KR102556265B1 - Eco-friendly low-carbon grout material composition - Google Patents
Eco-friendly low-carbon grout material composition Download PDFInfo
- Publication number
- KR102556265B1 KR102556265B1 KR1020230067192A KR20230067192A KR102556265B1 KR 102556265 B1 KR102556265 B1 KR 102556265B1 KR 1020230067192 A KR1020230067192 A KR 1020230067192A KR 20230067192 A KR20230067192 A KR 20230067192A KR 102556265 B1 KR102556265 B1 KR 102556265B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- grout material
- cement
- time
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 118
- 239000011440 grout Substances 0.000 title claims abstract description 108
- 239000000203 mixture Substances 0.000 title claims abstract description 70
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 15
- 239000004568 cement Substances 0.000 claims abstract description 62
- 239000010881 fly ash Substances 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 230000035699 permeability Effects 0.000 claims abstract description 29
- 239000002893 slag Substances 0.000 claims abstract description 27
- 238000001879 gelation Methods 0.000 claims abstract description 21
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 239000000725 suspension Substances 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 26
- 230000035515 penetration Effects 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 23
- 239000010440 gypsum Substances 0.000 claims description 18
- 229910052602 gypsum Inorganic materials 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000004576 sand Substances 0.000 claims description 13
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims description 12
- 239000003245 coal Substances 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 239000002075 main ingredient Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 20
- 238000002347 injection Methods 0.000 description 20
- 239000007924 injection Substances 0.000 description 20
- 239000011398 Portland cement Substances 0.000 description 18
- 230000000740 bleeding effect Effects 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000005431 greenhouse gas Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- -1 etc. Substances 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- VPSXHKGJZJCWLV-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(1-ethylpiperidin-4-yl)oxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OC1CCN(CC1)CC VPSXHKGJZJCWLV-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Natural products O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- ZEMWIYASLJTEHQ-UHFFFAOYSA-J aluminum;sodium;disulfate;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZEMWIYASLJTEHQ-UHFFFAOYSA-J 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910001479 sodium magnesium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/02—Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
- C09K17/10—Cements, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0093—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/10—Acids or salts thereof containing carbon in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/143—Calcium-sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/26—Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
본 발명은 친환경 저탄소 지반 그라우트재 조성물에 관한 것이다.The present invention relates to an eco-friendly low-carbon ground grout material composition.
그라우팅(Grouting)은, 토목공사 또는 건축공사 시 누수 방지 또는 토질안정 등을 위하여 지반의 갈라진 틈이나 공동(空洞)에 충전재를 주입하는 시공방법을 지칭한다. 상기한 그라우팅에 의해, 지반속에서 고여있는 물이나 흐르고 있는 물을 차단하여 기초공사를 원활하게 수행할 수 있고, 연약한 지반을 단단하게 할 수 있다. 상기한 그라우팅에 사용되는 주입재를 그라우트(Grout) 또는 그라우트재라 한다.Grouting refers to a construction method of injecting filler into cracks or cavities in the ground to prevent leakage or stabilize soil during civil engineering or construction work. By the grouting described above, it is possible to smoothly perform the foundation work by blocking water stagnant or flowing in the ground, and it is possible to harden the soft ground. The injection material used for the above grouting is referred to as grout or grout material.
상기 그라우트의 종류로는, 시멘트, 물, 점토 등을 이용하는 시멘트계 그라우트, 철골기초의 충전이나 이음새 부분의 충전 보강용으로 주로 사용되는 철분질계 그라우트, 지수와 토질 안정용에 주로 사용되는 아스팔트계 그라우트, 케미컬 그라우트 등이 있다. 그런데 상기 시멘트계 그라우트는, 시멘트에 포함된 독성물질이 용출되어 토양을 오염시킨다는 단점이 있다. 또한 상기 케미컬 그라우트는, 시간의 경과에 따라 그라우트의 용탈이 진행되어, 주입된 그라우트가 본래의 기능을 상실하고 지하수를 오염시킨다는 문제점이 있다.Types of the grout include cement-based grout using cement, water, clay, etc., iron-based grout mainly used for filling steel foundations or filling and reinforcing joints, asphalt-based grout mainly used for water and soil stabilization, and chemical grout, etc. However, the cement-based grout has a disadvantage in that toxic substances contained in the cement are eluted and contaminate the soil. In addition, the chemical grout has a problem in that the grout is leached over time, so that the injected grout loses its original function and contaminates groundwater.
이러한 문제점을 개선하기 위하여, 최근에는 케미컬 그라우트를 화학적으로 개질한 약액(藥液) 그라우트의 사용이 증가하고 있다. 상기한 약액 그라우트는, 산성 실리카졸 약액 그라우트와 중성 실리카졸 약액 그라우트 등으로 분류할 수 있다. 상기 약액 그라우트는, A약액과 B약액으로 구성되어 있으며, 이 중에서 A약액은 규산나트륨(물유리 3종), B약액은 시멘트가 주로 사용되고 있다. 그런데 상기 시멘트 졸은 독성이 매우 강하여 지하수를 오염시킨다는 문제가 있다. 또한 규산나트륨과 시멘트를 혼합하여 그라우팅 시공을 하는 방식은, 졸(Sol) 상태의 약액이 겔(Gel) 상태로 되기까지의 시간인 겔 타임(Gel Time)이 매우 느리고, 차수 품질이 낮아 적용범위가 한정된다는 단점이 있다. 이러한 단점을 보완하기 위하여, 규산나트륨을 사용하는 경우, 황산, 중탄산나트륨 등을 첨가하여 겔 타임을 단축시키기도 한다.In order to improve these problems, recently, the use of chemical grout chemically modified chemical grout is increasing. The chemical grout described above can be classified into an acidic silica sol chemical grout and a neutral silica sol chemical grout. The liquid chemical grout is composed of liquid A and liquid B, and among them, sodium silicate (three types of water glass) is used as liquid chemical, and cement is mainly used as liquid chemical B. However, the cement sol has a problem in that it pollutes groundwater due to its high toxicity. In addition, the method of grouting by mixing sodium silicate and cement has a very slow gel time, which is the time it takes for a chemical solution in a sol state to become a gel state, and the order quality is low, so the scope of application is low. The disadvantage is that is limited. In order to compensate for this disadvantage, when sodium silicate is used, the gel time is shortened by adding sulfuric acid, sodium bicarbonate, and the like.
한편, 상기 B약액으로 사용되는 시멘트는, 중금속에 의한 환경오염뿐만 아니라, 시멘트 제조 시 이산화탄소를 대량으로 배출한다는 문제점이 있다.On the other hand, the cement used as the liquid B has a problem of not only environmental pollution by heavy metals, but also emission of a large amount of carbon dioxide during cement production.
이에 따라 본 발명의 기술분야에서 시멘트 사용량을 감소시키거나 시멘트를 사용하지 않고자 하는 시도가 이루어졌으나, 시멘트 사용량이 감소될수록 응결이 지연되어 주입된 그라우트가 지하수에 흘러내려 씻겨나가 버린다는 문제가 발생하였다. 이를 보완하기 위해 다시 시멘트 함량을 증가시키면, 시멘트의 큰 입자크기로 인한 지반 침투주입의 한계 및 낮은 재료분리저항성으로 인한 공동부 채움불량의 문제가 발생하였다.Accordingly, attempts have been made in the technical field of the present invention to reduce the amount of cement or not to use cement, but as the amount of cement is reduced, condensation is delayed and the injected grout flows down into groundwater and is washed away. did When the cement content was increased again to compensate for this, the problem of filling the cavity due to the limitation of ground penetration injection due to the large cement particle size and low material separation resistance occurred.
따라서, 시멘트 사용량을 현저하게 감소시키면서도 우수한 물성을 달성할 수 있는 저탄소 지반 그라우트재의 개발이 필요하다.Therefore, it is necessary to develop a low-carbon ground grout material capable of achieving excellent physical properties while significantly reducing the amount of cement used.
본 발명은 상기한 문제를 해결하기 위한 것으로, 시멘트 사용량을 현저하게 감소시켜 온실가스 발생을 감소시키면서도 그라우트재의 우수한 유동성 및 응결경화 특성을 갖고, 블리딩율이 낮고 지반으로의 침투성이 우수하며, 내구성이 향상된 친환경 저탄소 지반 그라우트재를 제공하기 위한 것이다.The present invention is intended to solve the above problems, while significantly reducing the amount of cement used to reduce greenhouse gas emissions, while having excellent fluidity and condensation hardening characteristics of grout materials, low bleeding rate, excellent penetration into the ground, and durability It is to provide an improved eco-friendly low-carbon ground grout material.
본 발명은 상기와 같은 문제를 해결하기 위해, 시멘트, 고로슬래그 미분말 및 초임계 유동층 보일러 플라이애시를 포함하는 주재; 1액형 상태로 겔화시간을 제어하기 위한 급경제; 응결시간을 제어하기 위한 응결조절제; 및 지반으로의 침투성을 향상시키기 위한 감수제;를 포함하고, 상기 주재는, 시멘트 5~20중량부, 고로슬래그 40~60중량부, 및 플라이애시 20~50중량부를 포함하는, 친환경 저탄소 지반 그라우트재 조성물을 제공한다.The present invention, in order to solve the above problems, a main material containing cement, blast furnace slag fine powder and supercritical fluidized bed boiler fly ash; rapid economy for controlling the gelation time in a one-component state; a setting regulator for controlling setting time; And a water reducing agent for improving permeability into the ground; wherein the main material is an eco-friendly low-carbon ground grout material comprising 5 to 20 parts by weight of cement, 40 to 60 parts by weight of blast furnace slag, and 20 to 50 parts by weight of fly ash. composition is provided.
본 발명의 일 실시예에 따르면, 종래 시멘트를 사용하는 지반 그라우트재와 비교하여 시멘트 사용량을 중량기준으로 20% 이하로 감소시키고, 시멘트 대신 고로슬래그 미분말 및 초임계 유동층 보일러 플라이애시를 포함하는 산업부산물을 적극 사용하여 온실가스를 80% 이상 저감시킬 수 있다.According to one embodiment of the present invention, compared to ground grout materials using conventional cement, the amount of cement used is reduced to 20% or less by weight, and industrial by-products including blast furnace slag fine powder and supercritical fluidized bed boiler fly ash instead of cement can reduce greenhouse gases by more than 80%.
또한, 본 발명의 일 실시예에 따르면, 시멘트의 사용량을 중량기준으로 80% 이상 줄임으로서 시멘트 독성에 의한 환경오염을 줄일 수 있으며, 미분말 함량이 높기 때문에 지반으로의 침투성이 향상되어 지반 그라우팅 공사 효율을 향상시킬 수 있다.In addition, according to one embodiment of the present invention, environmental pollution caused by cement toxicity can be reduced by reducing the amount of cement used by 80% or more based on weight, and the efficiency of ground grouting construction is improved because the fine powder content is high. can improve
또한, 본 발명의 일 실시예에 따르면, 고로슬래그 미분말, 초임계 유동층 보일러 플라이애시로 구성되는 미분말 함량이 높은 산업부산물을 적극 활용하면서도, 이에 따라 시멘트 보다 빠른 응결시간을 갖는 특성을 발휘하여 재료분리저항성이 향상됨으로써 종래에 비해 공동부 충전율을 향상시켜 블리딩율을 감소시키고, 또한 시멘트 보다도 높은 흐트러진 용적을 나타냄으로써 지반 그라우트재의 총 사용량을 감소시킬 수 있다.In addition, according to an embodiment of the present invention, while actively utilizing industrial by-products having a high fine powder content composed of blast furnace slag fine powder and supercritical fluidized bed boiler fly ash, material separation is achieved by exhibiting the characteristics of having a faster setting time than cement. By improving the resistance, the filling rate of the cavity is improved compared to the prior art, thereby reducing the bleeding rate, and also by exhibiting a higher disorganized volume than cement, it is possible to reduce the total amount of ground grout material used.
도 1은 본 발명의 일 실시예에 다른 시험성적 결과를 나타낸 것이고, 도 2는 종래 일반적인 포틀랜드 시멘트의 시험성적 결과를 나타낸 것이다.
도 3 내지 도 6은 본 발명과 종래 포틀랜드 시멘트에 대한 재료분리저항성을 측정한 결과를 나타낸 것이다.1 shows test results according to an embodiment of the present invention, and FIG. 2 shows test results of conventional Portland cement.
3 to 6 show the results of measuring material separation resistance for the present invention and conventional Portland cement.
이하, 본 발명의 실시예들이 상세하게 설명된다. 그러나 본 발명이 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 본 발명의 내용을 더 완전하게 알려주기 위하여 제공되는 것이다.Hereinafter, embodiments of the present invention are described in detail. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms, but only the present embodiments make the disclosure of the present invention complete and provide the content of the present invention to those skilled in the art. It is provided to inform you more completely.
본 명세서에서 일 요소가 다른 요소 '위' 또는 '아래'에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 '위' 또는 '아래'에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 본 명세서에서, '상부' 또는 '하부' 라는 용어는 관찰자의 시점에서 설정된 상대적인 개념으로, 관찰자의 시점이 달라지면, '상부' 가 '하부'를 의미할 수도 있고, '하부'가 '상부'를 의미할 수도 있다.In this specification, when an element is referred to as being positioned 'above' or 'below' another element, this means that the element is positioned directly 'above' or 'below' another element, or an additional element is present between them. It includes all meanings that can be intervened. In this specification, the term 'upper' or 'lower' is a relative concept established from the observer's point of view, and if the observer's point of view changes, 'upper' may mean 'lower', and 'lower' may mean 'upper' could mean
복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다. 또한, '포함하다' 또는 '가지다' 등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In a plurality of drawings, like reference numerals denote substantially the same elements. In addition, terms such as 'comprise' or 'have' are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, but one or more other features, numbers, or steps However, it should be understood that it does not preclude the possibility of existence or addition of operations, components, parts, or combinations thereof.
한편, 본 발명에서 지칭하는 용어 그라우트(Grout) 또는 그리우트재는 그라우팅에 사용되는 주입재를 의미한다.Meanwhile, the term grout or grout material referred to in the present invention means an injection material used for grouting.
한편, 본 발명의 친환경 저탄소 지반 그라우트재는 방조제, 저수지, 하천제방 등의 수리구조물과 지하철, 터널, 도로공사 등의 대단위 건축 및 토목공사에 이르기까지 지반 하부의 저류수를 차단하고 지반보강을 위하여 실시하는 차수그라우팅 공사에 사용될 수 있다.On the other hand, the eco-friendly low-carbon ground grout material of the present invention is implemented for ground reinforcement by blocking water storage at the bottom of the ground, ranging from hydraulic structures such as embankments, reservoirs, and river embankments to large-scale construction and civil engineering works such as subways, tunnels, and road construction. It can be used for order grouting work.
한편, 본 발명에서 지칭하는 용어 블리딩은 타설된 콘크리트에 있어서 시멘트와 골재가 침강하고, 물이 상승하여 상면에 모이는 현상을 의미한다.On the other hand, the term bleeding referred to in the present invention refers to a phenomenon in which cement and aggregate settle and water rises and collects on the upper surface of the poured concrete.
한편, 본 발명의 그라우트재는 1액형인 것이 적용될 수 있다.On the other hand, the one-component grout material of the present invention may be applied.
본 발명의 발명자들은 방조제, 저수지, 하천제방의 차수 그라우팅 공사에서 종래 사용되는 시멘트 그라우트재의 문제점으로 온실가스의 과다한 배출, 시멘트 독성에 의한 환경오염, 시멘트의 큰 입자크기로 인한 지반 침투주입의 한계 및 낮은 재료분리저항성으로 인한 공동부 채움불량 등을 해결하고자 다양한 시행착오를 경험한 끝에 본 발명을 완성하기에 이르렀다.The inventors of the present invention have problems with cement grout materials conventionally used in seawall, reservoir, and river embankment construction, such as excessive emission of greenhouse gases, environmental pollution due to cement toxicity, limitations in ground penetration and injection due to the large particle size of cement, and After experiencing various trials and errors in order to solve the filling defect of the cavity due to low material separation resistance, the present invention was completed.
본 발명의 발명자들은 온실가스 발생 저감을 위한 시멘트의 사용량을 줄이기 위해 고로슬래그 미분말 및 플라이애시와 같은 산업부산물을 적극 활용하는 경우, 시멘트의 사용량이 줄어들수록 응결이 지연되어 주입된 그라우트재가 지하수에 흘러내려 씻겨나가 버리는 문제가 발생함을 확인하였다. 이러한 문제를 해결하기 위해 본 발명의 발명자들은 그라우트재의 응결시간을 조절하여 주입에 필요한 시간은 확보하되, 주입이 완료된 이후 응결이 시작되도록 함으로써 그라우트재의 유실, 및 과도한 범위의 주입이 이루어지지 않는 지반 그라우트재를 개발하고자 하였다. 이와 함께, 본 발명의 발명자들은 현장에서의 품질관리 및 주입장비(믹서 및 펌프)의 간소화를 위해 하나의 믹서에서 물과 혼합하여 하나의 주입펌프로 시공하고자 하는 지반부위에 주입하는 1액형 지반 그라우트재를 개발하고자 하였다.The inventors of the present invention actively utilize industrial by-products such as blast furnace slag fine powder and fly ash to reduce the amount of cement used for reducing greenhouse gas emissions. It was confirmed that the problem of washing off occurred. In order to solve this problem, the inventors of the present invention adjust the setting time of the grout material to secure the time required for injection, but to start condensation after the injection is completed, so that the loss of the grout material and the excessive range of injection are not achieved. material was to be developed. In addition, the inventors of the present invention are a one-component ground grout that is mixed with water in one mixer and injected into the ground to be constructed with one injection pump for on-site quality control and simplification of injection equipment (mixer and pump) material was to be developed.
한편, 본 발명의 발명자들은 상기와 같은 기술적인 과제를 해결하기 위해서는 칼슘설포알루미네이트계(4CaO.3Al2O3.SO3), 칼슘플로알루미네이트계(11CaO.7Al2O3.CaF2), 알루미나시멘트계(CaO.Al2O3, CaO.2Al2O3) 등 속경성 재료와 지연제를 적절히 사용하거나 물유리나 실리카졸과 같은 급결액을 사용함으로서 겔타임을 수십초에서 수시간 정도로 조절하는 것이 가능하지만, 2액형의 주입장비를 설치하여야 하므로 장비의 구성이 복잡하고, 경제성이 떨어지는 단점이 있다는 것을 알게 되었다.On the other hand, the inventors of the present invention, in order to solve the above technical problems, calcium sulfoaluminate (4CaO.3Al 2 O 3 .SO 3 ), calcium flow aluminate (11CaO.7Al 2 O 3 .CaF 2 ) , Alumina cement system (CaO.Al 2 O 3 , CaO.2Al 2 O 3 ), etc., appropriately used fast-hardening materials and retardants, or by using quick-setting liquids such as water glass or silica sol, the gel time is controlled from several tens of seconds to several hours. It is possible to do this, but it has been found that the configuration of the equipment is complicated and the economical efficiency is low because the two-component injection equipment must be installed.
이에 따라, 본 발명의 발명자들은 시멘트, 고로 슬래그 미분말, 초임계 유동층 보일러 플라이애시, 칼슘알루미네이트, 석고, 응결조절제 및 감수제의 최적 조합에 의해 응결시간을 적절히 조절할 수 있는 기술을 개발함으로써, 종래 사용되는 시멘트에 비하여 온실가스 발생을 현저하게 낮추면서도, 그라우트재의 유동성 및 응결경화 특성을 만족하며, 친환경적이며, 블리딩률이 적고 지반으로의 침투성이 우수하며, 내구성이 향상된 친환경 저탄소 지반 그라우트재를 개발하였다.Accordingly, the inventors of the present invention develop a technique for appropriately controlling the setting time by optimal combination of cement, blast furnace slag powder, supercritical fluidized bed boiler fly ash, calcium aluminate, gypsum, setting regulator and water reducing agent, developed an eco-friendly low-carbon ground grout material that significantly lowers greenhouse gas emissions compared to conventional cement, satisfies the fluidity and condensation hardening characteristics of the grout material, is environmentally friendly, has low bleeding rate, excellent permeability to the ground, and improved durability. .
본 발명은, 시멘트, 고로슬래그 미분말 및 초임계 유동층 보일러 플라이애시를 포함하는 주재, 1액형 상태로 겔화시간을 제어하기 위한 급경제, 응결시간을 제어하기 위한 응결조절제, 및 지반으로의 침투성을 향상시키기 위한 감수제를 포함한다.The present invention, a main material including cement, blast furnace slag fine powder and supercritical fluidized bed boiler fly ash, a rapid economy for controlling gelation time in a one-component state, a setting control agent for controlling setting time, and improving permeability into the ground Contains a water reducing agent for
상기 시멘트는, 조강 또는 초조강 등의 각종 포틀랜드 시멘트를 분쇄 또는 분급에 의해 바람직하게는 20μm 이하의 평균 입경을 갖는 미립자시멘트로 된 것이 적용될 수 있다. 예를 들어, 15μm, 일 예로 10μm 이하인 것이 적용될 수 있다. 적용되는 시멘트 평균 입경이 20μm를 초과하면 주입시 침투성이 열악해지고, 응결이후의 초기 경화반응을 향상시키는데 충분하지 않다는 문제가 발생할 수 있다.As the cement, a fine particle cement having an average particle diameter of 20 μm or less may be applied by crushing or classifying various Portland cements such as crude steel or crude steel. For example, 15 μm, for example, 10 μm or less may be applied. If the average particle diameter of the applied cement exceeds 20 μm, problems such as poor permeability during injection and insufficient improvement of the initial curing reaction after setting may occur.
상기 고로슬래그 미분말은 철강제조의 과정에서 고로에서 배출되는 용융상태의 슬래그 등을 물 등으로 급냉시킨 유리질상을 분쇄하여 미분말화한 것으로, 잠재 수경성을 가지며, 알칼리의 자극효과에 의해 경화하는 특징을 갖는 것이 적용될 수 있다.The blast furnace slag fine powder is obtained by pulverizing and finely pulverizing the vitreous phase obtained by quenching molten slag discharged from a blast furnace with water or the like in the course of steel manufacturing, and has latent hydraulic properties and hardens by the stimulating effect of alkali. What you have can be applied.
상기 고로슬래그 미분말의 조성은 CaO 함유량 35~50중량%, Al2O3 함유량 10~25중량% 및 SiO2 함유량 31~40중량%인 것이 적용될 수 있다. 예를 들어, CaO 함유량 40~50중량%, Al2O3 함유량 10~25중량% 및 SiO2 함유량 31~40중량%가 적용될 수 있다. 상기 고로슬래그 미분말은 MgO, TiO2, Fe2O3, Na2O, K2O 등의 불순물이 함유되어 있으나, 본 발명의 효과를 저해하지 않는 범위내에 있으면 허용되어질 수 있다.The composition of the blast furnace slag fine powder may be 35 to 50% by weight of CaO, 10 to 25% by weight of Al 2 O 3 and 31 to 40% by weight of SiO 2 . For example, a CaO content of 40 to 50 wt%, an Al 2 O 3 content of 10 to 25 wt%, and a SiO 2 content of 31 to 40 wt% may be applied. Although the blast furnace slag fine powder contains impurities such as MgO, TiO 2 , Fe 2 O 3 , Na 2 O, and K 2 O, it can be accepted as long as it does not impair the effect of the present invention.
본 발명의 그라우트재에 상기 고로슬래그 미분말을 함유하는 것으로 높은 주입성과 장기강도 발현성이 부여된다. 상기 고로슬래그 미분말의 분말도는 평균 입경 10μm 인 것이 적용될 수 있다. 10μm를 초과하는 경우 주입시 침투성이 저하하는 것과 더불어 단기, 장기적인 강도의 발현성 향상이 충분히 나타나지 않을 수 있다.By containing the blast furnace slag fine powder in the grout material of the present invention, high injectability and long-term strength developability are imparted. The fine powder of the blast furnace slag may have an average particle diameter of 10 μm. If the thickness exceeds 10 μm, the short-term and long-term strength development may not be sufficiently improved along with the decrease in permeability during injection.
상기 초임계 유동층 보일러 플라이애시는 시멘트를 대체하는 결합재로, 초임계 상태에서 보일러를 가동하는 초임계 유동층 보일러에서 배출되는 플라이애시를 포함할 수 있다. 초임계 유동층 보일러는 물이 증기로 변환되는 임계조건(225.5kg/㎝2 증기압, 374℃ 증기온도)으로 가하여 발전하는 보일러를 지칭할 수 있다. 일반적인 플라이애시는 석탄화력발전소에서 연료(미분말로 분쇄한 석탄)와 공기를 주입하여 연소(1,200~1,500℃)하는 공정을 통해 배출되는 플라이애시이고, 순환 유동층 보일러 플라이애시는 순환 유동층 보일러에서 공기와 석회를 동시에 주입하여 지속적으로 열을 순환시키면서 석탄을 완전 연소(760~950℃)하는 공정을 통해 배출되는 플라이애시이다. 이에 반해 상기 초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러에서 공기대신 산소를 주입하여 초임계 상태에서 연료(석탄)을 연소하는 공정을 통해 배출되는 플라이애시인 것을 지칭할 수 있다. 이들 플라이애시들은 석탄을 연료로 하는 발전설비에서 배출되는 플라이애시라는 점에서 공통점이 있으나, 발전설비의 구체적인 처리방식이 달라 플라이애시의 화학성분과 물리적 특성에서 차이가 있으며, 특히 초임계 유동층 보일러 플라이애시는 20% 이상의 CaO, 15% 이상의 Fe2O3, 8% 이상의 SO3 성분을 함유할 수 있다. CaO와 SO3에 의한 CaSO4는 Ca(OH)2 및 C3A와 반응하여 에트링자이트(Ettringite) 수화물을 형성하며, 초기강도 증진에 기여하고 더불어 Fe2O3는 CaO와 결합하여 수화반응성이 있는 칼슘 페라이트(2CaO.Fe2O) 광물을 일부 형성할 수 있다. 칼슘페라이트 광물은 일반적인 플라이애시에서는 형성되지 않거나 극히 일부 생성되는 수화물로서, Fe2O3의 함량이 높은 초임계 유동층 보일러 플라이애시를 사용시에 형성되는 수화물이다.The supercritical fluidized bed boiler fly ash is a binder that replaces cement, and may include fly ash discharged from a supercritical fluidized bed boiler operating a boiler in a supercritical state. A supercritical fluidized bed boiler may refer to a boiler that generates power by applying critical conditions (225.5 kg/cm 2 vapor pressure, 374° C. steam temperature) in which water is converted into steam. Common fly ash is fly ash discharged from a coal-fired power plant by injecting fuel (coal pulverized into fine powder) and air and burning it (1,200-1,500 ° C). It is fly ash discharged through the process of completely burning coal (760~950℃) while continuously circulating heat by injecting lime at the same time. On the other hand, the supercritical fluidized bed boiler fly ash may refer to fly ash discharged through a process of burning fuel (coal) in a supercritical state by injecting oxygen instead of air in a supercritical fluidized bed boiler. These fly ash have a common point in that they are fly ash discharged from power generation facilities using coal as fuel, but the chemical composition and physical properties of fly ash are different due to the specific treatment method of power generation facilities. In particular, the supercritical fluidized bed boiler fly Ash may contain 20% or more of CaO, 15% or more of Fe 2 O 3 , and 8% or more of SO 3 components. CaSO 4 by CaO and SO 3 reacts with Ca(OH) 2 and C 3 A to form Ettringite hydrate, contributing to the enhancement of initial strength, and Fe 2 O 3 combines with CaO to hydrate May form some reactive calcium ferrite (2CaO.Fe 2 O) minerals. Calcium ferrite mineral is a hydrate that is not formed in general fly ash or is only partially produced, and is a hydrate formed when using supercritical fluidized bed boiler fly ash having a high content of Fe 2 O 3 .
본 발명에서 상기 초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러 플라이애시 100중량부 당 Fe2O3 10~20중량부, SO3 5~20중량부, Free CaO 1~10중량부를 함유하면서 분말도가 평균입경 10μm 이하인 것이 적용될 수 있다. 본 발명의 조성에서 Free CaO가 10중량부 초과인 경우 초기강도가 열악해질 수 있고, 1중량부 미만인 경우 Free CaO 사용에 따른 효과가 확보되지 않는다.In the present invention, the supercritical fluidized bed boiler fly ash contains 10 to 20 parts by weight of Fe 2 O 3 , 5 to 20 parts by weight of
본 발명의 지반 그라우트재 조성물에서 시멘트, 고로슬래그 미분말, 및 초임계 유동층 보일러 플라이애시의 함량은, 시멘트 5~20중량부, 고로슬래그 미분말 40~60중량부, 및 플라이애시 20~50중량부인 것이 바람직하다.In the ground grout material composition of the present invention, the contents of cement, blast furnace slag fine powder, and supercritical fluidized bed boiler fly ash are 5 to 20 parts by weight of cement, 40 to 60 parts by weight of blast furnace slag powder, and 20 to 50 parts by weight of fly ash. desirable.
시멘트 함량이 5중량부 미만이면 응결이후 초기 경화반응이 늦어지는 현상이 나타나며, 20중량부 초과이면 주입재를 현탁액으로 하였을 때의 점성이 증가하여 침투성이 떨어질 수 있으며, 친환경성, 경제성이 떨어지고 중금속 오염 증가도 우려된다.If the cement content is less than 5 parts by weight, the initial curing reaction after setting is delayed, and if it is more than 20 parts by weight, the viscosity of the injection material as a suspension increases and permeability may decrease, eco-friendliness and economic efficiency are reduced, and heavy metal contamination An increase is also a concern.
고로슬래그 미분말의 함량이 40중량부 미만이면 경제성이 떨어지고 60중량부 초과이면 반응성이 떨어져 초기강도의 확보가 어려워질 수 있다.If the content of the blast furnace slag fine powder is less than 40 parts by weight, economic efficiency is poor, and if it exceeds 60 parts by weight, the reactivity may be reduced, making it difficult to secure initial strength.
초임계 유동층 보일러 플라이애시의 함량이 20중량부 미만이면 재료분리저항성이 열악해지고, 50중량부 초과이면 반응성이 열악해지고 주입재를 현탁액으로 하였을 때 점성이 증가하여 주입성이 저하될 우려가 있다.If the content of the supercritical fluidized bed boiler fly ash is less than 20 parts by weight, material separation resistance is poor, and if it is more than 50 parts by weight, the reactivity is poor, and when the injection material is used as a suspension, the viscosity increases and the injectability may deteriorate.
본 발명의 그라우트재 조성물은 1액형 상태로 겔화시간을 제어하기 위한 급경제를 더 포함할 수 있고, 급경제는 주재 및 급경제의 혼합물 100중량부를 기준으로 1~10중량부로 포함될 수 있다.The grout material composition of the present invention may further include a rapid economy for controlling the gelation time in a one-component state, and the rapid economy may be included in 1 to 10 parts by weight based on 100 parts by weight of the mixture of the main material and the rapid economy.
급경제는 칼슘알루미네이트와 석고의 혼합물인 것이 적용될 수 있다. A rapid economy may be applied that is a mixture of calcium aluminate and gypsum.
본 발명에서 적용되는 칼슘알루미네이트는 석회석과 보오크사이트를 원료로 하여 전기로 등에 의해 용융시켜 얻어진 것을 평균입경 10μm 이하로 미분쇄한 것으로 화학식 12CaO·7Al2O3인 것일 수 있다.Calcium aluminate applied in the present invention is obtained by melting limestone and bauxite as raw materials in an electric furnace or the like and finely pulverized to an average particle diameter of 10 μm or less, and may have the formula 12CaO·7Al 2 O 3 .
칼슘알루미네이트의 분말도는 침투성의 측면에서 평균입경 10μm 이하가 바람직하며, 평균입경 10μm 이상이면 침투성이 열악해질 우려가 있다.The fineness of calcium aluminate is preferably 10 μm or less in average particle diameter in terms of permeability, and if the average particle diameter is 10 μm or more, there is a concern that the permeability may be poor.
본 발명에서 적용되는 석고는 무수석고, 반수석고 및 이수석고를 포함할 수 있고, 특히 천연석고나 인산부생석고, 배연탈황석고 및 불산부생석고 등의 화학석고 또는 열처리를 통해 얻어진 석고를 포함할 수도 있다. 한편, 본 발명에서는 강도발현성이 큰 장점을 가진 천연무수석고를 사용하는 것이 바람직하다.The gypsum applied in the present invention may include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum, and in particular, may include natural gypsum, chemical gypsum such as phosphate gypsum, flue gas desulfurization gypsum and hydrofluoric gypsum, or gypsum obtained through heat treatment. On the other hand, in the present invention, it is preferable to use natural anhydrite having the advantage of high strength development.
석고의 분말도는 평균입경 10μm 이하인 것이 바람직하며 10μm 이상이면 주입시 침투성이 저하할 우려가 있다.The average particle size of gypsum is preferably 10 μm or less, and if it is more than 10 μm, the permeability may decrease during injection.
석고의 함량은 칼슘알루미네이트 100중량부를 기준으로 50~200중량부일 수 있고, 예를 들어, 70~150중량부가 적용될 수 있다. 50중량부 미만이면 단기강도가 적어지는 문제가 발생할 수 있으며, 200중량부 이상이면 침투성이 저하하는 문제가 발생할 수 있다.The content of gypsum may be 50 to 200 parts by weight based on 100 parts by weight of calcium aluminate, for example, 70 to 150 parts by weight may be applied. If it is less than 50 parts by weight, short-term strength may be reduced, and if it is more than 200 parts by weight, the problem of lowering permeability may occur.
급경제는 주재 및 급경제의 혼합물 100중량부를 기준으로 1~10중량부로 포함될 수 있다. 칼슘알루미네이트와 석고의 합계의 비율이 1중량% 미만이면 초기강도의 발현이 어려우며, 칼슘알루미네이트와 석고의 합계의 비율 10중량부 초과이면 경화시간의 제어가 어렵고, 침투성이 저하될 우려가 있다.The rapid economy may be included in 1 to 10 parts by weight based on 100 parts by weight of the mixture of the main ingredient and the rapid economy. If the ratio of the total of calcium aluminate and gypsum is less than 1% by weight, it is difficult to develop initial strength, and if the ratio of the total of calcium aluminate and gypsum exceeds 10 parts by weight, it is difficult to control the curing time and there is a risk of deterioration in permeability. .
본 발명의 그라우트재 조성물은 응결시간을 제어, 즉, 응결시간을 미리 설정하고 시공하기 위해 응결조절제를 더 포함할 수 있으며, 상기 주재 및 급경제 혼합물 100중량부를 기준으로 0.05~1중량부를 포함할 수 있다.The grout material composition of the present invention may further include a setting control agent to control the setting time, that is, set the setting time in advance and apply it, and may include 0.05 to 1 part by weight based on 100 parts by weight of the main material and the rapid economy mixture. can
본 발명에서 응결조절제는 알루민산 나트륨, 알루민산 칼륨 등의 알루민산염, 탄산나트륨, 탄산칼륨 등의 탄산염, 수산화나트륨, 수산화칼륨 등의 수산화물, 황산알루미늄, 황산철 및 명반 등의 황산염, 규산나트륨, 규산칼륨 등의 규산염, 인산나트륨, 인산칼슘 및 인산마그네슘 등의 인산염 이와 더불어 붕산리튬, 붕산나트륨 등의 붕산염 등의 무기염, 구연산, 글루콘산, 주석산 또는 이들중의 나트륨, 칼륨염 및 칼슘염 등의 유기산 및 당류가 고려될 수 있으며, 이들중에서 1종 또는 2종 이상을 혼합할 수 있다. 이들 중 본 발명의 그라우트재 조성물에 필요한 소정의 응결시간 및 경화시간을 확보하기 위해 탄산염과 유기산이 혼합된 구성이 적용되는 것이 바람직하다. 이때, 염으로서는 나트륨염, 칼륨염이 적용될 수 있다.In the present invention, the setting control agent is aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, sulfates such as aluminum sulfate, iron sulfate and alum, sodium silicate, Silicates such as potassium silicate, phosphates such as sodium phosphate, calcium phosphate and magnesium phosphate In addition, inorganic salts such as borates such as lithium borate and sodium borate, citric acid, gluconic acid, tartaric acid, or sodium, potassium and calcium salts thereof, etc. Of organic acids and sugars may be considered, and one or two or more of them may be mixed. Among them, it is preferable to apply a mixture of carbonate and organic acid in order to secure a predetermined setting time and hardening time required for the grout material composition of the present invention. At this time, sodium salt and potassium salt may be applied as the salt.
한편, 탄산염과 유기산을 병용하는 경우, 탄산염의 사용량은 유기산 100중량부에 대하여 50~1,000중량부가 적용될 수 있다. 50중량부 미만이면 초기강도 발현성이 떨어질 우려가 있으며, 1,000중량부를 초과하면 시공에 필요한 지연시간을 얻기 어려울 수 있다.On the other hand, in the case of using a carbonate and an organic acid in combination, the amount of the carbonate may be applied in an amount of 50 to 1,000 parts by weight based on 100 parts by weight of the organic acid. If it is less than 50 parts by weight, there is a risk of deterioration in the development of initial strength, and if it exceeds 1,000 parts by weight, it may be difficult to obtain the delay time required for construction.
응결조절제의 함량은 필요한 응결시간에 따라서 조절될 수 있으며, 예를 들어, 상기 주재 및 급경제 혼합물 100중량부를 기준으로 0.05~1중량부를 포함할 수 있다. 0.05중량부 미만은 경화시간의 확보가 어려울 수 있으며, 1중량부를 초과하면 경화시간이 불필요하게 길어지게 되며 불균일하게 고화될 수 있다.The content of the setting regulator may be adjusted according to the required setting time, and may include, for example, 0.05 to 1 part by weight based on 100 parts by weight of the main material and the rapid economy mixture. If it is less than 0.05 parts by weight, it may be difficult to secure a curing time, and if it exceeds 1 part by weight, the curing time is unnecessarily long and may be non-uniformly solidified.
본 발명의 그라우트재 조성물은 지반으로의 침투성을 향상시키기 위해 감수제를 더 포함할 수 있으며, 시멘트 100중량부를 기존으로 20~30중량부로 포함될 수 있다.The grout material composition of the present invention may further include a water reducing agent to improve permeability into the ground, and 100 parts by weight of cement may be conventionally included in 20 to 30 parts by weight.
본 발명에서 감수제는 나프탈렌설폰산염계, 리그니설폰산염계, 멜라민설폰산염계, 폴리카르본산계 등의 고성능감수제가 적용될 수 있으며, 이들중에서, 지반 그라우트재의 점도를 낮추는 측면에서는 멜라닌설폰산염계가 바람직하게 적용될 수 있다.In the present invention, high-performance water reducing agents such as naphthalene sulfonates, ligni sulfonates, melamine sulfonates, and polycarboxylic acids may be applied as the water reducing agent, and among them, melanin sulfonates are preferable in terms of lowering the viscosity of the ground grout material. can be applied
감수제의 함량은 시멘트 100중량부에 대하여 고형분으로 계산하여 20~30중량부로 적용될 수 있으며, 20중량부 미만이면 낮은 물비의 경우 침투성이 열악해질 우려가 있으며, 30중량부 초과이면 지반 그라우트재의 점도가 올라가 침투성이 열악해질 우려가 있다.The content of the water reducing agent can be applied at 20 to 30 parts by weight calculated as solid content with respect to 100 parts by weight of cement. If it is less than 20 parts by weight, there is a concern that the permeability will be poor in the case of a low water ratio, and if it exceeds 30 parts by weight, the viscosity of the ground grout material will decrease. There is a possibility that it will rise and the permeability will be poor.
지반 그라우트재를 현탁액으로 하는 경우의 물의 사용량은 펌프로 압송이 가능하면 특별히 한정하는 것은 아니나, 주재 및 급경제의 혼합물 100중량부를 기준으로 100~1,000중량부가 바람직하며, 100중량부 미만에서는 현탁액의 점도가 높아져 침투성이 열악해질 수 있으며, 1,000중량부를 초과하면 경화되지 않는 문제가 발생할 수 있다.The amount of water used in the case of using the ground grout material as a suspension is not particularly limited as long as it can be pumped, but is preferably 100 to 1,000 parts by weight based on 100 parts by weight of the mixture of the main material and the rapid economy, and less than 100 parts by weight of the suspension. Viscosity may increase and permeability may be poor, and if it exceeds 1,000 parts by weight, a problem of not being cured may occur.
지반 그라우트재의 혼합방법 및 주입방법으로는, 주입관의 종류에 따라 단관롯트공법, 단관스트레이너공법, 이중관단상공법, 이중관복상공법, 이중관더블팩커공법 등 통상적으로 사용되는 공법이 적용될 수 있으나, 이에 제한되지 않는다.As the mixing method and injection method of the ground grout material, commonly used methods such as the single pipe lot method, the single pipe strainer method, the double pipe single pipe method, the double pipe double pipe method, and the double pipe double packer method may be applied depending on the type of injection pipe, but are limited thereto. It doesn't work.
본 발명에서의 지반 그라우트재의 최대입경은 20μm를 넘지 않은 것이 바람직하다. 예를 들어, 평균입경이 15μm 미만일 수 있으며, 일 예로, 10μm로 제어될 수 있다. 최대입경이 20μm를 초과하면 지반의 지질에 따라서 미세한 간극으로의 주입이 어려운 경우가 발생할 수 있다.It is preferable that the maximum particle diameter of the ground grout material in the present invention does not exceed 20 μm. For example, the average particle diameter may be less than 15 μm and, for example, may be controlled to 10 μm. If the maximum particle diameter exceeds 20 μm, it may be difficult to inject into fine gaps depending on the geology of the ground.
한편, 본 발명에서의 지반 그라우트재는 현탁액이 흐르지 않는 시간으로 측정되는 겔화시간이 15시간 이하인 것, 현탁액이 모래층 20㎝ 깊이까지 도달할 때까지의 시간이 22분 이하인 것, 침투후 현탁액의 경화시간이 5시간 이하인 것 및 이들의 조합을 나타낼 수 있다. 본 발명의 기술구성요소들의 조합에 의할 때, 겔화시간이 15시간 이하에서 단기강도가 향상되고, 현탁액이 모래층 20㎝ 깊이까지 도달할 때까지의 시간이 22분을 초과하는 경우 침투성이 향상되며, 침투후 현탁액의 경화시간이 5시간 이하인 경우 그라우트재가 환경 요인에 의해 소실되지 않을 수 있다.On the other hand, the ground grout material in the present invention has a gelation time of 15 hours or less, measured by the time the suspension does not flow, a time until the suspension reaches a depth of 20 cm in the sand layer of 22 minutes or less, and a hardening time of the suspension after penetration. 5 hours or less, and combinations thereof. According to the combination of the technical components of the present invention, the short-term strength is improved when the gelation time is 15 hours or less, and the permeability is improved when the time until the suspension reaches a depth of 20 cm in the sand layer exceeds 22 minutes However, if the hardening time of the suspension after infiltration is 5 hours or less, the grout material may not be lost due to environmental factors.
이처럼 본 발명의 1액형 친환경 저탄소 지반 그라우트재가 적용되는 경우, 종래의 일반적인 포틀랜드 시멘트와 벤토나이트를 사용하는 1액형 그라우트재와는 달리, 고로슬래그 미분말 및 초임계 유동층 보일러 플라이애시를 포함하는 산업부산물을 다량으로 포함하여 시멘트 사용을 최소화하여, 온실가스인 이산화탄소의 발생을 크게 감소시키고, 시멘트의 독성에 의한 환경오염을 방지할 수 있다. 또한, 본 발명은 지반 그라우트재의 응결시간과 점성을 조절하여 재료분리 저항성을 향상시켜, 벤토나이트를 사용하지 않아도 블리딩률을 감소시킬 수 있기 때문에 주입작업이 완료된 이후 응결 경화가 이루어지도록 함으로써 공극을 채울 수 있게 된다. 이에 따라, 저수지, 방조제, 하천제방과 같이 누수 및 저류수에 의한 침식 및 세굴로 제체 하부에 공동과 공극이 다수 형성된 경우에도, 주입된 그라우트재의 유실을 방지할 수 있고, 주입을 위한 과도한 시설이 불필요하며, 과도한 범위까지도 효율적인 주입이 가능해진다.In this way, when the one-component eco-friendly low-carbon ground grout material of the present invention is applied, unlike conventional one-component grout materials using general Portland cement and bentonite, a large amount of industrial by-products including blast furnace slag powder and supercritical fluidized bed boiler fly ash are used. It is possible to minimize the use of cement, greatly reduce the generation of carbon dioxide, which is a greenhouse gas, and prevent environmental pollution caused by the toxicity of cement. In addition, since the present invention can reduce the bleeding rate without using bentonite by adjusting the setting time and viscosity of the ground grout material to improve material separation resistance, it is possible to fill the void by allowing condensation hardening to occur after the injection operation is completed. there will be Accordingly, even when a large number of cavities and voids are formed in the lower part of the embankment due to erosion and scour caused by leaks and stored water, such as reservoirs, embankments, and river embankments, loss of the injected grout material can be prevented, and excessive facilities for injection can be prevented. It is unnecessary, and efficient injection is possible even to an excessive range.
본 발명의 지반 그라우트재는 일반적인 포틀랜드 시멘트에 비해 입자의 크기가 작아서 분말도가 높으므로 지반으로의 침투가 용이하며, 흐트러진 용적이 일반적인 포틀랜드 시멘트에 비해 크기 때문에 지반 그라우팅 설계시 동일한 공극율의 지반을 주입시공 할 경우, 소요되는 지반 그라우트재의 사용량을 감소시킬 수 있다.The ground grout material of the present invention has a higher powder size due to its smaller particle size than general Portland cement, so it is easy to penetrate into the ground, and the disturbed volume is larger than that of general Portland cement. In this case, the amount of ground grout material required can be reduced.
이하에서는 본 발명의 실시예를 설명한다. 실시예는 본 발명의 실시형태를 예로 들어 설명하는 것이며 본 발명이 실시예로 제한되어 해석되지 않는다. Hereinafter, embodiments of the present invention will be described. Examples are examples of embodiments of the present invention, and the present invention is not construed as being limited to the examples.
실시예1 내지 실시예5Examples 1 to 5
시멘트, 고로슬래그 미분말, 초임계 유동층 보일러 플라이애시, 칼슘알루미네이트, 석고를 분급 분쇄하였다. 그 후에 시멘트 15중량부와 고로슬래그 미분말 50중량부, 초임계 유동층 보일러 플라이애시 35중량부로 구성되는 주재 97중량부와 급경제 3중량부를 혼합하였다. 이때, 급경제는 칼슘알루미네이트와 석고가 1:1로 혼합하여 제조하였다. 주재와 급경제의 혼합물 100 중량부에 응결조절제 0.4중량부를 추가 혼합한 후, 감수제를 시멘트 중량의 20%가 되도록 추가 혼합하여 실시예1에 따른 그라우트재 조성물을 제조하였다. 이때, 실시예2 내지 실시예5는 그라우트재 조성물의 평균 입자 크기를 실시예1과 다르게 제어한 것을 제외하고는 표 6에 나타낸 바와 같이 실시예1과 동일하게 그라우트재 조성물을 제조하였다.Cement, blast furnace slag fine powder, supercritical fluidized bed boiler fly ash, calcium aluminate, and gypsum were classified and pulverized. After that, 97 parts by weight of the main material consisting of 15 parts by weight of cement, 50 parts by weight of blast furnace slag fine powder, and 35 parts by weight of supercritical fluidized bed boiler fly ash and 3 parts by weight of a rapid economy were mixed. At this time, the rapid economy was prepared by mixing calcium aluminate and gypsum at a ratio of 1:1. A grout composition according to Example 1 was prepared by additionally mixing 0.4 parts by weight of a setting control agent with 100 parts by weight of the mixture of the main material and the rapid economy, and then additionally mixing the water reducing agent to 20% of the cement weight. At this time, in Examples 2 to 5, grout material compositions were prepared in the same manner as in Example 1, as shown in Table 6, except that the average particle size of the grout material composition was controlled differently from Example 1.
이후 물을 그라우트재 조성물 100 중량부 당 100 내지 1000 중량부 사이로 투입하여 현탁액을 제조하였다. 구체적으로 사용된 재료는 다음과 같다.Thereafter, water was added between 100 and 1000 parts by weight per 100 parts by weight of the grout material composition to prepare a suspension. The specifically used materials are as follows.
시멘트: 보통 포틀랜드 시멘트 분쇄 분급품Cement: Ordinary Portland cement ground grade
고로슬래그 미분말: CaO 42중량%, Al2O3 13중량%, SiO2 34중량%, 기타 11중량%의 조성을 가진 고로 수쇄 슬래그 미분쇄품Fine powder of blast furnace slag: 42% by weight of CaO, 13% by weight of Al 2 O 3 , 34% by weight of SiO 2 , and other 11% by weight of granulated blast furnace slag pulverized product
초임계 유동층 보일러 플라이애시: CaO 24중량%, Al2O3 13중량%, SiO2 28중량%, Fe2O3 15중량% 기타 20중량%의 조성을 가진 초임계 유동층 보일러에서 발생된 플라이애시 미분쇄품Supercritical fluidized bed boiler fly ash: CaO 24% by weight, Al 2 O 3 13% by weight, SiO 2 28% by weight, Fe 2 O 3 15% by weight Other fly ash generated in a supercritical fluidized bed boiler having a composition of 20% by weight pulverized product
칼슘 알루미네이트: CaO 51중량%, Al2O3 44중량%, 기타 5중량%의 조성을 가진 비정질상태의 칼슘알루미네이트의 미분쇄품Calcium aluminate: A non-pulverized product of calcium aluminate in an amorphous state having a composition of 51% by weight of CaO, 44% by weight of Al 2 O 3 , and 5% by weight of others
석고: 천연무수석고 미분쇄품Gypsum: Unground natural anhydrite
감수제: 멜라민설폰산염계 분말Water reducing agent: melamine sulfonate-based powder
응결조절제: 구연산 100중량%와 탄산칼륨 300중량%로 이루어진 혼합물Coagulation regulator: a mixture consisting of 100% by weight of citric acid and 300% by weight of potassium carbonate
모래: 주문진 규사 Sand: Jumunjin silica sand
물: 수도물water: tap water
실험예1Experimental example 1
실시예1 내지 실시예5에 따른 그라우트재 조성물의 현탁액으로 모의모래층에 대한 침투깊이를 다음과 같은 방법으로 측정하였고, 그 결과를 아래 표 1에 나타내었다.The penetration depth into the simulated sand layer was measured with the suspensions of the grout compositions according to Examples 1 to 5 in the following manner, and the results are shown in Table 1 below.
평균입자크기: 레이저회절법에 의한 평균입자크기를 측정하였다(Marvern사 mastersizer 2000 사용).Average particle size: The average particle size was measured by laser diffraction (using a mastersizer 2000 from Marvern).
침투깊이: 직경 5㎝의 폴리에틸렌 비닐에 주문진 규사를 높이 20㎝가 되도록 충전하여 제작한 모의 모래층에 현탁액 200㎖를 윗면에 천천히 주입하여 자연침투시킨 후 2시간 이후 모의 모래층으로의 침투깊이를 측정하였다.Penetration depth: 200 ml of suspension was slowly injected into the top surface of a simulated sand layer prepared by filling polyethylene vinyl with a diameter of 5 cm with Jumunjin silica sand to a height of 20 cm, and the depth of penetration into the simulated sand layer was measured after 2 hours. .
20㎝ 도달할 때 까지의 시간(20㎝ 도달시간): 침투깊이 측정에서 있어서, 현탁액을 윗면에 주입시켜, 현탁액이 모의 모래층 20㎝ 침투할 때까지의 시간을 측정하였다.Time to reach 20 cm (time to reach 20 cm): In the measurement of penetration depth, the suspension was injected into the upper surface, and the time until the suspension penetrated 20 cm of the simulated sand layer was measured.
-: 20㎝까지 도달하지 못함-: Did not reach 20 cm
표 1을 참조하면, 본 발명의 그라우트재 조성물은 평균입자 크기가 15㎛ 미만인 경우 침투성이 열악해져 현탁액이 모의 모래층의 20㎝까지 침투하지 못하는 것으로 나타났다.Referring to Table 1, it was found that the grout material composition of the present invention had poor permeability when the average particle size was less than 15 μm, so that the suspension could not penetrate up to 20 cm of the simulated sand layer.
즉, 본 발명의 그라우트재 조성물은 5㎛ 이상 15㎛ 미만의 범위 내에서 평균입자 크기가 작아질수록 침투성이 향상되는 것으로 나타났다.That is, the grout material composition of the present invention was found to have improved permeability as the average particle size decreased within the range of 5 μm or more and less than 15 μm.
실시예6 내지 실시예10 및 비교예1 내지 비교예2Examples 6 to 10 and Comparative Examples 1 to 2
상기 실시예3에서 주재의 함량, 즉, 시멘트, 고로 슬래그 미분말, 초임계 유동층 보일러 플라이애시의 함량을 달리한 것을 제외하고는 실시예3과 동일한 방법으로 실시예6 내지 실시예10 및 비교예1 내지 비교예2에 따른 그라우트재 조성물을 제조하였다. 그 구체적인 함량을 표 6에 나타내었다.Examples 6 to 10 and Comparative Example 1 in the same manner as in Example 3, except that the content of the main material, that is, the content of cement, blast furnace slag fine powder, and supercritical fluidized bed boiler fly ash, was changed in Example 3. A grout material composition according to Comparative Example 2 was prepared. The specific content is shown in Table 6.
실험예2Experimental Example 2
실시예 3, 실시예6 내지 실시예10 및 비교예1 내지 비교예2에 따른 그라우트재 조성물의 현탁액으로 겔화시간과 침투성을 평가하였고, 그 결과를 아래 표 2에 나타내었다.The suspensions of the grout compositions according to Examples 3, 6 to 10 and Comparative Examples 1 to 2 were evaluated for gelation time and permeability, and the results are shown in Table 2 below.
이때, 겔화시간 평가 방법은 다음과 같다.At this time, the gelation time evaluation method is as follows.
겔화시간: 현탁액을 컵에 부어 넣고, 현탁액이 들어있는 컵을 기울여도 현탁액이 흐르지 않는 상태까지의 시간Gelation time: The time from when the suspension is poured into a cup to a state where the suspension does not flow even when the cup containing the suspension is tilted
-: 20㎝까지 도달하지 못함-: Did not reach 20 cm
표 2를 참조하면, 그라우트재 조성물에 본 발명의 실시예에 따른 주재의 조성이 포함되는 경우, 침투성이 향상됨을 확인할 수 있다.Referring to Table 2, when the composition of the main material according to the embodiment of the present invention is included in the grout material composition, it can be confirmed that the permeability is improved.
또한, 본 발명의 그라우트재 조성물은 1액 상태에서의 겔화시간 확보가 가능하기 때문에 예상 가능한 범위 내에서 작업시간이 단축되며, 침투후에는 빠르게 경화됨을 확인할 수 있다.In addition, since the grout material composition of the present invention can secure the gelation time in a one-liquid state, the working time is shortened within the expected range, and it can be confirmed that the grout material composition is rapidly cured after penetration.
한편, 비교예2에 따른 그라우트재 조성물은 침투성과 겔화특성이 우수하게 발현되었으나, 시멘트가 포함되지 않기 때문에 응결이 지연되어 주입된 그라우트가 지하수에 흘러내려 씻겨나가게 되는 문제가 발생할 수 있다.On the other hand, the grout material composition according to Comparative Example 2 exhibited excellent permeability and gelling properties, but since it does not contain cement, there may be a problem that the injected grout flows down into groundwater and is washed away due to delay in setting.
실시예11 내지 실시예13 및 비교예3Examples 11 to 13 and Comparative Example 3
상기 실시예3에서 급경제의 함량을 달리한 것을 제외하고는 실시예3과 동일한 방법으로 실시예11 내지 실시예13 및 비교예3에 따른 그라우트재 조성물을 제조하였다. 그 구체적인 함량을 표 6에 나타내었다.Grout material compositions according to Examples 11 to 13 and Comparative Example 3 were prepared in the same manner as in Example 3, except that the content of the rapid economy was changed in Example 3. The specific content is shown in Table 6.
실험예3Experimental Example 3
실시예 3, 실시예11 내지 실시예13 및 비교예3에 따른 그라우트재 조성물의 현탁액으로 겔화시간과 침투성, 초기강도를 평가하였고, 그 결과를 아래 표 3에 나타내었다.The suspensions of the grout materials according to Examples 3, 11 to 13 and Comparative Example 3 were evaluated for gelation time, permeability, and initial strength, and the results are shown in Table 3 below.
이때, 초기강도는 경화시간 1일에 있어서의 압축강도로 측정하였다.At this time, the initial strength was measured as the compressive strength at a curing time of 1 day.
또한, 침투후 경화시간은 최종 침투깊이 도달 후 경화 시 까지의 시간으로 측정하였다. 구체적으로는 상부가 개방된 지름 5cm, 길이 20cm의 폴리에틸렌비닐로 제조된 투명한 봉지에 주문진 규사를 채우고, 실험예에 따른 그라우트재 조성물의 현탁액을 상부에서 투입하여 규사층으로 그라우트 조성물이 침투되도록 하였다. 이후 상기 투명한 봉지의 최종 침투깊이 주변에 외력을 가하여 유동이 없는 상태의 시간을 측정하였다.In addition, the hardening time after penetration was measured as the time from reaching the final penetration depth to hardening. Specifically, a transparent bag made of polyethylene vinyl with an open top of 5 cm in diameter and 20 cm in length was filled with Jumunjin silica sand, and a suspension of the grout material composition according to the experimental example was injected from the top so that the grout composition penetrated into the silica sand layer. Then, the time in a non-flowing state was measured by applying an external force around the final penetration depth of the transparent bag.
(시간)gelation time
(hour)
(㎝)penetration depth
(cm)
(N/㎜2)initial strength
(N/mm 2 )
-: 20㎝까지 도달하지 못함-: Did not reach 20 cm
표 3을 참조하면, 그라우트재 조성물에 본 발명의 실시예에 따른 주재와 급경제의 조성 범위 내에서, 침투성과 초기강도가 향상됨을 확인할 수 있다.Referring to Table 3, it can be confirmed that the permeability and initial strength are improved within the composition range of the main material and the rapid economy according to the embodiment of the present invention in the grout material composition.
또한, 본 발명의 그라우트재 조성물은 1액 상태에서의 겔화시간 확보가 가능하기 때문에 예상 가능한 범위 내에서 작업시간이 단축되며, 침투후에는 빠르게 경화됨을 확인할 수 있다.In addition, since the grout material composition of the present invention can secure the gelation time in a one-liquid state, the working time is shortened within the expected range, and it can be confirmed that the grout material composition is rapidly cured after penetration.
실시예14 내지 실시예16 및 비교예4Examples 14 to 16 and Comparative Example 4
상기 실시예3에서 응결조절제의 함량을 달리한 것을 제외하고는 실시예3과 동일한 방법으로 실시예14 내지 실시예16 및 비교예4에 따른 그라우트재 조성물을 제조하였다. 그 구체적인 함량을 표 6에 나타내었다.Grout material compositions according to Examples 14 to 16 and Comparative Example 4 were prepared in the same manner as in Example 3, except that the content of the setting control agent was changed in Example 3. The specific content is shown in Table 6.
실험예4Experimental Example 4
실시예14 내지 실시예16 및 비교예4에 따른 그라우트재 조성물의 현탁액으로 겔화시간과 침투성을 평가하였고, 그 결과를 아래 표 4에 나타내었다.Gelation time and permeability were evaluated with the suspensions of the grout compositions according to Examples 14 to 16 and Comparative Example 4, and the results are shown in Table 4 below.
(시간)gelation time
(hour)
(㎝)penetration depth
(cm)
-: 20㎝까지 도달하지 못함-: Did not reach 20 cm
표 4를 참조하면, 그라우트재 조성물에 본 발명의 실시예에 따른 주재에 급경제의 조성이 포함되는 경우 침투성이 향상됨을 확인할 수 있다. 그러나, 비교예 4에 따른 그라우트재 조성물의 현탁액은 겔화되지 않았다.Referring to Table 4, it can be seen that the permeability is improved when the composition of the grout material includes the composition of the rapid economy in the main material according to the embodiment of the present invention. However, the suspension of the grout material composition according to Comparative Example 4 did not gel.
또한, 본 발명의 그라우트재 조성물은 1액 상태에서의 겔화시간 확보가 가능하기 때문에 예상 가능한 범위 내에서 작업시간이 단축되며, 침투후에는 빠르게 경화됨을 확인할 수 있다.In addition, since the grout material composition of the present invention can secure the gelation time in a one-liquid state, the working time is shortened within the expected range, and it can be confirmed that the grout material composition is rapidly cured after penetration.
실시예17 내지 실시예19Examples 17 to 19
상기 실시예3에서 감수제의 함량을 달리한 것을 제외하고는 실시예3과 동일한 방법으로 실시예17 내지 실시예19에 따른 그라우트재 조성물을 제조하였다. 그 구체적인 함량을 표 6에 나타내었다.Grout material compositions according to Examples 17 to 19 were prepared in the same manner as in Example 3, except that the content of the water reducing agent was changed in Example 3. The specific content is shown in Table 6.
실험예5Experimental Example 5
실시예3 및 실시예17 내지 실시예19에 따른 그라우트재 조성물의 현탁액으로 겔화시간과 침투성을 평가하였고, 그 결과를 아래 표 5에 나타내었다.Gelation time and permeability were evaluated with the suspensions of the grout material compositions according to Examples 3 and 17 to 19, and the results are shown in Table 5 below.
(시간)gelation time
(hour)
(㎝)penetration depth
(cm)
-: 20㎝까지 도달하지 못함-: Did not reach 20 cm
표 5를 참조하면, 그라우트재 조성물에 본 발명의 실시예에 따른 주재에 감수제의 조성이 포함되는 경우 침투성이 향상됨을 확인할 수 있다. Referring to Table 5, it can be confirmed that the permeability is improved when the grout material composition includes the composition of the water reducing agent in the main material according to the embodiment of the present invention.
또한, 본 발명의 그라우트재 조성물은 1액 상태에서의 겔화시간 확보가 가능하기 때문에 예상 가능한 범위 내에서 작업시간이 단축되며, 침투후에는 빠르게 경화됨을 확인할 수 있다.In addition, since the grout material composition of the present invention can secure the gelation time in a one-liquid state, the working time is shortened within the expected range, and it can be confirmed that the grout material composition is rapidly cured after penetration.
실험예6Experimental Example 6
실시예7에 따른 그라우트재 조성물의 밀도, 분말도, 응결시간, 블리딩률, 압축강도를 측정한 결과를 도 1에 나타내었고, 일반적인 포틀랜드 시멘트의 블리딩률을 측정한 결과를 도 2에 나타내었다.The results of measuring the density, fineness, setting time, bleeding rate, and compressive strength of the grout material composition according to Example 7 are shown in FIG. 1, and the results of measuring the bleeding rate of general Portland cement are shown in FIG.
도 1을 참조하면, 본 발명의 일 실시예에 따른 그라우트재 조성물은 2.88mg/m3으로 일반적인 포틀랜드 시멘트의 밀도(3.15g/㎝3)보다 낮고 분말도는 6,350㎝2/g으로 나타났다. 또한, 시멘트 함량이 매우 낮음에도 불구하고 응결시간이 4분으로 일반적인 포틀랜드 시멘트 보다 빠른 것으로 나타났다.Referring to FIG. 1, the grout material composition according to one embodiment of the present invention has a density of 2.88 mg/m 3 , which is lower than that of general Portland cement (3.15 g/cm 3 ), and a fineness of 6,350 cm 2 /g. In addition, despite the very low cement content, the setting time was 4 minutes, which was faster than general Portland cement.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 그라우트재 조성물 제조 후 물의 양을 1:1이 되도록 투입한 후 블리딩율을 측정한 결과 1% 수준을 나타내어, 동일한 조건에서 보통 포틀랜드 시멘트에 대한 블리딩률을 측정한 결과인 36%보다 훨씬 낮은 수준을 나타내는 것으로 확인되었다.1 and 2, after preparing the grout material composition according to an embodiment of the present invention, the amount of water was added to be 1: 1, and the bleeding rate was measured and the result was 1%. It was confirmed that the bleeding rate for cement was much lower than 36%, which was the result of measurement.
또한, 본 발명의 일 실시예에 따른 그라우트재의 압축강도는 보통 포틀랜드 시멘트의 KS규격을 만족하는 것으로 나타났다.In addition, it was found that the compressive strength of the grout material according to one embodiment of the present invention satisfies the KS standard of ordinary Portland cement.
실험예7Experimental Example 7
실시예7에 따른 그라우트재 조성물과 일반적인 포틀랜드 시멘트에 대한 재료분리저항성을 확인하기 위해 3시간까지의 블리딩률을 측정하였다.In order to confirm material separation resistance to the grout material composition according to Example 7 and general Portland cement, the bleeding rate for up to 3 hours was measured.
블리딩시험에서 사용된 배합비는 무게비가 아닌 용적비로 실시하였으며, 물과 시멘트의 용적배합비는 2:1로 설정하였다. 이때의 배합비는 일반적인 포틀랜드 시멘트의 경우 물 108리터에 일반적인 포틀랜드 시멘트 2포 (80kg)이며, 지반 그라우트재의 경우 물 108리터에 지반 그라우트재 2포 (60kg) 이다.The mixing ratio used in the bleeding test was carried out in a volume ratio rather than a weight ratio, and the volume mixing ratio of water and cement was set at 2:1. The mixing ratio at this time is 2 packets (80kg) of general Portland cement in 108 liters of water in the case of general Portland cement, and 2 packets (60kg) of ground grout material in 108 liters of water in the case of ground grout material.
지반 그라우트재의 경우 흐트러진 용적이 0.89㎝3/g임에 반해, 일반적인 포틀랜드 시멘트의 경우 흐트러진 용적이 0.67㎝3/g으로 나타났다. 따라서, 지반 그라우트재가 일반적인 포틀랜드 시멘트가 투입되는 양의 75%만 투입되더라도 같은 용적을 가지게 되어 시멘트 사용량을 현저하게 감소시킬 수 있음을 알 수 있다.In the case of the ground grout material, the disorganized volume was 0.89 cm 3 /g, whereas in the case of general Portland cement, the disorganized volume was 0.67 cm 3 /g. Therefore, it can be seen that the ground grout material has the same volume even if only 75% of the amount of general Portland cement is added, so that the amount of cement used can be significantly reduced.
상기 용적배합비를 2:1로 설정한 지반 그라우트재를 각각 1000㎖ 매스실린더에 투입한 후 매1시간 간격으로 3시간까지의 상태를 확인하면서 블리딩률을 측정하였고, 그 결과를 도 3 내지 도 6에 나타내었다. 즉, 실험 개시 상태를 도 3에, 1시간 경과 후의 상태를 도 4에, 2시간 경과 후의 상태를 도 5에, 3시간 경과 후의 상태를 도 6에 각각 나타내었다. 이때, 비교군을 좌측에, 본 발명의 그라우트재를 우측에 동일한 평면 위에 올려놓았다.After the ground grout material with the volume mixing ratio set to 2: 1 was put into a 1000 ml mass cylinder, the bleeding rate was measured while checking the state for up to 3 hours at intervals of 1 hour, and the results are shown in FIGS. 3 to 6 shown in That is, the state at the start of the experiment is shown in Fig. 3, the state after 1 hour in Fig. 4, the state after 2 hours in Fig. 5, and the state after 3 hours in Fig. 6, respectively. At this time, the comparison group was placed on the left side and the grout material of the present invention on the right side on the same plane.
도 3 내지 도 6에 나타낸 바와 같이, 본 발명의 일 실시예에 따른 친환경 저탄소 그라우트재는 일반적인 포틀랜드 시멘트와 대비하여 재료 사용량을 25% 감소시켜 블리딩률을 측정하였음에도 불구하고, 3시간 후의 블리딩률이 일반적인 포틀랜드 시멘트는 37%, 본 발명의 일 실시예에 따른 친환경 저탄소 그라우트재는 11%로 나타났다.As shown in FIGS. 3 to 6, the eco-friendly low-carbon grout material according to an embodiment of the present invention has a bleeding rate after 3 hours, although the bleeding rate is measured by reducing the amount of material used by 25% compared to general Portland cement. Portland cement was 37%, and the eco-friendly low-carbon grout material according to one embodiment of the present invention was 11%.
따라서, 본 발명의 일 실시예에 다른 친환경 저탄소 그라우트재를 사용하는 경우, 시멘트 사용량을 25% 이상 절감하면서도 더 많은 공극을 채울 수 있음을 알 수 있다.Therefore, it can be seen that when another eco-friendly low-carbon grout material is used in one embodiment of the present invention, more voids can be filled while reducing the amount of cement used by 25% or more.
(중량부)cement
(parts by weight)
미분말
(중량부)blast furnace slag
fine powder
(parts by weight)
(중량부)fly ash
(parts by weight)
(중량부)fast economy
(parts by weight)
(중량부)water reducing agent
(parts by weight)
크기(㎛)particle
Size (μm)
*) 상기 플라이애시는 초임계 유동층 보일러 플라이애시를 지칭*) The fly ash refers to supercritical fluidized bed boiler fly ash
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings, but since the above-described embodiments have only been described as preferred examples of the present invention, it is believed that the present invention is limited only to the above embodiments. Should not be understood, the scope of the present invention should be understood as the following claims and equivalent concepts.
예를 들어, 도면은 이해를 돕기 위해 각각의 구성요소를 주체로 하여 모식적으로 나타낸 것으로, 도시된 각 구성요소의 두께, 길이, 개수 등은 도면 작성의 진행상, 실제와 다를 수 있다. 또한, 상기의 실시형태에서 나타낸 각 구성요소의 재질이나 형상, 치수 등은 한 예로서, 특별히 한정되지 않고, 본 발명의 효과에서 실질적으로 벗어나지 않는 범위에서 여러 가지 변경이 가능하다.For example, the drawings are schematically shown with each component as the main body to aid understanding, and the thickness, length, number, etc. of each component shown may differ from the actual one in the progress of drawing. In addition, the material, shape, dimensions, etc. of each component shown in the above embodiment are only examples and are not particularly limited, and various changes are possible within a range that does not substantially deviate from the effect of the present invention.
Claims (6)
1액형 상태로 겔화시간을 제어하기 위한 급경제;
응결시간을 제어하기 위한 응결조절제; 및
지반으로의 침투성을 향상시키기 위한 감수제;
를 포함하고,
상기 주재는, 시멘트 5~20중량부, 고로슬래그 40~60중량부, 및 플라이애시 20~40중량부를 포함하며,
상기 급경제는 칼슘알루미네이트 100중량부 및 석고 50~200중량부를 포함하며,
상기 급경제의 함량이 상기 주재 및 상기 급경제의 혼합물 100중량부를 기준으로 1~3중량부이며, 상기 응결조절제의 함량이 상기 주재 및 상기 급경제의 혼합물 100중량부를 기준으로 0.4~0.5중량부이며, 상기 감수제의 함량이 상기 시멘트 100중량부를 기준으로 20~30중량부이며, 최대입경이 5~10㎛ 인, 친환경 저탄소 지반 그라우트재 조성물.
A main material containing cement, blast furnace slag powder and supercritical fluidized bed boiler fly ash;
rapid economy for controlling the gelation time in a one-component state;
a setting regulator for controlling setting time; and
water reducing agents to improve permeability into the ground;
including,
The main material includes 5 to 20 parts by weight of cement, 40 to 60 parts by weight of blast furnace slag, and 20 to 40 parts by weight of fly ash,
The rapid economy includes 100 parts by weight of calcium aluminate and 50 to 200 parts by weight of gypsum,
The content of the quick economy is 1 to 3 parts by weight based on 100 parts by weight of the mixture of the main ingredient and the quick economy, and the content of the setting control agent is 0.4 to 0.5 parts by weight based on 100 parts by weight of the mixture of the main ingredient and the quick economy. And, the content of the water reducing agent is 20 to 30 parts by weight based on 100 parts by weight of the cement, and the maximum particle diameter is 5 to 10 μm.
상기 초임계 유동층 보일러 플라이애시는, 산소를 주입하면서 석탄연료를 초임계 상태에서 연소하는 공정에서 배출되는 플라이애시로서, Fe2O3 10~20중량%, SO3 5~20중량%, 및 Free CaO 1~10중량%를 함유하고, 분말도가 평균입경 10㎛ 이하인, 친환경 저탄소 지반 그라우트재 조성물.
The method of claim 1,
The supercritical fluidized bed boiler fly ash is fly ash discharged from a process of burning coal fuel in a supercritical state while injecting oxygen, and includes 10 to 20% by weight of Fe 2 O 3 , 5 to 20% by weight of SO 3 , and free An eco-friendly low-carbon ground grout material composition containing 1 to 10% by weight of CaO and having an average particle diameter of 10 μm or less.
상기 응결조절제가 탄산염 및 유기산을 포함하는, 친환경 저탄소 지반 그라우트재 조성물.
The method of claim 1,
The eco-friendly low-carbon ground grout material composition comprising the setting control agent comprising a carbonate and an organic acid.
상기 그라우트재 조성물의 현탁액이 흐르지 않는 시간으로 측정되는 겔화시간이 15시간 이하인 것;
상기 그라우트재 조성물의 현탁액이 모래층 20㎝ 깊이까지 도달할 때까지의 시간이 22분 이하인 것;
상기 그라우트재 조성물의 최종 침투깊이 도달 후 경화 시 까지의 시간으로 측정되는 침투후 현탁액의 경화시간이 5시간 이하인 것; 및
이들의 조합;
중 어느 하나의 특성을 갖는, 친환경 저탄소 지반 그라우트재 조성물.
The method of claim 1,
a gelling time measured by the time during which the suspension of the grout material composition does not flow is 15 hours or less;
that the time until the suspension of the grout material composition reaches a depth of 20 cm in the sand layer is 22 minutes or less;
The hardening time of the suspension after penetration, measured as the time from reaching the final penetration depth of the grout material composition to hardening, is 5 hours or less; and
combinations thereof;
Eco-friendly low-carbon ground grout material composition having any one of the following characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230067192A KR102556265B1 (en) | 2023-05-24 | 2023-05-24 | Eco-friendly low-carbon grout material composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230067192A KR102556265B1 (en) | 2023-05-24 | 2023-05-24 | Eco-friendly low-carbon grout material composition |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102556265B1 true KR102556265B1 (en) | 2023-07-17 |
Family
ID=87430209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230067192A KR102556265B1 (en) | 2023-05-24 | 2023-05-24 | Eco-friendly low-carbon grout material composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102556265B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102650459B1 (en) * | 2023-11-03 | 2024-03-25 | 이종수 | Silica-based cement grout composition, and waterproofing process by using the same |
KR102650457B1 (en) * | 2023-11-03 | 2024-03-25 | 이종수 | Silica-based eco-friendly grout composition, and waterproofing process by using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132667A (en) * | 2016-01-29 | 2017-08-03 | 太平洋マテリアル株式会社 | Corrosion resistant mortar composition |
KR101840470B1 (en) * | 2016-10-20 | 2018-05-04 | 주식회사 지안산업 | Grouting agent and method |
-
2023
- 2023-05-24 KR KR1020230067192A patent/KR102556265B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132667A (en) * | 2016-01-29 | 2017-08-03 | 太平洋マテリアル株式会社 | Corrosion resistant mortar composition |
KR101840470B1 (en) * | 2016-10-20 | 2018-05-04 | 주식회사 지안산업 | Grouting agent and method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102650459B1 (en) * | 2023-11-03 | 2024-03-25 | 이종수 | Silica-based cement grout composition, and waterproofing process by using the same |
KR102650457B1 (en) * | 2023-11-03 | 2024-03-25 | 이종수 | Silica-based eco-friendly grout composition, and waterproofing process by using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102556265B1 (en) | Eco-friendly low-carbon grout material composition | |
KR100869467B1 (en) | Composition for ground-improving material, grouting material comprising the same, and method of using the same | |
KR101056474B1 (en) | High Durability Grout Material Composition for Geotechnical Order and Reinforcement Using Geopolymer Type Fastener | |
JP4948430B2 (en) | Quick hardening cement for seawater resistant cement asphalt mortar and seawater resistant cement asphalt mortar using the same | |
KR101636283B1 (en) | Pile grouting materials using ferronickel slag | |
PL206231B1 (en) | Composition which is intended for use as an additive for cement | |
KR101530830B1 (en) | Grout filler and grouting method using the grout filler | |
KR101680348B1 (en) | Pile grouting materials | |
CN105272084A (en) | Inorganic-organic composite grouting material | |
CN112500056B (en) | Superfine solid waste base grouting material and preparation method thereof | |
KR102457167B1 (en) | Eco friendly injection for ground reinforcement grout composition and construction method using the same | |
CN107344840A (en) | A kind of preparation method of phosphorus base grouting material | |
CN103787601A (en) | Iron ore full-tailing filling gel material prepared by using sintering desulfuration ash instead of gypsum | |
JP5442944B2 (en) | Injection material and injection method | |
CN105601141B (en) | A kind of oil-well cement swelling agent and preparation method thereof | |
KR101736367B1 (en) | Grounting composition for high pressure injection soil solidification method | |
KR20180002288A (en) | Grout material composition and high fluidity-grout material using the same | |
KR102585612B1 (en) | Eco-friendly low-carbon grout material composition | |
KR102302868B1 (en) | Manufacturing method of eco-friendly grouting chemical liquid for all ground strata and construction method using the same | |
JP3545322B2 (en) | Ground consolidation method | |
CN113716928A (en) | Road, water-stable layer thereof and preparation process | |
KR101473228B1 (en) | The composition of solidificant having highstrength and rapid solidification | |
KR101636277B1 (en) | Pile grouting materials composition using light burned dolomite | |
JP6110749B2 (en) | Crushed material | |
KR100427490B1 (en) | Environment-friendly inorganic soil-stabilizer with outstanding durability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A302 | Request for accelerated examination | ||
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |