KR102558264B1 - 다층 스택의 계측 - Google Patents

다층 스택의 계측 Download PDF

Info

Publication number
KR102558264B1
KR102558264B1 KR1020207027988A KR20207027988A KR102558264B1 KR 102558264 B1 KR102558264 B1 KR 102558264B1 KR 1020207027988 A KR1020207027988 A KR 1020207027988A KR 20207027988 A KR20207027988 A KR 20207027988A KR 102558264 B1 KR102558264 B1 KR 102558264B1
Authority
KR
South Korea
Prior art keywords
test sample
interferometry
sample
interface
data
Prior art date
Application number
KR1020207027988A
Other languages
English (en)
Other versions
KR20200118218A (ko
Inventor
레슬리 엘. 덱
그루트 피터 제이. 드
Original Assignee
지고 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지고 코포레이션 filed Critical 지고 코포레이션
Publication of KR20200118218A publication Critical patent/KR20200118218A/ko
Application granted granted Critical
Publication of KR102558264B1 publication Critical patent/KR102558264B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/0201Interferometers characterised by controlling or generating intrinsic radiation properties using temporal phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02016Interferometers characterised by the beam path configuration contacting two or more objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer
    • G01B9/02074Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer of the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02084Processing in the Fourier or frequency domain when not imaged in the frequency domain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping

Abstract

다층 스택에서 왜곡 및 다른 효과로 인한 간섭 측정 신호 위상 변화를 제거하는 기술은, 저 간섭성 이미징 간섭 측정 시스템을 사용하여 스택에 대해 획득된 전자 프로세서 샘플 간섭 측정 데이터를 제공하는 단계; 전자 프로세서에 의해, 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하는 단계; 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하는 단계 ― 비선형 위상 변화는 테스트 샘플에 의해 측정 빔에 도입된 분산의 결과임 ―; 및 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 제거함으로써 보상된 간섭 측정 데이터를 생성하는 단계를 포함한다.

Description

다층 스택의 계측
본 출원은 2018년 2월 28일자 미국 특허 가출원 제62/636,419호로부터 35 USC 119 하에 우선권을 주장한다. 이 가출원의 전체 내용은 그 전체가 본 명세서에서 참조로 포함된다.
본 출원은 다중 계층 스택의 계측에 관한 것이다.
웨어러블 가상 및/또는 증강 현실(virtual reality(VR)/augmented reality(AR))을 가능하게 하기 위한 물리적 장치는 일반적으로 다수의 평행판을 포함하는 스택을 사용한다. 스택 내의 평행판은, 장치가 사용자의 눈 앞에 놓여졌을 때, 장치 주변으로부터의 광 정보가 정상적인 시력을 차단하지 않고 데이터 또는 이미지 오버레이를 생성하기 위해 눈으로 운반되고 리디렉션되도록 도파관 역할을하기 위해 표면에 인가된 피처(feature) 및 코팅을 가질 수 있다. 일부 경우에, 스택은 병렬로 배열된 많은 판을 사용하며, 여기서 각각의 판은 서로 다른 색상의 광(예를 들어, 적색, 녹색 및 청색)을 안내한다. 고품질 이미지를 유지하기 위해, 특정 표면이 원하는 평탄도를 갖는 것을 보장하고 제조 중에 판 사이의 특정 분리 거리를 유지하도록, 판 사이에 우수한 평행도를 달성하는 것이 중요할 수 있다. 그러나, 이러한 파라미터의 측정은 스택 내의 표면이나 피처에서 반사되는 원하지 않은 광의 영향으로 인해 어려울 수 있다.
본 개시는 다층 스택의 계측에 관한 것이다.
일반적으로, 일부 측면에서, 본 개시의 주제는, 저 간섭성 이미징 간섭 측정 시스템(low coherence imaging interferometry system)을 사용하여 테스트 샘플에 대해 획득된 샘플 간섭 측정 데이터를 전자 프로세서에게 제공하는 단계 ― 테스트 샘플은 스택 내에 배열된 다층을 포함함 ―; 전자 프로세서에 의해, 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하는 단계; 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하는 단계 ― 비선형 위상 변화는 테스트 샘플에 의해 측정 빔으로 도입된 분산의 결과임 ―; 및 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 식별된 비선형 위상 변화를 제거하는 단계 ― 식별된 비선형 위상 변화를 제거함으로써 보상된 간섭 측정 데이터를 생성함 ―를 포함하는 방법으로 구현될 수 있다.
방법의 구현은 다음의 특징 및/또는 다른 측면의 특징 중 하나 이상을 포함할 수 있다. 예를 들어, 일부 구현에서, 이 방법은, 테스트 샘플에 입사되도록 측정 빔 경로를 따라 측정 빔을 지향시키는 단계; 기준 표면과 접촉하도록 기준 빔 경로를 따라 기준 빔을 지향시키는 단계 ― 측정 빔 및 기준 빔은 공통 소스에 의해 방출된 광으로부터 유도되고, 광은 복수의 파장을 포함하며, 테스트 샘플은 복수의 파장에 적어도 부분적으로 투명함 ―; 기준 빔과 측정 빔이 각각 기준 표면과 테스트 샘플에 접촉한 후 출력 빔을 형성하기 위해 기준 빔과 측정 빔을 결합하는 단계; 복수의 검출기 엘리먼트를 포함하는 검출기 어레이로 출력 빔을 지향시키는 단계; 및 검출기 어레이로부터, 복수의 간섭 신호를 기록하는 단계 ― 복수의 간섭 신호의 각각의 간섭 신호는 테스트 샘플 상의 서로 다른 위치에 대응하고, 샘플 간섭 측정 데이터는 복수의 간섭 신호를 포함함 ―를 포함한다.
일부 구현에서, 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하는 단계는, 주파수 도메인에서의 복수의 간섭 신호 중 적어도 서브 세트의 평균 위상 변화를 획득하는 단계, 및 평균 위상 변화에 맞는 함수를 획득하는 단계를 포함하며, 식별된 비선형 위상 변화를 제거하는 과정은 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 함수를 제거하는 단계를 포함한다. 평균 위상 변화에 맞는 함수는 2차 형식을 갖는다. 평균 위상 변화에 맞는 함수는 2보다 큰 차수의 다항식을 갖는다.
일부 구현에서, 이 방법은, 보상된 간섭 측정 데이터를 시간 도메인으로 다시 변환하는 단계 ― 시간 도메인에서의 보상된 간섭 측정 데이터는 복수의 보상된 간섭 측정 신호를 포함함 ―; 전자 프로세서에 의해, 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계를 포함한다. 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 결정하는 단계를 포함한다. 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 결정하는 단계는, 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 테스트 샘플에서의 제1 계면에 대응하는 제1 강도 피크 및 테스트 샘플에서의 제2 계면에 대응하는 제2 강도 피크를 식별하는 단계; 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 식별된 제1 강도 피크가 발생하는 위치와 식별된 제2 강도 피크가 발생하는 위치 사이의 간격을 유도하는 단계를 포함할 수 있다. 이 방법은 각각의 보상된 간섭 측정 신호에 대해 유도된 간격에 기초하여 제1 계면과 제2 계면 사이의 병렬도 레벨을 결정하는 단계를 더 포함할 수 있다. 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 테스트 샘플에서의 제1 계면의 평탄도를 결정하는 단계를 포함할 수 있다. 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 테스트 샘플에서의 제1 플레이트의 두께를 결정하는 단계를 포함할 수 있다. 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 테스트 샘플에서의 박막 층의 두께를 결정하는 단계를 포함할 수 있다. 테스트 샘플 내의 2개의 플레이트는 갭에 의해 분리되고, 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 2개의 플레이트 사이의 갭의 두께를 결정하는 단계를 포함한다. 이 방법은 갭의 3차원 맵을 생성하는 단계를 더 포함할 수 있다. 이 방법은 갭의 평균 두께를 결정하는 단계를 더 포함할 수 있다.
일부 구현에서, 이 방법은, 스택 내의 적어도 하나의 후보 계면 위치에 대한 정보를 식별하기 위해 스택의 초기 스캔을 수행하는 단계; 테스트 샘플 내의 적어도 하나의 후보 계면 위치에 대한 정보에 기초하여, 측정 빔의 초점 평면에 인접한 스택의 제1 계면을 위치시키기 위해 간섭 측정 대물렌즈 및/또는 테스트 샘플을 재배치하는 단계; 제1 계면이 초점 평면을 통과하도록 간섭 측정 대물렌즈 및/또는 테스트 샘플을 이동시키는 동안 샘플 간섭 측정 데이터를 획득하는 단계를 더 포함할 수 있다. 초기 스캔을 수행하는 단계는, 간섭 측정 대물렌즈 및/또는 테스트 샘플을 서로에 대해 이동시키는 단계; 이동 중에, 검출기 어레이로부터 복수의 간섭 신호를 기록하는 단계 ― 복수의 간섭 신호의 각각의 간섭 신호는 테스트 샘플 상의 서로 다른 위치에 대응하고, 간섭 프린지(fringe) 주파수의 서브 나이키스트(sub-Nyquist) 주파수에서 샘플링됨 ―; 및 복수의 간섭 신호로부터 적어도 하나의 후보 계면 위치를 결정하는 단계를 포함할 수 있다. 초기 스캔을 수행하는 단계는, 간섭 측정 대물렌즈에 대한 제1 위치에 테스트 샘플을 위치시키는 단계; 간섭 측정 대물렌즈 및/또는 테스트 샘플의 서로에 대한 제1 이동을 수행하는 단계; 제1 이동 중에, 검출기 어레이로부터 간섭 신호의 제1 배수를 기록하는 단계; 간섭 측정 대물렌즈에 대한 제2 위치에 테스트 샘플을 위치시키는 단계; 간섭 측정 대물렌즈 및/또는 테스트 샘플의 서로에 대한 제2 이동 수행하는 단계; 제2 이동 중에, 검출기 어레이로부터, 간섭 신호의 제2 배수를 기록하는 단계; 및 간섭 신호의 제1 배수 및 제2 배수로부터 적어도 하나의 후보 계면 위치를 결정하는 단계를 포함할 수 있다.
일부 구현에서, 스택의 적어도 하나의 층은 유리 플레이트이다.
일부 구현에서, 스택은 제1 플레이트, 및 제1 플레이트의 제1 표면 상에 형성된 유전체 막을 포함한다.
일부 구현에서, 스택은 제1 플레이트 및 제1 플레이트의 제1 표면 상에 형성된 제1 회절 격자를 포함한다. 제1 회절 격자는 제1 플레이트 내로, 또는 제1 플레이트 밖으로, 또는 제1 플레이트 안팎으로 광을 결합하도록 구성된 광학 커플러일 수 있다. 스택은 제1 플레이트의 제2 표면 상에 제2 회절 격자를 포함할 수 있다. 제2 회절 격자는 광을 제1 플레이트 내로, 제1 플레이트 외부로, 또는 제1 플레이트 안팎으로 결합하도록 구성된 광학 커플러일 수 있다. 일부 구현에서, 스택은 복수의 플레이트를 포함할 수 있고 회절 격자는 스택의 복수의 플레이트의 하나 이상의 표면 상에 형성될 수 있다.
일부 구현에서, 공통 소스는 백색 광원을 포함한다.
일부 구현에서, 샘플 간섭 측정 데이터로부터의 비선형 위상 변화는 저 간섭성 이미징 간섭 측정 시스템에 의해 관찰된 파수 범위에 걸쳐 식별된다.
일반적으로, 일부 다른 측면에서, 본 개시의 주제는, 복수의 파장에 걸쳐 광을 방출하도록 구성된 저 간섭성 광원; 기준 빔 경로를 따라 기준 빔으로서 광의 일부를 기준 표면으로 지향시키고, 측정 빔 경로를 따라 광의 다른 부분을 테스트 샘플로 지향시키며, 기준 표면 및 테스트 샘플 각각으로부터의 반사 후에 기준 빔 및 측정 빔을 결합하기 위해, 광원으로부터 광을 수신하도록 구성된 간섭계 대물렌즈; 간섭계 대물렌즈로부터 출력 빔을 수신하고 테스트 샘플에 대한 정보를 포함하는 샘플 간섭 측정 데이터를 생성하도록 구성된 검출기 어레이 ― 샘플 간섭 측정 데이터는 복수의 간섭 신호를 포함하고, 복수의 간섭 신호의 각각의 간섭 신호는 테스트 샘플 상의 서로 다른 위치에 대응함 ―; 검출기 어레이와 통신하는 전자 프로세서 ― 전자 프로세서는 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하도록 구성됨 ―을 포함하는 시스템으로 구현될 수 있다. 전자 프로세서는 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하고 ― 비선형 위상 변화는 테스트 샘플에 의해 측정 빔에 도입된 분산의 결과임 ―, 샘플 간섭 측정 데이터로부터 식별된 비선형 위상 변화를 제거하도록 추가로 구성된다.
시스템의 구현은 다음의 특징 중 하나 이상이 포함할 수 있다. 예를 들어, 일부 구현에서, 전자 프로세서는, 주파수 도메인에서의 복수의 간섭 신호의 적어도 서브 세트의 평균 위상 변화를 획득하고, 평균 위상 변화에 적합을 적용하도록 더 구성된다. 적합은 2차 형식을 가질 수 있다. 적합은 2보다 큰 차수의 다항식일 수 있다. 전자 프로세서는, 보상된 간섭 측정 데이터를 시간 도메인으로 다시 변환하고 ― 시간 도메인에서의 보상된 간섭 측정 데이터는 복수의 보상된 간섭 측정 신호를 포함함 ―; 테스트 샘플에 대한 정보를 결정하기 위해 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하도록 더 구성될 수 있다. 테스트 샘플에 대한 정보는 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 포함할 수 있다. 전자 프로세서에 의해, 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 결정하기 위해, 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 것은, 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 테스트 샘플에서의 제1 계면에 대응하는 제1 강도 피크 및 테스트 샘플에서의 제2 계면에 대응하는 제2 강도 피크를 식별하는 것; 및 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 식별된 제1 강도 피크가 발생하는 위치와 식별된 제2 강도 피크가 발생하는 위치 사이의 간격을 유도하는 것을 포함할 수 있다. 테스트 샘플에 대한 정보는 테스트 샘플에서의 제1 계면의 평탄도를 포함할 수 있다. 테스트 샘플에 대한 정보는 테스트 샘플에서의 제1 플레이트의 두께를 포함할 수 있다. 테스트 샘플 내의 2개의 플레이트는 갭으로 분리될 수 있으며, 여기서 테스트 샘플에 대한 정보는 두2개의 플레이트 사이의 갭 두께를 포함한다. 테스트 샘플에 대한 정보는 테스트 샘플 내의 박막층의 두께를 포함할 수 있다.
일부 구현에서, 간섭계 대물렌즈는 마이켈슨(Michelson) 간섭계 대물렌즈를 포함한다.
일부 구현에서, 간섭계 대물렌즈는 미라우(Mirau) 간섭계 대물렌즈, 리니크(Linnik) 간섭계 대물렌즈 또는 광 시야 대물렌즈를 포함한다.
일부 구현에서, 저 간섭성 광원은 백색 광원을 포함한다.
다양한 측면 및 구현은 다음의 특징 및/또는 이점 중 하나 이상을 가질 수 있다. 예를 들어, 일부 구현에서, 본 명세서에서 개시된 기술은 테스트 샘플 자체에 의해 야기되는 분산과 같은 수차를 보상하는 데 사용될 수 있다. 일부 구현에서, 본 명세서에서 개시된 기술은, 예를 들어, 두꺼운 재료 층을 갖는 테스트 샘플에 의해 야기된 분산, 많은 층을 갖는 테스트 샘플에 의해 야기된 분산, 층들 사이의 갭을 갖는 다층을 갖는 테스트 샘플에 의해 야기된 분산, 및/또는 테스트 샘플 내의 표면 피처(예를 들어, 커플러 또는 격자)에 의해 야기된 분산을 포함하는, 테스트 샘플에 의해 야기된 비선형 분산을 보상하는 데 사용될 수 있다. 본 명세서에서 개시된 기술은, 예를 들어, 테스트 샘플 내의 층의 굴절률 또는 테스트 샘플의 표면 특징, 테스트 샘플 내의 층 또는 테스트 샘플의 표면 피처의 두께, 및/또는 테스트 샘플 내의 층 또는 테스트 샘플의 표면 피처의 상대적 배열을 포함하는 테스트 샘플의 특성에 대한 사전 지식을 필요로 하지 않을 수 있다는 점에서 유리할 수 있다. 본 명세서에서 개시된 기술은 또한, 테스트 샘플의 측정을 수행하기 전에 비선형성을 보상하기 위해 테스트 샘플의 캘리브레이션을 수행할 필요가 없기 때문에 유리할 수 있다. 하나 이상의 실시예의 세부 사항은 첨부된 도면 및 아래의 설명에서 개진된다. 다른 특징 및 이점은 설명, 도면 및 청구 범위로부터 명백해질 것이다.
도 1은 스캐닝 백색광 간섭 측정(white light interferometry, SWLI) 신호의 예이다.
도 2는 SWLI 신호 및 박막을 포함하는 대응하는 테스트 샘플의 예이다.
도 3은 미라우형 스캐닝 간섭계의 예를 도시한 개략도이다
도 4는 광학 장치의 예를 도시한 개략도이다.
도 5는 다중 계층 스택을 갖는 광학 장치의 표면 지형을 측정하기 위한 프로세스의 예를 나타내는 흐름도이다.
도 6은 분산을 보상하기 위한 예시 프로세스를 나타내는 흐름도이다.
도 7a는 유리판 표면에 대한 시간 도메인 간섭 신호를 나타내는 플롯이다.
도 7b는 유리판 표면에 대한 시간 도메인 간섭 신호를 나타내는 플롯이다.
도 8은 간섭 신호에 대한 스펙트럼 피크 주변의 위상 변화를 보여주는 플롯이다.
도 9a 및 9b는 각각 분산 보상 전후에 유리판의 후면에서 관찰된 픽셀 간섭 신호를 나타내는 플롯이다.
도 10은 퀵 스캔을 수행하여 획득된 간섭 측정 신호를 나타내는 플롯이다.
도 11a는 분산 보상 전에 간섭계 시스템에서 검출기에 의해 관찰된 시간 도메인 간섭 신호를 나타내는 플롯이다.
도 11b는 분산 보상이 수행된 후 도 11a의 시간 도메인 간섭 측정 신호를 나타내는 플롯이다.
도 12a 및 12b는 각각 유리판 스택 내의 제1 표면 및 제2 표면의 지형 맵이다.
도 13은 도 12a 및 12b에서 매핑된 제1 표면과 제2 표면 사이의 갭 두께를 나타내는 3차원 맵이다.
도 1은 저 간섭성 간섭계(low coherence interferometer)로부터 획득된 저 간섭성 간섭 신호(150)의 예를 나타내는 플롯이다. 저 간섭성 간섭 신호(150)는 객체의 단일 포인트, 예를 들어 단일 반사 인터페이스를 갖는 실리콘 웨이퍼의 포인트로부터 획득된 복수의 검출기 강도 값을 포함한다. 강도 값은 객체 포인트에서 반사된 광과 간섭계의 기준 객체에서 반사된 광 사이의 광 경로 길이 차이(optical path length difference, OPD)의 함수에 따라 변한다. 간섭 신호(150)는 객체 또는 기준광으로부터 반사되는 광에 의해 이동되는 광 경로를 변경하기 위해 OPD를 스캐닝함으로써, 예를 들어 광학 및/또는 객체를 이동시킴으로써 획득되는 저 간섭성 스캐닝 광 간섭 측정(coherence scanning light interferometry, CSI) 신호이다.
도 1에서, 강도 값은 OPD의 변화와 연관되는 함수 스캔 위치로 플로팅되고, 복수의 프린지(fringe, 152)를 갖는 간섭 패턴(151)을 매핑한다. 프린지(152)는 저 간섭성 엔벨로프(low coherence envelope)에 따라 최대의 양쪽에서 감쇠한다. 저 간섭성 엔벨로프가 없는 경우, 간섭 패턴의 프린지는 일반적으로 광범위한 광 경로 차이에 걸쳐 유사한 진폭을 갖는다. 저 간섭성 엔벨로프(154) 자체는 그러한 간섭 신호에 명시적으로 나타나지 않지만 논의를 위해 도시된다. OPD 축을 따른 간섭 패턴의 위치는 일반적으로 제로 OPD의 위치, 예를 들어, 객체 포인트로부터 반사된 광과 기준 객체로부터 반사된 광 사이의 제로 OPD에 대응하는 스캔 위치 또는 공간적 위치와 관련된다. 제로 OPD 스캔 위치는 각각의 객체 포인트의 상대적 높이를 설명하는 객체 지형과, 간섭계에 대한 각각의 객체 포인트의 위치에 영향을 미치는 객체 자체의 방향과 위치의 함수이다. 일부 구현에서, 간섭 신호는 또한 재료의 중간 층에 의해 야기되는 분산 및 흡수와 같은 테스트 샘플과 관련된 기여도를 포함한다.
프린지(152)의 진폭을 변조하는 저 간섭성 엔벨로프(154)의 폭은 일반적으로 검출된 광의 간섭성 길이에 대응한다. 간섭성 길이를 결정하는 요소 중에는 예를 들어 소스의 스펙트럼 대역폭과 관련된 시간적 간섭성 현상과 예를 들어 객체를 조사하는 광의 입사각의 범위와 관련된 공간적 간섭성 현상이 있다. 일반적으로, 간섭성 길이는 (a) 소스의 스펙트럼 대역폭이 증가하고 그리고/또는 (b) 입사각의 범위가 증가함에 따라 감소한다. 데이터를 획득하는 데 사용되는 간섭계의 구성에 따라, 이들 간섭성 현상 중 하나 또는 다른 하나가 지배적이거나 둘 다 전체 간섭성 길이에 실질적으로 기여할 수 있다. 간섭계의 간섭성 길이는 예를 들어 박막 구조가 아닌 단일 반사 표면을 갖는 객체로부터 간섭 신호를 획득함으로써 결정될 수 있다. 간섭성 길이는 관찰된 간섭 패턴을 변조하는 엔벨로프의 반치폭(full width half maximum)으로 표현될 수 있다.
도 1에서 알 수 있는 바와 같이, 간섭 신호(150)는 간섭성 엔벨로프의 폭보다 더 많이 또한 그로 인해, 검출된 광의 간섭성 길이보다 더 많이 변하는 광 경로 차이의 범위를 갖는 광을 검출함으로써 발생한다. 일반적으로, 저 간섭성 간섭 신호는 검출된 광의 간섭성 엔벨로프에 의해 변조된 진폭인 간섭 프린지를 획득함으로써 발생할 수 있다. 예를 들어, 간섭 패턴은 관찰된 간섭 프린지의 진폭이 서로에 대해 적어도 20%, 적어도 30% 또는 적어도 50% 차이가 나는 OPD의 범위에 걸쳐 획득될 수 있다. 예를 들어, 프린지(98)는 프린지(99)의 피크 진폭보다 약 50% 작은 피크 진폭을 갖는다.
저 간섭성 간섭계는 간섭계의 간섭성 길이와 비슷하거나 그보다 큰 OPD 범위에 걸쳐 간섭 신호를 검출하도록 구성될 수 있다. 예를 들어, 검출된 OPD의 범위는 간섭성 길이보다 적어도 2배 더 클 수 있다(예를 들어, 간섭성 길이보다 약 3배 이상, 약 5배 이상, 약 10배 이상, 약 50배 이상, 약 100배 이상 더 크다). 일부 실시예에서, 검출된 광의 간섭성 길이는 객체의 피처의 높이 변화와 유사하다. 예를 들어, 검출된 광의 공칭 파장보다 몇 미크론 이하 정도이다.
도 2는 기판(192) 및 상부 층, 예를 들어 박막(193)을 포함하는 객체(191)로부터 획득된 예시적인 간섭 신호(190)를 나타내는 개략도이다. 기판(192) 및 필름(193)은 그 사이에 계면(194)을 정의한다. 필름(193)의 외부 표면(195)은 객체와 그 주변, 예를 들어 공기, 다른 가스 또는 진공 사이의 계면을 정의한다. 계면은 일반적으로 객체의 부분 사이의 굴절률 변화에 의해 정의된다. 객체는 다른 계층 중에서 다수의 필름을 포함할 수 있다.
간섭 신호(190)는 계면(194)으로부터 발생하는 제1 간섭 패턴(196) 및 계면(195)으로부터 발생하는 제2 간섭 패턴(197)을 포함한다. 제1 간섭 패턴(196)과 제2 간섭 패턴(197)은 중첩된다. 예를 들어, 간섭 패턴(196, 197)의 최대는 간섭계의 간섭성 길이보다 작은 OPD에 의해 분리되고 패턴(196, 197)은 강도가 0인 영역에 의해 분리되지 않는다. 중첩된 간섭 패턴은 중첩된 간섭 패턴이 서로 왜곡되기 때문에 잘못된 결과를 산출할 수 있다.
저 간섭성 스캐닝 간섭계로서 구성될 수 있는 간섭계의 예는 마이켈슨(Michelson), 리니크(Linnik) 및 미라우(Mirau) 간섭계를 포함하지만 이에 제한되지는 않는다. 도 3은 마이켈슨 유형의 스캐닝 간섭계를 보여준다. 여기서, 소스 모듈(205)은 조명 광(206)을 빔 스플리터(208)에게 제공하고, 빔 스플리터(208)는 조명 광(206)을 미우라 간섭계 대물 어셈블리(210)로 향하게 한다. 조명 광(206)은 원하는 간섭성 길이를 생성하는 스펙트럼 특성을 갖는 광대역 소스(예를 들어, 연속적인 광대역 소스)로부터의 광대역 광(예를 들어, 백색광)을 포함할 수 있다. 광대역 소스의 예는 특히 발광 다이오드, 할로겐 램프, 아크, 램프, 초 발광 다이오드 또는 백열 광원을 포함하지만 이에 제한되지 않는다. 어셈블리(210)는 대물렌즈(211), 기준 거울(215)을 정의하는 작은 중앙 부분에 반사 코팅이 있는 기준 평면(212) 및 빔 스플리터(213)를 포함한다. 작동 중에, 대물렌즈(211)는 기준 평면(212)을 통해 테스트 샘플(220)을 향해 조명 광을 집중시킨다. 빔 스플리터(213)는 기준 광(222)을 정의하기 위해 초점 광의 제1 부분을 기준 거울(215)로 반사하고, 측정 광(224)을 정의하기 위해 초점 광의 제2 부분을 테스트 샘플(220)로 전송한다. 그런 다음, 빔 스플리터(213)는 기준 거울(215)로부터 반사된 기준 광과 함께 테스트 샘플(220)로부터 반사된(또는 산란된) 측정 광을 재결합하고, 대물렌즈(211) 및 이미징 렌즈(230)는 검출기(예를 들어, 다중 픽셀 카메라(240)를 간섭하기 위해 결합된 광을 이미징한다. 검출기로부터의 측정 신호(들)는 컴퓨터(도시되지 않음)로 전송된다.
도 3의 실시 예에서의 스캐닝은 미라우 간섭계 대물렌즈 어셈블리(210)에 결합된 압전 트랜스듀서(piezoelectric transducer, PZT)(260)를 포함하며, 이는 카메라의 각각의 픽셀에서 스캐닝 간섭 측정 데이터(예를 들어, , 여기서 는 신호 강도를 나타내는 간섭계 데이터이고, 는 객체 표면에 직교하는 간섭계 스캔 좌표이며, 는 표면 높이)를 제공하기 위해 대물렌즈(211)의 광축을 따라 테스트 샘플(220)에 대해 전체적으로 어셈블리(210)를 스캔하도록 구성된다. 다르게는, PZT는 PZT 액추에이터(270)에 의해 지시된 바와 같이, 어셈블리(210)가 아닌 테스트 샘플에 결합되어 그 사이의 상대 운동을 제공할 수 있다. 특정 실시예에서, 스캐닝은 대물렌즈(211)의 광학 축을 따라 대물렌즈(211)에 대해 기준 거울(215)과 빔 스플리터(213) 중 하나 또는 둘 모두를 이동시킴으로써 제공될 수 있다.
소스 모듈(205)은 공간적으로 연장된 소스(201), 렌즈(202 및 203)에 의해 형성된 망원경, 및 렌즈(202)의 전방 초점면(렌즈(203)의 후방 초점면과 일치함)에 위치된 정지부(204)를 포함한다. 이러한 배열은 공간적으로 연장된 소스를 쾰러(Koehler) 이미징의 예인 미라우 간섭계 대물렌즈 어셈블리(210)의 동공 평면(pupil plane)(245) 상에 이미징한다. 정지부(204)의 크기는 테스트 샘플(220)상의 조명 필드의 크기를 제어한다. 일부 실시예에서, 소스 모듈은 공간적으로 연장된 소스가 임계 이미징으로 알려진 테스트 샘플 상에 직접 이미징되는 배열을 포함할 수 있다. 어떤 유형의 소스 모듈이든 리닉(Linnik) 유형의 스캐닝 간섭 측정 시스템과 같은 다른 유형의 간섭계와 함께 사용될 수 있다.
도 4는 본 명세서에서 개시된 간섭계와 같은 스캐닝 간섭계를 사용하여 분석될 수 있는 장치(300)의 예를 나타내는 개략도이다. 장치(300)는, 예를 들어 인공 현실(artificial reality, AR)/가상 현실(VR) 장치에서 사용자의 눈 앞에 배치되는 경우, AR/VR 장치 주변에서 이미지 광 정보를 운반하고 정상적인 시력을 차단하지 않고 데이터 또는 이미지 오버레이를 생성하기 위해 눈으로 광을 리디렉션하는 도파관 구조로 사용될 수 있다. 본 명세서에서 테스트 샘플로 지칭되기도 하는 장치(300)는 스택으로 배열된 다중 계층을 포함한다. 본 예에서, 층은 플레이트(302, 304, 306, 308)를 포함한다. 제1 플레이트(302)는 상부 제1 표면(314) 및 하부 제2 표면(320)을 포함할 수 있다. 유사하게, 제2 플레이트(304)는 상부 제1 표면(322) 및 하부 제2 표면(324)을 포함할 수 있고, 제3 플레이트(306)는 상부 제1 표면(326) 및 하부 제2 표면(328)을 포함할 수 있으며, 제4 플레이트(308)는 상부 제1 표면(330) 및 하부 제2 표면(332)을 포함할 수 있다. 4개의 플레이트가 도 4에 도시되어 있지만, 더 많거나 더 적은 개수의 플레이트가 장치(300)에 배치될 수 있다. 플레이트는 샘플 홀더(312)에 의해 제자리에 고정된다. 스택 내의 하나 이상의 플레이트는 대응하는 갭(예를 들어, 갭(310))에 의해 스택에서 인접 플레이트로부터 분리될 수 있다. 플레이트의 스택은 또한 스택의 양쪽 끝 상에 또는 개별 플레이트 상에서 전체 스택에 걸쳐 형성된 회절 광학 및/또는 코팅(도시되지 않음)을 포함할 수 있다. 회절 광학은 개별 플레이트의 안팎으로 광을 결합하기 위한 광 결합기(예를 들어, 홀로그래픽 입력 및 출력 결합기)로 사용될 수 있으며, 이는 광을 주변으로 이동시키기 위한 도파관으로 사용될 수 있다.
일부 구현에서, 예를 들어 AR/VR 애플리케이션의 경우, 장치(300) 내의 플레이트의 평행도를 식별하고 제어할 뿐만 아니라 플레이트의 하나 이상의 표면의 평탄도, 하나 이상의 플레이트의 표면 거칠기, 플레이트 사이의 거리(예를 들어, 갭 두께)와 같은 다른 장치 속성을 측정하고 제어하는 것이 유용할 수 있다. CSI는 장치(300)와 같은 스택형 장치를 측정하기 위한 계측 기술로서 몇 가지 이점을 제공한다. 예를 들어, CSI는 종종 연속 광대역 소스(예를 들어, 발광 다이오드, 할로겐 램프, 백열 소스 등)의 사용에 의존하기 때문에, 광학 필터와 같은 표준 광학 컴포넌트를 사용하여 입사광 스펙트럼을 간단하게 조정할 수 있다. 또한, CSI에서 광대역 스펙트럼은 광 경로 차이가 소스의 간섭성 길이를 초과하는 공동으로부터의 간섭을 자연스럽게 억제하며, 이는 갭으로 분리된 층을 갖는 광학 장치에서 특히 중요할 수 있다.
그럼에도 불구하고, 장치(300)와 같이 갭으로 분리된 다층을 갖는 광학 장치의 표면 지형을 측정하기 위해 CSI를 사용하는 것은 여러 가지 이유로 어려울 수 있다. 예를 들어, 계면이 서로 가까이 있는 경우, 계면의 근접으로 인해 간섭 패턴이 중첩되어 간섭 신호의 왜곡이 발생할 수 있다. 일부 경우에, 여러 개의 중간 층은 신호 분산 및 흡수량을 증가시킨다. 예를 들어, 비교적 큰 유리 플레이트 스택의 경우, 광이 흡수 및 산란으로 손실되어 간섭 신호 내의 피크 진폭이 감쇠될 수 있다. 일부 경우에, 분산은 적용된 표면 피처 및/또는 코팅과 스택 어셈블리 공정으로 인한 응력의 결과일 수 있다. 예를 들어, 일부 구현에서, 유리 조각은 홀로그램 입력 및 출력 커플러로 코팅되고, 어셈블리에 접착되며, 이들 모두는 플레이트가 구부러지고 서로 접촉할 수도 있다. 이러한 효과로 인한 분산은 측정된 신호에서 위상 지연으로 나타날 수 있다. 분산이 비선형인 경우, 순 효과는 프린지 대비의 손실과 저 간섭성 신호에서 간섭성 엔벨로프의 확장일 수 있다. 층 스택이 두꺼울수록 간섭계가 스택을 더 깊이 스캔하므로 분산 효과가 더 나빠질 수 있다. 전술한 신호 비선형성이 스택 내 모든 중간 층의 분산과 표면 피처의 분산 특성에 의존하기 때문에, 그리고 이러한 정보는 측정을 수행하기 전에 알 수 없기 때문에, 비선형성을 보상하기 위한 일종의 사전 캘리브레이션을 수행하는 것은 어렵다.
본 개시는 간섭 신호에 대한 분산 및/또는 다른 악영향을 야기하는 비선형성을 보상하면서 그러한 다층 스택의 계측을 수행하기 위한 기술 및 시스템에 관한 것이다. 일반적으로, 특정 측면에서, 본 개시는 1) 다층 스택을 갖는 테스트 샘플로부터 획득된 샘플 간섭 측정 데이터를 주파수 도메인으로의 변환, 2) 주파수 도메인에서, 비선형 위상 변화가 테스트 샘플에 의해 측정 빔에 도입된 분산의 결과인 샘플 간섭 측정 데이터의 변화로부터의 비선형 위상 변화의 식별, 및 3) 보상된 간섭 측정 데이터를 생성하기 위해, 주파수 도메인의 샘플 간섭 측정 데이터에서 식별된 비선형 위상 변화의 제거을 포함하는 기술을 포함한다. 또한, 보상된 간섭 측정 날짜는 표면 지형 및 표면 분리와 같은 테스트 샘플에 대한 정보가 추출될 수 있는 시간 도메인으로 다시 변환된다. 다르게는 또는 추가적으로, 계측 데이터는 시간 도메인으로 다시 변환하기 전에 보상된 간섭 측정 데이터로부터 추출될 수 있다.
도 5는 도 3의 미라우 간섭계와 같은 CSI 간섭계를 사용하여 장치(300)와 같은 다층 스택을 갖는 광학 장치의 표면 지형을 측정하기 위한 프로세스(500)의 예를 예시하는 흐름도이다. 본 명세서에 설명된 바와 같이, 미라우 간섭계의 소스(201)는 비교적 큰 대역폭(예를 들어, 약 100nm 이상)을 갖는 소스를 포함하는 광대역 소스일 수 있으며, 예를 들어 발광 다이오드, 할로겐 램프, 아프 램프, 백열 소스 등을 포함할 수 있다. 예를 들어, 광원은 전자기 스펙트럼의 가시 영역(예를 들어, 백색광) 내에 있을 수 있다.
소스(201)로부터의 측정 광은 측정 빔 경로를 따라 지향되어(502) 테스트 샘플(220)에 입사되며, 이는 예를 들어 스택에 배열된 다층을 갖는 장치(300)를 포함할 수 있다. 예를 들어, 도 4에 도시된 바와 같이, 측정 광(316)은 광축(318)을 따라 장치(300)의 제1 표면(314)을 향한다. 광축(318)은 장치(300)의 제1 표면(314)에 수직일 수 있다. 광(316)이 장치(300)를 통과함에 따라, 광(316)의 일부는 굴절률이 다른 영역 사이의 각각의 계면에서 반사된다.
본 명세서에서 설명된 바와 같이, 장치(300)의 층은 측정 광의 하나 이상의 파장에 대해 적어도 반투명한 플레이트를 포함할 수 있다. 예를 들어, 사용되는 광은 흡수 손실로 플레이트 재료와 표면을 통과하거나 또는 리턴 광이 원하는 계측 성능을 달성하기에 충분한 신호 대 잡음을 갖는 간섭 신호를 생성할 수 있을 정도로 충분히 작게 산란할 수 있다. 플레이트는 예를 들어 유리 플레이트를 포함할 수 있다. 스택 내의 하나 이상의 층은, 도 3에 도시된 바와 같이, 갭에 의해 스택 내에서 인접한 층으로부터 분리될 수 있다. 갭 두께(예를 들어, 스택 내의 2개의 인접한 플레이트의 대향하는 표면 사이의 평균 거리)는 약 수백 나노미터 내지 약 수 밀리미터(예를 들어, 적어도 약 100 nm 초과, 적어도 약 1 미크론 초과, 적어도 약 10 미크론 초과, 적어도 약 100 미크론 초과, 적어도 약 1 밀리미터 초과) 사이일 수 있다. 스택 내의 하나 이상의 플레이트는 수백 미크론에서 수십 밀리미터 또는 그 이상 범위의 두께(예를 들어, 적어도 약 100 미크론 초과, 적어도 약 500 미크론 초과, 적어도 약 1 밀리미터 초과, 적어도 약 5 밀리미터 초과, 적어도 약 1 밀리미터 초과)를 가질 수 있다. 일부 구현에서, 플레이트는 하나 이상의 상이한 재료의 얇은 단일 층 또는 다층 필름으로 코팅된다. 예를 들어, 플레이트는 교번하는 굴절률을 갖는 유전체 재료의 단일 필름 또는 다층 필름으로부터 형성된 하나 이상의 반사 방지 또는 고 반사 코팅을 포함할 수 있다. 일부 구현에서, 플레이트의 표면은 특정 피처를 포함하도록 수정된다. 예를 들어, 플레이트의 표면은 플레이트의 표면 상에 에칭, 엠보싱 또는 증착된 격자(예를 들어, 회절 격자)를 사용하는 홀로그래픽 광 커플러를 포함하도록 수정될 수 있다. 일부 구현에서, 플레이트의 제1 표면은 제1 광 커플러를 포함하고 플레이트의 제2 대향 표면은 제2 광 커플러를 포함한다. 광 커플러는 광을 플레이트 내로, 플레이트 외부로 또는 플레이트 안팎으로 결합하는 데 사용될 수 있다. 다수의 플레이트는 각각 본 명세서에서 설명된 필름 및/또는 커플러를 포함할 수 있다.
다시 도 3을 참조하면, 광대역 소스(201)로부터의 광은 빔 스플리터(213)에 의해 1) 기준 빔 경로의 기준 광(222)을 정의하기 위해 기준 거울(215)에 초점을 맞춘 제1 부분 및 2) 측정 빔 경로의 측정 광(224)을 정의하기 위해 테스트 샘플(220)에 초점을 맞춘 제2 부분으로 분할된다. 기준 광(222)은 기준 표면(예를 들어, 기준 평면(212))과 접촉하도록 기준 빔 경로를 따라 지향된다(504). 그 다음, 테스트 샘플(220)로부터 반사된(또는 산란된) 측정 광은 출력 빔을 형성하기 위해 기준 거울(215)로부터의 기준 광과 결합(506)된다. 이미징 렌즈(230) 및 대물렌즈(211)는 측정 신호를 생성하기 위해 다중 검출기 엘리먼트(예를 들어, 다중 픽셀 카메라)를 갖는 검출기 어레이(240)를 간섭하도록 결합된 광을 이미징한다. 일부 구현에서, 빔 스플리터는 기준 광과 측정 광이 동일한 양의 유리를 통과하도록 제조될 수 있어서 콘트라스트 확대와 관련된 분산을 감소시킬 수 있다. 검출기로부터의 측정 신호(들)는 컴퓨터(도시되지 않음)로 전송된다. 간섭은 두 다리의 광 경로 사이의 차이가 조명 간섭성 길이 내에 있을 때 발생한다. 테스트 샘플(220)의 각각의 표면으로부터 간섭을 획득하기 위해, 테스트 샘플(220) 및/또는 간섭계의 컴포넌트는 테스트 샘플(220)의 하나 이상의 표면이 차례로 간섭성 조건을 만족시킬 수 있도록 전동 스테이지를 사용하여 광축(318)(도 4 참조)을 따라 스캔된다.
검출기 어레이로부터 다수의 간섭 신호가 기록될 수 있으며(508), 여기서 다수의 간섭 신호의 각각의 간섭 신호는 샘플 간섭 측정 데이터를 제공하기 위해 테스트 샘플 상의 서로 다른 위치에 대응하고 서로 다른 검출기 엘리먼트에 의해 기록된다. 예시적인 측정에서, 테스트 샘플(220)은 테스트 샘플(220)의 공칭 표면 법선을 간섭계 광축(318)에 정렬하는 수단을 제공하는 조정 가능한 마운트에 고정된다. 정렬 프로세스는 예를 들어, 테스트 샘플 표면과 기준 표면에서 검출기(240)의 검출기 엘리먼트 상으로 소스 반사를 이미징하는 것을 포함할 수 있다. 일단 정렬되면, 전동식 스테이지는 간섭계에 가장 가까운 스택 표면이 객체 공간 초점 평면 바로 바깥 쪽( 및 오른쪽)에 있도록 설정된다. 그런 다음, 스테이지는 카메라가 간섭 이미지를 수집하는 동안 일정한 속도로 부품을 간섭계쪽으로 이동시킨다. 각각의 표면이 동일한 경로 영역을 통과함에 따라, 간섭이 발생하고 카메라는 예를 들어 두 파면의 간섭에 의해 생성된 영역 강도 패턴을 포함하는 인터페로그램(interferogram)을 기록한다. 간섭계는 기준 레그와 테스트 레그 사이의 동일한 광 경로 조건을 충족하는 객체 평면에서 최상의 초점이 발생할 수 있도록 구성될 수 있다.
인터페로그램은 다양한 단계 위치에서 검출기에 의해 취해지며, 이어서 간섭 신호에 대해 분산 보상(512)을 수행하고 피크 간섭성 대비 검출 방법, 최소 제곱 템플릿 분석 또는 주파수 도메인 분석과 같은 CSI 방법을 사용하여 보정된 간섭 신호를 처리하는 하나 이상의 전자 프로세서(도시되지 않음)에 제공(510)된다. 표면 지형 분석을 수행하기 위한 CSI 방법에 대한 추가 정보는 예를 들어 미국 특허 제5,398,113호, 제5,953,124호, 제8,045,175호 및 제7,522,288호에서 찾을 수 있으며, 이들 각각은 전체가 본 명세서에 참조로 포함된다. 예를 들어, 스캔 속도, 카메라 속도 및 조명 광의 평균 파장이 알려져 있는 것으로 가정하면, 각각의 표면으로부터의 인터페로그램이 표면 지형을 획득하기 위해 분석될 수 있다. 획득이 스캔 전체에 걸쳐 지속적으로 인터페로그램을 획득하는 경우, 모든 표면 사이의 관계 정보가 유지될 수 있다.
도 6은 인터페로그램의 형상에 영향을 미치는 테스트 샘플에 의해 야기되는 분산 및 다른 효과를 보상하기 위해 하나 이상의 프로세서에 의해 수행될 수 있는 예시적인 프로세스(600)를 나타내는 흐름도이다. 제1 단계(602)에서, 간섭계 시스템의 하나 이상의 프로세서는 샘플 간섭 측정 데이터를 시간 도메인에서 주파수 도메인으로 변환한다.
예를 들어, 이론에 얽매이지 않고, 이산 샘플링된 저 간섭성 간섭 측정 신호, 는 [수학식 1]과 같이 주파수 K의 범위에 걸쳐 간섭 패턴의 비 간섭성 합으로 표현될 수 있다.
주파수 범위는 간섭 측정 시스템 소스의 스펙트럼 대역폭과 논제로(nonzero) 개구수(numerical aperture, NA)에서 비 간섭성 조명의 기하학적 효과 둘 다의 결과이다. [수학식 1]에서, 은 객체 표면에 수직인 간섭계 스캔 좌표이고, 은 스캔 중에 취해진 샘플 개수이며, 는 푸리에 계수이고, 는 검출기 배열 엘리먼트의 인덱스이며, , 는 각각 스캔 위치 와 주파수 K에 대한 인덱스이다. 간섭 신호 의 전체 엔벨로프를 포괄하는 스캔 범위에 걸쳐 균일한 샘플링을 가정하면, 역 관계는 [수학식 2]와 같이 표현될 수 있다.
푸리에 계수는 예를 들어 간섭 신호에 대해 순방향 푸리에 변환을 수행하여 획득될 수 있다. 푸리에 계수는 파수(wavenumber) 및 대응하는 위상의 관점에서 간섭 측정 데이터를 나타내는 복소수 형태로 표현될 수 있다.
일부 경우에, 간섭 데이터를 주파수 도메인으로 변환하기 전에, 간섭 데이터에서 DC 성분이 제거된다. 다르게는 또는 추가로, 테스트 샘플의 선택된 표면에 대응하는 간섭 신호가 충분히 분리된 경우 격리된다. 분산으로 인해 시간 도메인에서 충분히 분리되지 않은 경우, 그리고 두 표면에서 경험되는 분산이 명목상 동일한 경우, 시간 도메인 분리를 향상시키기 위해 분산 보상이 수행될 수 있다. 예를 들어, 미리 결정된 값 이상의 신호 강도를 갖는 간섭 측정 데이터로부터의 간섭 신호는 테스트 샘플의 선택된 표면의 계면에 대응하는 것으로 식별될 수 있다. 신호 강도가 미리 결정된 값보다 큰(또는 이상인) 간섭 신호는 나머지 다른 간섭 신호에 대한 값을 0으로 설정함으로써 격리될 수 있다. 다르게는 또는 추가적으로, 시간 도메인 간섭 신호(예를 들어, 격리된 간섭 신호)는 주파수 영역으로 변환하기 전에 시간 천이될 수 있다. 예를 들어, 각각의 픽셀에 대해, 신호의 피크 진폭이 데이터 세트의 시작 부분에서 발생할 수 있도록 시간 도메인의 신호 데이터가 시간 천이될 수 있다. 이것은, 예를 들어, 신호의 한쪽에서 제거된 데이터가 신호의 다른쪽으로 복사되는 순환 버퍼(또는 링 시프트 레지스터) 기술을 사용하여 수행될 수 있다. 이것은 푸리에 성분에서 선형 위상 항을 제거한다.
샘플 간섭 측정 데이터를 주파수 도메인으로 변환한 후, 주파수 도메인의 샘플 간섭 측정 데이터로부터 비선형 위상 변화가 식별된다(604). 비선형 위상 변화는 본 명세서에서 설명된 것과 같이, 테스트 샘플 상의 또는 내부의 층 및/또는 표면 피처에 의해 측정 빔으로 도입된 분산의 결과일 수 있다. 비선형 위상 변화의 식별은 캘리브레이션 정보 또는 테스트 샘플의 예상 특성이 아닌 샘플 간섭 측정 데이터 자체에서 비선형 위상 변화를 유도하는 것을 포함한다. 비선형 위상 변화를 식별하는 것은, 예를 들어, 주파수 도메인에서 다수의 간섭 신호의 적어도 서브 세트의 위상 변화를 획득하는 것(606)을 포함할 수 있다. 분산이 공간적으로 독립적이거나 공간적으로 독립적이라고 가정할 수 있는 경우, 단일 검출기 엘리먼트 또는 다중 검출기 엘리먼트로부터의 간섭 신호는 분산이 일정할 것으로 예상되는 영역에서 측정된 위상 노이즈를 감소시키는 데 충분할 수 있다. 분산의 공간적 독립성이 가정될 수 없는 경우, 분산은 각각의 픽셀에 대해 개별적으로 평가된다.
예를 들어, 푸리에 변환된 데이터에서 유용한 정보는 대부분 푸리에 계수의 상대적 크기가 큰 영역에 포함될 수 있다. 따라서, 간섭 신호의 적어도 서브 세트의 위상 변화를 획득하는 것(606)은 충분히 높은 진폭을 갖는 푸리에 성분의 서브 세트의 위상을 계산하고 풀기 위해 하나 이상의 프로세서를 사용하는 것, 예를 들어, 적어도 미리 결정된 신호 대 잡음(signal to noise, S/N) 비율을 갖는 파수에서의 푸리에 성분을 선택하는 것을 포함할 수 있다. S/N 비율 선택은 기록된 데이터에 따라 달라질 수 있다. 노이즈가 많은 데이터 영역은 평균 또는 사후 처리와 함께 드롭아웃(dropout)(측정되지 않은 포인트)을 방지하기 위해 낮은 S/N 비율이 필요할 수 있다. 깨끗한 데이터 영역은 허용 가능한 측정을 제공하기 위해 더 높은 S/N 비율만을 필요로 할 수 있다. 예를 들어, 일부 구현에서, 허용 가능한 정밀도를 갖는 비선형(분산) 위상 항은 2 미만의 푸리에 성분 S/N 비율을 사용하여 측정될 수 있다. 다르게는, 일부 구현에서, S/N 비율은 5보다 클 수 있다. 샘플 간섭 측정 데이터로부터의 위상 변화는 저 간섭성 이미징 간섭 측정 시스템에 의해 관찰된 파수 범위에서 식별될 수 있다. 유효 범위는 조명 스펙트럼 대역폭에 따라 다르다. 예를 들어, 더 큰 대역폭은 더 큰 범위를 제공할 수 있다. 일부 구현에서, 위상 변화를 획득하는 단계(606)는 적어도 간섭 신호의 서브 세트의 평균(예를 들어, 평균, 모드 또는 중앙값) 위상 변화를 유도하는 단계를 포함한다. 일부 구현에서, 위상 변화는 필드의 각각의 위치에 대해(예를 들어, 검출기의 다수의 픽셀 엘리먼트에 걸쳐) 개별적으로 그리고 독립적으로 유도될 수 있다. 그러나, 분산이 필드 전체에서 균일한 경우, 다수의 위치를 평균화하면 측정 오류를 줄이는 데 유용한 방법이 될 수 있다. 간섭 데이터 내의 위상 정보 평가에 관한 추가 정보는 예를 들어, 미국 특허 제5,398,113호(예를 들어, 9:44-10:54) 및 미국 특허 제7,522,288호(예를 들어, 11:49-13:12)에서 찾을 수 있으며, 이들 각각은 그 전체가 본 명세서에서 참조로 포함된다.
비선형 위상 변화를 식별하는 단계는 위상 변화에 맞는 함수를 획득하는 단계(608)를 더 포함할 수 있다. 예를 들어, 위에서 설명된 바와 같이, 선택된 파수에 대한 평균 위상 변화는 영역에서 모든 픽셀 또는 픽셀의 서브 세트에 대해 유도될 수 있다. 일부 구현에서, 다수의 비선형 위상 변화는 샘플 표면을 가로 지르는 다수의 영역에 대해 획득될 수 있다. 예를 들어, 선택된 파수에 대한 다수의 평균 위상 변화가 도출될 수 있으며, 각각의 평균은 샘플 표면의 상이한 각각의 영역에 대응하는 상이한 픽셀의 서브 세트로부터 유도된다. 일부 구현에서, 선택된 파수는 대응하는 위상 변화가 유도되는 각각의 영역에 대해 다를 수 있다. 재료의 중간 층 및/또는 테스트 샘플에서 유도된 응력으로 인한 분산은 종종 2차 위상 비선형성을 초래할 수 있다. 따라서, 위상 변화에 맞는 함수는 x2과 같은 2차 형식을 가질 수 있다. 그러나, 비선형 위상 변화는 2차 이외의 형태를 가질 수 있다. 더욱이, 2보다 큰 차수의 다항식을 갖는 함수, 지수 함수, 로그 함수, 스플라인 피츠(spline fits), 가우시안 피츠(Gaussian fits) 등과 같은 다른 함수가 위상 변화에 적합할 수 있다.
비선형 위상 변화를 식별한 후, 주파수 도메인에서 샘플 간섭 측정 데이터로부터 식별된 비선형 위상 변화가 제거되어(610) 보상된 간섭 측정 데이터를 생성할 수 있다. 예를 들어, 식별된 비선형 위상 변화를 제거하는 단계(610)는, 각각의 픽셀 또는 픽셀의 서브 세트에 대해, 샘플 간섭 측정 데이터로부터 적합된 함수 데이터(예를 들어, 최적 적합)를 감산하는 단계를 포함할 수 있다. 일부 구현에서, 식별된 비선형 위상 정보는 예를 들어 그룹 속도 굴절률(재료 굴절률이 파수의 비선형 함수이기 때문임) 및/또는 층 재료가 알려진 경우, 예를 들어 흡수 및 분산에 영향을 미치는 오염물과 같은 재료 결함은 물론 두께와 같은 재료 특성을 포함하는 유용한 정보를 제공하기 위해 추가로 분석될 수 있다.
비선형 위상 변화를 제거한 후, 보상된 샘플 간섭 측정 데이터는 시간 도메인으로 다시 변환될 수 있다(612). 그 후, 하나 이상의 프로세서는 본 명세서에서 개시된 바와 같이, CSI 방법을 사용하여 표면의 지형 맵과 같은 계측 정보를 제공하기 위해 보상된 인터페로그램을 처리할 수 있다. CSI 데이터를 사용하여 지형 맵을 생성하기 위한 기술의 추가 예는 예를 들어 미국 특허 제5,953,124호 및 제7,522,288호에서 찾을 수 있으며, 이들 각각은 그 전체가 본 명세서에 참조로 포함된다. 이러한 방식으로, 간섭 신호에 대한 테스트 샘플의 분산 기여도는 간섭 신호 데이터 자체를 사용하여 평가되며, 중간 재료에 대한 사전 지식(예를 들어, 굴절률, 분산 특성 또는 층 두께)이 필요하지 않다. 다르게는 또는 추가로, 지형 맵을 포함하는 계측 정보는 주파수 도메인 방법(예를 들어, 미국 특허 제5,398,113호에 설명된 것과 같은 방법으로, 그 내용은 전체로서 본 명세서에서 참조로 포함됨)을 사용하여 주파수 도메인에서 보상된 간섭 측정 데이터로부터 유도될 수 있다. 현재 구현에서 분산 특성이 필드 전체에서 동일하다고 가정되지만, 그 절차는 필드 위치의 함수로 비선형 항(예를 들어, 2차 항)을 평가함으로서 필드 종속 분산에 대해 확장될 수 있다.
예시적인 구현에서, 프로세서는 보상된 간섭 측정 데이터로부터 테스트 샘플의 제1 계면과 제2 계면 사이의 거리를 결정할 수 있다. 제1 계면과 제2 계면 사이의 거리를 결정하는 단계는, 예를 들어, 다수의 보상된 간섭계 신호의 각각의 보상된 간섭 측정 신호에 대해, 테스트 샘플의 제1 계면(예를 들어, 장치(300)의 임의의 계면(314, 320, 322, 324, 326, 328, 330 또는 332))에 대응하는 제1 간섭 패턴의 제1 강도 피크 및 제2 상이한 계면(예를 들어, 장치(300)의 임의의 계면(314, 320, 322, 324, 326, 328, 330 또는 332))에 대응하는 제2 간섭 패턴의 제2 강도 피크를 식별하는 단계를 포함할 수 있다. 그 다음, 다수의 간섭 측정 신호의 각각의 보상된 간섭 측정 신호 각각에 대해, 하나 이상의 프로세서는 식별된 제1 간섭 패턴의 제1 강도 피크가 발생하는 위치와 식별된 제2 간섭 패턴의 제2 강도 피크가 발생하는 위치 사이의 간격을 유도할 수 있다. 각각의 신호가 계면을 따라 서로 다른 위치에 대응하는 서로 다른 검출기 엘리먼트(예를 들어, 픽셀)로부터 획득되기 때문에, 제1 계면과 제2 계면 사이의 평균 거리를 제공하기 위해 서로 다른 신호 사이에서 간격이 평균화될 수 있다. 이러한 거리는 예를 들어 테스트 샘플 내의 층 사이의 평균 갭 두께에 대응할 수 있다. 예를 들어, 그 거리는 테스트 샘플 내에서 제1 플레이트와 제2 플레이트 사이의 평균 갭 두께일 수 있다(예를 들어, 장치(300)에서 플레이트(302)와 플레이트(304) 사이의 갭 거리, 장치(300)에서 플레이트(304)와 플레이트(306) 사이의 갭 거리, 장치(300)에서 플레이트(306)와 플레이트(308) 사이의 갭 거리). 다르게는, 그 거리는 테스트 샘플에서 플레이트 상에 형성된 층의 평균 두께에 대응할 수 있다. 예를 들어, 그 거리는 테스트 샘플에서 플레이트의 표면 상에 형성된 박막 유전체층의 두께에 대응할 수 있다. 다르게는, 그 거리는 테스트 샘플에서 플레이트의 두께(예를 들어, 장치(300)의 플레이트(302, 304, 306 또는 308)의 두께)에 대응할 수 있다.
일부 구현에서, 하나 이상의 프로세서는 각각의 보상된 간섭 측정 신호에 대해 유도된 간격에 기초하여 제1 계면과 제2 계면 사이의 병렬도 레벨을 결정할 수 있다. 예를 들어, 하나 이상의 프로세서는 테스트 샘플 내의 2개의 플레이트 사이의 갭 두께(예를 들어, 장치(300)에서 도시된 임의의 갭(310))가 갭 전체에 결쳐 균일하거나 또는 불균일한 방법을 보여주는 지형 맵으로서 각각의 검출기 엘리먼트(예를 들어, 픽셀)에 대한 거리 데이터를 출력하는 데 사용될 수 있다. 예를 들어, 지형 맵은 제1 및 제2 계면의 영역 표면 지형의 차이를 보여줄 수 있다. 지형 맵은 디스플레이로 출력될 수 있다. 일부 구현에서, 하나 이상의 프로세서는 예를 들어, 제1 및 제2 계면 사이의 평균 제곱근 차이, 제1 및 제2 계면 사이의 피크-밸리(peak-valley) 차이 또는 지형 맵의 임의의 다른 파라미터를 포함하는 지형 맵으로부터 다른 정보를 결정하도록 구성된다. 일부 구현에서, 하나 이상의 프로세서는 테스트 샘플 내에서 하나 이상의 계면(예를 들어, 장치(300)의 임의의 계면(314, 320, 322, 324, 326, 328, 330 또는 332))의 평탄도 레벨을 결정할 수 있다. 예를 들어, 테스트 샘플에서 계면의 표면 형태는 간섭계 시스템의 기준 평면을 기준으로 획득될 수 있다.
일부 구현에서, 본 명세서에 개시된 기술을 사용하여 획득된 데이터의 수량은 매우 클 수 있으며, 특히 테스트 샘플이 그들 사이에 갭을 갖는 다수의 비교적 두꺼운 플레이트를 포함하도록 구성되는 경우 획득하는 데 상당한 시간이 걸릴 수 있다. 예를 들어, 플레이트 사이에 50 미크론 간격이 있는 8개의 0.5 mm 두께 플레이트로 구성된 스택을 갖는 테스트 샘플에 대해, 전체 스택 물리적 두께는 4.35 mm이다. 카메라 프레임 당 파장의 1/8(프린지의 1/4)과 같은 스캔 방향을 따르는 CSI 샘플링 속도와 500nm 평균 소스 파장의 경우, 스택을 통해 스캔하고 모든 표면을 획득하는 데 70,000개 이상의 카메라 프레임이 필요하다. 각각의 이미지가 8비트로 디지털화된 500 x 500 픽셀이라고 가정하면, 이것은 약 17.5GB의 데이터에 해당한다. 또한, 100 Hz에서 작동하는 카메라의 경우, 프로세스는 약 700 초(11.7 min)가 필요할 수 있다.
일부 구현에서, 획득 처리량은 스택 내의 적어도 하나의 후보 계면 위치에 대한 정보를 식별하기 위해 더 높은 변환 속도로 초기 빠른 스캔을 수행함으로써 증가될 수 있다. 테스트 샘플 내의 적어도 하나의 후보 계면 위치에 대한 정보에 기초하여, 간섭 측정 대물렌즈 및/또는 테스트 샘플은 측정 빔의 초점 평면에 인접한 스택의 적어도 하나의 후보 계면에 위치하도록 재배치될 수 있다. 그 다음, 적어도 하나의 후보 계면이 더 느린 속도로 초점 평면을 통과하고 그리고/또는 샘플 간섭 측정 데이터가 더 높은 획득 속도에서 획득되도록 간섭 측정 대물렌즈 및/또는 테스트 샘플을 변환함으로써 더 상세한 정보가 획득될 있다.
예를 들어, 일부 구현에서, 빠른 스캔은 "서브 나이키스트(Sub-Nyquist)" 획득을 통해 수행될 수 있다. 서브 나이키스트 획득은 표준 CSI 획득에 비해 일반적으로 홀수 정수배(3, 5, 7,…)(서브 나이키스트 배수)만큼 CSI 스캔 속도와 조명 강도를 높이는 반면에, 동일한 역 배수(1/3, 1/5, 1/7,…)만큼 프레임 통합을 감소시키기 위해 카메라의 동시 셔터링을 수반한다. 그 효과는 간섭을 드물게 샘플링하여 서브 나이키스트 배수에 의한 획득 시간과 데이터 수량을 줄이는 반면, 셔터링 및 강도 증가는 간섭 신호 대비 손실을 최소화하는 것이다. 이러한 유형의 획득에 대한 대가는 환경 민감도와 측정 노이즈의 증가; 일부 상황에서 허용되는 절충안이다. 빠른 스캔 수행에 대한 추가 정보는, 예를 들어 미국 특허 제5,398,113호 및 "백색광 간섭 측정 스캐닝 기반의 고속 비접촉 프로파일러(High-speed non-contact profiler based on scanning white light interferometry)"(L. Deck 및 P. de Groot, Opt. 33(31), 7334-7338(1994))에서 찾을 수 있으며, 이들 각각은 그 전체가 본 명세서에서 참조로 포함된다.
빠른 초기 스캔을 사용하여 획득된 데이터로부터 스택 내의 적어도 하나의 후보 계면 위치가 식별될 수 있다. 적어도 하나의 후보 계면은 피크 로컬 진폭을 갖는 간섭 측정 신호의 부분을 위치시킴으로써 식별될 수 있다. 예를 들어, 테스트 샘플이 인접한 플레이트 사이에 갭이 있는 다수의 플레이트로 구성되어 있고, 플레이트 사이의 갭 분리를 결정하는 데 관심이 있지만, 플레이트 표면에 대한 다른 관계 정보는 그렇지 않은 경우, 고속 스캔(예를 들어, 서브 나이키스트 스캔)은 모든 계면의 스테이지 위치를 식별하기 위해 테스트 샘플을 통해 초기에 수행될 수 있다. 계면에 대응하는 스테이지 위치는 진폭이 로컬 최대에 도달하는 시간 도메인 간섭 신호 내의 위치에서 발생한다. 거의 예상되는 플레이트 갭 거리만큼 이격된 신호 진폭의 피크는 플레이트의 후보 표면으로 표시될 수 있다. 그 후, 식별된 갭을 경계로 하는 표면은 초기 스캔보다 느린 속도(예를 들어, 나이키스트 주파수 이상의 속도)로 진행되는 표준 스캔과 스택 내의 2개의 상이한 플레이트의 대향하는 면을 덮는 새로운 간섭 측정 신호 기록으로 측정될 수 있다. 그 후, 본 명세서에서 개시된 분산 보상 기술은 새로 기록된 신호 및 두 표면의 보다 정확한 위치를 획득하기 위해 정정된 데이터에 적용된 CSI 분석에 대해 수행될 수 있다. 스캔 표면이 단일 획득 스캔으로 간섭 측정 데이터가 획득될 수 있을 만큼 충분히 가까우면, 갭 두께 변화는 표면 위치에 대응하는 스캔 위치 사이의 차이(즉, 신호 진폭의 로컬 피크)를 감산함으로써 결정될 수 있다. 피크가 존재하지 않는 것으로 알려진 스캔 부분의 rms 가변성이 획득되면, 피크를 식별하는 데 필요한 진폭의 크기가 얼마나 큰지를 추정하는 것이 가능하다. rms 가변성은 "배경"의 통계적 특성에 대한 아이디어를 제공한다. 피크는, 예를 들어 배경 위의 표준 편차의 일부 식별된 배수, 예를 들어, 4 또는 6의 값이어야 하는 신호로 정의될 수 있다.
일부 구현에서, 초기 스캔 데이터는 후보 표면의 더 정확한 분석이 수행될 수 있도록 후보 표면의 위치를 신속하게 식별하는 데 사용된다. 예를 들어, 본 명세서에서 설명된 초기 빠른 스캔 후에, 간섭계 및/또는 테스트 샘플은 식별된 후보 표면이 간섭계 시스템의 초점 평면 근처에 위치하도록 재배치될 수 있다. 이 새로운 위치에서, 초기 스캔보다 느린 속도(예를 들어, 나이키스트 주파수 이상의 속도)로 진행되는 표준 스캔이 수행되고 새로운 간섭 측정 신호가 기록될 수 있다. 본 명세서에서 개시된 분산 보상 기술은 새로 기록된 신호에 대해 수행될 수 있고, 후보 표면에 대한 정보를 획득하여 출력하기 위해 정정된 데이터에 CSI 분석이 적용될 수 있다. 초기 빠른 스캔은 후보 표면의 초기 식별을 위해 사용되는 것으로 위에서 설명되었으며, 그 후 더 자세한 정보를 획득하기 위해 후보 표면의 두 번째 스캔이 수행될 수 있다. 그러나, 일부 구현에서, 빠른 스캔은 두 번째 추가 스캔을 수행할 필요없이 후보 표면에 관한 충분한 세부 사항을 제공할 수 있다.
예시적 애플리케이션
본 명세서에서 설명된 저 간섭섭 간섭 측정 방법 및 시스템은, 면적 표면 지형, 텍스처 측정, 표면 형태 측정, 다수 표면의 관계형 측정(두께 및 평행도), 표면 결함 검출, 단순 박막; 다층 박막; 층 사이의 갭을 갖는 적층형 다층 객체; 회절하거나 복잡한 간섭 효과를 생성하는 날카로운 에지 및 표면 피처; 미해결 표면 거칠기; 미해결 표면 피처, 예를 들어 다른 매끄러운 표면 상의 서브 파장 폭 홈; 이종 재료; 표면의 편광 의존적 특성; 및 간섭 현상의 입사각 의존 섭동을 초래하는 표면 또는 변형 가능한 표면 피처의 편향, 진동 또는 움직임과 같은 표면 분석 문제 중 임의의 것에 사용될 수 있다. 박막의 경우, 관심 변수는 필름 두께, 필름의 굴절률, 기판의 굴절률 또는 이들의 일부 조합일 수 있다. 다음에 예시적인 응용이 논의된다.
AR/VR 광학 장치
본 명세서에서 설명된 바와 같이, AR/VR 애플리케이션은 다수의 평행 플레이트를 포함하는 스택을 사용할 수 있으며, 스택 내의 평행 플레이트는 표면에 피처 및 코팅이 적용되어 도파관 역할을 함으로써 장치가 사용자의 눈 앞에 배치될 때, 장치 주변으로부터의 광 정보가 눈으로 운반되고 리디렉션되어 정상적인 시각을 차단하지 않고 데이터 또는 이미지 오버레이를 생성할 수 있다. 고품질 이미지를 유지하기 위해, 플레이트 사이에 우수한 평행도를 달성하고 특정 표면이 원하는 평탄도를 갖는 것을 보장하며, 제조 중에 플레이트 사이의 특정 분리 거리를 유지하는 등이 중요할 수 있다. 일부 경우에, 이들 광학 장치에 사용되는 플레이트는 비교적 두껍기 때문에 간섭계 스캔 프로브가 광학 플레이트 깊숙이 들어갈 때 분산 효과가 발생한다.
예를 들어, 도 7a 및 7b는 두께가 6.25 mm인 평행 유리 플레이트에 대한 단일 검출기 픽셀에서 획득된 시간 도메인 간섭 신호를 나타내는 플롯이다. 도 7a-7b에서 예시된 데이터를 획득하는 데 사용되는 간섭계 시스템은 미국 특허 제8,045,175호에 개시된 간섭계 설계와 같은 광시야 대물렌즈 설계였으며, 그 주제는 그 전체가 본 명세서에서 참조로 포함된다. 간섭계 시스템은 500 미크론/초의 속도로 균일한 동작을 제공하는 스테퍼 모터 스테이지를 사용하였다. 광원은 460 nm의 평균 파장과 약 25 nm의 반치폭을 갖는 10 W 덴탈 블루(Dental Blue) 발광 다이오드였다. 소스는 3.5 미크론 시그마를 사용하여 대략 가우시안 형상의 분산이 없는 콘트라스트 엔벨로프를 제공하였다.
도 7a 및 7b는 각각 광학 플레이트의 전면 및 후면에 대한 간섭계 시스템의 검출기의 단일 픽셀로부터 획득된 시간 도메인 간섭 측정 데이터에 대응한다. 즉, 간섭계는 전면에서 시작하여 후면까지 유리 플레이트를 통해 간섭계를 스캔하였다. 수평축은 샘플 번호를 나타내고 스캔 위치(각각의 샘플 신호에 대해 초기 위치가 0으로 재설정됨)에 대응하는 반면, 수직축은 신호 강도를 나타낸다. 도 7a의 총 스캔 길이는 ~ 40 미크론인 반면, 도 7b의 경우 스캔 길이는 분산 확장을 설명하기 위해 ~ 120 미크론이었다. 도 7b에서 명백한 바와 같이, 후면 측정은 간섭 신호의 간섭성 폭을 상당히 넓히는 반면, 전면에 대응하는 도 7a에 도시된 신호는 보다 잘 정의된 간섭 패턴 엔벨로프를 나타낸다. 도 7b에서 간섭성 폭의 확장은 유리 플레이트의 전면과 후면 사이의 중간 유리가 분산되어 있기 때문이다. 도 7b에 도시된 후면 신호의 샘플(500) 주변에서 관찰된 더 작은 간섭성 피크는 소스의 공간적 간섭성 특성 때문이며 약하게 반사되는 표면을 나타내지 않는다.
본 명세서에서 개시된 기술을 사용하면, 신호가 위상 변화의 비선형 부분이 식별되고 제거되는 주파수 도메인으로 변환되었다. 예를 들어, 도 8은 후면 간섭 신호에 대한 스펙트럼 피크(빈(bin) 0) 주변의 위상 변화를 보여주는 플롯이다. 도 8의 수평축은 스펙트럼 파수 빈에 대응하고 수직축은 라디안(radian)의 위상에 대응한다. 도 8에서 명백한 바와 같이, 후면 간섭 신호는 스펙트럼 피크에 대한 이차 위상 변화를 나타냈다. 위상 변화는 유리 플레이트의 전면과 후면 사이의 중간 유리로부터의 분산으로 인한 것이다. 위상 변화는 이차 함수(800)에 적합되었고 그 후 주파수 도메인 신호에서 감산되었다.
분산 정정된 주파수 도메인 신호는 시간 도메인 정정된 간섭 신호를 획득하기 위해 역푸리에 변환되었다. 도 9a 및 9b는 분산 보상 전후에 유리 플레이트의 후면에서 관찰된 픽셀 간섭 신호를 나타내는 플롯이다. 도 9b에 도시된 바와 같이, 간섭 패턴 엔벨로프가 좁아지고 분산 보상은 공간 간섭성 피크에 거의 영향을 미치지 않는다.
본 명세서에서 설명된 바와 같이, 일부 경우에, 광학 플레이트 사이의 갭의 위치에 대응하는 위치와 같은 다층 스택 내의 계면을 신속하게 식별하기 위해 초기 빠른 스캔이 수행될 수 있다. 예시적인 스캔은 도 4에 도시된 장치(300)와 유사한 구조를 갖는 광학 장치에서 수행되었다. 실험에 대해 위에서 설명된 것과 동일한 시스템이 도 7a-7b에 대해 수행하였다. 7a-7b는 빠른 스캔 데이터를 획득하는 데 사용되었다. 장치(300)가 4개의 플레이트를 갖는 스택을 보여주지만, 다음 실험에서 사용된 스택은 6개의 평행한 유리 플레이트를 가지고 있고, 각각의 두께는 수백 미크론 정도였다. 인접한 플레이트는 적어도 10 미크론의 갭으로 서로 분리되었다. 스택의 첫 번째면(예를 들어, 장치(300)의 표면(314)과 같음)에서 시작하여, 스택은 초기에 빠른 스캔을 사용하여 간섭계의 초점 평면을 통해 이동되었다. 특히, 빠른 스캔은 약 140 미크론/초 이상의 속도로 수행되었고(예를 들어, 100 Hz 카메라의 일반적인 스캔 속도의 약 20배, 가시 파장으로 작동하는 간섭계의 경우 나이키스트 한계의 두 배로 샘플링), 스택 내 유리 플레이트의 표면에 대응하는 위치를 식별하기 위해 스택의 작은 영역에 대해 간섭 데이터를 수집하였다.
도 10은 빠른 스캔을 수행하여 획득된 간섭 측정 신호를 예시하는 플롯이다. 수평축은 밀리미터 단위의 스캔 위치를 나타내고 수직축은 간섭 신호의 진폭을 나타낸다. 도 10에서 알 수 있는 바와 같이, 신호는 측정 빔이 입사되는 스택의 초기 표면(장치(300)의 표면(314)과 유사함)에 대응하는 약 0.1 mm의 제1 로컬 피크 진폭을 포함한다. 첫 번째 피크 mm 이후에, 로컬 피크 진폭(예를 들어, 약 0.75 mm, 약 1.4 mm, 약 2.1 mm, 약 2.75 mm 및 약 3.4 mm)은 두 개의 근접하게 이격된 표면을 나타낸다. 실제로 이들 위치에서의 신호는 두 개의 근접하게 이격된 피크를 나타내며, 각각의 피크는 유리 플레이트의 표면에 대응한다. 스캔이 부품 깊숙이 진행됨에 따라, 분산으로 인해 피크가 함께 흐려진다(예를 들어, 2.75 mm 및 3.4 mm).
도 10에 도시된 데이터로부터 플레이트 표면을 식별한 후, 각각의 표면 또는 표면 쌍에 대한 표면 지형은 짧은 CSI 스캔이 각각의 표면 또는 표면 쌍으로부터 간섭을 획득할 수 있도록 각각의 표면에서 샘플 스테이지를 재배치하여 차례로 획득되었다.
예를 들어, 스택 내부 약 2.75 mm에 위치한 8번째 및 9번째 표면(각각 플레이트(4 및 5)의 표면에 대응함)의 바로 앞에 스테이지를 재배치한 후, 150 미크론 길이의 3X 서브 나이키스트 CSI 스캔이 두 표면에서 간섭을 획득하기 위해 수행되었다. 시스템의 평균 파장은 460 nm이고 3X 서브 나이키스트 스캔을 위한 카메라 프레임 사이의 스캔 증분은 172.5 nm였다. 도 11a는 분산 보상 전에 두 개의 근접하게 이격된 8번째 및 9번째 표면으로부터 간섭 측정 시스템 내의 검출기의 한 픽셀에 의해 관찰된 원시 시간 도메인 간섭 신호를 보여주는 플롯이다. 도 11a에 도시된 바와 같이, 분산 보상 전에, 각각의 계면으로부터의 신호가 함께 병합되어 두 표면으로부터의 간섭 신호를 구별하기가 어렵다. 도 11b는 본 명세서에서 개시된 바와 같이 분산 보상을 수행한 후 동일한 시간 도메인 간섭 측정 신호를 예시하는 플롯이다. 도 11b에 도시된 바와 같이, 상이한 계면에 대응하는 피크는 이제 쉽게 구별될 수 있다. 도 11b에 도시된 데이터로부터, 표면 분리는 약 25 미크론으로 지정될 수 있다.
일부 경우에, 표면을 나타내는 신호가 필드의 각각의 픽셀에 대해 식별되고 CSI 알고리즘을 사용하여 분석된다. 예를 들어, 도 10에서 약 2.7 mm로 식별된 두 표면에 대해, 피크 콘트라스트 알고리즘은 표면에 대한 지형 컬러 맵을 생성하기 위해 미리 결정된 필드의 각각의 픽셀에 대해 사용되었다. 도 12a는 제1 표면(네 번째 유리 플레이트의 후면에 대응하는 스택 내의 표면(8))의 지형 맵이고, 도 12b는 제2 표면(다섯 번째 유리 플레이트의 전면에 대응하는 스택 내의 표면(9))의 지형 컬러 맵이다. 피처의 복잡한 광학 특성이 콘트라스트 엔벨로프를 천이시키기 때문에, 표면(8)은 실제로 도 12a의 명백한 단계(1200)로서 관찰될 수 있는 각인된 피처를 포함한다. 이들 두 표면에 대한 데이터는 단일 스캔으로 수집되었기 때문에, 상대적인 방향이 유지되고 그들 사이의 갭은 그 차이로부터 계산될 수 있다. 그 갭은 도 13에 도시된 바와 같이 3차원 맵으로 예시될 수 있으며, 여기서 z축은 갭 두께에 대응한다.
스택 내의 다른 표면 또는 표면 쌍은 또한 도량형 관심의 모든 표면이 측정될 때까지 본 명세서에서 설명된 바와 같이 측정될 수 있다. 본 명세서에서 개시된 스캔은 제1 면에서 테스트 샘플을 조명한 다음 초점 평면을 통해 테스트 샘플로 이동함으로써 수행되었지만, 일부 구현에서, 제1 면에서 테스트 샘플/스택을 통해 부분적으로 스캔을 수행한 다음 테스트 샘플/스택의 제2 대향 면에서 테스트 샘플/스택을 통해 제2 부분 스캔을 수행하는 것이 유리할 수 있다. 이것은, 예를 들어, 제1 스캔 후와 제2 스캔을 수행하기 전에 샘플 홀더 내에서 테스트 샘플/스택의 방향을 뒤집어 수행될 수 있다. 표면과 재료의 투과 속성이 매우 열악할 때, 테스트 샘플/스택을 통해 단일 스캔을 수행하여 테스트 샘플/스택의 끝 근처에 있는 계면에 대해 신호에 잡음이 많아지도록 하는 방식으로 스캔을 수행하는 것이 유용할 수 있다.
디지털 구현
본 명세서에서 설명된 데이터 처리의 특징은 디지털 전자 회로, 또는 컴퓨터 하드웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 이 특징은 프로그램 가능 프로세서에 의한 실행을 위해 정보 캐리어, 예를 들어 기계 판독 가능 저장 장치에 유형적으로 구현된 컴퓨터 프로그램 제품에서 구현될 수 있고, 특징은 입력 데이터에 대해 작동하고 출력을 생성함으로써 설명된 구현의 기능을 수행하기 위해 명령 프로그램을 실행하는 프로그램 가능 프로세서에 의해 수행될 수 있다. 설명된 특징은 데이터 및 명령을 수신하고 데이터 저장 시스템, 적어도 하나의 입력 장치 및 적어도 하나의 출력 장치로 데이터 및 명령을 전송하도록 결합된 적어도 하나의 프로그램 가능 프로세서를 포함하는 프로그램 가능 시스템 상에서 실행될 수 있는 하나 이상의 컴퓨터 프로그램에서 구현될 수 있다. 컴퓨터 프로그램은 특정 활동을 수행하거나 특정 결과를 가져 오기 위해 컴퓨터에서 직접 또는 간접적으로 사용될 수 있는 일련의 명령을 포함한다. 컴퓨터 프로그램은 컴파일되거나 해석된 언어를 포함하여 모든 형태의 프로그래밍 언어로 작성될 수 있으며, 독립형 프로그램이나 컴퓨터 환경에서의 사용에 적합한 모듈, 컴포넌트, 서브루틴 또는 기타 유닛으로서 포함하여 임의의 형태로 배포될 수 있다.
명령 프로그램의 실행에 적합한 프로세서는, 예를 들어, 모든 종류의 컴퓨터의 다중 프로세서 중 하나인 범용 및 특수 목적의 마이크로프로세서 둘 다를 포함한다. 일반적으로, 프로세서는 판독 전용 메모리나 랜덤 액세스 메모리 또는 둘 다에서 명령과 데이터를 수신할 것이다. 컴퓨터는 명령을 실행하기 위한 프로세서와 명령 및 데이터를 저장하기 위한 하나 이상의 메모리를 포함한다. 일반적으로, 컴퓨터는 또한 데이터 파일을 저장하기 위한 하나 이상의 대용량 저장 장치를 포함하거나 이와 통신하도록 작동 가능하게 결합될 것이며, 이러한 장치에는 내부 하드 디스크 및 이동식 디스크와 같은 자기 디스크, 광 자기 디스크 및 광 디스크가 포함된다. 컴퓨터 프로그램 명령 및 데이터를 실체적으로 구현하는 데 적합한 저장 장치는 예를 들어 EPROM, EEPROM 및 플래시 메모리 장치와 같은 반도체 메모리 장치, 내부 하드 디스크 및 이동식 디스크와 같은 자기 디스크, 광 자기 디스크, 및 CD-ROM 및 DVD-ROM 디스크를 포함하여 모든 형태의 비 휘발성 메모리를 포함한다. 프로세서와 메모리는 ASIC(application-specific integrated circuits)에 의해 보완되거나 통합될 수 있다. 이 특징은 단일 프로세스로 구현되거나 또는 하나나 여러 위치의 다중 프로세서에 분산될 수 있다. 예를 들어, 이 특징은 데이터 전송, 저장 및/또는 분석을 위해 클라우드 기술을 사용할 수 있다.
범위
본 명세서 및 첨부된 청구 범위에서 사용된 바와 같이, 단수 형태 "하나(a)", "하나(an)" 및 "상기(the)"는 문맥 상 달리 명확하게 지시하지 않는 한, 예를 들어 "단일"이라는 단어가 사용되는 경우 복수의 지시 대상을 포함한다는 점에 유의해야 한다.
본 명세서에서 사용되는 바와 같이, 용어 "적응된" 및 "구성된"은 엘리먼트, 컴포넌트 또는 다른 주제가 주어진 기능을 수행하도록 설계되고 그리고/또는 의도된 것을 의미한다. 따라서, "적응된" 및 "구성된"이라는 용어의 사용은 주어진 엘리먼트, 컴포넌트 또는 기타 주제가 단순히 주어진 기능을 수행하는 "가능함"을 의미하는 것으로 해석되어서는 안된다.
본 명세서에서 사용된 바와 같이, 하나 이상의 엔티티의 목록과 관련하여 "적어도 하나" 및 "하나 이상"이라는 문구는 엔티티의 목록에 있는 엔티티 중 임의의 하나 이상을 의미하며, 엔티티의 목록 내에 구체적으로 나열된 각각의 엔티티 중 적어도 하나 및 모든 엔티티로 제한되지 않는다. 예를 들어, "A 및 B 중 적어도 하나"(또는 동일하게 "A 또는 B 중 적어도 하나" 또는 동일하게 "A 및/또는 B 중 적어도 하나")는 A 단독, B 단독, 또는 A와 B의 조합을 지칭할 수 있다.
본 명세서에서 사용된 바와 같이, 제1 엔티티와 제2 엔티티 사이에 배치된 용어 "및/또는"은 (1) 제1 엔티티, (2) 제2 엔티티 및 (3) 제1 엔티티 및 제2 엔티티 중 하나를 의미한다. "및/또는"으로 나열된 여러 엔티티는 동일한 방식, 즉, 이렇게 결합된 엔티티 중 "하나 이상"으로 해석되어야 한다. 다른 엔티티는 선택적으로, 구체적으로 식별된 엔티티와 관련이 있는지 여부에 관계없이, "및/또는" 절에 의해 구체적으로 식별된 엔티티 이외의 다른 엔티티로 존재할 수 있다.
본 명세서가 많은 특정 구현 상세를 포함하지만, 이들은 임의의 발명의 범위 또는 청구될 수 있는 것에 대한 제한으로 해석되어서는 안되며, 오히려 특정 발명의 특정 실시예에 특정된 특징의 설명으로 해석되어야 한다.
별개의 실시예의 맥락에서 본 명세서에서 설명된 특정 특징은 또한 단일 실시예에서 조합하여 구현될 수 있다. 반대로, 단일 실시예의 맥락에서 설명된 다양한 특징은 또한 여러 실시예에서 개별적으로 또는 임의의 적절한 하위 조합으로 구현될 수 있다.
더욱이, 특징이 특정 조합으로 작용하는 것으로 위에서 설명될 수 있고 심지어 처음에 그렇게 주장될 수도 있지만, 청구된 조합으로부터의 하나 이상의 특징은 경우에 따라 조합으로부터 절제될 수 있고, 청구된 조합은 하위 조합 또는 조합의변형으로 향할 수 있다.
유사하게, 작동이 특정 순서로 도면에 도시되어 있지만, 이는 바람직한 결과를 달성하기 위해 그러한 작동이 도시된 특정 순서 또는 순차적 순서로 수행되거나, 또는 모든 예시된 작동이 수행될 것을 요구하는 것으로 이해되어서는 안된다. 특정 상황에서, 멀티 태스킹 및 병렬 처리가 유리할 수 있다. 더욱이, 상기한 실시예에서의 다양한 시스템 컴포넌트의 분리는 모든 실시예에서 그러한 분리를 요구하는 것으로 이해되어서는 안되며, 설명된 프로그램 컴포넌트 및 시스템은 일반적으로 단일 소프트웨어 제품으로 함께 통합되거나 또는 여러 소프트웨어 제품으로 패키징될 수 있다.
따라서, 주제의 특정 실시예가 설명되었다. 다른 실시예는 다음의 청구항의 범위 내에 있다. 일부 경우에, 청구 범위에 언급된 동작은 다른 순서로 수행될 수 있으며 여전히 바람직한 결과를 달성할 수 있다. 또한, 첨부된 도면에 도시된 프로세스는 바람직한 결과를 달성하기 위해 도시된 특정 순서 또는 순차적인 순서를 반드시 필요로하지는 않는다. 특정 구현에서, 멀티 태스킹 및 병렬 처리가 유리할 수 있다.
많은 구현이 설명되었다. 그럼에도 불구하고, 본 발명의 사상 및 범위를 벗어남이 없이 다양한 변형이 이루어질 수 있음이 이해될 것이다. 따라서, 다른 구현은 다음의 청구항의 범위 내에 있다.

Claims (40)

  1. 저 간섭성 이미징 간섭계 시스템을 사용하여 테스트 샘플에 대해 획득된 샘플 간섭 측정 데이터를 전자 프로세서에게 제공하는 단계 ― 상기 테스트 샘플은 스택에 배열된 복수의 층을 포함함 ―;
    상기 전자 프로세서에 의해, 상기 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하는 단계;
    상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하는 단계 ― 상기 식별된 비선형 위상 변화는 상기 테스트 샘플에 의해 측정 빔으로 도입된 분산의 결과임 ―;
    상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 상기 식별된 비선형 위상 변화를 제거하는 단계 ― 상기 식별된 비선형 위상 변화를 제거함으로써 보상된 간섭 측정 데이터를 생성함 ―;
    상기 테스트 샘플에 입사되도록 측정 빔 경로를 따라 상기 측정 빔을 지향시키는 단계;
    기준 표면과 접촉하도록 기준 빔 경로를 따라 기준 빔을 지향시키는 단계 ― 상기 측정 빔 및 상기 기준 빔은 공통 소스에 의해 방출된 광으로부터 유도되고, 상기 광은 복수의 파장을 포함하며, 상기 테스트 샘플은 상기 복수의 파장에 적어도 부분적으로 투명함 ―;
    상기 기준 빔과 상기 측정 빔이 각각 상기 기준 표면과 상기 테스트 샘플에 접촉한 후 출력 빔을 형성하기 위해 상기 기준 빔과 상기 측정 빔을 결합하는 단계;
    복수의 검출기 엘리먼트를 포함하는 검출기 어레이로 상기 출력 빔을 지향시키는 단계;
    상기 검출기 어레이로부터 복수의 간섭 신호를 기록하는 단계 ― 상기 복수의 간섭 신호의 각각의 간섭 신호는 상기 테스트 샘플 상의 서로 다른 위치에 대응하고, 상기 샘플 간섭 측정 데이터는 상기 복수의 간섭 신호를 포함함 ―;
    상기 스택 내의 적어도 하나의 후보 계면 위치에 대한 정보를 식별하기 위해 상기 스택의 초기 스캔을 수행하는 단계;
    상기 테스트 샘플 내의 적어도 하나의 후보 계면 위치에 대한 정보에 기초하여, 상기 측정 빔의 초점 평면에 인접한 스택의 제1 계면을 위치시키기 위해 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 재배치하는 단계; 및
    상기 제1 계면이 상기 초점 평면을 통과하도록 상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 이동시키는 동안 상기 샘플 간섭 측정 데이터를 획득하는 단계를 포함하고,
    상기 초기 스캔을 수행하는 단계는,
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 서로에 대해 이동시키는 단계;
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 서로에 대해 이동시키는 중에, 상기 검출기 어레이로부터 복수의 간섭 신호를 기록하는 단계 ― 상기 복수의 간섭 신호의 각각의 간섭 신호는 상기 테스트 샘플 상의 서로 다른 위치에 대응하고, 간섭 프린지(fringe) 주파수의 서브 나이키스트(sub-Nyquist) 주파수에서 샘플링됨 ―; 및
    상기 복수의 간섭 신호로부터 상기 적어도 하나의 후보 계면 위치를 결정하는 단계
    를 포함하는, 방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 상기 비선형 위상 변화를 식별하는 단계는,
    상기 주파수 도메인에서의 상기 복수의 간섭 신호 중 적어도 서브 세트의 평균 위상 변화를 획득하는 단계, 및
    상기 평균 위상 변화에 맞는 함수를 획득하는 단계
    를 포함하며,
    상기 식별된 비선형 위상 변화를 제거하는 단계는 상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 상기 함수를 제거하는 단계
    를 포함하는, 방법.
  4. 제3항에 있어서,
    상기 평균 위상 변화에 맞는 함수는 2차 형식을 갖는,
    방법.
  5. 제3항에 있어서,
    상기 평균 위상 변화에 맞는 함수는 2보다 큰 차수의 다항식을 갖는,
    방법.
  6. 제1항에 있어서,
    상기 보상된 간섭 측정 데이터를 시간 도메인으로 다시 변환하는 단계 ― 상기 시간 도메인에서의 보상된 간섭 측정 데이터는 복수의 보상된 간섭 측정 신호를 포함함 ―;
    상기 전자 프로세서에 의해, 상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계
    를 포함하는 방법.
  7. 제6항에 있어서,
    상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 상기 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 결정하는 단계
    를 포함하는, 방법.
  8. 제7항에 있어서,
    상기 테스트 샘플에서 상기 제1 계면과 상기 제2 계면 사이의 거리를 결정하는 단계는,
    상기 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 상기 테스트 샘플에서의 제1 계면에 대응하는 제1 강도 피크 및 상기 테스트 샘플에서의 제2 계면에 대응하는 제2 강도 피크를 식별하는 단계;
    상기 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 상기 식별된 제1 강도 피크가 발생하는 위치와 상기 식별된 제2 강도 피크가 발생하는 위치 사이의 간격을 유도하는 단계
    를 포함하는, 방법.
  9. 제8항에 있어서,
    각각의 보상된 간섭 측정 신호에 대해 유도된 간격에 기초하여 상기 제1 계면과 상기 제2 계면 사이의 병렬도 레벨을 결정하는 단계
    를 포함하는, 방법.
  10. 제6항에 있어서,
    상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 상기 테스트 샘플에서의 제1 계면의 평탄도를 결정하는 단계
    를 포함하는, 방법.
  11. 제6항에 있어서,
    상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 상기 테스트 샘플에서의 제1 플레이트의 두께를 결정하는 단계
    를 포함하는, 방법.
  12. 제6항에 있어서,
    상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 상기 테스트 샘플에서의 박막 층의 두께를 결정하는 단계
    를 포함하는, 방법.
  13. 제6항에 있어서,
    상기 테스트 샘플 내의 2개의 플레이트는 갭에 의해 분리되고, 상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 단계는 상기 2개의 플레이트 사이의 갭의 두께를 결정하는 단계
    를 포함하는, 방법.
  14. 제13항에 있어서,
    상기 갭의 3차원 맵을 생성하는 단계
    를 더 포함하는, 방법.
  15. 제13항에 있어서,
    상기 갭의 평균 두께를 결정하는 단계
    를 더 포함하는, 방법.
  16. 삭제
  17. 삭제
  18. 저 간섭성 이미징 간섭계 시스템을 사용하여 테스트 샘플에 대해 획득된 샘플 간섭 측정 데이터를 전자 프로세서에게 제공하는 단계 ― 상기 테스트 샘플은 스택에 배열된 복수의 층을 포함함 ―;
    상기 전자 프로세서에 의해, 상기 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하는 단계;
    상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하는 단계 ― 상기 식별된 비선형 위상 변화는 상기 테스트 샘플에 의해 측정 빔으로 도입된 분산의 결과임 ―;
    상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 상기 식별된 비선형 위상 변화를 제거하는 단계 ― 상기 식별된 비선형 위상 변화를 제거함으로써 보상된 간섭 측정 데이터를 생성함 ―;
    상기 테스트 샘플에 입사되도록 측정 빔 경로를 따라 상기 측정 빔을 지향시키는 단계;
    기준 표면과 접촉하도록 기준 빔 경로를 따라 기준 빔을 지향시키는 단계 ― 상기 측정 빔 및 상기 기준 빔은 공통 소스에 의해 방출된 광으로부터 유도되고, 상기 광은 복수의 파장을 포함하며, 상기 테스트 샘플은 상기 복수의 파장에 적어도 부분적으로 투명함 ―;
    상기 기준 빔과 상기 측정 빔이 각각 상기 기준 표면과 상기 테스트 샘플에 접촉한 후 출력 빔을 형성하기 위해 상기 기준 빔과 상기 측정 빔을 결합하는 단계;
    복수의 검출기 엘리먼트를 포함하는 검출기 어레이로 상기 출력 빔을 지향시키는 단계;
    상기 검출기 어레이로부터 복수의 간섭 신호를 기록하는 단계 ― 상기 복수의 간섭 신호의 각각의 간섭 신호는 상기 테스트 샘플 상의 서로 다른 위치에 대응하고, 상기 샘플 간섭 측정 데이터는 상기 복수의 간섭 신호를 포함함 ―;
    상기 스택 내의 적어도 하나의 후보 계면 위치에 대한 정보를 식별하기 위해 상기 스택의 초기 스캔을 수행하는 단계;
    상기 테스트 샘플 내의 적어도 하나의 후보 계면 위치에 대한 정보에 기초하여, 상기 측정 빔의 초점 평면에 인접한 스택의 제1 계면을 위치시키기 위해 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 재배치하는 단계; 및
    상기 제1 계면이 상기 초점 평면을 통과하도록 상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 이동시키는 동안 상기 샘플 간섭 측정 데이터를 획득하는 단계를 포함하고,
    상기 초기 스캔을 수행하는 단계는,
    상기 간섭 측정 대물렌즈에 대한 제1 위치에 상기 테스트 샘플을 위치시키는 단계;
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플의 서로에 대한 제1 이동을 수행하는 단계;
    상기 제1 이동 중에, 상기 검출기 어레이로부터 간섭 신호의 제1 배수를 기록하는 단계;
    상기 간섭 측정 대물렌즈에 대한 제2 위치에 상기 테스트 샘플을 위치시키는 단계;
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플의 서로에 대한 제2 이동을 수행하는 단계;
    제2 이동 중에, 상기 검출기 어레이로부터, 간섭 신호의 제2 배수를 기록하는 단계; 및
    상기 간섭 신호의 제1 배수 및 제2 배수로부터 상기 적어도 하나의 후보 계면 위치를 결정하는 단계
    를 포함하는, 방법.
  19. 제1항에 있어서,
    상기 스택에 배열된 복수의 층 중 적어도 하나의 층은 유리 플레이트인,
    방법.
  20. 제1항에 있어서,
    상기 스택은 제1 플레이트 및 상기 제1 플레이트의 제1 표면 상에 형성된 유전체 막을 포함하는,
    방법.
  21. 제1항에 있어서,
    상기 스택은 제1 플레이트 및 상기 제1 플레이트의 제1 표면 상에 형성된 제1 회절 격자를 포함하는,
    방법.
  22. 제21항에 있어서,
    상기 제1 회절 격자는 상기 제1 플레이트 내로, 또는 상기 제1 플레이트 밖으로, 또는 상기 제1 플레이트 안팎으로 광을 결합하도록 구성된 광학 커플러인,
    방법.
  23. 제21항에 있어서,
    상기 스택은 상기 제1 플레이트의 제2 표면 상에 제2 회절 격자를 포함하는,
    방법.
  24. 제23항에 있어서,
    상기 제2 회절 격자는 상기 제1 플레이트 내로, 또는 상기 제1 플레이트 밖으로, 또는 상기 제1 플레이트 안팎으로 광을 결합하도록 구성된 광학 커플러인,
    방법.
  25. 제1항에 있어서,
    상기 공통 소스는 백색 광원을 포함하는,
    방법.
  26. 제1항에 있어서,
    상기 샘플 간섭 측정 데이터로부터의 비선형 위상 변화는 상기 저 간섭성 이미징 간섭 측정 시스템에 의해 관찰된 파수의 범위에 걸쳐 식별되는,
    방법.
  27. 복수의 파장에 걸쳐 광을 방출하도록 구성된 저 간섭성 광원;
    기준 빔 경로를 따라 기준 빔으로서 광의 일부를 기준 표면으로 지향시키고, 측정 빔 경로를 따라 측정 빔으로서 상기 광의 다른 부분을 테스트 샘플로 지향시키며, 상기 기준 표면 및 상기 테스트 샘플 각각으로부터의 반사 후에 상기 기준 빔 및 상기 측정 빔을 출력 빔으로 결합하기 위해, 상기 광원으로부터 광을 수신하도록 구성된 간섭계 대물렌즈 ― 상기 테스트 샘플은 스택에 배열된 복수의 층을 포함함 ―;
    상기 간섭계 대물렌즈로부터 상기 출력 빔을 수신하고 상기 테스트 샘플에 대한 정보를 포함하는 샘플 간섭 측정 데이터를 생성하도록 구성된 검출기 어레이 ― 상기 샘플 간섭 측정 데이터는 복수의 간섭 신호를 포함하고, 상기 복수의 간섭 신호의 각각의 간섭 신호는 상기 테스트 샘플 상의 서로 다른 위치에 대응함 ―; 및
    상기 검출기 어레이와 통신하는 전자 프로세서 ― 상기 전자 프로세서는 상기 샘플 간섭 측정 데이터를 주파수 도메인으로 변환하도록 구성됨 ―
    을 포함하며,
    상기 전자 프로세서는 상기 주파수 도메인에서의 샘플 간섭 측정 데이터로부터 비선형 위상 변화를 식별하고 ― 상기 비선형 위상 변화는 상기 테스트 샘플에 의해 상기 측정 빔에 도입된 분산의 결과임 ―, 보상된 간섭 측정 데이터를 생성하기 위해 상기 샘플 간섭 측정 데이터로부터 상기 식별된 비선형 위상 변화를 제거하도록 더 구성되고,
    상기 전자 프로세서는 i) 상기 스택 내의 적어도 하나의 후보 계면 위치에 대한 정보를 식별하기 위해 상기 스택의 초기 스캔을 수행하고; (ii) 상기 테스트 샘플 내의 적어도 하나의 후보 계면 위치에 대한 정보에 기초하여, 상기 측정 빔의 초점 평면에 인접한 스택의 제1 계면을 위치시키기 위해 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 재배치하고; (iii) 상기 제1 계면이 상기 초점 평면을 통과하도록 상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 이동시키는 동안 상기 샘플 간섭 측정 데이터를 획득하도록 더 구성되고,
    상기 전자 프로세서는
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 서로에 대해 이동시키고;
    상기 간섭 측정 대물렌즈 및/또는 상기 테스트 샘플을 서로에 대해 이동시키는 중에, 상기 검출기 어레이로부터 복수의 간섭 신호를 기록하고 ― 상기 복수의 간섭 신호의 각각의 간섭 신호는 상기 테스트 샘플 상의 서로 다른 위치에 대응하고, 간섭 프린지(fringe) 주파수의 서브 나이키스트(sub-Nyquist) 주파수에서 샘플링됨 ―;
    상기 복수의 간섭 신호로부터 상기 적어도 하나의 후보 계면 위치를 결정함으로써
    상기 초기 스캔을 수행하도록 더 구성되는, 시스템.
  28. 제27항에 있어서,
    상기 전자 프로세서는,
    상기 주파수 도메인에서의 복수의 간섭 신호의 적어도 서브 세트의 평균 위상 변화를 획득하고,
    상기 평균 위상 변화에 적합을 적용하도록
    더 구성되는, 시스템.
  29. 제28항에 있어서,
    상기 평균 위상 변화에 대한 적합은 2차 형식을 갖는,
    시스템.
  30. 제28항에 있어서,
    상기 평균 위상 변화에 대한 적합은 2보다 큰 차수의 다항식인,
    시스템.
  31. 제27항에 있어서,
    상기 전자 프로세서는,
    상기 보상된 간섭 측정 데이터를 시간 도메인으로 다시 변환하고 ― 상기 시간 도메인에서의 보상된 간섭 측정 데이터는 복수의 보상된 간섭 측정 신호를 포함함 ―,
    상기 테스트 샘플에 대한 정보를 결정하기 위해 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하도록
    더 구성되는, 시스템.
  32. 제31항에 있어서,
    상기 테스트 샘플에 대한 정보는 상기 테스트 샘플에서 제1 계면과 제2 계면 사이의 거리를 포함하는,
    시스템.
  33. 제32항에 있어서,
    상기 전자 프로세서에 의해, 상기 테스트 샘플에서 상기 제1 계면과 상기 제2 계면 사이의 거리를 결정하기 위해, 상기 시간 도메인에서의 보상된 간섭 측정 데이터를 처리하는 것은,
    상기 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 상기 테스트 샘플에서의 제1 계면에 대응하는 제1 강도 피크 및 상기 테스트 샘플에서의 제2 계면에 대응하는 제2 강도 피크를 식별하는 것; 및
    상기 복수의 보상된 간섭 측정 신호의 각각의 보상된 간섭 측정 신호에 대해, 상기 식별된 제1 강도 피크가 발생하는 위치와 상기 식별된 제2 강도 피크가 발생하는 위치 사이의 간격을 유도하는 것
    을 포함하는, 시스템.
  34. 제31항에 있어서,
    상기 테스트 샘플에 대한 정보는 상기 테스트 샘플에서의 제1 계면의 평탄도를 포함하는,
    시스템.
  35. 제31항에 있어서,
    상기 테스트 샘플에 대한 정보는 상기 테스트 샘플에서의 제1 플레이트의 두께를 포함하는,
    시스템.
  36. 제31항에 있어서,
    상기 테스트 샘플 내의 2개의 플레이트는 갭에 의해 분리되고, 상기 테스트 샘플에 대한 정보는 상기 2개의 플레이트 사이의 갭의 두께를 포함하는,
    시스템.
  37. 제31항에 있어서,
    상기 테스트 샘플에 대한 정보는 상기 테스트 샘플에서의 박막 층의 두께를 포함하는,
    시스템.
  38. 제27항에 있어서,
    상기 간섭계 대물렌즈는 마이켈슨(Michelson) 간섭계 대물렌즈를 포함하는,
    시스템.
  39. 제27항에 있어서,
    상기 간섭계 대물렌즈는 미라우(Mirau) 간섭계 대물렌즈, 또는 리니크(Linnik) 간섭계 대물렌즈, 또는 광 시야 대물렌즈를 포함하는,
    시스템.
  40. 제27항에 있어서,
    상기 저 간섭성 광원은 백색 광원을 포함하는,
    시스템.
KR1020207027988A 2018-02-28 2019-02-27 다층 스택의 계측 KR102558264B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862636419P 2018-02-28 2018-02-28
US62/636,419 2018-02-28
PCT/US2019/019827 WO2019168982A1 (en) 2018-02-28 2019-02-27 Metrology of multi-layer stacks

Publications (2)

Publication Number Publication Date
KR20200118218A KR20200118218A (ko) 2020-10-14
KR102558264B1 true KR102558264B1 (ko) 2023-07-20

Family

ID=67684426

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027988A KR102558264B1 (ko) 2018-02-28 2019-02-27 다층 스택의 계측

Country Status (6)

Country Link
US (1) US10591284B2 (ko)
EP (1) EP3759423A4 (ko)
JP (1) JP7174060B2 (ko)
KR (1) KR102558264B1 (ko)
TW (1) TWI794416B (ko)
WO (1) WO2019168982A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333351B1 (ja) * 2016-12-27 2018-05-30 Ntn株式会社 測定装置、塗布装置、および膜厚測定方法
JP6402273B1 (ja) * 2018-05-18 2018-10-10 大塚電子株式会社 光学測定装置及び光学測定方法
AU2020368606A1 (en) * 2019-10-19 2022-04-07 Apollo Medical Optics, Ltd. Optical system and interference objective module therof
IT201900023202A1 (it) * 2019-12-06 2021-06-06 Adige Spa Procedimento e sistema per la determinazione della distanza di separazione tra un corpo e la superficie di un oggetto tramite tecniche d’interferometria ottica a bassa coerenza in regime di distorsione da sottocampionamento
CN111356896B (zh) 2020-02-24 2021-01-12 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
CN111406198B (zh) 2020-02-24 2021-02-19 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
CN111386441B (zh) * 2020-02-24 2021-02-19 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统
CN113008160B (zh) 2020-02-24 2023-02-10 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
CN111998794B (zh) * 2020-09-08 2021-04-27 中国民用航空飞行学院 一种通航飞机复合材料维修胶接表面形貌度量评价方法
US11846574B2 (en) 2020-10-29 2023-12-19 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction
CN116592795B (zh) * 2023-07-14 2023-09-26 浙江至格科技有限公司 一种ar镜片平行度测量方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181153A (zh) * 2007-12-12 2008-05-21 中国科学院上海光学精密机械研究所 高分辨率光学相干层析成像方法
JP2016125895A (ja) * 2014-12-26 2016-07-11 国立研究開発法人理化学研究所 波面歪み量測定装置、波面補償装置、光学測定装置、および方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398113A (en) 1993-02-08 1995-03-14 Zygo Corporation Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
US5953124A (en) 1998-01-19 1999-09-14 Zygo Corporation Interferometric methods and systems using low coherence illumination
US6882432B2 (en) * 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
SG125922A1 (en) * 2002-09-20 2006-10-30 Asml Netherlands Bv Device inspection
JP2006519993A (ja) * 2003-03-06 2006-08-31 ザイゴ コーポレーション 走査干渉分光を用いた複雑な表面構造のプロファイリング
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
US20060285120A1 (en) * 2005-02-25 2006-12-21 Verity Instruments, Inc. Method for monitoring film thickness using heterodyne reflectometry and grating interferometry
EP1883781B1 (en) * 2005-05-19 2019-08-07 Zygo Corporation Analyzing low-coherence interferometry signals for thin film structures
WO2008011510A2 (en) 2006-07-21 2008-01-24 Zygo Corporation Compensation of systematic effects in low coherence interferometry
JP5290322B2 (ja) 2007-12-14 2013-09-18 ザイゴ コーポレーション 走査干渉法を使用した表面構造の解析
JP5087186B1 (ja) 2009-06-19 2012-11-28 ザイゴ コーポレーション 等光路干渉計
KR101745026B1 (ko) * 2010-01-06 2017-06-08 파나소닉 아이피 매니지먼트 가부시키가이샤 간섭을 이용한 막 두께 계측 장치 및 간섭을 이용한 막 두께 계측 방법
US8804129B2 (en) * 2011-01-26 2014-08-12 Mitutoyo Corporation Method and apparatus for performing film thickness measurements using white light scanning interferometry
WO2014209987A1 (en) * 2013-06-26 2014-12-31 Zygo Corporation Coherence scanning interferometry using phase shifted interferometrty signals
US9377292B2 (en) 2013-08-06 2016-06-28 Zygo Corporation Interferometry employing refractive index dispersion broadening of interference signals
FR3045813B1 (fr) * 2015-12-22 2020-05-01 Unity Semiconductor Dispositif et procede de mesure de hauteur en presence de couches minces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181153A (zh) * 2007-12-12 2008-05-21 中国科学院上海光学精密机械研究所 高分辨率光学相干层析成像方法
JP2016125895A (ja) * 2014-12-26 2016-07-11 国立研究開発法人理化学研究所 波面歪み量測定装置、波面補償装置、光学測定装置、および方法

Also Published As

Publication number Publication date
EP3759423A1 (en) 2021-01-06
WO2019168982A1 (en) 2019-09-06
KR20200118218A (ko) 2020-10-14
JP7174060B2 (ja) 2022-11-17
US20190265023A1 (en) 2019-08-29
EP3759423A4 (en) 2021-04-28
JP2021515218A (ja) 2021-06-17
TW201944025A (zh) 2019-11-16
US10591284B2 (en) 2020-03-17
TWI794416B (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
KR102558264B1 (ko) 다층 스택의 계측
de Groot Coherence scanning interferometry
US7102761B2 (en) Scanning interferometry
US5398113A (en) Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
JP5087186B1 (ja) 等光路干渉計
US20040184038A1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
US20100007894A1 (en) Multilayer Structure Measuring Method and Multilayer Structure Measuring Apparatus
JP2007533977A5 (ko)
US20070008551A1 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
TW201728869A (zh) 用於測量薄層存在中的高度之裝置和方法
JPH09503065A (ja) 表面形状を測定する干渉計測方法及び装置
JP7138734B2 (ja) デュアル干渉法試料厚さ計
US11231269B2 (en) Arrangement and method for robust single-shot interferometry
Jo et al. Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry
US20220397392A1 (en) Device and method for imaging and interferometry measurements
KR101716452B1 (ko) 디지털 홀로그래피 마이크로스코프를 이용한 고단차 측정 방법
JP6196841B2 (ja) 透過波面計測装置及び透過波面計測方法
JP5699221B2 (ja) 仮想参照面を備えた干渉計
Knell et al. High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup
JP4081538B2 (ja) 透明平行平板の干渉縞解析方法
Debnath et al. Determination of film thickness and surface profile using reflectometry and spectrally resolved phase shifting interferometry
JP4988577B2 (ja) 鏡面域を有する基準面を備えた干渉系
CN109997010A (zh) 用于优化干涉仪的光学性能的方法及设备
Quinten et al. Optical Surface Metrology: Methods
Feng et al. Non-scanning techniques

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant