious materials or other activators
- C04B7/17—Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
- C04B7/19—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
- C04B7/153—Mixtures thereof with other inorganic cementitious materials or other activators
- C04B7/21—Mixtures thereof with other inorganic cementitious materials or other activators with calcium sulfate containing activators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/243—Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 연속굴착 터널공사 등 지하구조물의 시공에 사용하기 위한 세그먼트 제작 기술에 관한 것으로, 세그먼트용 고강도 결합재 조성물과 고강도 수밀 콘크리트에 관한 것이다.
본 발명에 따른 세그먼트용 고강도 결합재 조성물은, 분말도가 6,000±500cm2/g인 고로슬래그 고미분말 70~80중량%; 4,500±500cm2/g인 천연 무수석고 고미분말 5~15중량%; 1종 보통 포틀랜드 시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~10중량%; 실리카퓸 2~5중량%; CSA계 팽창재 2~5중량%;로 구성되는 것을 특징으로 한다. 여기서 고로슬래그 고미분말과 천연 무수석고 고미분말은, 3종 고로슬래그 미분말과 천연 무수석고 분말이 분쇄조제가 투입된 상태에서 분쇄 혼합되어 고미분말로 처리된 것으로 바람직하게 적용할 수 있다. 본 발명에 따른 고강도 수밀 콘크리트는, 콘크리트 배합에서, 세그먼트용 고강도 결합재 100중량부에 대하여, 질산나트륨 0.1~0.5중량부, 황산나트륨 0.1~0.5중량부, 스테아린산 0.1~1.0중량부, 초임계 유동층 보일러 플라이애시 0.1~1.0중량부가 혼입되어 배합되되, 상기 질산나트륨, 황산나트륨, 스테아린산, 초임계 유동층 보일러 플라이애시는, 분쇄조제가 투입된 상태에서 분쇄 혼합된 것임을 특징으로 한다.The present invention relates to segment manufacturing technology for use in the construction of underground structures such as continuous excavation tunnel construction, and to high-strength binder compositions for segments and high-strength watertight concrete.
The high-strength binder composition for segments according to the present invention includes 70 to 80% by weight of fine blast furnace slag powder with a fineness of 6,000 ± 500 cm 2 /g; 5 to 15% by weight of natural anhydrous gypsum bitter powder measuring 4,500±500 cm 2 /g; Type 1 ordinary Portland cement 5 to 15% by weight; Supercritical fluidized bed boiler fly ash 5-10% by weight; 2 to 5% by weight of silica fume; It is characterized in that it is composed of 2 to 5% by weight of CSA-based expansion material. Here, the blast furnace slag fine powder and natural anhydrous gypsum fine powder can be preferably applied as three types of blast furnace slag fine powder and natural anhydrous gypsum powder mixed by grinding with a grinding aid added and treated into a bitter powder. High-strength watertight concrete according to the present invention, in concrete mixing, based on 100 parts by weight of high-strength binder for segments, 0.1 to 0.5 parts by weight of sodium nitrate, 0.1 to 0.5 parts by weight of sodium sulfate, 0.1 to 1.0 parts by weight of stearic acid, and supercritical fluidized bed boiler fly. 0.1 to 1.0 parts by weight of ash is mixed and mixed, and the sodium nitrate, sodium sulfate, stearic acid, and supercritical fluidized bed boiler fly ash are characterized in that they are ground and mixed with a grinding aid added.
Description
본 발명은 연속굴착 터널공사 등에 사용하기 위한 지하구조물의 연속굴착 세그먼트 제작 기술에 관한 것으로, 더욱 상세하게는 세그먼트 제작에 사용하기 위한 재료로 강도, 수밀성 등 물리적 특성이 우수하면서도 시멘트 사용량을 줄여 경제성 확보가 가능한 연속굴착 세그먼트용 고강도 결합재 조성물과, 이러한 연속굴착 세그먼트용 고강도 결합재를 바람직하게 이용하면서 첨가제를 적절하게 사용하여 강도와 수밀성을 더욱 향상시킨 고강도 수밀 콘크리트에 관한 것이다.The present invention relates to a technology for manufacturing continuous excavation segments of underground structures for use in continuous excavation tunnel construction, etc. More specifically, the material for use in segment production has excellent physical properties such as strength and water tightness, while securing economic efficiency by reducing the amount of cement used. It relates to a high-strength binder composition for continuous excavation segments that can be used, and to high-strength watertight concrete in which strength and watertightness are further improved by appropriately using additives while preferably using such high-strength binder for continuous excavation segments.
지하공간개발이 활발해지면서 콘크리트 지하구조물의 시공도 늘고 있다. 터널과 같은 지하구조물의 시공법으로 TBM 공법이 있다. TBM(Tunnel Boring Machine)공법은 굴착기 전면의 커터헤드(Cutterhead)를 회전시켜 터널을 굴착하고 미리 제작한 터널 벽면 세그먼트를 조립하면서 굴진하는 공법이다. TBM공법은 원형의 단면으로 굴착하므로 재래의 천공 및 발파를 반복하는 시공과 달리 역학적으로 안정된 무진동, 무발파, 기계화 굴착이 특징이다. 최근에는 TBM 굴진 추진잭이 세그먼트 설치 작업을 방해하지 않아 TBM 정지없이 연속적으로 나선모양의 세그먼트를 설치하는 연속굴착형 TBM공법이 개발되기도 했다. 연속굴착형 TBM공법은 굴진의 중단이 없어 공기단축을 통한 비용절감이 가능하고 또한 굴진관리도 용이한 이점이 있다.As underground space development becomes more active, the construction of concrete underground structures is also increasing. The TBM method is a construction method for underground structures such as tunnels. The TBM (Tunnel Boring Machine) method is a method of digging a tunnel by rotating the cutterhead on the front of the excavator and assembling pre-fabricated tunnel wall segments. The TBM method excavates with a circular cross-section, so unlike conventional construction that involves repeated drilling and blasting, it is characterized by mechanically stable vibration-free, non-blasting, and mechanized excavation. Recently, a continuous excavation type TBM method was developed to continuously install spiral-shaped segments without stopping the TBM because the TBM excavation propulsion jack does not interfere with the segment installation work. The continuous excavation TBM method has the advantage of reducing costs by shortening the construction period as there is no interruption in excavation and also making excavation management easier.
연속굴착형 TBM공법에서 세그먼트는 고강도, 고내구성의 콘크리트로 제작되는데, 세그먼트 소재가 고강도, 고내구성을 보유할 경우 터널의 유지관리 수요가 감소하고 구조물의 근본적인 안전을 확보할 수 있기 때문이다. 세그먼트용 콘크리트는 지하에 설치되므로 소재 자체가 누수 및 균열에 대응할 수 있어야 하고, 화재와 같은 재난에도 안전성을 확보할 수 있어야 하다.In the continuous excavation type TBM method, segments are made of high-strength and high-durability concrete. If the segment material has high strength and high durability, the maintenance demand for the tunnel is reduced and the fundamental safety of the structure can be secured. Since concrete for segments is installed underground, the material itself must be able to respond to water leaks and cracks, and must be able to ensure safety even in disasters such as fire.
