KR102561125B1 - Composition for Segment Concrete of Underground Structure - Google Patents

Composition for Segment Concrete of Underground Structure Download PDF

Info

Publication number
KR102561125B1
KR102561125B1 KR1020220189615A KR20220189615A KR102561125B1 KR 102561125 B1 KR102561125 B1 KR 102561125B1 KR 1020220189615 A KR1020220189615 A KR 1020220189615A KR 20220189615 A KR20220189615 A KR 20220189615A KR 102561125 B1 KR102561125 B1 KR 102561125B1
Authority
KR
South Korea
Prior art keywords
weight
parts
segments
binder
concrete
Prior art date
Application number
KR1020220189615A
Other languages
Korean (ko)
Inventor
박대윤
박동철
양완희
정석만
Original Assignee
주식회사 위드엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍 filed Critical 주식회사 위드엠텍
Priority to KR1020220189615A priority Critical patent/KR102561125B1/en
Application granted granted Critical
Publication of KR102561125B1 publication Critical patent/KR102561125B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/085Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/122Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/17Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
    • C04B7/19Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/21Mixtures thereof with other inorganic cementitious materials or other activators with calcium sulfate containing activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/243Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/61Corrosion inhibitors

Abstract

본 발명은 지하구조물의 연속굴착 세그먼트 제작 기술에 관한 것으로, 더욱 상세하게는 연속굴착 세그먼트 제조에서 시멘트 사용량을 줄여 탄소저감을 실현한 연속굴착 세그먼트용 결합재의 새로운 조성과, 이러한 세그먼트용 결합재를 바람직하게 이용하면서 염소이온 및 염화물 침투 억제 효과를 발휘하는 철근부직 방지용 첨가제를 첨가하여 물리적 성능을 향상시킨 고내구성 콘크리트에 관한 것이다.
본 발명에 따른 세그먼트용 탄소저감형 결합재 조성물은, 3종 고로슬래그 미분말 70~80중량%; 1종 보통포틀랜드시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~15중량%; 천연 무수석고 10~20중량%;로 구성되는 것을 특징으로 한다.
본 발명에 따른 세그먼트용 콘크리트 조성물은, 콘크리트 배합에서, 세그먼트용 결합재 100중량부에 대하여 철근부식 방지용 첨가제가 0.1~5중량부 혼입되어 배합되는 것을 특징으로 하며, 여기서 철근부식 방지용 첨가제는 하이드로탈사이트 100중량부에 트리에탄올아민 5~20중량부, 질산나트륨 10~40중량부를 포함하여 구성된다.
The present invention relates to a technology for manufacturing continuous excavation segments of underground structures, and more specifically, to a new composition of a binder for continuous excavation segments that realizes carbon reduction by reducing the amount of cement used in the manufacture of continuous excavation segments, and to a preferred binder for such segments. This relates to highly durable concrete whose physical performance has been improved by adding an additive to prevent reinforcing bar weaving, which has the effect of suppressing chlorine ion and chloride penetration while being used.
The carbon-reducing binder composition for segments according to the present invention contains 70 to 80% by weight of three types of blast furnace slag fine powder; Type 1 ordinary Portland cement 5-15% by weight; Supercritical fluidized bed boiler fly ash 5-15% by weight; It is characterized by being composed of 10 to 20% by weight of natural anhydrous gypsum.
The concrete composition for segments according to the present invention is characterized in that 0.1 to 5 parts by weight of an additive for preventing corrosion of reinforcing bars is mixed with respect to 100 parts by weight of binder for segments in the concrete mixing, where the additive for preventing corrosion of reinforcing bars is hydrotalcite. It consists of 5 to 20 parts by weight of triethanolamine and 10 to 40 parts by weight of sodium nitrate per 100 parts by weight.

Description

지하구조물의 연속굴착 세그먼트용 탄소저감형 고내구성 콘크리트{Composition for Segment Concrete of Underground Structure}Carbon-reducing, high-durability concrete for continuous excavation segments of underground structures {Composition for Segment Concrete of Underground Structure}

본 발명은 지하구조물의 연속굴착 세그먼트 제작 기술에 관한 것으로, 더욱 상세하게는 연속굴착 터널공사 등에 사용하기 위한 연속굴착 세그먼트 제조에서 시멘트의 일부를 초임계 유동층 보일러 애시, 3종 고로슬래그 미분말, 천연 무수석고 등으로 치환함으로써 시멘트 사용량을 줄여 탄소저감을 실현한 연속굴착 세그먼트용 결합재의 새로운 조성과, 이러한 세그먼트용 결합재를 바람직하게 이용하면서 염소이온 및 염화물 침투 억제 효과를 발휘하는 철근부직 방지용 첨가제를 첨가하여 물리적 성능을 향상시킨 고내구성 콘크리트에 관한 것이다.The present invention relates to a technology for manufacturing continuous excavation segments for underground structures. More specifically, in the production of continuous excavation segments for use in continuous excavation tunnel construction, etc., a portion of the cement is used to produce supercritical fluidized bed boiler ash, three types of blast furnace slag fine powder, and natural anhydrous. A new composition of the binder for continuous excavation segments that realizes carbon reduction by reducing the amount of cement used by replacing it with gypsum, etc., and the addition of an additive for preventing reinforcing bar non-weaving that exerts the effect of suppressing chlorine ion and chloride penetration while using this binder for segments appropriately. It is about highly durable concrete with improved physical performance.

지하공간개발이 활발해지면서 콘크리트 지하구조물의 시공도 늘고 있다. 터널과 같은 지하구조물의 시공법으로 TBM 공법이 있다. TBM(Tunnel Boring Machine)공법은 굴착기 전면의 커터헤드(Cutterhead)를 회전시켜 터널을 굴착하고 미리 제작한 터널 벽면 세그먼트를 조립하면서 굴진하는 공법이다. TBM공법은 원형의 단면으로 굴착하므로 재래의 천공 및 발파를 반복하는 시공과 달리 역학적으로 안정된 무진동, 무발파, 기계화 굴착이 특징이다. 최근에는 TBM 굴진 추진잭이 세그먼트 설치 작업을 방해하지 않아 TBM 정지없이 연속적으로 나선모양의 세그먼트를 설치하는 연속굴착형 TBM공법이 개발되기도 했다. 연속굴착형 TBM공법은 굴진의 중단이 없어 공기단축을 통한 비용절감이 가능하고 또한 굴진관리도 용이한 이점이 있다.As underground space development becomes more active, the construction of concrete underground structures is also increasing. The TBM method is a construction method for underground structures such as tunnels. The TBM (Tunnel Boring Machine) method is a method of digging a tunnel by rotating the cutterhead on the front of the excavator and assembling pre-fabricated tunnel wall segments. The TBM method excavates with a circular cross-section, so unlike conventional construction that involves repeated drilling and blasting, it is characterized by mechanically stable vibration-free, non-blasting, and mechanized excavation. Recently, a continuous excavation type TBM method was developed to continuously install spiral-shaped segments without stopping the TBM because the TBM excavation propulsion jack does not interfere with the segment installation work. The continuous excavation TBM method has the advantage of reducing costs by shortening the construction period as there is no interruption in excavation and also making excavation management easier.

연속굴착형 TBM공법에서 세그먼트는 고강도, 고내구성의 콘크리트로 제작되는데, 세그먼트 소재가 고강도, 고내구성을 보유할 경우 터널의 유지관리 수요가 감소하고 구조물의 근본적인 안전을 확보할 수 있기 때문이다. 세그먼트용 콘크리트는 지하에 설치되므로 소재 자체가 누수 및 균열에 대응할 수 있어야 하고, 화재와 같은 재난에도 안전성을 확보할 수 있어야 하다.In the continuous excavation type TBM method, segments are made of high-strength and high-durability concrete. If the segment material has high strength and high durability, the maintenance demand for the tunnel is reduced and the fundamental safety of the structure can be secured. Since concrete for segments is installed underground, the material itself must be able to respond to water leaks and cracks, and must be able to ensure safety even in disasters such as fire.

국내에서 TBM공법에 적용되는 세그먼트용 콘크리트는 30~45MPa의 목표강도로 제작되며, 이러한 콘크리트의 설계기준에 따라 SD400 내지 SD600의 고장력 철근이 함께 활용되고 있다. 고장력 철근의 적용으로 콘크리트의 단면도 증가하게 되는데, 콘크리트의 단면 증가는 콘크리트의 사용량 증가로 이어지고, 콘크리트의 사용량 증가는 비용 증대로 이어져 이에 대한 대책 마련이 필요하다. 대책의 하나로 고로슬래그 미분말, 플라이애시 등과 같은 혼화재의 혼합 사용이 제안되기도 했다. 특히, 고로슬래그 미분말은 용광로에서 선철과 동시에 생성되는 용융 고로슬래그를 물로 급냉시켜 미분쇄한 것으로서, 시멘트의 대체재로 사용할 경우에 유동성 개선, 수화 발열속도의 저감, 온도상승의 억제, 장기강도 향상, 수밀성 향상 등의 효과를 발휘한다. 하지만 고로슬래그 미분말은 조기강도 저하를 초래하기 때문에 그 사용에 제한이 있었다.In Korea, segment concrete applied to the TBM method is produced with a target strength of 30 to 45 MPa, and high-strength reinforcing bars of SD400 to SD600 are used according to the design standards for concrete. The application of high-strength rebar increases the cross-section of concrete. The increase in the cross-section of concrete leads to an increase in the amount of concrete used, and the increase in the amount of concrete used leads to an increase in costs, so it is necessary to prepare countermeasures. As one of the countermeasures, the mixed use of admixtures such as fine blast furnace slag powder and fly ash was proposed. In particular, blast furnace slag fine powder is made by rapidly cooling molten blast furnace slag, which is produced simultaneously with pig iron in a blast furnace, and pulverizing it with water. When used as a substitute for cement, it improves fluidity, reduces the rate of hydration heat generation, suppresses temperature rise, improves long-term strength, and improves fluidity. It has effects such as improving water tightness. However, the use of blast furnace slag fine powder was limited because it caused an early decrease in strength.

한편 콘크리트 지하구조물에 균열이 발생하면 균열이 발생된 지점에서 지하수가 누수되어 콘크리트의 내구성능이 크게 저하된다. 지하수 등의 황산염(SO3 성분)이 콘크리트에 침투하면 시멘트 중의 C3A와 반응하여 팽창성(2~3.5배 팽창) 수화물(Ettringite, C3A·3CaSO4·32H2O)을 생성하면서 콘크리트를 팽창 파괴시키면서 내구성능을 떨어뜨리는 것이다. 콘크리트의 내구성능 저하는 화재 발생 시에 콘크리트의 폭렬 및 부재의 파괴 등과 같은 문제들을 초래하기도 한다. 또한 콘크리트는 알칼리성을 상실하거나 염화물의 농도가 침투확산에 의해 임계치에 달하면 철근의 보호막인 부동태 피막(Passivity Film)의 파괴되며, 콘크리트 부재 내부의 철근은 부식환경에 그대로 노출되어 부식된다. 철근이 부식되면 콘크리트의 단면적 및 기계적 성능이 저하될 뿐만 아니라 철근 부식 부산물의 팽창에 따라 콘크리트에 균열이 발생하게 된다. 더불어 염화물은 콘크리트 내의 철근의 부식뿐만 아니라 콘크리트 구조물 자체에 대한 화학적 침식으로 열화를 야기하기도 한다.Meanwhile, when a crack occurs in a concrete underground structure, groundwater leaks from the point where the crack occurred, greatly reducing the durability of the concrete. When sulfate (SO 3 component) from groundwater penetrates into concrete, it reacts with C 3 A in cement to form an expansive (2 to 3.5 times expanded) hydrate (Ettringite, C 3 A·3CaSO 4 ·32H 2 O), damaging the concrete. It expands and destroys, reducing durability. Deterioration in the durability of concrete may lead to problems such as explosion of concrete and destruction of members in the event of a fire. In addition, when concrete loses its alkalinity or the chloride concentration reaches a critical value due to penetration and diffusion, the passivity film, which is the protective film of the reinforcing bar, is destroyed, and the reinforcing bar inside the concrete member is exposed to the corrosive environment and corrodes. When reinforcing bars corrode, not only does the cross-sectional area and mechanical performance of concrete deteriorate, but cracks occur in the concrete due to the expansion of reinforcing steel corrosion by-products. In addition, chloride not only corrodes the reinforcing bars in concrete, but also causes deterioration through chemical attack on the concrete structure itself.

KRKR 10-1794960 10-1794960 B1B1 KRKR 10-2013-0116979 10-2013-0116979 AA

본 발명은 연속굴착형 TBM 공법 등의 방법으로 지하구조물의 시공에 사용되는 세그먼트를 개선시키면서 고로슬래그 미분말의 사용성을 개선하기 위해 개발된 것으로, 시멘트 사용량을 줄이는 대신 산업부산물을 적극 사용함으로써 탄소저감을 실현하고 물리적 성능을 확보하는 세그먼트용 결합재 조성물과, 이러한 결합재를 바람직하게 사용하면서 염소이온 및 염화물 침투 억제 효과를 발휘하는 세그먼트로 제조할 수 있는 세그먼트용 고내구성 콘크리트를 제공하는데 기술적 과제가 있다.The present invention was developed to improve the usability of blast furnace slag powder while improving the segments used in the construction of underground structures using methods such as the continuous excavation TBM method, and to reduce carbon by actively using industrial by-products instead of reducing the amount of cement used. There is a technical challenge in providing a binder composition for segments that realizes and secures physical performance, and highly durable concrete for segments that can be manufactured into segments that exhibit the effect of suppressing chlorine ion and chloride penetration while using such binders preferably.

상기한 기술적 과제를 해결하기 위해 본 발명은, 3종 고로슬래그 미분말 70~80중량%; 1종 보통포틀랜드시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~15중량%; 천연 무수석고 10~20중량%;로 구성되는 것을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 탄소저감형 결합재 조성물을 제공한다. In order to solve the above-described technical problem, the present invention includes 70 to 80% by weight of three types of blast furnace slag fine powder; Type 1 ordinary Portland cement 5-15% by weight; Supercritical fluidized bed boiler fly ash 5-15% by weight; Provided is a carbon-reducing binder composition for continuous excavation segments of underground structures, characterized in that it consists of 10 to 20% by weight of natural anhydrous gypsum.

또한 본 발명은 지하구조물의 연속굴착 세그먼트용 탄소저감형 결합재 조성물을 이용한 콘크리트 배합에서, 결합재 100중량부에 대하여 철근부식 방지용 첨가제가 0.1~5중량부 혼입되어 배합되며, 철근부식 방지용 첨가제는 하이드로탈사이트 100중량부에, 트리에탄올아민 5~20중량부, 질산나트륨 10~40중량부를 포함하는 것임을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 콘크리트를 제공한다. 여기서 철근부식 방지용 첨가제는, 하이드로탈사이트 100중량부에 대하여 350~600중량부의 증류수를 준비한 후, 50℃ 이상의 증류수에 하이드로탈사이트를 투입하여 50℃이상의 온도를 유지하면서 교반하고 트리에탄올아민을 첨가하여 50℃이상의 온도를 유지하면서 교반한 후 질산나트륨을 첨가 교반하면서 제조할 수 있다.In addition, in the present invention, in concrete mixing using a carbon-reduced binder composition for continuous excavation segments of underground structures, 0.1 to 5 parts by weight of an additive for preventing corrosion of reinforcing bars is mixed for 100 parts by weight of binder, and the additive for preventing corrosion of reinforcing bars is Hydrotal. Provides concrete for continuous excavation segments of underground structures, characterized in that it contains 5 to 20 parts by weight of triethanolamine and 10 to 40 parts by weight of sodium nitrate per 100 parts by weight of the site. Here, the additive for preventing corrosion of rebar is prepared by preparing 350 to 600 parts by weight of distilled water per 100 parts by weight of hydrotalcite, adding hydrotalcite to distilled water above 50°C, stirring while maintaining the temperature above 50°C, and adding triethanolamine. It can be manufactured by stirring while maintaining the temperature above 50℃ and then adding sodium nitrate and stirring.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 본 발명의 연속굴착 세그먼트용 결합재를 사용한 콘크리트 배합은 염소이온 및 염화물 침투 억제 효과를 발휘하며, 이로써 세그먼트 내의 철근 부식이 방지되면서 내구성능이 향상된다.First, the concrete mix using the binder for continuous excavation segments of the present invention has the effect of suppressing chlorine ion and chloride penetration, thereby preventing corrosion of reinforcing bars within the segment and improving durability.

둘째, 지하구조물의 연속굴착 세그먼트 제조에서 시멘트 사용량을 줄이는 대신 산업부산물인 고로슬래그 미분말, 초임계 유동층 보일러 애시를 상당량 사용하기 때문에 탄소저감에 기여한다.Second, instead of reducing the amount of cement used in the manufacture of continuous excavation segments of underground structures, a significant amount of blast furnace slag fine powder and supercritical fluidized bed boiler ash, which are industrial by-products, are used, thereby contributing to carbon reduction.

본 발명은 지하구조물의 연속굴착 세그먼트 제작을 위한 연속굴착 세그먼트용 결합재와 콘크리트에 관한 것이다.The present invention relates to a binder and concrete for continuous excavation segments for manufacturing continuous excavation segments of underground structures.

1. 세그먼트용 결합재1. Binding material for segments

본 발명에 따른 세그먼트용 결합재는, 3종 고로슬래그 미분말 70~80중량%; 1종 보통 포틀랜드 시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~15중량%; 천연 무수석고 10~20중량%;로 구성되는 것을 특징으로 한다. 3종 고로슬래그 미분말을 다량 사용하여 1종 보통 포틀랜드 시멘트의 사용량을 줄이고 대신 다량 사용는 한편, 초임계 유동층 보일러 플라이애시와 천연 무수석고를 적절히 사용함으로써 세그먼토용으로 우수한 물성을 확보하고자 한 것이다.The binder for segments according to the present invention contains 70 to 80% by weight of three types of blast furnace slag fine powder; Type 1 ordinary Portland cement 5 to 15% by weight; Supercritical fluidized bed boiler fly ash 5-15% by weight; It is characterized by being composed of 10 to 20% by weight of natural anhydrous gypsum. By using a large amount of type 3 blast furnace slag fine powder, the amount of type 1 ordinary Portland cement was reduced and used in large amounts instead, while supercritical fluidized bed boiler fly ash and natural anhydrous gypsum were appropriately used to secure excellent physical properties for segmentation.

3종 고로슬래그 미분말은 용광로에서 선철과 동시에 생성되는 용융 고로슬래그를 물로 급냉시켜 미분쇄한 것으로 비중 2.80~2.90, 분말도 4,000~6,000cm2/g를 가지며, 시멘트를 대체하는 결합재의 주요 재료가 된다. 특히 3종 고로슬래그 미분말은 CaO, SiO2, Al2O3를 주성분으로 하기 때문에 에트린자이트 생성에 도움을 주어 강도증진에 기여하며, 더불어 염화물 이온을 고정하는 생성물(프리델씨염, 3CaO·Al2O3 ·CaCl2·10H20)을 쉽게 생성하기 때문에 염화물 이온의 침투와 확산 억제에 주요하게 역할한다. 3종 고로슬래그 미분말은 70~80중량% 사용하는데, 70중량% 미만이면 상대적으로 시멘트량이 증가하여 경제성 상실, 탄소저감 효과 부족, 염소화물 이온의 침투와 확산 저항 효과 부족 등이 따르고, 80중량% 초과하면 조기, 장기강도 발현 부족 우려가 있다.Type 3 blast furnace slag fine powder is made by quenching molten blast furnace slag, which is produced at the same time as pig iron in a blast furnace, with water and pulverizing it. It has a specific gravity of 2.80 to 2.90 and a fineness of 4,000 to 6,000 cm 2 /g, and is the main material for a binder that replaces cement. do. In particular, the three types of blast furnace slag fine powders mainly contain CaO, SiO 2 , and Al 2 O 3 , which helps in the creation of ettringite and thus improves strength, and also produces products that fix chloride ions (Friedel's salt, 3CaO· Because it easily generates Al 2 O 3 ·CaCl 2 ·10H 2 0), it plays a major role in suppressing the penetration and diffusion of chloride ions. The three types of blast furnace slag fine powder are used in an amount of 70 to 80% by weight. If it is less than 70% by weight, the amount of cement increases relatively, leading to loss of economic feasibility, lack of carbon reduction effect, and lack of effect in resisting the penetration and diffusion of chloride ions. 80% by weight If it is exceeded, there is a risk of lack of early or long-term strength development.

1종 보통 포틀랜드 시멘트는 기본적인 결합재로, 결합재에서 5~15중량% 사용한다. 5중량% 미만이면 강도 발현이 부족하고, 15중량% 초과하면 경제성 상실, 탄소저감 효과 부족이 따른다.Type 1 Portland cement is a basic binder and is used in an amount of 5 to 15% by weight in the binder. If it is less than 5% by weight, strength development is insufficient, and if it exceeds 15% by weight, it results in loss of economic feasibility and lack of carbon reduction effect.

초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계 조건으로 연소하는 공정을 통해 배출되는 애시로서, Fe2O3 10∼20중량%, SO3 5-20중량% 함유하면서 분말도가 6,000~9,000 ㎠/g인 특성을 가진다. 이러한 초임계 유동층 보일러 플라이애시는 일반적인 화학발전소 플라이애시에 비해 분말도가 높아 수밀성 향상과 조기강도 증진에 기여하며, 더불어 고로슬래그 미분말의 반응성 자극에도 역할한다. 초임계 유동층 보일러 플라이애시는 결합재에서 5~15중량% 사용하는 것이 바람직한데, 5중량% 미만이면 강도 증진 효과가 미미하고, 15중량% 초과하면 유동성 저하에 따른 작업성 저하가 우려되고 강도 저하도 우려된다.Supercritical fluidized bed boiler fly ash is ash discharged from a supercritical fluidized bed boiler through the process of burning coal fuel under supercritical conditions while injecting oxygen, and contains 10-20% by weight of Fe 2 O 3 and 5-20% by weight of SO 3 It has the characteristic of having a fineness of 6,000 to 9,000 ㎠/g. This supercritical fluidized bed boiler fly ash has a higher fineness than general chemical power plant fly ash, contributing to improved water tightness and early strength, and also plays a role in stimulating the reactivity of blast furnace slag fine powder. It is desirable to use 5 to 15% by weight of supercritical fluidized bed boiler fly ash in the binder. If it is less than 5% by weight, the strength improvement effect is minimal, and if it exceeds 15% by weight, there are concerns about a decrease in workability due to decreased fluidity and a decrease in strength. I'm concerned.

천연 무수석고는 고로슬래그 미분말 및 보통 보틀랜드 시멘트의 수화반응 활성화를 통해 강도 증진에 기여하며, 더불어 보통 포틀랜드 시멘트 중 C3A의 급결을 막아 응결 시간을 조절하는 역할을 한다. 천연 무수석고는 비중 2.90~3.00, 분말도 3,000~4,000 g/cm3인 것이면 적당하다. 천연 무수석고는 결합재에서 10~20중량% 사용하며, 10중량% 미만이면 활성도가 낮아 물리적 성능 발현이 곤란하고, 20중량% 초과하면 강도 증진 효과가 미미하고 경제성도 상실한다.Natural anhydrous gypsum contributes to strength improvement by activating the hydration reaction of blast furnace slag fine powder and ordinary Portland cement, and also plays a role in controlling the setting time by preventing rapid setting of C 3 A in ordinary Portland cement. Natural anhydrous gypsum is suitable if it has a specific gravity of 2.90 to 3.00 and a powder degree of 3,000 to 4,000 g/cm 3 . Natural anhydrous gypsum is used in the binder in an amount of 10 to 20% by weight. If it is less than 10% by weight, it has low activity and it is difficult to achieve physical performance, and if it exceeds 20% by weight, the strength improvement effect is minimal and economic feasibility is lost.

2. 세그먼트용 콘크리트2. Concrete for segments

본 발명에 따른 세그먼트용 콘크리트는 세그먼트용 결합재를 이용한 콘크리트 배합으로, 결합재 100중량부에 대하여 철근부식 방지용 첨가제가 0.1~5중량부 혼입되어 배합되는 것을 특징으로 한다. 철근부식 방지용 첨가제를 더 혼입함으로써 세그먼트 내부에서 철근부식에 대한 저항 성능을 보완하고자 한 것이다. 특히 본 발명에서 철근부식 방지용 첨가제는, 하이드로탈사이트 100중량부에 트리에탄올아민 5~20중량부, 질산나트륨 10~40중량부를 포함하여 구성된다. 이러한 철근부식 방지용 첨가제는 액상으로 제조하여 더욱 바람직하게 적용할 수 있다. The segment concrete according to the present invention is a concrete mix using a segment binder, and is characterized in that 0.1 to 5 parts by weight of an additive for preventing corrosion of reinforcing bars is mixed with respect to 100 parts by weight of the binder. By incorporating additional additives to prevent corrosion of reinforcing bars, the purpose was to supplement the performance of resistance to corrosion of reinforcing bars within the segment. In particular, in the present invention, the additive for preventing corrosion of reinforcing bars includes 5 to 20 parts by weight of triethanolamine and 10 to 40 parts by weight of sodium nitrate per 100 parts by weight of hydrotalcite. These additives for preventing corrosion of reinforcing bars can be more preferably applied by preparing them in a liquid form.

하이드로탈사이트는 음이온성 점토, 층상 이중 수화물 또는 층상혼합금속수산화물이라도 일컬어지는 Mg6Al2(OH)16CO3·4H2O 구조의 층상복합수산화물로, 이온 교환 능력, 넓은 표면적, 물에 대한 불용성 및 가용성의 특성을 가진다. 이러한 특성의 하이드로탈사이트는 슬래그 기반 시멘트에 적용되면 10이상의 pH로 인해 콘크리트 양생과정에서 알칼리 환경을 유지시켜 에트린자이트 생성에 도움을 주게 되며, 이로써 강도 증진에 기여하게 된다. 또한 하이드로탈사이트는 염화물 이온을 고정하여 철근에 대한 부식 시간을 지연시키는 역할도 한다. NO2-이온을 포함한 하이드로탈사이트 입자들은 염화물(Cl-, SO4 2- 등)을 빠르게 포획하여 콘크리트 내부의 철근까지 염화물 이온이 침투하는 것을 방지하고, 동시에 NO2-이온을 콘크리트 내부로 방출함으로써 철근의 부동태막을 형성하고 이로 인해 철근의 부식을 방지하는 것이다. 나아가 하이드로탈사이트는 시멘트와 골재들 간의 공극들을 메워 주는 충전재 역할을 하여 콘크리트의 수밀성을 향상시키며, 수밀성 향상은 콘크리트의 방수성능도 향상시킨다. Hydrotalcite, also known as anionic clay, layered double hydrate, or layered mixed metal hydroxide, is a layered composite hydroxide with a Mg 6 Al 2 (OH) 16 CO 3 ·4H 2 O structure, with ion exchange ability, large surface area, and water resistance. It has the characteristics of insolubility and solubility. When hydrotalcite with these characteristics is applied to slag-based cement, it helps create ettringite by maintaining an alkaline environment during the concrete curing process due to the pH of 10 or higher, thereby contributing to strength improvement. Hydrotalcite also plays a role in delaying corrosion of rebar by fixing chloride ions. Hydrotalcite particles containing NO 2- ions quickly capture chlorides (Cl - , SO 4 2-, etc.), preventing chloride ions from penetrating into the rebar inside the concrete, and at the same time releasing NO 2- ions into the concrete. By doing so, a passive film is formed on the reinforcing bars, thereby preventing corrosion of the reinforcing bars. Furthermore, hydrotalcite improves the water tightness of concrete by acting as a filler that fills the voids between cement and aggregate, and improving water tightness also improves the waterproof performance of concrete.

트리에탄올아민은 조기강도 증진, 유동성 증진을 위한 재료가 되며, 하이드로탈사이트 100중량부에 대하여 5~20중량부 사용한다. 5중량부 미만이면 강도 증진 효과가 미미하고, 20중량부 초과하면 오히려 유동성을 저해한다.Triethanolamine is a material for improving early strength and fluidity, and is used in an amount of 5 to 20 parts by weight per 100 parts by weight of hydrotalcite. If it is less than 5 parts by weight, the effect of improving strength is minimal, and if it exceeds 20 parts by weight, it actually inhibits fluidity.

질산나트륨은 Na+ 이온이 pH를 증가시켜 시멘트 수화반응을 촉진하는 역할을 하고 동시에 콘크리트 조성물이 골고루 혼합될 수 있게 하는 충진재 역할을 한다. 더불어 질산나트륨(NaNO3)은 NO3 - 이온이 혼합수의 응결 온도를 낮추어 저온에서의 사용성 확보에도 기여한다. 질산나트륨은 하이드로탈사이트 100중량부에 대하여 10~40중량부 사용하는데, 10중량부 미만이면 수화반응 촉진효과가 미미하고 40중량부 초과하면 유동성 저하, 경제성 상실이 우려된다.Sodium nitrate promotes the cement hydration reaction by increasing the pH of Na+ ions and at the same time acts as a filler to ensure even mixing of the concrete composition. In addition, sodium nitrate (NaNO 3 ) contributes to ensuring usability at low temperatures by lowering the condensation temperature of the mixed water as NO 3 - ions. Sodium nitrate is used in an amount of 10 to 40 parts by weight per 100 parts by weight of hydrotalcite. If it is less than 10 parts by weight, the effect of promoting the hydration reaction is minimal, and if it exceeds 40 parts by weight, there are concerns about reduced fluidity and loss of economic feasibility.

액상의 철근부식 방지용 첨가제는 분산성, 용해성 등을 고려할 때 50℃ 이상의 온도 조건을 유지하면서 고형분 25중량% 이하로 제조하는 것이 바람직하다. 구체적으로, 먼저 하이드로탈사이트 분말 100중량부에, 트리에탄올아민 5~20중량부, 질산나트륨 10~40중량부, 50℃ 이상의 증류수 350~600중량부를 준비한다. 이어 50℃ 이상의 증류수에 하이드로탈사이트 분말을 투입하여 교반기기를 통해 50℃이상의 온도 조건을 유지하면서 200-250rpm 속도로 2시간 정도 교반한다. 이후 액상의 트리에탄올아민을 첨가하여 50℃이상의 온도 조건을 유지하면서 30분 이상 교반하고, 마지막으로 질산나트륨(순도 99%)을 첨가하여 용해하고 추가로 2시간 교반시키는 과정으로 제조할 수 있다.When considering dispersibility, solubility, etc., liquid additives for preventing corrosion of reinforcing bars are preferably manufactured with a solid content of 25% by weight or less while maintaining a temperature condition of 50°C or higher. Specifically, first prepare 100 parts by weight of hydrotalcite powder, 5 to 20 parts by weight of triethanolamine, 10 to 40 parts by weight of sodium nitrate, and 350 to 600 parts by weight of distilled water of 50°C or higher. Next, hydrotalcite powder is added to distilled water above 50℃ and stirred for about 2 hours at a speed of 200-250rpm while maintaining the temperature condition above 50℃ using a stirring device. It can then be prepared by adding liquid triethanolamine and stirring for more than 30 minutes while maintaining a temperature condition of 50°C or higher, and finally adding sodium nitrate (purity 99%) to dissolve it and stirring for an additional 2 hours.

이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 제조예 및 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be examined in detail based on manufacturing examples and test examples. However, the following manufacturing examples and test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[제조예] 철근 부식방지용 첨가제의 제조[Manufacturing example] Manufacture of additives for preventing corrosion of rebar

1. 하이드로탈사이트의 제조1. Preparation of hydrotalcite

하이드로탈사이트를 공칭법으로 제조하였다. 먼저 2가와 3가의 양이온의 몰 비를 2:1의 비율로 2가 양이온 1mol Mg(NO3)2·6H2O(179.5g)와 3가 양이온 0.5mol Al(NO3)3·9H2O(131.3g) 시약을 700ml에 증류수에 용해시킨 후 250-300rpm 속도로 교반하여 30분이상 반응시켰다. 반응이 진행되면서 백색의 침전물이 생기고 용액의 pH가 낮아지게 되는데, pH 조절용액으로 1mol(40g)의 NaOH용액을 1~2시간에 걸쳐 적정하여 pH가 10~11가 되도록 유지시켜 주었다. 침전물의 양호한 결정성을 확보하기 위하여 60℃의 온도에서 24시간동안 교반하면서 숙성하였으며, 결정화가 끝난 후 필터링을 통해 침전물을 분리하고 증류수로 수차례 세척을 반복하여 잔존하는 나트륨을 제거하였다. 최종적으로 형성된 백색 침전물을 100℃에서 12시간 건조 후 100㎛의 체가름하였으며, 이로써 아래 [표 1]과 같은 특성의 Mg, Al계 하이드로탈사이트 분말이 제조되었다.Hydrotalcite was prepared by the nominal method. First, the molar ratio of divalent and trivalent cations is 2:1, 1 mol Mg(NO 3 ) 2 ·6H 2 O (179.5 g) of divalent cation and 0.5 mol Al(NO 3 ) 3 ·9H 2 O of trivalent cation. (131.3g) The reagent was dissolved in 700ml of distilled water and stirred at a speed of 250-300rpm to react for more than 30 minutes. As the reaction progressed, a white precipitate was formed and the pH of the solution lowered. As a pH adjusting solution, 1 mol (40 g) of NaOH solution was titrated over 1 to 2 hours to maintain the pH at 10 to 11. To ensure good crystallinity of the precipitate, it was aged with stirring at a temperature of 60°C for 24 hours. After crystallization was completed, the precipitate was separated through filtering and washed several times with distilled water to remove remaining sodium. The finally formed white precipitate was dried at 100°C for 12 hours and then sieved through a 100㎛ sieve, thereby producing Mg and Al-based hydrotalcite powder with the characteristics shown in [Table 1] below.

하이드로탈사이트의 특성Characteristics of hydrotalcite 구성성분
(중량%)
Ingredients
(weight%)
Al2O3 함량(%)Al 2 O 3 content (%) MgO 함량(%)MgO content (%) 기타etc 합계Sum
10-2010-20 30-5030-50 10-2010-20 100100 특성characteristic 비중(g/cm3)Specific gravity (g/cm 3 ) pHpH 형태form color 입자크기particle size 2.10±0.052.10±0.05 10.0±0.510.0±0.5 분말형powder type 백색White 200-300nm200-300nm

2. 첨가제의 제조2. Preparation of additives

제조된 Mg, Al계 하이드로탈사이트 분말 100중량부에, 트리에탄올아민 10중량부, 질산나트륨 30중량부, 50℃ 이상의 증류수 520중량부를 준비하고, 액상의 첨가제로 제조하였다. 먼저 50℃ 이상의 증류수에 하이드로탈사이트 분말을 투입하여 교반기기를 통해 200-250rpm 속도로 2시간 교반을 진행하였으며, 이때 50℃ 이상의 온도 조건을 유지하였다. 이후 액상의 트리에탄올아민을 첨가하여 50℃ 이상의 온도 조건을 유지하면서 30분 이상 교반을 진행하였다. 마지막으로 질산나트륨(순도 99%)을 첨가하여 용해하고 추가로 2시간 교반시켰다. 이로써 고형분 25중량%의 액상 철근부식 방지용 첨가제가 제조되었다.For 100 parts by weight of the prepared Mg and Al-based hydrotalcite powder, 10 parts by weight of triethanolamine, 30 parts by weight of sodium nitrate, and 520 parts by weight of distilled water above 50°C were prepared, and prepared as a liquid additive. First, hydrotalcite powder was added to distilled water above 50°C and stirred using a stirring device at a speed of 200-250rpm for 2 hours, while maintaining the temperature condition above 50°C. Afterwards, liquid triethanolamine was added and stirring was performed for more than 30 minutes while maintaining a temperature condition of 50°C or higher. Finally, sodium nitrate (purity 99%) was added, dissolved, and stirred for an additional 2 hours. As a result, a liquid rebar corrosion prevention additive with a solid content of 25% by weight was prepared.

[시험예1] 결합재의 종류에 따른 세그먼트용 콘크리트의 특성[Test Example 1] Characteristics of segment concrete according to the type of binder

1. 시험체 제조1. Test specimen preparation

아래 [표 2]와 같은 조건으로 콘크리트 배합한 후 시험체를 성형 양생하여 제조하였다. 양생은 2시간의 기건양생을 하고 6시간의 열수양생을 거친 다음, 7일동안 수중양생에 들어가고 이후 21일 동안 항온항습양생 과정을 거치는 방법으로 실시하였다. 비교예1은 결합재로 시멘트와 3종 고로슬래그 미분말을 사용한 배합이고, 비교예2는 비교예1에서 결합재로 3종 고로슬래그 미분말의 일부를 일반 플라이애시로 치환한 결합재를 사용한 배합으로 종래 세그먼트용 결합재를 사용한 배합이며, 실시예1,2는 본 발명에 따른 세그먼트용 결합재를 사용한 배합이다.After mixing concrete under the conditions shown in [Table 2] below, the test specimen was molded and cured. Curing was carried out in the following way: 2 hours of air-dry curing, 6 hours of hot water curing, then 7 days of underwater curing, and then 21 days of constant temperature and humidity curing. Comparative Example 1 is a mix using cement and three types of blast furnace slag fine powder as a binder, and Comparative Example 2 is a mix using a binder in which a part of the three types of blast furnace slag fine powder in Comparative Example 1 was replaced with general fly ash, which is used for conventional segments. It is a blend using a binder, and Examples 1 and 2 are a blend using a binder for segments according to the present invention.

구분division W/B(%)W/B(%) S/a(%)S/a(%) Binder(kg/m3)
Unit Weight
Binder (kg/m 3 )
Unit Weight
aggregate
(kg/m3)
aggregate
(kg/ m3 )
Ad.(%)
PC
Ad.(%)
PC
OPCOPC FAFA CFBCCFBC GGBSGGBS CSC.S. 합계Sum SS AA 비교예 1Comparative Example 1 32.332.3 44.544.5 329329 -- 141141 -- 470470 770770 970970 3.703.70 비교예 2Comparative Example 2 42.542.5 329329 4747 -- 9494 -- 470470 727727 986986 실시예 1Example 1 42.542.5 4747 -- 4747 329329 4747 470470 730730 988988 실시예 2Example 2 42.542.5 4747 -- 23.523.5 352.5352.5 4747 470470 733733 994994 1) OPC : 1종 보통포틀랜드시멘트
2) FA : 1종 플라이애시
3) CFBC : 초임계 유동층 플라이 애시
4) GGBS : 3종 고로슬래그미분말
5) CS : 천연 무수석고
1) OPC: Type 1 Ordinary Portland Cement
2) FA: Type 1 fly ash
3) CFBC: Supercritical fluidized bed fly ash
4) GGBS: 3 types of blast furnace slag fine powder
5) CS: Natural anhydrous gypsum

2. 콘크리트 특성2. Concrete properties

시험체에 대해 슬럼프(KS F 2402), 공기량(KS F 2421), 압축강도(KS F 2405), 염소이온 침투 저항성(KS F 2711)를 측정하였다. 더불어 염화물 확산계수를 산정하였다(NT BUILD 492, Chloride Migration Coefficient from Non-Steady-State Migration Experiments(Nordtest 1999)). 그 결과는 아래 [표 3]과 같이 나타냈다.Slump (KS F 2402), air volume (KS F 2421), compressive strength (KS F 2405), and chlorine ion penetration resistance (KS F 2711) were measured for the test specimen. In addition, the chloride diffusion coefficient was calculated (NT BUILD 492, Chloride Migration Coefficient from Non-Steady-State Migration Experiments (Nordtest 1999)). The results are shown in [Table 3] below.

콘크리트 특성concrete properties 구분division Slump
(mm)
Slump
(mm)
air
(%)
air
(%)
압축강도
(MPa)
compressive strength
(MPa)
염소이온 침투 저항성(C)Chlorine ion penetration resistance (C) 염화물 확산계수
(x10-12, m2/s)
Chloride diffusion coefficient
(x10 -12 , m 2 /s)
3d3d 7d7d 28d28d 28d28d 56d56d 28d28d 비교예 1Comparative Example 1 7575 3.93.9 37.937.9 43.743.7 53.453.4 49124912 38773877 5.015.01 비교예 2Comparative Example 2 6565 4.04.0 35.835.8 43.943.9 57.157.1 42164216 33223322 6.126.12 실시예 1Example 1 7070 3.93.9 38.838.8 48.548.5 62.162.1 30223022 21122112 4.834.83 실시예 2Example 2 7575 4.04.0 37.137.1 50.950.9 63.363.3 26132613 18901890 4.444.44

위의 [표 3]에서와 같이, 종래 세그먼트용 결합재를 사용한 비교예 2보다, 본 발명에 따라 일반 플라이애시(FA)를 초임계 유동층 플라이 애시(CFBC)로 대체하고 OPC의 일부를 3종 고로슬래그 미분말(GGBS)과 천연무수석고(CS)로 치환시켜 배합한 실시예 1,2에서 슬럼프, 공기량이 증진되는 것이 확인되며, 더불어 실시예1보다 초임계 유동층 플라이 애시를 줄이고 3종 고로슬래그 미분말을 증가시킨 실시예2에서 더욱 유리한 결과가 확인된다. 압축강도와, 염소이온 침투 저항성, 염화물 확산계수 또한 실시예1,2가 비교예1.2보다 현저히 개선되는 것이 확인된다. 이와 같은 결과에 따라 본 발명에 따른 결합재는 세그먼트용 결합재로 유리하게 활용할 수 있을 것이다.As shown in [Table 3] above, rather than Comparative Example 2 using a conventional binder for segments, according to the present invention, general fly ash (FA) was replaced with supercritical fluidized bed fly ash (CFBC), and a part of OPC was used in three types of blast furnace. In Examples 1 and 2, which were mixed by substituting slag fine powder (GGBS) and natural anhydrous gypsum (CS), it was confirmed that the slump and air volume were increased, and in addition, the supercritical fluidized bed fly ash was reduced compared to Example 1 and three types of blast furnace slag fine powder were used. More advantageous results are confirmed in Example 2 in which is increased. It was confirmed that the compressive strength, chlorine ion penetration resistance, and chloride diffusion coefficient were also significantly improved in Examples 1 and 2 compared to Comparative Example 1.2. According to these results, the binder according to the present invention can be advantageously used as a binder for segments.

[시험예2] 첨가제의 종류에 따른 세그먼트용 콘크리트의 특성[Test Example 2] Characteristics of segment concrete according to the type of additive

1. 시험체 제조1. Test specimen preparation

콘크리트는 아래 [표 3]와 같은 조건으로 콘크리트 배합하여 시험예1과 같은 과정으로 시험체를 제조하였다. 비교예3~5과 실시예3,4는 실시예2와 동일한 결합재에 첨가제의 종류를 달리하여 배합하였다. 비교예3은 첨가제로 질산나트륨만을 사용한 배합이고, 비교예4는 비교예3에 트라에탄올아민을 추가 사용한 배합이고, 비교예 5는 첨가제로 하이드로탈사이트만을 사용한 배합이고, 비교예6과 실시예3,4는 비교예4에 하이드로탈사이트를 추가 사용한 배합이다. 이러한 배합에서 비교예3~6은 첨가제의 구성 재료를 물에 혼합 교반하여 액상화하여 사용하고, 실시예3은 제조예의 첨가제를 사용하고, 실시예4는 첨가제의 구성 재료 그대로 분말 또는 액상으로 사용하였다.Concrete was mixed under the conditions shown in [Table 3] below, and a test specimen was manufactured through the same process as Test Example 1. Comparative Examples 3 to 5 and Examples 3 and 4 were mixed with the same binder as Example 2 with different types of additives. Comparative Example 3 is a formulation using only sodium nitrate as an additive, Comparative Example 4 is a formulation using additional triethanolamine to Comparative Example 3, Comparative Example 5 is a formulation using only hydrotalcite as an additive, and Comparative Example 6 and Examples 3 and 4 are formulations in which hydrotalcite was added to Comparative Example 4. In this formulation, Comparative Examples 3 to 6 used the additive components by mixing them with water and liquefying them, Example 3 used the additives of the production example, and Example 4 used the additive components in powder or liquid form as is. .

콘크리트 배합concrete mix 구분division W/B
(%)
W/B
(%)
S/a
(%)
S/a
(%)
Unit Weight(kg/m3)Unit Weight(kg/m 3 ) Ad(Bidner 대비 wt %)Ad (wt% compared to Bidner)
BinderBinder aggregateaggregate SNS.N. TEATEAs HDTHDT PCPC 비교예 3Comparative Example 3 32.332.3 42.542.5 470
(OPC:47, CFBC: 23.5, GGBS: 352.5, CS:47)
470
(OPC:47, CFBC: 23.5, GGBS: 352.5, CS:47)
S: 773
G: 994
S: 773
G: 994
0.30.3 -- -- 3.703.70
비교예 4Comparative Example 4 0.30.3 0.10.1 -- 비교예 5Comparative Example 5 -- -- 1.01.0 비교예 6Comparative Example 6 0.30.3 0.10.1 0.50.5 실시예 3Example 3 0.30.3 0.10.1 1.01.0 실시예 4Example 4 0.30.3 0.10.1 1.01.0 1) SN : 질산나트륨
2) TEA : 트리에탄올아민
3) HDT : 하이드로탈사이트
1) SN: Sodium nitrate
2) TEA: Triethanolamine
3) HDT: hydrotalcite

2. 콘크리트 특성2. Concrete properties

[시험예1]과 동일한 방법으로, 시험체에 대해 슬럼프, 압축강도, 염소이온 침투 저항성를 측정하고, 염화물 확산계수를 산정하였다. 그 결과는 아래 [표 5]와 같이 나타냈다.In the same manner as [Test Example 1], the slump, compressive strength, and chlorine ion penetration resistance of the test specimen were measured, and the chloride diffusion coefficient was calculated. The results are shown in [Table 5] below.

콘크리트 특성concrete properties 구분division Slump
(mm)
Slump
(mm)
air
(%)
air
(%)
압축강도
(MPa)
compressive strength
(MPa)
염소이온 침투 저항성(C)Chlorine ion penetration resistance (C) 염화물 확산계수
(x10-12, m2/s)
Chloride diffusion coefficient
(x10 -12 , m 2 /s)
3d3d 7d7d 28d28d 28d28d 56d56d 28d28d 비교예 3Comparative Example 3 7070 4.34.3 37.937.9 51.151.1 64.764.7 2,5432,543 1,7881,788 4.674.67 비교예 4Comparative Example 4 8080 4.24.2 36.636.6 50.250.2 65.965.9 2,6172,617 1,7931,793 4.594.59 비교예 5Comparative Example 5 7070 4.14.1 34.934.9 48.748.7 61.861.8 2,4172,417 1,4231,423 2.792.79 비교예 6Comparative Example 6 7070 4.24.2 36.036.0 51.351.3 64.164.1 2,3932,393 1,3591,359 2.542.54 실시예 3Example 3 8080 4.44.4 37.937.9 52.952.9 66.166.1 1,8221,822 923923 1.981.98 실시예 4Example 4 8585 4.24.2 35.335.3 49.149.1 63.063.0 2,0722,072 1,1781,178 2.272.27

위의 [표 5]에서와 같이, 본 발명에 따른 결합재에 질산나트륨(SN)만을 혼입하여 배합한 비교예3, 질산나트륨(SN) 외에 트리에탄올아민(TEA)를 추가 혼입하여 배합한 비교예4는 앞서 [시험예1]에서 살펴본 실시예2와 비교할 때, 공기량 증대, 중장기 압축강도 증진, 염소이온 침투 저항성의 미미한 증대, 염화물 확산계수의 미미한 감소를 나타냈다. 하이드로탈사이트(HDT)를 단독 혼입하여 배합한 비교예5는 실시예2와 비교할 때 염소이온 침투 저항성과 염화물 확산계수의 증대 효과를 나타냈으나, 강도 저하를 나타냈다. 질산나트륨(SN)과 트리에탄올아민(TEA)외에 하이드로탈사이트(HDT)를 소량 혼입하여 배합한 비교예6은 강도 증진효과는 나타냈으나, 염화물 확산계수는 비교예5보다도 낮게 나타냈다. As shown in [Table 5] above, Comparative Example 3 in which only sodium nitrate (SN) was mixed with the binder according to the present invention, and Comparative Example 4 in which triethanolamine (TEA) was additionally mixed in addition to sodium nitrate (SN). Compared to Example 2 previously examined in [Test Example 1], it showed an increase in air volume, an improvement in mid- to long-term compressive strength, a slight increase in chlorine ion penetration resistance, and a slight decrease in chloride diffusion coefficient. Comparative Example 5, which was mixed with hydrotalcite (HDT) alone, showed an increase in chlorine ion penetration resistance and chloride diffusion coefficient compared to Example 2, but showed a decrease in strength. Comparative Example 6, which mixed a small amount of hydrotalcite (HDT) in addition to sodium nitrate (SN) and triethanolamine (TEA), showed a strength improvement effect, but the chloride diffusion coefficient was lower than that of Comparative Example 5.

실시예3은 첨가제를 비교예6에서 하이드로탈사이트(HDT)의 혼입량을 더욱 증대시켜 제조예에 따라 제조하여 혼입한 배합인데, 비교예6과 비교할 때 슬럼프와 공기량 증대, 압축강도 증진과 염소이온 침투 저항성과 염화물 확산계수 현저한 증진 효과를 나타냈다. 실시예4는 첨가제의 구성 재료인 질산나트륨(SN), 트리에탄올아민(TEA), 하이드로탈사이트(HDT)를 원재료 그대로 분말 또는 액상으로 혼입한 배합인데, 강도, 염소이온 침투 저항성, 염화물 확산계수에서 비교예들보다 증진된 효과를 나타냈으면 다만 실시예3보다는 낮은 효과를 나타냈다. 이와 같은 결과에 따라 제조예와 같이 제조된 첨가제는 철근부식 방지에 유리한 효과를 나타내어 연속굴착 세그먼트용 첨가제로 유리하게 활용할 수 있을 것이다.Example 3 is a mixture prepared and mixed according to the manufacturing example by further increasing the amount of hydrotalcite (HDT) mixed in Comparative Example 6. Compared to Comparative Example 6, slump and air volume increased, compressive strength improved, and chlorine ions were added. It showed a significant improvement in penetration resistance and chloride diffusion coefficient. Example 4 is a formulation in which sodium nitrate (SN), triethanolamine (TEA), and hydrotalcite (HDT), which are components of additives, were mixed as raw materials in powder or liquid form. Although it showed an improved effect compared to the comparative examples, it showed a lower effect than Example 3. According to these results, the additive prepared as in the preparation example shows a beneficial effect in preventing corrosion of reinforcing bars and can be advantageously used as an additive for continuous excavation segments.

Claims (3)

삭제delete 결합재 100중량부에 대하여, 철근부식 방지용 첨가제가 0.1~5중량부 혼입되어 배합되되,
상기 결합재는, 3종 고로슬래그 미분말 70~80중량%; 1종 보통 포틀랜드 시멘트 5~15중량%; 초임계 유동층 보일러 플라이애시 5~15중량%; 천연 무수석고 10~20중량%;로 구성되는 탄소저감형 결합재이며,
상기 철근부식 방지용 첨가제는, 하이드로탈사이트 100중량부에, 트리에탄올아민 5~20중량부, 질산나트륨 10~40중량부를 포함하는 것임을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 고내구성 콘크리트.
For 100 parts by weight of binder, 0.1 to 5 parts by weight of additive for preventing corrosion of reinforcing bars is mixed and mixed.
The binder is 70 to 80% by weight of three types of blast furnace slag fine powder; Type 1 ordinary Portland cement 5-15% by weight; Supercritical fluidized bed boiler fly ash 5-15% by weight; It is a carbon-reducing binder composed of 10 to 20% by weight of natural anhydrous gypsum;
The additive for preventing corrosion of reinforcing bars is a highly durable concrete for continuous excavation segments of underground structures, characterized in that it contains 100 parts by weight of hydrotalcite, 5 to 20 parts by weight of triethanolamine, and 10 to 40 parts by weight of sodium nitrate.
제2항에서,
상기 철근부식 방지용 첨가제는,
하이드로탈사이트 100중량부에 대하여 350~600중량부의 증류수를 준비한 후, 50℃ 이상의 증류수에 하이드로탈사이트를 투입하여 50℃이상의 온도를 유지하면서교반하고 트리에탄올아민을 첨가하여 50℃이상의 온도를 유지하면서 교반한 후 질산나트륨을 첨가 교반하여 액상으로 제조한 것임을 특징으로 하는 지하구조물의 연속굴착 세그먼트용 고내구성 콘크리트.
In paragraph 2,
The additive for preventing corrosion of rebar,
After preparing 350 to 600 parts by weight of distilled water for 100 parts by weight of hydrotalcite, add hydrotalcite to distilled water above 50℃, stir while maintaining the temperature above 50℃, and add triethanolamine while maintaining the temperature above 50℃. Highly durable concrete for continuous excavation segments of underground structures, characterized in that it is manufactured into a liquid state by adding and stirring sodium nitrate after stirring.
KR1020220189615A 2022-12-29 2022-12-29 Composition for Segment Concrete of Underground Structure KR102561125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220189615A KR102561125B1 (en) 2022-12-29 2022-12-29 Composition for Segment Concrete of Underground Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220189615A KR102561125B1 (en) 2022-12-29 2022-12-29 Composition for Segment Concrete of Underground Structure

Publications (1)

Publication Number Publication Date
KR102561125B1 true KR102561125B1 (en) 2023-10-20

Family

ID=88514423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220189615A KR102561125B1 (en) 2022-12-29 2022-12-29 Composition for Segment Concrete of Underground Structure

Country Status (1)

Country Link
KR (1) KR102561125B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246114B1 (en) * 2012-11-06 2013-03-22 삼표건설 주식회사 Concrete composition for manufacturing by the use of tbm method and the high-performance concrete segment
KR20130116979A (en) 2012-04-17 2013-10-25 삼표건설 주식회사 Precast concrete segment for tunnel and manufacturing method of the same
JP2015127283A (en) * 2013-12-28 2015-07-09 太平洋マテリアル株式会社 Polymer cement grout mortar
KR101794960B1 (en) 2017-03-03 2017-11-08 (주)콘텍이엔지 Macro synthetic fiber concrete composition for shield TBM tunnel and concrete segment manufactured by the same
KR102018780B1 (en) * 2019-04-03 2019-09-04 (주)옥당산업 Grout composition for demolishing underground concrete structures and manufacturing method thereof
KR102107600B1 (en) * 2019-11-26 2020-05-07 케이씨그린소재 주식회사 Pile Filler Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash and Manufacturing Method of the Pile Filler
KR102454865B1 (en) * 2022-02-15 2022-10-18 (주)대우건설 Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116979A (en) 2012-04-17 2013-10-25 삼표건설 주식회사 Precast concrete segment for tunnel and manufacturing method of the same
KR101246114B1 (en) * 2012-11-06 2013-03-22 삼표건설 주식회사 Concrete composition for manufacturing by the use of tbm method and the high-performance concrete segment
JP2015127283A (en) * 2013-12-28 2015-07-09 太平洋マテリアル株式会社 Polymer cement grout mortar
KR101794960B1 (en) 2017-03-03 2017-11-08 (주)콘텍이엔지 Macro synthetic fiber concrete composition for shield TBM tunnel and concrete segment manufactured by the same
KR102018780B1 (en) * 2019-04-03 2019-09-04 (주)옥당산업 Grout composition for demolishing underground concrete structures and manufacturing method thereof
KR102107600B1 (en) * 2019-11-26 2020-05-07 케이씨그린소재 주식회사 Pile Filler Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash and Manufacturing Method of the Pile Filler
KR102454865B1 (en) * 2022-02-15 2022-10-18 (주)대우건설 Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner

Similar Documents

Publication Publication Date Title
Wang et al. Alkali-activated slag cement and concrete: a review of properties and problems
EP2246315A1 (en) Cement admixture, and cement composition and concrete containing the cement admixture
KR102310854B1 (en) Concrete manufactured with a salt-resistance enhancing composition capable of self-repairing concrete cracks, and a method for manufacturing concrete structures with improved salt-resistance
CN113307536A (en) Anticorrosive and rust-resistant anti-cracking waterproof agent
CN115557739B (en) Marine site polymer material and preparation method thereof
KR102454865B1 (en) Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner
US7008478B2 (en) Composite of consolidation-hardening pile for soft ground
KR102291633B1 (en) Mixture material composition for steam curing concrete and steam curing concrete composition comprising the same
KR102269372B1 (en) Manufacturing Method of Undersea Concrete Anchor with High Durability
KR102561125B1 (en) Composition for Segment Concrete of Underground Structure
JP6931842B2 (en) Cement admixture, method for producing cement admixture, method for producing cement composition and cement composition
KR100900333B1 (en) Cement composition with low heat and shrinkage
CZ126193A3 (en) Process for improving activation of latently hydraulic basic blast furnace slag in the production of building material
CN110451840B (en) Composite type compacting agent
KR20180051840A (en) Instillation material and method using the same
KR102349613B1 (en) Cement Admixture Composite for Rapid Expansion Hardening Type, On-site Hydration Concrete Mat Using the Cement Admixture Composite and Construction Method Using the Mat
KR102561131B1 (en) Binder Composition for Segment Concrete of Underground Structure and Concrete Using the Same
WO2019044484A1 (en) Mortar or concrete composition and method for manufacturing same
KR101866854B1 (en) A composite of binding materials with marine eco-friendly for marine concrete by using waste resources, marine cement mortar and marine concrete comprising the same
KR102478241B1 (en) Backfiller Composition With High Flowability
JP3485122B2 (en) Cement composition
KR102140060B1 (en) Solidifying composition for improving soft ground
JP4107773B2 (en) Cement admixture and cement composition
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
KR102434734B1 (en) Grout composition for back fill