국내에서 TBM공법에 적용되는 세그먼트용 콘크리트는 30~45MPa의 목표강도로 제작되며, 이러한 콘크리트의 설계기준에 따라 SD400 내지 SD600의 고장력 철근이 함께 활용되고 있다. 고장력 철근의 적용으로 콘크리트의 단면도 증가하게 되는데, 콘크리트의 단면 증가는 콘크리트의 사용량 증가로 이어지고, 콘크리트의 사용량 증가는 비용 증대로 이어져 이에 대한 대책 마련이 필요하다. In Korea, segment concrete applied to the TBM method is produced with a target strength of 30 to 45 MPa, and high-strength reinforcing bars of SD400 to SD600 are used according to the design standards for concrete. The application of high-strength rebar increases the cross-section of concrete. The increase in the cross-section of concrete leads to an increase in the amount of concrete used, and the increase in the amount of concrete used leads to an increase in costs, so it is necessary to prepare countermeasures.
한편 콘크리트 지하구조물에 균열이 발생하면 균열이 발생된 지점에서 지하수가 누수되어 콘크리트의 내구성능이 크게 저하된다. 지하수 등의 황산염(SO3 성분)이 콘크리트에 침투하면 시멘트 중의 C3A와 반응하여 팽창성(2~3.5배 팽창) 수화물(Ettringite, C3A·3CaSO4·32H2O)을 생성하는데, 이러한 생성물에 의해 콘크리트가 팽창 파괴되면서 내구성능이 저하되는 것이다. 콘크리트의 내구성능 저하는 화재 발생 시에 콘크리트의 폭렬 및 부재의 파괴 등과 같은 문제들을 초래하기도 한다. 또한 콘크리트는 알칼리성을 상실하거나 염화물의 농도가 침투확산에 의해 임계치에 달하게 되면 철근의 보호막인 부동태 피막(Passivity Film)이 파괴되며, 이 경우 콘크리트 부재 내부의 철근은 부식환경에 그대로 노출되어 부식된다. 철근이 부식되면 콘크리트의 단면적 및 기계적 성능이 저하될 뿐만 아니라 철근 부식 부산물의 팽창에 따라 콘크리트에 균열이 발생하게 된다. Meanwhile, when a crack occurs in a concrete underground structure, groundwater leaks from the point where the crack occurred, greatly reducing the durability of the concrete. When sulfate (SO 3 component) from groundwater penetrates into concrete, it reacts with C 3 A in cement to produce an expansive (2 to 3.5 times expanded) hydrate (Ettringite, C 3 A·3CaSO 4 ·32H 2 O). As the concrete expands and fractures due to the product, its durability decreases. Deterioration in the durability of concrete may lead to problems such as explosion of concrete and destruction of members in the event of a fire. In addition, when concrete loses alkalinity or the chloride concentration reaches a critical value due to penetration and diffusion, the passivity film, which is the protective film of the reinforcing bar, is destroyed. In this case, the reinforcing bar inside the concrete member is exposed to the corrosive environment and corrodes. When reinforcing bars corrode, not only does the cross-sectional area and mechanical performance of concrete deteriorate, but cracks occur in the concrete due to the expansion of reinforcing steel corrosion by-products.
콘크리트의 균열 발생을 제어하기 위해서는 시공 단계에서 발생하는 초기 재령 콘크리트에서의 균열 제어가 필요하다. 초기 재령에 발생하는 균열은 미세균열인 경우에도 누수, 중성화, 철근부식 등을 촉진시켜 콘크리트 구조물의 내구성에 치명적인 영향을 미치기 때문이다. 초기 재령에서 발생하는 콘크리트의 건조수축은 콘크리트 표면에 미세한 균열을 야기시키는데, 이런 미세 균열들은 발생 즉시 콘크리트의 안전성능을 약화시키지는 않으나 외부환경에서 여러 유해 인자들이 콘크리트 내부로 침입을 가속시켜 구조물의 내수성을 크게 저하시키는 것이다.In order to control the occurrence of cracks in concrete, it is necessary to control cracks in early-aged concrete that occur during the construction stage. This is because cracks that occur at an early age, even if they are microcracks, have a fatal impact on the durability of concrete structures by promoting water leakage, neutralization, and corrosion of reinforcing bars. Drying shrinkage of concrete that occurs at an early age causes microscopic cracks on the concrete surface. These microcracks do not immediately weaken the safety performance of concrete, but they accelerate the intrusion of various harmful factors from the external environment into the concrete, reducing the water resistance of the structure. greatly reduces it.
본 발명은 연속굴착형 TBM 공법 등의 방법으로 지하구조물의 시공에 사용되는 세그먼트의 물리적 성능을 개선시키기 위해 개발된 것으로, 강도, 수밀성 등 물리적 특성이 우수하면서 시멘트 사용량을 줄여 경제성 확보가 가능한 세그먼트용 고강도 결합재 조성물과 이를 바람직하게 이용한 세그먼트용 고강도 수밀 콘크리트 조성물을 제공하는데 기술적 과제가 있다.The present invention was developed to improve the physical performance of segments used in the construction of underground structures by methods such as the continuous excavation TBM method. It is for segments that have excellent physical properties such as strength and watertightness and can secure economic feasibility by reducing the amount of cement used. There is a technical challenge in providing a high-strength binder composition and a high-strength watertight concrete composition for segments using the same preferably.
상기한 기술적 과제를 해결하기 위해 본 발명은, 분말도가 6,000±500cm2/g인 고로슬래그 고미분말 70~80중량%; 4,500±500cm2/g인 천연 무수석고 고미분말 5~15중량%; 1종 보통 포틀랜드 시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~10중량%; 실리카퓸 2~5중량%; CSA계 팽창재 2~5중량%;로 구성되는 것을 특징으로 하는 세그먼트용 고강도 결합재 조성물을 제공한다. 여기서 고로슬래그 고미분말과 천연 무수석고 고미분말은, 각각 3종 고로슬래그 미분말과 천연 무수석고 분말이 분쇄조제가 투입된 상태에서 분쇄되어 고미분말로 처리된 것으로 바람직하게 적용할 수 있다.In order to solve the above-described technical problem, the present invention includes 70 to 80% by weight of fine blast furnace slag powder with a fineness of 6,000 ± 500 cm 2 /g; 5 to 15% by weight of natural anhydrous gypsum bitter powder measuring 4,500±500 cm 2 /g; Type 1 ordinary Portland cement 5-15% by weight; Supercritical fluidized bed boiler fly ash 5-10% by weight; 2 to 5% by weight of silica fume; Provided is a high-strength binder composition for segments, characterized in that it consists of 2 to 5% by weight of a CSA-based expansion material. Here, the blast furnace slag fine powder and natural anhydrous gypsum fine powder can be preferably applied as three types of blast furnace slag fine powder and natural anhydrous gypsum powder, respectively, which are pulverized with a grinding aid added and treated into a bitter powder.
또한 본 발명은 세그먼트용 고강도 결합재 조성물을 이용한 콘크리트 배합에서, 결합재 100중량부에 대하여, 질산나트륨 0.1~0.5중량부, 황산나트륨 0.1~0.5중량부, 스테아린산 0.1~1.0중량부, 초임계 유동층 보일러 플라이애시 0.1~1.0중량부가 혼입되어 배합되되, 상기 질산나트륨, 황산나트륨, 스테아린산, 초임계 유동층 보일러 플라이애시는, 분쇄조제가 투입된 상태에서 분쇄 혼합된 것임을 특징으로 하는 세그먼트용 고강도 수밀 콘크리트 조성물을 제공한다.In addition, the present invention relates to concrete mixing using a high-strength binder composition for segments, based on 100 parts by weight of binder, 0.1 to 0.5 parts by weight of sodium nitrate, 0.1 to 0.5 parts by weight of sodium sulfate, 0.1 to 1.0 parts by weight of stearic acid, and supercritical fluidized bed boiler fly ash. 0.1 to 1.0 parts by weight are mixed and mixed, and the sodium nitrate, sodium sulfate, stearic acid, and supercritical fluidized bed boiler fly ash are ground and mixed with a grinding aid added. A high-strength watertight concrete composition for segments is provided.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.
첫째, 본 발명의 세그먼트용 결합재를 사용한 콘크리트 배합은 고강도와 수밀성을 발현하며, 특히 적절한 첨가제를 혼입하면 강도는 물론 수밀성을 더욱 개선시킬 수 있다. 이로써 본 발명의 콘크리트는 연속굴착형 세그먼트 제작에 유리하게 활용할 수 있다.First, the concrete mix using the binder for segments of the present invention exhibits high strength and watertightness, and in particular, by incorporating appropriate additives, not only strength but also watertightness can be further improved. As a result, the concrete of the present invention can be advantageously used in the production of continuous excavation type segments.
둘째, 세그먼트 제작을 위한 콘크리트 배합에서 시멘트 사용량을 줄이는 대신 산업부산물인 고로슬래그 미분말, 초임계 유동층 보일러 애시를 적극 사용하기 때문에 탄소저감에 기여한다.Second, instead of reducing the amount of cement used in the concrete mix for segment production, it actively uses blast furnace slag fine powder and supercritical fluidized bed boiler ash, which are industrial by-products, contributing to carbon reduction.
본 발명은 연속굴착 터널공사 등 지하구조물의 시공에 사용하기 위한 세그먼트 제작 기술에 관한 것으로, 세그먼트용 고강도 결합재와 고강도 수밀 콘크리트에 관한 것이다. 본 발명은 연속굴착형 TBM 공법으로 시공되는 터널 공사에 바람직하게 적용될 수 있으며, 그 외 다른 공법과 다른 형태의 지하구조물 시공에도 적용될 수 있다.The present invention relates to segment manufacturing technology for use in the construction of underground structures such as continuous excavation tunnel construction, and relates to high-strength binders for segments and high-strength watertight concrete. The present invention can be preferably applied to tunnel construction constructed using the continuous excavation TBM method, and can also be applied to other construction methods and other types of underground structure construction.
1. 세그먼트용 고강도 결합재1. High-strength binder for segments
본 발명에 따른 세그먼트용 고강도 결합재는, 분말도가 6,000±500cm2/g인 고로슬래그 고미분말 70~80중량%; 4,500±500cm2/g인 천연 무수석고 고미분말 5~15중량%; 1종 보통 포틀랜드 시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~10중량%; 실리카퓸 2~5중량%; CSA계 팽창재 2~5중량%;로 구성되는 것을 특징으로 한다. 3종 고로슬래그 미분말을 다량 사용하여 1종 보통 포틀랜드 시멘트의 사용량을 줄이고 한편, 초임계 유동층 보일러 플라이애시, 천연 무수석고, 실리카퓸, CSA계 팽창재를 적절히 사용함으로써 세그먼토용으로 우수한 물성을 확보하고자 한 것이다.The high-strength binder for segments according to the present invention includes 70 to 80% by weight of fine blast furnace slag powder with a fineness of 6,000 ± 500 cm 2 /g; 5 to 15% by weight of natural anhydrous gypsum bitter powder measuring 4,500±500 cm 2 /g; Type 1 ordinary Portland cement 5-15% by weight; Supercritical fluidized bed boiler fly ash 5-10% by weight; 2 to 5% by weight of silica fume; It is characterized in that it is composed of 2 to 5% by weight of CSA-based expansion material. By using a large amount of 3 types of blast furnace slag fine powder, we are reducing the amount of type 1 ordinary Portland cement, and by appropriately using supercritical fluidized bed boiler fly ash, natural anhydrous gypsum, silica fume, and CSA expansion materials, we are trying to secure excellent physical properties for segmentation. It was done.
고로슬래그 고미분말은 용광로에서 선철과 동시에 생성되는 용융 고로슬래그를 물로 급냉시켜 미분쇄한 것으로, 시멘트를 대체하는 결합재의 주요 재료가 된다. 고로슬래그 고미분말은 CaO, SiO2, Al2O3를 주성분으로 하기 때문에 에트린자이트 생성에 도움을 주어 강도증진에 기여하며, 더불어 염화물 이온을 고정하는 생성물(프리델씨염, 3CaO·Al2O3 ·CaCl2·10H20)을 쉽게 생성하기 때문에 염화물 이온의 침투와 확산 억제에 주요하게 역할한다. 특히 본 발명에서는 분말도 6,000±500cm2/g를 가지는 고로슬래그 고미분말이 사용되는데, 시멘트와의 반응성을 높이고 콘크리트 내부 공극의 수밀성을 증대시켜 물리적 성능과 내구적 성능을 확보하기 위함이다. 고로슬래그 고미분말은 3종 고로슬래그 미분말(비중 2.80~2.90, 분말도 4,500±500cm2/g)을 분쇄조제가 투입된 상태에서 분쇄하는 방법으로 준비할 수 있다. 이때 분쇄조제로는 글리세린을 바람직하게 사용할 수 있으며, 글리세린은 분쇄매체(강구와 라이너)에 부착되는 코팅이나 미립자가 2차 입자를 생성하는 현상과 조립자에 미립자가 부착하는 현상을 감소시켜 분쇄 및 생산 성능을 향상시키고 에너지 절감에 기여한다. 고로슬래그 고미분말은 70~80중량% 사용하는데, 70중량% 미만이면 상대적으로 시멘트량이 증가하여 경제성 상실, 탄소저감 효과 부족, 염소화물 이온의 침투와 확산 저항 효과 부족 등이 따르고, 80중량% 초과하면 조기, 장기강도 발현 부족 우려가 있다.Blast furnace slag fine powder is made by quenching molten blast furnace slag, which is produced at the same time as pig iron in a blast furnace, with water and pulverizing it, and is the main material for a binder that replaces cement. Since blast furnace slag fine powder contains CaO, SiO 2 , and Al 2 O 3 as main ingredients, it helps in the creation of ettringite and thus contributes to increased strength. In addition, it produces a product that fixes chloride ions (Friedel's salt, 3CaO·Al 2 Because it easily generates O 3 ·CaCl 2 ·10H 2 0), it plays a major role in suppressing the penetration and diffusion of chloride ions. In particular, in the present invention, a fine blast furnace slag powder with a fineness of 6,000 ± 500 cm 2 /g is used to secure physical and durable performance by increasing reactivity with cement and increasing the water tightness of the internal pores of concrete. Blast furnace slag fine powder can be prepared by grinding three types of blast furnace slag fine powder (specific gravity 2.80~2.90, fineness 4,500±500cm 2 /g) with a grinding aid added. At this time, glycerin can be preferably used as a grinding aid, and glycerin reduces the phenomenon of secondary particles being created by coatings or fine particles attached to the grinding medium (steel balls and liners) and the phenomenon of fine particles adhering to coarse particles, making grinding and grinding easier. It improves production performance and contributes to energy savings. Blast furnace slag fine powder is used in an amount of 70 to 80% by weight. If it is less than 70% by weight, the amount of cement increases relatively, resulting in loss of economic feasibility, lack of carbon reduction effect, and lack of effect in resisting the penetration and diffusion of chloride ions, and exceeding 80% by weight. If this is done, there are concerns about lack of early and long-term strength development.
천연 무수석고 고미분말은 고로슬래그 고미분말 및 보통 보틀랜드 시멘트의 수화반응 활성화를 통해 강도 증진에 기여하며, 더불어 보통 포틀랜드 시멘트 중 C3A의 급결을 막아 응결 시간을 조절하는 역할을 한다. 특히 본 발명에서는 분말도 4,500±500cm2/g를 가지는 천연 무수석고 고미분말이 사용되는데, 고로슬래그 고미분말과 마찬가지로 반응성을 높이고 수밀성을 증대시키기 위함이다. 천연 무수석고는 결합재에서 5~15중량% 사용하며, 5중량% 미만이면 활성도가 낮아 물리적 성능 발현이 곤란하고, 15중량% 초과하면 강도 증진 효과가 미미하고 경제성도 상실한다. 천연 무수석고 고미분말도 고로슬래그 고미분말과 마찬가지로 일반 천연 무수석고 분말(비중 2.90~3.00, 분말도 3,500±500m2/g)을 분쇄조제가 투입된 상태에서 분쇄하는 방법으로 준비할 수 있다.Natural anhydrous gypsum fine powder contributes to strength improvement by activating the hydration reaction of blast furnace slag fine powder and ordinary Botland cement, and also plays a role in controlling the setting time by preventing rapid setting of C 3 A in ordinary Portland cement. In particular, in the present invention, natural anhydrous gypsum fine powder having a powder size of 4,500 ± 500 cm 2 /g is used to increase reactivity and watertightness like the blast furnace slag fine powder. Natural anhydrous gypsum is used in the binder in an amount of 5 to 15% by weight. If it is less than 5% by weight, it has low activity and it is difficult to achieve physical performance, and if it exceeds 15% by weight, the strength improvement effect is minimal and economic feasibility is lost. Like the blast furnace slag bitter powder, natural anhydrous gypsum bitter powder can be prepared by grinding regular natural anhydrous gypsum powder (specific gravity 2.90-3.00, fineness 3,500 ± 500 m 2 /g) with a grinding aid added.
결합재에서 1종 보통 포틀랜드 시멘트는 5~15중량% 사용하는데, 소량 사용으로 경제성을 도모하기 위함이다. 5중량% 미만이면 강도 발현이 부족하고, 15중량% 초과하면 경제성 상실, 탄소저감 효과 부족이 따른다.In the binder, 5 to 15% by weight of Portland cement is usually used, and this is to promote economic efficiency by using small amounts. If it is less than 5% by weight, strength development is insufficient, and if it exceeds 15% by weight, it results in loss of economic feasibility and lack of carbon reduction effect.
초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계 조건으로 연소하는 공정을 통해 배출되는 애시로서, Fe2O3 10∼20중량%, SO3 5-20중량% 함유하면서 분말도가 6,000~9,000m2/g인 특성을 가진다. 이러한 초임계 유동층 보일러 플라이애시는 일반적인 화학발전소 플라이애시에 비해 분말도가 높아 수밀성 향상과 조기강도 증진에 기여하며, 더불어 고로슬래그 미분말의 반응성 자극에도 역할한다. 초임계 유동층 보일러 플라이애시는 결합재에서 5~10중량% 사용하는 것이 바람직한데, 5중량% 미만이면 강도 증진 효과가 미미하고, 10중량% 초과하면 유동성 저하에 따른 작업성 저하가 우려되고 강도 저하도 우려된다.Supercritical fluidized bed boiler fly ash is ash discharged from a supercritical fluidized bed boiler through the process of burning coal fuel under supercritical conditions while injecting oxygen, and contains 10-20% by weight of Fe 2 O 3 and 5-20% by weight of SO 3 It has the characteristic of having a fineness of 6,000 to 9,000 m 2 /g. This supercritical fluidized bed boiler fly ash has a higher fineness than general chemical power plant fly ash, contributing to improved water tightness and early strength, and also plays a role in stimulating the reactivity of blast furnace slag fine powder. It is desirable to use 5 to 10% by weight of supercritical fluidized bed boiler fly ash in the binder. If it is less than 5% by weight, the strength improvement effect is minimal, and if it exceeds 10% by weight, there is concern about a decrease in workability due to decreased fluidity and a decrease in strength. I'm concerned.
실리카퓸은 실리콘, 페로실리콘, 실리콘 합금 등을 제조할 때에 발생되는 폐가스 중에 포함되어 있는 SiO2를 집진기로 모아서 얻어지는 초미립자의 산업부산물로, 비중 2.20~2.25, 분말도 130,000m2/g 이상인 점이 특징이다. 실리카흄은 높은 비표면적 때문에 고강도 발현에 기여하며, 또한 수화 초기의 포졸란 반응으로 공극 충전 효과를 나타내면서 조직을 치밀화하기 때문에 수밀성, 투수성 등의 내구성 발현에도 기여한다. 실리카퓸은 결합재에서 2~5중량% 사용하는데, 2중량% 미만이면 강도 증진, 소량 첨가 시 강도 증진 효과 및 내구성 증진 효과 미미하고, 5중량% 초과하면 소성 수축에 의한 균열이 발생할 우려가 있다Silica fume is an industrial by-product of ultra-fine particles obtained by collecting SiO 2 contained in waste gas generated when manufacturing silicon, ferrosilicon, silicon alloy, etc. with a dust collector. It is characterized by a specific gravity of 2.20 to 2.25 and a fineness of more than 130,000 m 2 /g. am. Silica fume contributes to the development of high strength due to its high specific surface area, and also contributes to the development of durability such as water tightness and water permeability because it densifies the tissue while exhibiting a void filling effect through a pozzolanic reaction in the early stage of hydration. Silica fume is used in the binder in an amount of 2 to 5% by weight. If it is less than 2% by weight, it improves strength. When added in a small amount, the effect of improving strength and durability is minimal. If it exceeds 5% by weight, there is a risk of cracking due to plastic shrinkage.
CSA계 팽창재는 시멘트 및 물과 혼합되면 수화반응에 의해 에트링자이트(ettringite,C3A·3CaSO4·32H2O), 모노설페이트(monosulfate,C3A·CaSO4·12H2O) 및 수산화칼슘(Ca(OH)2) 등을 생성하면서 팽창시키고 미세공극을 충진하는 재료가 되며, 이로써 콘크리트의 건조수축 저감을 통한 내구성 증진에 기여하게 된다. CSA계 팽창재는 결합재에서 2~5중량% 사용하며, 2중량% 미만이면 팽창 효과가 미미하고, 5중량% 초과하면 자기수축 저감 효과를 떨어뜨리고 경제성이 상실한다. When CSA-based expansion materials are mixed with cement and water, they form ettringite (C3A·3CaSO4·32H2O), monosulfate (C3A·CaSO4·12H2O), and calcium hydroxide (Ca(OH)2) through a hydration reaction. It becomes a material that expands as it is created and fills micropores, thereby contributing to improving durability by reducing drying shrinkage of concrete. CSA-based expansion material is used in the binder in an amount of 2 to 5% by weight. If it is less than 2% by weight, the expansion effect is minimal, and if it exceeds 5% by weight, the self-shrinkage reduction effect is reduced and economic feasibility is lost.
2. 세그먼트용 고강도 수밀 콘크리트2. High-strength watertight concrete for segments
본 발명에 따른 세그먼트용 고강도 수밀 콘크리트는 세그먼트용 고강도 결합재를 이용한 고강도 수밀 콘크리트 배합으로, 결합재 100중량부에 대하여, 질산나트륨 0.1~0.5중량부, 황산나트륨 0.1~0.5중량부, 스테아린산 0.1~1.0중량부, 초임계 유동층 보일러 플라이애시 0.1~1.0중량부가 첨가제로 혼입되어 배합되는 것을 특징으로 한다. 여기서 첨가제는 도 2와 같은 공정을 통해 분쇄 혼합하는 방법으로 준비할 수 있다. 질산나트륨, 황산나트륨, 스테아린산, 초임계 유동층 보일러 플라이애시를 분쇄조제가 투입된 상태에서 분쇄 혼합하여 균일하게 분산되도록 처리한 것이다. 분쇄조제로는 글리세린을 바람직하게 사용할 수 있다.The high-strength watertight concrete for segments according to the present invention is a high-strength watertight concrete mix using a high-strength binder for segments, and contains 0.1 to 0.5 parts by weight of sodium nitrate, 0.1 to 0.5 parts by weight of sodium sulfate, and 0.1 to 1.0 parts by weight of stearic acid, based on 100 parts by weight of binder. , the supercritical fluidized bed boiler is characterized in that 0.1 to 1.0 parts by weight of fly ash is mixed as an additive. Here, the additive can be prepared by grinding and mixing through the process shown in FIG. 2. Sodium nitrate, sodium sulfate, stearic acid, and supercritical fluidized bed boiler fly ash were milled and mixed with a grinding aid added to ensure uniform dispersion. Glycerin can be preferably used as a grinding aid.
질산나트륨과 황산나트륨은 Na+ 이온이 pH를 증가시켜 시멘트 수화반응을 촉진하는 역할을 하고 동시에 콘크리트 조성물이 골고루 혼합될 수 있게 하는 충진재 역할을 한다. 더불어 질산나트륨(NaNO3)은 NO3 - 이온이 혼합수의 응결 온도를 낮추어 저온에서의 사용성 확보에도 기여하고, 황산나트륨은 SO4 2- 이온이 Ettringite 생성에 원활한 환경을 조성하여 강도 증진에 기여한다. 질산나트륨은 결합재 100중량부에 대하여 0.1~0.5중량부 사용하는데, 0.1중량부 미만이면 사용 효과가 미미하고 0.5중량부 초과하면 유동성 저하, 경제성 상실이 우려된다. 황산나트륨도 결합재 100중량부에 대하여 0.1~0.5중량부 사용한다. Sodium nitrate and sodium sulfate play a role in promoting the cement hydration reaction by increasing the pH of Na+ ions and at the same time serve as fillers that allow the concrete composition to be evenly mixed. In addition, the NO 3 - ions of sodium nitrate (NaNO 3 ) contribute to ensuring usability at low temperatures by lowering the condensation temperature of the mixed water, and the SO 4 2 - ions of sodium sulfate contribute to enhancing strength by creating a smooth environment for the formation of Ettringite. . Sodium nitrate is used in an amount of 0.1 to 0.5 parts by weight per 100 parts by weight of the binder. If it is less than 0.1 part by weight, the effect of use is minimal, and if it exceeds 0.5 parts by weight, there are concerns about reduced fluidity and loss of economic feasibility. Sodium sulfate is also used in an amount of 0.1 to 0.5 parts by weight per 100 parts by weight of binder.
스테아린산은 SO4 2-, Cl-, Mg2+, Na+ 등과 화학반응을 일으켜 콘크리트 내 철근의 팽창을 방지하며 수분 침투를 차단함으로써 콘크리트의 내구성 향상에 기여하고, 콘크리트 내부의 공극을 채워줘 콘크리트의 수밀성 향상에도 기여한다. 스테아린산은 결합재 100중량부에 대하여 0.1~1.0중량부 사용하면 바람직하다.Stearic acid causes chemical reactions with SO 4 2- , Cl - , Mg 2+ , Na + , etc., preventing the expansion of reinforcing bars in concrete and contributing to improving the durability of concrete by blocking moisture infiltration. It also fills the voids inside the concrete, improving the quality of the concrete. It also contributes to improving watertightness. It is preferable to use 0.1 to 1.0 parts by weight of stearic acid per 100 parts by weight of the binder.
초임계 유동층 보일러 플라이애시는 강도와 수밀성 증진에 기여하는 한편, 질산나트륨과 황산나트륨 및 스테아린산의 고른 분산을 위한 재료가 된다. 첨가제로서 초임계 유동층 보일러 플라이애시는 결합재 100중량부에 대하여 0.1~1.0중량부이면 충분하다.Supercritical fluidized bed boiler fly ash contributes to improving strength and watertightness, while also serving as a material for even dispersion of sodium nitrate, sodium sulfate, and stearic acid. As an additive, 0.1 to 1.0 parts by weight of supercritical fluidized bed boiler fly ash is sufficient for 100 parts by weight of binder.
이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 제조예 및 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be examined in detail based on manufacturing examples and test examples. However, the following manufacturing examples and test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
[제조예1] 고미분말 제조[Preparation Example 1] Preparation of bitter powder
3종 고로슬래그 미분말(비중 2.80~2.90, 분말도 4,500±500cm2/g)과 일반 천연 무수석고(비중 2.90~3.00, 분말도 3,500±500cm2/g)를 가지고 고로슬래그 고미분말과 천연 무수석고 고미분말로 제조하였다. 구체적으로 5kg까지 수용이 가능한 알루미나볼밀통에 3종 고로슬래그 미분말을 알루미나볼밀통 중량의 10~20% 씩 넣고 이후 세라믹볼(5.0mm, 10.0mm, 30.0mm)을 동일한 수량으로 알루미나볼밀통 중량 5~10% 정도 넣고, 분쇄조제로 액상형 글리세린을 결합재 중량 대비 1.0-1.5%를 넣어 18-48시간 동안 150-200 RPM을 유지하면서 분쇄를 진행하였다. 분쇄된 시료를 0.075mm 체에 체가름하여 분말도가 6,000±500cm2/g인 고로슬래그 고미분말을 확보할 수 있었다. 천연 무수석고 분말도 동일한 방법으로 분쇄하여 분말도가 4,500±500cm2/g인 천연 무수석고 고미분말을 확보할 수 있었다.3 types of blast furnace slag fine powder (specific gravity 2.80~2.90, fineness 4,500±500cm 2 /g) and general natural anhydrous gypsum (specific gravity 2.90~3.00, fineness 3,500±500cm 2 /g), blast furnace slag fine powder and natural anhydrous gypsum Manufactured from bitter powder. Specifically, 10 to 20% of the weight of the alumina ball mill was filled with three types of blast furnace slag powder in an alumina ball mill that can accommodate up to 5 kg, and then ceramic balls (5.0 mm, 10.0 mm, 30.0 mm) were added in equal quantities to give the alumina ball mill a weight of 5 kg. About ~10% was added, and 1.0-1.5% of liquid glycerin was added as a grinding aid based on the weight of the binder, and grinding was performed while maintaining 150-200 RPM for 18-48 hours. By sieving the pulverized sample through a 0.075 mm sieve, it was possible to secure a fine blast furnace slag powder with a fineness of 6,000 ± 500 cm 2 /g. Natural anhydrous gypsum powder was also pulverized in the same manner to obtain a fine natural anhydrous gypsum powder with a fineness of 4,500 ± 500 cm 2 /g.
[시험예1] 결합재의 종류에 따른 세그먼트 콘크리트의 특성[Test Example 1] Characteristics of segment concrete according to type of binder
1. 세그먼트 시험체 제조1. Manufacturing segment test specimens
세그먼트는 아래 [표 1]과 같은 조건으로 콘크리트 배합한 후 세그먼트 시험체를 성형 양생하여 제조하였다. 양생은 2시간의 기건양생을 하고 6시간의 열수양생을 거친 다음, 7일동안 수중양생에 들어가고 이후 21일 동안 항온항습양생 과정을 거치는 방법으로 실시하였다. The segments were manufactured by mixing concrete under the conditions shown in [Table 1] below and then molding and curing the segment test specimens. Curing was carried out in the following way: 2 hours of air-dry curing, 6 hours of hot water curing, then 7 days of underwater curing, and then 21 days of constant temperature and humidity curing.
비교예1은 결합재로 시멘트(70%)와 3종 고로슬래그 미분말(30%)을 사용한 배합이고, 비교예2는 결합재로 종래 세그먼트 결합재를 사용한 배합(시멘트 70%, 1종 플라이애시 10%, 3종 고로슬래그 미분말 20%)이다. 비교예 3과 실시예1는 동일하게 시멘트(10%)+ 3종 고로슬래그 미분말(73%), 초임계 유동층 보일러 플라이애시(5%), 천연 무수석고(7%), 실리카퓸SF(2%), CSA(3%)로 구성한 결합재를 사용한 배합이다. 다만 비교예3은 3종 고로슬래그 미분말(비중 2.80~2.90, 분말도 4,000~5,000cm2/g)과 통상적인 천연 무수석고 분말을 사용한 것과 달리, 실시예1은 [제조예1]에 따라 제조된 고미분말 재료를 사용하였다.Comparative Example 1 is a mix using cement (70%) and three types of blast furnace slag fine powder (30%) as binders, and Comparative Example 2 is a mix using conventional segment binders as binders (70% cement, 10% type 1 fly ash, Type 3 blast furnace slag fine powder (20%). Comparative Example 3 and Example 1 were the same as cement (10%) + 3 types of blast furnace slag fine powder (73%), supercritical fluidized bed boiler fly ash (5%), natural anhydrous gypsum (7%), and silica fume SF (2%). %) and CSA (3%). However, unlike Comparative Example 3, which used three types of blast furnace slag fine powder (specific gravity 2.80 to 2.90, fineness 4,000 to 5,000 cm 2 /g) and conventional natural anhydrous gypsum powder, Example 1 was prepared according to [Preparation Example 1]. A high-fine powder material was used.
(%)W/B
(%)
(%)S/a
(%)
Unit Weight(kg/m3)Binder
Unit Weight(kg/m 3 )
2) FA : 1종 플라이애시
3) CFBC : 초임계 유동층 플라이 애시
4) GGBS : 3종 고로슬래그 미분말
5) CS : 천연 무수석고
6) SF : 실리카퓸
7) CSA : 칼슘설포알루미네이트
8) PC : 폴리카본산계 혼화제1) OPC: Type 1 Ordinary Portland Cement
2) FA: Type 1 fly ash
3) CFBC: Supercritical fluidized bed fly ash
4) GGBS: 3 types of blast furnace slag fine powder
5) CS: Natural anhydrous gypsum
6) SF: Silica Fume
7) CSA: Calcium sulfoaluminate
8) PC: polycarboxylic acid-based admixture
2. 콘크리트 특성2. Concrete properties
시험체에 대해 슬럼프(KS F 2402), 공기량(KS F 2421), 압축강도(KS F 2405)를 측정하고, 투수성을 평가하였다. 투수성 평가는 (1)시험체 측면을 파라핀 또는 애폭시 수지 등으로 방수 처리하고, (2)방수 처리재가 완전히 경화한 상태에서 시험체의 질량(W1)을 측정한 후 투수시험장치를 사용하여 0.1 N/mm2 수압을 1시간 가하고, (3)수압을 가한 시험체를 투수 시험 장치에서 꺼내어 표면의 물기를 제거한 후 질량(W2)을 측정한 다음, (4)시험모르타르(비교예2,3, 실시예1)와 기준모르타르(비교예1)의 투수량(W2-W1)을 측정하여 각각 5개의 시험체 중 최고값과 최저값을 제외한 나머지 3개의 측정값의 평균값을 가지고 투수비(시험모르타르의 투수량/기준모르타르의 투수량)를 구하였다. 그 결과는 아래 [표 2]와 같이 나타냈다.Slump (KS F 2402), air volume (KS F 2421), and compressive strength (KS F 2405) were measured for the test specimen, and water permeability was evaluated. For water permeability evaluation, (1) waterproof the side of the test specimen with paraffin or epoxy resin, (2) measure the mass (W1) of the test specimen when the waterproofing material is completely hardened, and then use a water permeability test device to measure 0.1 N /mm 2 Apply water pressure for 1 hour, (3) remove the water pressure-applied test specimen from the water permeability test device, remove moisture from the surface, measure the mass (W2), and then (4) test mortar (Comparative Examples 2 and 3, Example 1) and standard mortar (comparative example 1) were measured for permeability (W2-W1), and the permeability ratio (permeability of test mortar/standard) was calculated by taking the average value of the remaining three measurements excluding the highest and lowest values among the five test specimens. The permeability of the mortar) was obtained. The results are shown in [Table 2] below.
(MPa)compressive strength
(MPa)
(투수비)permeability
(pitching fee)
위의 [표 3]에서와 같이 본 발명에 따른 결합재를 사용한 실시예1는 비교예1.2,3보다 조기강도가 개선되고 중장기강도는 현저히 개선되는 것이 확인된다. 이와 같은 결과에 따라 본 발명에 따른 결합재는 세그먼트용 고강도 결합재로 유리하게 활용할 수 있을 것이다.As shown in [Table 3] above, it was confirmed that Example 1 using the binder according to the present invention had improved early strength and significantly improved mid- to long-term strength than Comparative Examples 1.2 and 3. According to these results, the binder according to the present invention can be advantageously used as a high-strength binder for segments.
[제조예2] 첨가제의 제조[Preparation Example 2] Preparation of additives
5kg까지 수용이 가능한 알루미나볼밀통에 알루미나볼밀통 중량 대비 5-10% 스테아린산(ST) or 질산나트륨(SN) or 황산나트륨(SS)과 알루미나볼밀통 중량 대비 5-10%인 초임계유동층플라이애시(CFBC)를 넣고, 세라믹볼(5.0mm, 10.0mm, 30.0mm)을 동일한 수량으로 알루미나볼밀통 중량 대비 5-10% 정도 투입한 후 분쇄조제로 액상형 글리세린을 결합재 중량 대비 1.0-1.5%를 넣어 0.5-1.5시간 동안 200-250 RPM을 유지하여 분쇄를 진행하였다. 분쇄 진행이 완료된 시료는 0.075mm 체에 체가름하여 첨가제를 제조하였다.An alumina ball mill that can accommodate up to 5kg contains 5-10% stearic acid (ST) or sodium nitrate (SN) or sodium sulfate (SS) and 5-10% supercritical fluidized bed fly ash (based on the weight of the alumina ball mill). CFBC), add ceramic balls (5.0mm, 10.0mm, 30.0mm) in the same quantity at 5-10% of the weight of the alumina ball mill, and then add 1.0-1.5% of liquid glycerin as a grinding aid compared to the weight of the binder to mix 0.5%. Grinding was performed by maintaining 200-250 RPM for -1.5 hours. The sample after completion of grinding was sieved through a 0.075 mm sieve to prepare additives.
[시험예2] 첨가제의 종류에 따른 세그먼트 콘크리트의 특성[Test Example 2] Characteristics of segment concrete according to the type of additive
1. 시험체 제조1. Test specimen preparation
아래 [표 3]과 같은 조건으로 콘크리트 배합하여 시험예1과 같은 과정으로 시험체를 제조하였다. 비교예4~6과 실시예2,3은 시험예1의 실시예1과 동일한 결합재에 첨가제의 종류를 달리하여 배합하였다. 비교예4는 첨가제로 질산나트륨과 초임계 유동층 보일러 플라이애시를 사용한 배합이고, 비교예5는 비교예3에 황산나트륨을 추가 사용한 배합이고, 비교예6은 첨가제로 스테아린산과 초임계 유동층 보일러 플라이애시를 사용한 배합이고, 비교예7과 실시예2는 비교예5에 스테아린산을 추가 사용한 배합이다. 비교예4~6과 실시예2는 [제조예2]에 따라 제조된 첨가제를 사용하고, 비교예7는 첨가제의 구성재료를 원재료 상태로 사용하였다.Concrete was mixed under the conditions shown in [Table 3] below, and a test specimen was manufactured through the same process as Test Example 1. Comparative Examples 4 to 6 and Examples 2 and 3 were mixed with the same binder as Example 1 of Test Example 1 with different types of additives. Comparative Example 4 is a blend using sodium nitrate and supercritical fluidized bed boiler fly ash as additives, Comparative Example 5 is a blend using sodium sulfate added to Comparative Example 3, and Comparative Example 6 is a blend using stearic acid and supercritical fluidized bed boiler fly ash as additives. This is the formulation used, and Comparative Example 7 and Example 2 are formulations in which stearic acid was added to Comparative Example 5. Comparative Examples 4 to 6 and Example 2 used the additive prepared according to [Preparation Example 2], and Comparative Example 7 used the ingredients of the additive in the raw material state.
(%)W/B
(%)
(%)S/a
(%)
Unit Weight(kg/m3)Binder
Unit Weight(kg/m 3 )
CS: 32.9,
SF: 9.4,
CSA: 14.1)470(OPC: 47, GGBS: 343.1, CFBC: 23.5,
CS: 32.9;
SF: 9.4;
CSA: 14.1)
2) SS : 황산나트륨
3) ST : 스테아린산
4) CFBC : 초임계 유동층 보일러 플라이애시1) SN: Sodium nitrate
2) SS: Sodium sulfate
3) ST: stearic acid
4) CFBC: Supercritical fluidized bed boiler fly ash
2. 콘크리트 특성2. Concrete properties
[시험예1]과 동일한 방법으로, 세그먼트 시험체에 대해 슬럼프, 공기량, 압축강도를 측정하고, 투수성을 평가하였다. 그 결과는 아래 [표 4]와 같이 나타냈다.In the same manner as [Test Example 1], slump, air volume, and compressive strength were measured for the segment test specimen, and water permeability was evaluated. The results are shown in [Table 4] below.
division
(MPa)compressive strength
(MPa)
(투수비)permeability
(pitching fee)
위의 [표 4]에서와 같이, 실시예2는 비교예4~7에 비해 유동성이 개선되고, 조기강도는 물론 중장기강도도 증진되며, 특히 투수성은 현저히 개선된 결과를 나타냈다. 이와 같은 결과에 따라 본 발명에 따른 콘크리트는 고강도 수밀 콘크리트로 세그먼트 제작에 유리하게 활용할 수 있을 것이다.As shown in [Table 4] above, Example 2 showed improved fluidity, improved early strength as well as mid- to long-term strength compared to Comparative Examples 4 to 7, and in particular, water permeability was significantly improved. According to these results, the concrete according to the present invention can be advantageously used in segment production as a high-strength watertight concrete.
Claims (3)
상기 고로슬래그 고미분말은, 3종 고로슬래그 미분말이 분쇄조제가 투입된 상태에서 분쇄되어 고미분말로 처리된 것이고,
상기 천연 무수석고 고미분말은, 천연 무수석고 분말이 분쇄조제가 투입된 상태에서 분쇄되어 고미분말로 처리된 것임을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 고강도 결합재 조성물.70 to 80% by weight of fine blast furnace slag powder with a fineness of 6,000±500 cm 2 /g; 5 to 15% by weight of natural anhydrous gypsum fine powder with a fineness of 4,500 ± 500 cm 2 /g; Type 1 ordinary Portland cement 5 to 15% by weight; Supercritical fluidized bed boiler fly ash 5-10% by weight; 2 to 5% by weight of silica fume; Consists of 2 to 5% by weight of CSA expansion material,
The blast furnace slag fine powder is obtained by pulverizing three types of blast furnace slag fine powder with a grinding aid added and treated into a fine powder,
The natural anhydrous gypsum fine powder is a high-strength binder composition for continuous excavation segments of underground structures, characterized in that the natural anhydrous gypsum powder is pulverized with a grinding aid added and treated into a fine powder.
결합재 100중량부에 대하여, 질산나트륨 0.1~0.5중량부, 황산나트륨 0.1~0.5중량부, 스테아린산 0.1~1.0중량부, 초임계 유동층 보일러 플라이애시 0.1~1.0중량부가 혼입되어 배합되되,
상기 질산나트륨, 황산나트륨, 스테아린산, 초임계 유동층 보일러 플라이애시는, 분쇄조제가 투입된 상태에서 분쇄 혼합된 것임을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 고강도 수밀 콘크리트.In concrete mixing using the high-strength binder composition for segments according to claim 1,
For 100 parts by weight of binder, 0.1 to 0.5 parts by weight of sodium nitrate, 0.1 to 0.5 parts by weight of sodium sulfate, 0.1 to 1.0 parts by weight of stearic acid, and 0.1 to 1.0 parts by weight of supercritical fluidized bed boiler fly ash are mixed and mixed,
High-strength watertight concrete for continuous excavation segments of underground structures, characterized in that the sodium nitrate, sodium sulfate, stearic acid, and supercritical fluidized bed boiler fly ash are ground and mixed with a grinding aid added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220189616A KR102561131B1 (en) | 2022-12-29 | 2022-12-29 | Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220189616A KR102561131B1 (en) | 2022-12-29 | 2022-12-29 | Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102561131B1 true KR102561131B1 (en) | 2023-10-23 |
Family
ID=88508396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220189616A KR102561131B1 (en) | 2022-12-29 | 2022-12-29 | Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102561131B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102712556B1 (en) | 2024-06-13 | 2024-10-04 | 건설플러스 주식회사 | Manufacturing method of non-alkali binder for concrete using industrial by-products and non-alkali binder for concrete manufactured by the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101246114B1 (en) * | 2012-11-06 | 2013-03-22 | 삼표건설 주식회사 | Concrete composition for manufacturing by the use of tbm method and the high-performance concrete segment |
KR20130116979A (en) | 2012-04-17 | 2013-10-25 | 삼표건설 주식회사 | Precast concrete segment for tunnel and manufacturing method of the same |
JP2015127283A (en) * | 2013-12-28 | 2015-07-09 | 太平洋マテリアル株式会社 | Polymer cement grout mortar |
KR101794960B1 (en) | 2017-03-03 | 2017-11-08 | (주)콘텍이엔지 | Macro synthetic fiber concrete composition for shield TBM tunnel and concrete segment manufactured by the same |
KR102018780B1 (en) * | 2019-04-03 | 2019-09-04 | (주)옥당산업 | Grout composition for demolishing underground concrete structures and manufacturing method thereof |
KR20200022572A (en) * | 2018-08-23 | 2020-03-04 | 유한회사 우리산업 | High volume binder containing a large amount of BFS, Concrete composition using the same, and Eco type concrete block |
KR102107600B1 (en) * | 2019-11-26 | 2020-05-07 | 케이씨그린소재 주식회사 | Pile Filler Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash and Manufacturing Method of the Pile Filler |
KR102454865B1 (en) * | 2022-02-15 | 2022-10-18 | (주)대우건설 | Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner |
-
2022
- 2022-12-29 KR KR1020220189616A patent/KR102561131B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130116979A (en) | 2012-04-17 | 2013-10-25 | 삼표건설 주식회사 | Precast concrete segment for tunnel and manufacturing method of the same |
KR101246114B1 (en) * | 2012-11-06 | 2013-03-22 | 삼표건설 주식회사 | Concrete composition for manufacturing by the use of tbm method and the high-performance concrete segment |
JP2015127283A (en) * | 2013-12-28 | 2015-07-09 | 太平洋マテリアル株式会社 | Polymer cement grout mortar |
KR101794960B1 (en) | 2017-03-03 | 2017-11-08 | (주)콘텍이엔지 | Macro synthetic fiber concrete composition for shield TBM tunnel and concrete segment manufactured by the same |
KR20200022572A (en) * | 2018-08-23 | 2020-03-04 | 유한회사 우리산업 | High volume binder containing a large amount of BFS, Concrete composition using the same, and Eco type concrete block |
KR102018780B1 (en) * | 2019-04-03 | 2019-09-04 | (주)옥당산업 | Grout composition for demolishing underground concrete structures and manufacturing method thereof |
KR102107600B1 (en) * | 2019-11-26 | 2020-05-07 | 케이씨그린소재 주식회사 | Pile Filler Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash and Manufacturing Method of the Pile Filler |
KR102454865B1 (en) * | 2022-02-15 | 2022-10-18 | (주)대우건설 | Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102712556B1 (en) | 2024-06-13 | 2024-10-04 | 건설플러스 주식회사 | Manufacturing method of non-alkali binder for concrete using industrial by-products and non-alkali binder for concrete manufactured by the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101840470B1 (en) | Grouting agent and method | |
KR102023414B1 (en) | Mortar composition for repairing, reinforcing and enhancing earthquake-proof property of concrete structure, and construction method of repair and reinforcement of concrete using the same | |
KR101674923B1 (en) | Repairing method of concrete structure using high-strength polymer mortar and fireproof mortar | |
KR101492233B1 (en) | Preparation method of mortar composition with chemically resistant and fireproof properties, mortar composition with chemically resistant and fireproof properties prepared by the same, and construction method of concrete structure with fireproof properties using the same | |
KR101941179B1 (en) | Composition for repairing and reinforcing concrete structure comprising high strength mortar, and method of repairing and reinforcing concrete structures using the same | |
KR101662721B1 (en) | Lightweight grout composition and grouting method therewith | |
KR101860125B1 (en) | Mortar composition for repairing, reinforcing and enhancing earthquake-proof property of concrete structure, and construction method of repair and reinforcement of concrete using the same | |
EP2246315A1 (en) | Cement admixture, and cement composition and concrete containing the cement admixture | |
KR101654568B1 (en) | Early strength type shotcrete composite | |
KR102310854B1 (en) | Concrete manufactured with a salt-resistance enhancing composition capable of self-repairing concrete cracks, and a method for manufacturing concrete structures with improved salt-resistance | |
KR102269372B1 (en) | Manufacturing Method of Undersea Concrete Anchor with High Durability | |
KR20180051840A (en) | Instillation material and method using the same | |
KR100900333B1 (en) | Cement composition with low heat and shrinkage | |
KR102218239B1 (en) | Modified ceramic polymer mortar composition and method of repairing and reinforcing cross section of concrete structure using the same | |
JP5259094B2 (en) | Hydrated hardened body with rebar and excellent resistance to neutrality | |
KR20180028048A (en) | Ground grouting process | |
KR102561131B1 (en) | Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same | |
KR102432617B1 (en) | Self-healing Admixture Composition, Manufacturing Method of the Admixture, Mortar Composition Using the Admixture and Concrete Repair Method Using the Mortar | |
JP2017124950A (en) | Concrete and production method of concrete | |
JP2730234B2 (en) | High flow and high durability fiber reinforced filling mortar with excellent salt barrier properties | |
KR101974591B1 (en) | Eco-friendly and high functional solidifying composition for point foundation | |
KR102405639B1 (en) | Mortar composition for concrete repair and concrete repair method using the same | |
JP6985547B1 (en) | Grout material, grout mortar composition and cured product | |
KR20170020628A (en) | Soil stabilizer | |
KR102561125B1 (en) | Composition for Segment Concrete of Underground Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |