KR102553825B1 - Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof - Google Patents

Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof Download PDF

Info

Publication number
KR102553825B1
KR102553825B1 KR1020190049914A KR20190049914A KR102553825B1 KR 102553825 B1 KR102553825 B1 KR 102553825B1 KR 1020190049914 A KR1020190049914 A KR 1020190049914A KR 20190049914 A KR20190049914 A KR 20190049914A KR 102553825 B1 KR102553825 B1 KR 102553825B1
Authority
KR
South Korea
Prior art keywords
leu
ala
ser
lys
val
Prior art date
Application number
KR1020190049914A
Other languages
Korean (ko)
Other versions
KR20190127559A (en
Inventor
윤지애
정현욱
추진호
송수민
송지윤
김용인
조승기
Original Assignee
(주)메디톡스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180052157A external-priority patent/KR102015116B1/en
Application filed by (주)메디톡스 filed Critical (주)메디톡스
Priority to KR1020190049914A priority Critical patent/KR102553825B1/en
Publication of KR20190127559A publication Critical patent/KR20190127559A/en
Application granted granted Critical
Publication of KR102553825B1 publication Critical patent/KR102553825B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/004Aftersun preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Birds (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물, 그로부터 분리된 세포외 소낭 및 그의 용도에 관한 것이다.It relates to a recombinant microorganism comprising a polynucleotide encoding a target protein, an extracellular vesicle isolated therefrom, and uses thereof.

Description

표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로부터 유래한 세포외 소낭 및 그의 용도{Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof}Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof}

표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물 유래 세포외 소낭 및 그의 용도에 관한 것이다.It relates to an extracellular vesicle derived from a recombinant microorganism comprising a polynucleotide encoding a target protein and uses thereof.

대부분의 동물세포는 다양한 크기와 성분을 갖는 세포 내 기원의 세포외 소낭을 분비한다. 원핵생물 및 진핵생물은 모두 세포외 소낭을 분비한다고 알려져 있다. 종래 황색포도상구균(Staphylococcus aureus)에서 유래된 세포외 소낭이 알려져 있었다(한국특허 공개 10-2011-0025603). Most animal cells secrete extracellular vesicles of intracellular origin of varying size and composition. Both prokaryotes and eukaryotes are known to secrete extracellular vesicles. Conventionally, extracellular vesicles derived from Staphylococcus aureus have been known (Korean Patent Publication 10-2011-0025603).

세포외 소낭은 작게는 직경 약 20 nm부터 크게는 직경 약 5 μm를 갖는 막 구조 소낭체이다. 세포외 소낭은 그 크기와 구성에 있어서 이질성이 있고, 엑소좀(exosome, 약 30 내지 100 nm), 엑토좀(ectosome), 마이크로소낭(microvesicle, 약 100-1,000 nm), 마이크로입자(microparticle), 외막소낭 (outer membrane vesicle) 등의 다수의 상이한 종을 포함한다. 세포외 소낭의 특성은 그 기원이 되는 세포의 특성에 영향을 받는다. Extracellular vesicles are membrane-structured vesicles ranging in diameter from about 20 nm to about 5 μm. Extracellular vesicles are heterogeneous in size and composition, and include exosomes (about 30 to 100 nm), ectosomes, microvesicles (about 100-1,000 nm), microparticles, It includes many different species, such as outer membrane vesicles. The characteristics of extracellular vesicles are influenced by the characteristics of the cells from which they originate.

한편, 세포 내 물질(예컨대, DNA, RNA, 단백질 등)은 세포외 소낭에 자연적으로 탑재되어 세포외로 분비된다. 세포외 소낭은 생체 막 성분과 동일하여 생체 호환성(biocompatibility)이 높고, 그 크기가 나노 크기 정도로 작아 물질 전달 효율이 우수하다. 따라서, 기존의 리포좀 등의 전달 시스템을 대신하여 세포외 소낭을 이용한 약물을 전달하는 연구가 진행 중이다. 그러나, 세포외 소낭에 탑재 시 표적 단백질 외에 유전 물질뿐만 아니라 다른 불필요한 세포 내 단백질 등의 세포 내 물질들이 함께 탑재되므로 표적 단백질의 세포외 소낭으로의 탑재 효율이 낮았다. 따라서, 세포외 소낭에 표적 단백질을 우수한 효율로 안정적으로 탑재시킬 수 있는 기술에 대한 요구가 존재했다. 본 발명자들은 세포외 소낭에 표적 단백질을 우수한 효율로 안정적으로 탑재시켜, 자연적으로 대량의 단백질이 탑재된 세포외 소낭을 수득하는 기술을 발명하였다.On the other hand, intracellular substances (eg, DNA, RNA, proteins, etc.) are naturally loaded into extracellular vesicles and secreted out of the cells. Extracellular vesicles have high biocompatibility as they are the same as components of biological membranes, and have excellent mass transfer efficiency as they are small in size to nanometer size. Therefore, studies are underway to deliver drugs using extracellular vesicles instead of conventional delivery systems such as liposomes. However, when loaded into the extracellular vesicle, the loading efficiency of the target protein into the extracellular vesicle was low because intracellular materials such as other unnecessary intracellular proteins as well as genetic material in addition to the target protein were loaded together. Therefore, there is a need for a technology capable of stably loading a target protein into an extracellular vesicle with excellent efficiency. The present inventors have invented a technique for obtaining extracellular vesicles naturally loaded with a large amount of protein by stably loading a target protein into extracellular vesicles with excellent efficiency.

일 양상은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로서, 상기 미생물은 유산균 또는 효모인 것인 재조합 미생물을 제공한다.One aspect provides a recombinant microorganism comprising a polynucleotide encoding a target protein, wherein the microorganism is lactic acid bacteria or yeast.

다른 양상은 상기한 재조합 미생물 유래의 세포외 소낭을 제공한다. Another aspect provides an extracellular vesicle derived from a recombinant microorganism described above.

다른 양상은 상기한 재조합 미생물 유래의 세포외 소낭 및 담체를 유효 성분으로 포함하는 표적 단백질을 개체에게 전달하기 위한 조성물을 제공한다. Another aspect provides a composition for delivering a target protein comprising the recombinant microorganism-derived extracellular vesicle and a carrier as active ingredients to a subject.

다른 양상은 상기 조성물을 개체에게 투여하는 단계를 포함하는 개체의 질병을 치료하는 방법을 제공한다. Another aspect provides a method of treating a disease in a subject comprising administering the composition to the subject.

다른 양상은 상기 조성물을 개체에게 투여하는 단계를 포함하는 개체를 화장하는 방법을 제공한다.Another aspect provides a method of making up a subject comprising administering the composition to the subject.

다른 양상은 상기한 미생물을 배양하여 배양물을 얻는 단계; 및 상기 배양물로부터 세포외 소낭을 분리하는 단계를 포함하는, 세포외 소낭을 생산하는 방법을 제공한다. Another aspect is culturing the microorganisms to obtain a culture; And it provides a method for producing extracellular follicles comprising the step of isolating the extracellular follicles from the culture.

제1 양상은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로서, 상기 미생물은 유산균 또는 효모인 것인 재조합 미생물을 제공한다.A first aspect provides a recombinant microorganism comprising a polynucleotide encoding a target protein, wherein the microorganism is lactic acid bacteria or yeast.

상기 표적 단백질은 신호 펩티드가 연결되어 있는 것, 즉 신호 펩티드와 표적 단백질의 융합 단백질의 형태일 수 있다. 상기 미생물은 상기 표적 단백질을 증가된 양으로 상기 세포외 소낭에 탑재하는 것일 수 있다. 이 경우, 상기 재조합 미생물은 신호 펩티드가 없는 상기 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물에 비하여 증가된 세포외 소낭(extracellular vesicle: EV) 탑재능을 갖는 것일 수 있다. 세포외 소낭 탑재능이란 표적 단백질이 EV 중에 포함되는 정도 또는 표적 단백질이 EV 중에 발현되는 정도를 나타낸다. 세포외 소낭 탑재능은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하지 않는 양친 미생물에 대한 탑재능을 나타내는 것일 수 있다.The target protein may be a signal peptide linked to each other, that is, a fusion protein of the signal peptide and the target protein. The microorganism may load the target protein into the extracellular vesicle in an increased amount. In this case, the recombinant microorganism may have an increased extracellular vesicle (EV) loading capacity compared to a recombinant microorganism containing a polynucleotide encoding the target protein without a signal peptide. The extracellular vesicle loading capacity indicates the degree to which a target protein is included in EVs or the degree to which a target protein is expressed in EVs. Extracellular vesicle loading capacity may indicate loading capacity for parental microorganisms that do not contain a polynucleotide encoding a target protein.

상기 신호 펩티드는 서열번호 21 내지 60의 아미노산 서열 중 어느 하나와 이를 포함하는 서열이거나 이와 유사한 서열일 수 있다. The signal peptide may be any one of the amino acid sequences of SEQ ID NOs: 21 to 60 and a sequence including the same or a sequence similar thereto.

상기 재조합 미생물에 있어서, 상기 유산균은 Lactobacillus, Lactococcus, 및 Bifidobacterium 속으로 이루어진 군으로부터 선택된 속에 속하는 종인 것일 수 있다. 상기 유산균은 Lactobacillus paracasei, Lactobacillus brevis, 또는 Lactobacillus plantarum일 수 있다.In the recombinant microorganism, the lactic acid bacteria may be a species belonging to a genus selected from the group consisting of Lactobacillus, Lactococcus, and Bifidobacterium. The lactic acid bacteria may be Lactobacillus paracasei , Lactobacillus brevis , or Lactobacillus plantarum .

상기 재조합 미생물에 있어서, 상기 효모는 Saccharomyces, Pichia, 및 Hansenula 속으로 이루어진 군으로부터 선택된 속에 속하는 종인 것일 수 있다. Saccharomyces는 S.cerevisiae일 수 있다. Pichia는 Pichia pastoris, Hansenula는 Hansenula polymorpha일 수 있다.In the recombinant microorganism, the yeast may be a species belonging to a genus selected from the group consisting of Saccharomyces, Pichia, and Hansenula. Saccharomyces may be S. cerevisiae. Pichia can be Pichia pastoris, Hansenula can be Hansenula polymorpha.

상기 재조합 미생물에 있어서, 상기 표적 단백질은 성장인자, 시토킨, 항체, 효소, 저해 단백질, 또는 이들의 단편인 것일 수 있다. 상기 성장인자는 섬유아세포 성장인자일 수 있다. 상기 표적 단백질은 섬유아세포 성장인자(fibroblast growth factor: FGF), 상피세포 성장인자(epidermal growth factor: EGF), 간세포 성자인자(hepatocyte growth factor: HGF), 인슐린-유사 성장인자(insulin-like growth factor: IGF), 태반 성장인자(placenta growth factor: PGF), 혈소판-유래 성장인자(platelet-derived growth factor: PDGF), 형질전환 성장인자(transforming growth factor: TGF), 혈관내피 성장인자(vascular endothelial growth factor: VEGF), 티오레독신(thioredoxin: TRX), 인터류킨-1(interleukin-1: IL-1), 인터류킨-10, 인터류킨-22, 인터류킨-13, 및 종양 괴사 인자(tumor necrosis factor: TNF)로 이루어진 군으로부터 선택된 것일 수 있다. 상기 표적 단백질은 예를 들면, IL-22, EGF, IGF1, FGF1(이하 aFGF (acidic fibroblast growth factor)라고도 함), FGF2 (이하 bFGF (basic fibroblast growth factor)라고도 함), FGF7 (이하 KGF (keratinocyte growth factor) 라고도 함), TGFa, 및 TRX로 이루어진 군으로부터 선택된 것일 수 있다. In the recombinant microorganism, the target protein may be a growth factor, a cytokine, an antibody, an enzyme, an inhibitory protein, or a fragment thereof. The growth factor may be a fibroblast growth factor. The target protein is fibroblast growth factor (FGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), insulin-like growth factor (insulin-like growth factor) : IGF), placenta growth factor (PGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor factor: VEGF), thioredoxin (TRX), interleukin-1 (IL-1), interleukin-10, interleukin-22, interleukin-13, and tumor necrosis factor (TNF) It may be selected from the group consisting of. The target protein is, for example, IL-22, EGF, IGF1, FGF1 (hereinafter also referred to as aFGF (acidic fibroblast growth factor)), FGF2 (hereinafter referred to as bFGF (basic fibroblast growth factor)), FGF7 (hereinafter referred to as KGF (keratinocyte growth factor)), TGFa, and TRX.

상기 재조합 미생물에 있어서, 상기 신호 펩티드는 서열번호 4에 의하여 코딩되는 것, 또는 서열번호 21 내지 60의 아미노산 서열 중 어느 하나일 수 있다. 상기 신호 펩티드를 코딩하는 유전자는 신호 펩티드가 상기 표적 단백질의 N 말단에 연결되도록 연결된 것일 수 있다. 상기 신호 펩티드는 상기 단백질에 대하여 자연적인 것 또는 외래적인 것(heterologous)일 수 있다. 상기 표적 단백질은 상기 미생물에 대하여 외래 단백질(heterologous protein)일 수 있다. 상기 재조합 미생물은 상기 표적 단백질을 발현하는 것일 수 있다. 상기 표적 단백질은 신호 펩티드가 잘려진 상태로 EV에 탑재되는 것일 수 있다. 상기 표적 단백질은 EV의 막 또는 그 내부에 탑재되는 것일 수 있다.In the recombinant microorganism, the signal peptide may be one encoded by SEQ ID NO: 4 or any one of the amino acid sequences of SEQ ID NOs: 21 to 60. The gene encoding the signal peptide may be linked such that the signal peptide is linked to the N-terminus of the target protein. The signal peptide may be natural or heterologous to the protein. The target protein may be a heterologous protein to the microorganism. The recombinant microorganism may express the target protein. The target protein may be loaded into the EV with the signal peptide cut off. The target protein may be loaded on the EV membrane or inside it.

상기 재조합 미생물에 있어서, 상기 표적 단백질을 코딩하는 폴리뉴클레오티드는 발현 가능한 것일 수 있다. 상기 폴리뉴클레오티드는 전사 조절 서열과 작동가능하게 연결된 것일 수 있다. 상기 전사 조절 서열은 프로모터, 오퍼레이터, 인핸서, 또는 터미네이터일 수 있다. 상기 폴리뉴클레오티드는 번역 조절 서열과 작동가능하게 연결된 것일 수 있다. 상기 번역 조절 서열은 리보좀 결합 자리(ribosome binding site), 또는 리보좀 진입 서열(ribosome entry site sequence)일 수 있다. 상기 폴리뉴클레오티드는 상기 미생물의 게놈에 통합되어 있거나 독립적으로 존재하는 것일 수 있다. 상기 폴리뉴클레오티드는 벡터에 포함된 것일 수 있다. 상기 벡터는 발현 벡터일 수 있다. 상기 벡터는 플라스미드, 또는 바이러스성 벡터일 수 있다.In the recombinant microorganism, the polynucleotide encoding the target protein may be expressible. The polynucleotide may be operably linked to a transcriptional regulatory sequence. The transcription control sequence may be a promoter, operator, enhancer, or terminator. The polynucleotide may be operably linked to a translation control sequence. The translation control sequence may be a ribosome binding site or a ribosome entry site sequence. The polynucleotide may be integrated into the genome of the microorganism or may exist independently. The polynucleotide may be included in a vector. The vector may be an expression vector. The vector may be a plasmid or a viral vector.

제2 양상은 상기한 재조합 미생물로부터 분리된 세포외 소낭을 제공한다. A second aspect provides an extracellular vesicle isolated from the recombinant microorganism described above.

제3 양상은 상기한 재조합 미생물 유래의 세포외 소낭 및 담체를 유효 성분으로 포함하는 표적 단백질을 개체에게 전달하기 위한 조성물을 제공한다. A third aspect provides a composition for delivering a target protein comprising the recombinant microorganism-derived extracellular vesicle and a carrier as active ingredients to a subject.

제2 또는 제3 양상에 있어서, 상기 세포외 소낭은 상기 미생물의 배양액으로부터 분리된 것일 수 있다. 즉, 상기 세포외 소낭은 세포외로 분비되는 것일 수 있다. 상기 세포외 소낭은 20 내지 500 nm, 예를 들면, 20 내지 200 nm, 100 내지 200 nm의 평균 직경을 갖는 것일 수 있다. 상기 세포외 소낭은 상기한 표적 단백질을 포함하는 것일 수 있다. 상기 표적 단백질은 상기 세포외 소낭의 막 또는 그 내부에 위치하는 것일 수 있다. In the second or third aspect, the extracellular vesicles may be isolated from a culture medium of the microorganism. That is, the extracellular vesicles may be secreted extracellularly. The extracellular vesicle may have an average diameter of 20 to 500 nm, for example, 20 to 200 nm or 100 to 200 nm. The extracellular vesicle may contain the target protein described above. The target protein may be located on or inside the membrane of the extracellular vesicle.

상기 세포외 소낭은 배양액으로부터 그를 분리할 수 있는 임의의 방법에 의하여 분리된 것일 수 있다. 예를 들면, 상기 세포외 소낭은 원심분리, 초원심분리, 필터에 의한 여과, 한외여과, 겔 여과 크로마토그래피, 이온 교환 크로마토그래피, 침전, 및 면역 침강, 프리-플로우 전기영동, 모세관 전기영동, 또는 이들의 조합에 의하여 분리될 수 있다. 상기 분리 방법은 불순물의 제거를 위한 세척, 및 농축 등의 과정을 포함할 수 있다. 상기 세포외 소낭은 하기하는 상기 세포외 소낭을 분리하는 방법에 의하여 생산된 것일 수 있다. 상기 세포외 소낭은 상기 미생물 배양액을 컷오프 100 kD 이상, 예를 들면, 300 kD 이상, 또는 500 kD 이상의 초미세필터를 사용하여 한외 여과하는 방법으로 생산된 것일 수 있다. 상기 세포외 소낭은 상기 미생물 배양액을 100,000 xg 이상의 초원심 분리에서 침강하는 것일 수 있다. 상기 분리는 하기하는 제7 양상에 따른 세포외 소낭을 생산하는 방법에 의하여 생산된 것일 수 있다. The extracellular vesicles may be isolated from the culture medium by any method capable of separating them. For example, the extracellular vesicles can be separated by centrifugation, ultracentrifugation, filtration by filters, ultrafiltration, gel filtration chromatography, ion exchange chromatography, precipitation, and immunoprecipitation, free-flow electrophoresis, capillary electrophoresis, Or it can be separated by a combination thereof. The separation method may include processes such as washing and concentration to remove impurities. The extracellular vesicle may be produced by a method for isolating the extracellular vesicle described below. The extracellular follicles may be produced by ultrafiltration of the microbial culture medium using an ultrafine filter with a cutoff of 100 kD or more, for example, 300 kD or more, or 500 kD or more. The extracellular vesicles may be precipitated by ultracentrifugation of 100,000 xg or more of the microbial culture medium. The separation may be produced by the method for producing extracellular follicles according to the seventh aspect to be described below.

제3 양상에 있어서, 상기 담체는 생리적으로 허용가능한 것, 예를 들면, 약제학적으로 또는 화장품 제조학적으로 허용가능한 것일 수 있다. 상기 담체는 통상적으로 사용되는 식염수, 멸균수, 링거액, 완충액, 시클로덱스트린, 덱스트로스 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀, 또는 이들의 조합을 포함할 수 있다. 또한, 상기 담체는 항산화제, 희석제, 분산제, 계면활성제, 결합제, 윤활제, 또는 이들의 조합을 포함할 수 있다. In the third aspect, the carrier may be physiologically acceptable, for example pharmaceutically or cosmetically acceptable. The carrier may include commonly used saline, sterile water, Ringer's solution, buffer, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, or a combination thereof. In addition, the carrier may include an antioxidant, a diluent, a dispersing agent, a surfactant, a binder, a lubricant, or a combination thereof.

상기 조성물은 경구 또는 비경구 투여용 제형을 갖는 것일 수 있다. 상기 비경구 투여 제형은 국소 투여 제형일 수 있다. 국소 투여 제형은 피부 또는 점막 투여 제형일 수 있다. 상기 비경구 투여 제형은 용액, 현탁액, 유탁액, 피부 외용제, 스프레이, 또는 퍼프의 제형을 갖는 것일 수 있다. The composition may have a dosage form for oral or parenteral administration. The parenteral dosage form may be a topical dosage form. Topical dosage forms may be dermal or mucosal dosage forms. The parenteral dosage form may be in the form of a solution, suspension, emulsion, skin external preparation, spray, or puff.

상기 조성물은 피부 적용, 점막 적용, 또는 비강 투여 등에 의하여 개체에 투여될 수 있다.The composition may be administered to a subject by, for example, skin application, mucosal application, or intranasal administration.

투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여 방법, 배설율 및 질환의 중증도 등에 따라 달라질 수 있다. 일일 투여량은 치료를 필요로 하는 개체에 투여됨으로써 경감된 질병 상태에 대한 치료에 충분한 유효 성분의 양을 의미한다. 투여량은 몸무게 70 kg인 성인 개체를 기준으로 할 때, 0.01 내지 1000 mg/일, 0.01 내지 500 mg/일이며, 일정 시간 간격으로 1일 1회 내지 수회에 분할 투여될 수 있다.The dose may vary depending on the patient's weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of the disease. A daily dose means an amount of an active ingredient sufficient to treat a disease state alleviated by being administered to a subject in need of such treatment. The dosage is 0.01 to 1000 mg/day, 0.01 to 500 mg/day, based on an adult individual with a body weight of 70 kg, and may be administered in divided doses once or several times a day at regular time intervals.

상기 조성물은 화장용 조성물일 수 있다. 상기 화장용 조성물은 화장 조성물에 통상적으로 이용되는 성분이 포함될 수 있다. 상기 화장용 조성물은 항산화제, 안정화제, 용해화제, 비타민, 안료, 향료와 같은 통상적인 보조제 및 담체를 포함할 수 있다.The composition may be a cosmetic composition. The cosmetic composition may include components commonly used in cosmetic compositions. The cosmetic composition may include conventional adjuvants and carriers such as antioxidants, stabilizers, solubilizers, vitamins, pigments, and fragrances.

상기 화장용 조성물은 용액, 현탁액, 유탁액, 페이스트, 겔, 클림, 로션, 파우더, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 또는 스프레이일 수 있다. 상기 화장용 조성물은 영양 크림, 수렴 화장수, 유연 화장수, 로션, 에센스, 영양젤 또는 마사지 크림의 제형을 갖는 것일 수 있다.The cosmetic composition may be a solution, suspension, emulsion, paste, gel, cream, lotion, powder, oil, powder foundation, emulsion foundation, wax foundation or spray. The cosmetic composition may have a formulation of nutrient cream, astringent lotion, softening lotion, lotion, essence, nutrient gel or massage cream.

상기 조성물은 개체서 섬유아세포 또는 각질형성세포의 성장 또는 콜라겐 합성을 촉진하기 위한 것일 수 있다. 상기 조성물은 피부 노화 방지, 또는 주름 개선을 위하여 사용하기 위한 것일 수 있다. 이 경우, 상기 표적 단백질은 성장인자일 수 있다.The composition may be for promoting the growth of fibroblasts or keratinocytes or collagen synthesis in a subject. The composition may be used for preventing skin aging or improving wrinkles. In this case, the target protein may be a growth factor.

상기 조성물은 상기 개체에 국소적으로 표적 단백질을 전달하기 위한 것일 수 있다. 상기 조성물은 피부, 경구, 또는 점막을 통하여 전달하기 위한 것일 수 있다. The composition may be for delivering a target protein locally to the subject. The composition may be for delivery through the skin, oral cavity, or mucous membranes.

상기 조성물에 있어서, 상기 개체는 포유동물일 수 있다. 상기 포유동물은 사람, 개, 고양이, 말, 또는 돼지일 수 있다. In the composition, the subject may be a mammal. The mammal may be a human, dog, cat, horse, or pig.

제5 양상은 상기 조성물을 개체에게 투여하는 단계를 포함하는 개체의 질병을 치료하는 방법을 제공한다. 상기 개체는 포유동물일 수 있다. 상기 포유동물은 사람, 개, 고양이, 말, 또는 돼지일 수 있다. 상기 질병은 염증성 질환, 창상, 아토피 피부염, 건선, 또는 여드름일 수 있다.A fifth aspect provides a method of treating a disease in a subject comprising administering the composition to the subject. The subject may be a mammal. The mammal may be a human, dog, cat, horse, or pig. The disease may be an inflammatory disease, wound, atopic dermatitis, psoriasis, or acne.

제6 양상은 상기 조성물을 개체에게 투여하는 단계를 포함하는 개체를 화장하는 방법을 제공한다. 상기 투여는 개체의 피부에 도포하는 것일 수 있다. 상기 투여는 노화된 피부 또는 주름진 피부 부위에 도포하는 것일 수 있다. 상기 화장하는 방법은 노화된 피부 또는 주름진 피부를 개선하기 위한 것일 수 있다.A sixth aspect provides a method of making up a subject comprising administering the composition to the subject. The administration may be applied to the skin of a subject. The administration may be applied to aged skin or wrinkled skin. The makeup method may be for improving aged skin or wrinkled skin.

제7 양상은 상기한 미생물을 배양하여 배양물을 얻는 단계; 및 상기 배양물로부터 세포외 소낭을 분리하는 단계를 포함하는, 세포외 소낭을 생산하는 방법을 제공한다. The seventh aspect is culturing the microorganisms to obtain a culture product; And it provides a method for producing extracellular follicles comprising the step of isolating the extracellular follicles from the culture.

상기 배양은 상기 미생물의 성장에 유용한 배지 중에서 인큐베이션하는 것일 수 있다. 상기 배양은 유산균 또는 효모에 적당하다고 알려진 조건, 예를 들면, 온도 및 교반 조건에서 수행될 수 있다.The culture may be incubation in a medium useful for the growth of the microorganism. The culturing may be performed under conditions known to be suitable for lactic acid bacteria or yeast, for example, temperature and stirring conditions.

상기 배양물로부터 세포외 소낭을 분리하는 단계는 배양물로부터 세포외 소낭을 분리하는 것이면 어느 것이나 포함된다. The step of separating the extracellular follicles from the culture includes any separation of the extracellular follicles from the culture.

상기 분리하는 단계는, 상기 배양물을 원심분리하고 상등액을 얻는 단계; 상기 상등액을 여과하는 단계; 및 상기 여과물을 초원심분리하여 침전물을 얻는 단계를 포함하는 것일 수 있다. The separating may include centrifuging the culture and obtaining a supernatant; filtering the supernatant; And it may be one comprising the step of obtaining a precipitate by ultracentrifuging the filtrate.

상기 분리 단계에서, 상등액을 얻는 단계에서 원심분리는 1,000 내지 20,000 xg에서 수행되는 것일 수 있다. 상기 상등액을 여과하는 단계에서, 상기 여과는 초미세필터를 사용한 여과일 수 있다. 상기 여과는 상기 상등액을 컷오프 100 kD 이상, 예를 들면, 300 kD 이상, 또는 500 kD 이상의 초미세필터를 사용하여 한외 여과하는 것일 수 있다. 상기 여과물을 초원심분리하여 침전물을 얻는 단계에서, 상기 초원심분리는 100,000 xg 이상, 예를 들면, 100,000 xg 내지 200,000 xg에서 수행되는 것일 수 있다.In the separation step, in the step of obtaining the supernatant, centrifugation may be performed at 1,000 to 20,000 xg. In the step of filtering the supernatant, the filtration may be filtration using an ultra-fine filter. The filtration may be ultrafiltration of the supernatant using an ultra-fine filter having a cutoff of 100 kD or more, for example, 300 kD or more, or 500 kD or more. In the step of obtaining a precipitate by ultracentrifugation of the filtrate, the ultracentrifugation may be performed at 100,000 xg or more, for example, 100,000 xg to 200,000 xg.

상기 방법은 침전물을 현탁하는 단계를 더 포함할 수 있다. The method may further include suspending the precipitate.

일 양상에 따른 재조합 미생물에 의하면, 세포외 소낭, 또는 그로부터 표적 단백질을 효율적으로 분리하는데 사용될 수 있다.According to the recombinant microorganism according to one aspect, it can be used to efficiently separate extracellular vesicles or target proteins therefrom.

다른 양상에 따른 상기한 세포외 소낭 및 표적 단백질을 개체에게 전달하기 위한 조성물에 의하면, 표적 단백질을 개체에 효율적으로 전달하는데 사용될 수 있다.According to the composition for delivering the above-described extracellular vesicle and target protein to a subject according to another aspect, it can be used to efficiently deliver a target protein to a subject.

다른 양상에 따른 개체의 질병을 치료하는 방법에 의하면, 상기 질병을 효율적으로 치료할 수 있다.According to a method for treating a disease of an individual according to another aspect, the disease can be efficiently treated.

다른 양상에 따른 개체를 화장하는 방법에 의하면, 개체를 효율적으로 화장할 수 있다.According to a method of applying makeup to an individual according to another aspect, it is possible to efficiently apply makeup to an individual.

다른 양상에 따른 세포외 소낭을 생산하는 방법에 의하면, 세포외 소낭을 효율적으로 생산할 수 있다.According to the method for producing extracellular vesicles according to another aspect, extracellular vesicles can be efficiently produced.

도 1은 표적 단백질을 효모 세포에서 발현하기 위한 발현 벡터를 나타낸다.
도 2는 p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, 및 TRX)로 형질전환된 S.cerevisiae로부터 상등액 및 세포외 소낭에 표적 단백질이 발현된 정도를 나타내는 도면이다.
도 3은 p416G-MF-hFGF1 또는 hTRX 또는 p416G-hFGF1, 또는 hTRX로 형질전환된 S.cerevisiae로부터 상등액 및 세포외 소낭에 표적 단백질이 발현된 정도를 나타내는 도면이다.
도 4는 효모로부터 분리된 성장인자 함유 세포외 소낭의 세포 증식에 미치는 효과를 나타낸 도면이다.
도 5는 IL-22를 포함하는 세포외 소낭 및 IL-22를 포함하지 않은 세포외 소낭으로 각각 처리된 세포에서 IL-10 생산량을 나타내는 도면이다.
도 6은 CFSE로 표지된 세포외 소낭이 세포와 융합하는 정도를 세포 흐름 분석을 통하여 관찰한 결과를 나타낸다.
도 7은 효모 유래 세포외 소낭의 피부에 대한 독성을 측정한 도면이다.
도 8은 형질전환된 유산균으로부터 분리된 EV의 크기 및 농도 분포를 나타낸 도면이다.
도 9는 EV 용액에 대하여 웨스턴 블롯을 수행한 결과를 나타낸다.
도 10은 신호 펩티드 유전자와 융합 또는 융합되지 않은 aFGF를 코딩하는 유전자를 포함한 pMT172 재조합으로 형질전환된 LMT1-21로부터 분리된 EV에 대하여 웨스턴 블롯을 수행한 결과를 나타낸다.
도 11은 유산균으로부터 분리된 성장인자 함유 세포외 소낭의 세포 증식에 미치는 효과를 나타낸 도면이다.
도 12는 LMT1-21 유래 EV와 접촉된 세포 유래 단백질을 전기영동한 사진이다.
도 13은 CFSE로 표지된 세포외 소낭이 세포와 융합하는 정도를 세포 흐름 분석을 통하여 관찰한 결과를 나타낸다.
도 14는 효모 유래 세포외 소낭의 피부에 대한 독성을 측정한 도면이다.
1 shows an expression vector for expressing a target protein in yeast cells.
2 is a diagram showing the expression level of target proteins in the supernatant and extracellular vesicles from S. cerevisiae transformed with p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, and TRX).
3 is a diagram showing the expression level of target proteins in the supernatant and extracellular follicles from S. cerevisiae transformed with p416G-MF-hFGF1 or hTRX or p416G-hFGF1 or hTRX.
Figure 4 is a diagram showing the effect on cell proliferation of growth factor-containing extracellular follicles isolated from yeast.
5 is a diagram showing the production of IL-10 in cells treated with extracellular follicles containing IL-22 and extracellular follicles not containing IL-22, respectively.
Figure 6 shows the result of observing the degree of fusion of CFSE-labeled extracellular follicles with cells through cell flow analysis.
7 is a diagram measuring the toxicity of yeast-derived extracellular vesicles to the skin.
8 is a diagram showing the size and concentration distribution of EVs isolated from transformed lactic acid bacteria.
Figure 9 shows the results of Western blotting with respect to the EV solution.
Fig. 10 shows the results of Western blotting on EVs isolated from LMT1-21 transformed with pMT172 recombinant containing the aFGF-encoding gene either fused or not fused with the signal peptide gene.
11 is a view showing the effect on cell proliferation of growth factor-containing extracellular follicles isolated from lactic acid bacteria.
12 is a photograph of electrophoresis of cell-derived proteins contacted with LMT1-21-derived EVs.
13 shows the result of observing the degree of fusion of CFSE-labeled extracellular follicles with cells through cell flow analysis.
14 is a diagram measuring the toxicity of yeast-derived extracellular vesicles to the skin.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.

실시예 1: 효모 세포 유래의 세포외 소낭Example 1: Extracellular vesicles derived from yeast cells

표적 단백질을 발현하는 재조합 효모를 제작하고, 그 효모로부터 세포외 소낭을 생산하였다. 구체적인 과정은 다음과 같다. 효모 세포는 Saccharomyces cerevisiae를 사용하였다.Recombinant yeast expressing the target protein was prepared, and extracellular vesicles were produced from the yeast. The specific process is as follows. Yeast cells were Saccharomyces cerevisiae.

1. 발현 벡터의 제작1. Construction of expression vectors

도 1은 표적 단백질을 효모 세포에서 발현하기 위한 발현 벡터를 나타낸다. 이 벡터는 플라스미드 pRS416 GPD(서열번호 1)의 서열을 이용하여 제작되었으며, 표적 단백질은 hEGF1, hIGF1, hFGF1, hFGF2, hTGF alpha, 및 hTRX이다. hEGF1, hIGF1, hFGF1, hFGF2, hTGF alpha, 및 hTRX는 각각 서열번호 14, 15, 12, 13, 17, 또는 18의 아미노산 서열을 갖고, 이들은 서열번호 5, 6, 7, 8, 10 및 11의 뉴클레오티드 서열에 의하여 코딩될 수 있다. FGF7은 서열번호 9의 뉴클레오티드 서열을 가질 수 있으며, 그의 아미노산 서열은 서열번호 9의 뉴클레오티드 서열에 의하여 코딩되는 아미노산 서열일 수 있다.1 shows an expression vector for expressing a target protein in yeast cells. This vector was constructed using the sequence of plasmid pRS416 GPD (SEQ ID NO: 1), and the target proteins were hEGF1, hIGF1, hFGF1, hFGF2, hTGF alpha, and hTRX. hEGF1, hIGF1, hFGF1, hFGF2, hTGF alpha, and hTRX have amino acid sequences of SEQ ID NOs: 14, 15, 12, 13, 17, or 18, respectively, and they are SEQ ID NOs: 5, 6, 7, 8, 10, and 11 It can be encoded by a nucleotide sequence. FGF7 may have a nucleotide sequence of SEQ ID NO: 9, and its amino acid sequence may be an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 9.

도 1의 벡터는 표적 단백질에 따라, p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, 및 TRX)로 명명하였다. The vector of FIG. 1 was named p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, and TRX) according to the target protein.

먼저, S.cerevisiae의 코돈 사용 빈도에 따라 코돈 최적화된 표적 단백질 유전자, 즉 사람 EGF1, IGF1, FGF1, FGF2, TGF alpha, 및 TRX 유전자를 마크로젠 사에 의뢰하여 합성하였다. 이들 유전자를 p416GPD 벡터 (ATCC87360)(서열번호 1)를 사용하여, 도 1의 발현 벡터를 제작하였다. 도 1의 발현 벡터는 S.cerevisiae의 mating factor alpha-1 신호 펩티드 (MF)를 코딩하는 폴리뉴클레오티드(서열번호 4)를 표적 단백질 유전자의 상류에 연결된 서열을 포함한다. 대조군으로서, 신호 펩티드 (MF)를 코딩하는 폴리뉴클레오티드(서열번호 4)가 연결되지 않은 유전자를 사용하였다. 또한, p416GPD (ATCC 87360) 벡터 대신 p426GPD 벡터 (ATCC 87361)(서열번호 2)를 사용하여 동일하게 벡터를 제작하였다. p416GPD 벡터는 낮은 카피(low copy)로 세포 내에 존재하는 벡터이고, p426GPD는 높은 카피 (high copy)로 세포 내에 존재하는 벡터이다. p416GPD 및 p426GPD에서 GPD는 프로모터 GPD의 뉴클레오티드 서열(서열번호 3)을 나타낸다.First, target protein genes codon-optimized according to the codon usage frequency of S. cerevisiae, that is, human EGF1, IGF1, FGF1, FGF2, TGF alpha, and TRX genes were commissioned and synthesized by Macrogen. The expression vector shown in FIG. 1 was constructed using the p416GPD vector (ATCC87360) (SEQ ID NO: 1) for these genes. The expression vector of FIG. 1 includes a sequence in which a polynucleotide (SEQ ID NO: 4) encoding the mating factor alpha-1 signal peptide (MF) of S. cerevisiae is linked upstream of a target protein gene. As a control, a gene to which a polynucleotide encoding a signal peptide (MF) (SEQ ID NO: 4) was not linked was used. In addition, a vector was similarly prepared using the p426GPD vector (ATCC 87361) (SEQ ID NO: 2) instead of the p416GPD (ATCC 87360) vector. The p416GPD vector is a low-copy vector present in cells, and the p426GPD is a high-copy vector present in cells. In p416GPD and p426GPD, GPD represents the nucleotide sequence of the promoter GPD (SEQ ID NO: 3).

도 1에서, 상기 벡터는 S.cerevisiae의 복제 원점인 CEN/Ars 서열, 암피실린 저항성 유전자 Ampr 서열, 대장균 복제 원점 서열인 ColE1 ori 서열, S.cerevisiae의 프로모터 서열인 프로모터 GPD 서열, S.cerevisiae의 CYC terminator 서열인 ScCYC term 서열, 박테리아오파지의 복제 원점인 F1 ori 서열, S.cerevisiae의 프로모터, ORF, 터미네이터 서열(ScURA3p-URA3)을 포함하고 있다.In FIG. 1, the vector contains the CEN/Ars sequence, which is the origin of replication of S. cerevisiae, the Amp r sequence of the ampicillin resistance gene, the ColE1 ori sequence, which is the origin sequence of E. coli replication, the promoter GPD sequence, which is the promoter sequence of S. cerevisiae, and the S. cerevisiae origin sequence. It includes the CYC terminator sequence, the ScCYC term sequence, the F1 ori sequence, which is the origin of replication of Bacteriophage, and the S.cerevisiae promoter, ORF, and terminator sequence (ScURA3p-URA3).

2. 효모에서 표적 단백질의 발현2. Expression of target proteins in yeast

p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, 및 TRX) 벡터를 각각 S.cerevisiae CEN.PK2-1 균주에 LiCl 방법에 따라 형질전환시켰다. 얻어진 형질전환 균주를 2 mL의 minimal ura-drop out 배지 (Yeast nitrogen base without amino acids (Sigma-Aldrich: Cat. No. Y0626) 6.7 g/L, 및 Yeast synthetic drop-out without uracil (Sigma-Aldrich: Cat. No. Y1501) 1.92 g/L, 포도당 2 (w/v)%)에서 하루 동안 1차 배양하고, 배양된 균주를 카사미노산(Casamino acids)이 1 % 포함된 15 mL의 minimal ura-drop 배지에 시작 OD600이 0.5가 되도록 접종하고 본 배양을 하였다. 본 배양은 30℃에서 2일 동안 220 rpm으로 교반 배양하며, 균체를 제거한 상등액을 직접 사용한 시료군을 준비하였다. 또한, 상기 상등액을 100 kDa 컷-오프 막 (Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-10 membrane (100K), millipore: Cat. No. UFC910024)을 사용하여 여과하여 농축된 여과액을 얻고, 이를 50,000 g에서 2 시간 동안 초원심분리(ultracentrifugation)하여 세포외 소낭(EV)을 분리하여 1ml PBS에 현탁하였다. 여기서 상등액 및 얻어진 세포외 소낭 시료에 대하여 웨스턴 블롯(western blot)을 수행하여, 단백질의 발현 정도를 확인하였다. The p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, and TRX) vectors were respectively transformed into S. cerevisiae CEN.PK2-1 strains according to the LiCl method. The resulting transformed strain was mixed with 2 mL of minimal ura-drop out medium (Yeast nitrogen base without amino acids (Sigma-Aldrich: Cat. No. Y0626) 6.7 g/L, and Yeast synthetic drop-out without uracil (Sigma-Aldrich: Cat. No. Y1501) 1.92 g/L, glucose 2 (w/v)%) for 1 day, and the cultured strain is 15 mL of minimal ura-drop containing 1% of Casamino acids The medium was inoculated so that the starting OD 600 was 0.5, and the main culture was performed. This culture was stirred and cultured at 220 rpm for 2 days at 30 ° C., and a sample group was prepared using the supernatant from which the cells were removed. In addition, the supernatant was filtered using a 100 kDa cut-off membrane (Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-10 membrane (100K), millipore: Cat. No. UFC910024) to obtain a concentrated filtrate, which was 50,000 Extracellular vesicles (EVs) were separated by ultracentrifugation for 2 hours at g and suspended in 1ml PBS. Here, western blot was performed on the supernatant and the obtained extracellular follicle sample to confirm the level of protein expression.

도 2는 p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, 및 TRX)로 형질전환된 S.cerevisiae로부터 상등액 및 세포외 소낭에 표적 단백질이 발현된 정도를 나타내는 도면이다. 레인 1 및 2는 각 표적 단백질이 신호 펩티드 MF에 연결된 융합 단백질의 발현 정도를 나타내는 웨스턴블롯 사진이다. 레인 1은 효모 세포 내에서 발현되어 배양액에 분리된 모든 단백질, 즉, 세포외 소낭에 탑재된 것과 탑재되지 않은 표적 단백질 모두를 포함한다. 레인 2는 세포외 소낭에 탑재된 표적 단백질만을 나타낸다. 도 2에 나타낸 바와 같이, 6개 실험군 모두에서 세포외 소낭에 표적 단백질이 현저하게 증가된 양으로 탑재되어 있다. 2 is a diagram showing the expression level of target proteins in the supernatant and extracellular vesicles from S. cerevisiae transformed with p416G-MF-hEGF1 (IGF1, FGF1, FGF2, TGF alpha, and TRX). Lanes 1 and 2 are Western blot pictures showing the expression levels of fusion proteins in which each target protein is linked to the signal peptide MF. Lane 1 contains all proteins expressed in yeast cells and isolated in culture, both target proteins loaded and unloaded in extracellular vesicles. Lane 2 shows only the target protein loaded in extracellular vesicles. As shown in FIG. 2, the target protein was significantly increased in extracellular vesicles in all six experimental groups.

도 3은 p416G-MF-hFGF1 또는 hTRX 또는 p416G-hFGF1, 또는 hTRX로 형질전환된 S.cerevisiae로부터 상등액 및 세포외 소낭에 표적 단백질이 발현된 정도를 각각 나타내는 도면이다. 즉, 신호 펩티드의 유무에 따른 세포외 소낭에 포획되는 정도를 나타낸다. FIG. 3 is a diagram showing the expression levels of target proteins in the supernatant and extracellular follicles from S. cerevisiae transformed with p416G-MF-hFGF1 or hTRX or p416G-hFGF1 or hTRX, respectively. That is, it indicates the degree of entrapment in extracellular vesicles according to the presence or absence of the signal peptide.

레인 1은 신호 펩티드가 없이 발현시킨 균주의 배양액으로부터 획득한 세포외 소낭 내 표적 단백질을 나타내고, 레인 2는 신호 펩티드 서열과 함께 발현시킨 균주의 배양액으로부터 획득한 세포외 소낭 내 표적 단백질이 발현된 것을 나타낸다. 도 3에 나타낸 바와 같이, 표적 단백질을 세포 내에서 발현시킨 것, 즉 1억개 EV 당 FGF1: 0.667ng, TRX: 0.047ng 보다 세포 밖으로 분비 발현시켰을 때 세포외 소낭에 발현되는 표적 단백질의 양, 즉 1억개 EV 당 FGF1: 2.648ng, TRX: 35.518ng이 현저하게 많았다.Lane 1 shows the target protein in extracellular vesicles obtained from the culture solution of the strain expressed without the signal peptide, and Lane 2 shows the expression of the target protein in the extracellular vesicle obtained from the culture solution of the strain expressed together with the signal peptide sequence. indicate As shown in FIG. 3, the amount of target protein expressed in extracellular vesicles when the target protein is secreted and expressed outside the cell rather than when the target protein is expressed intracellularly, that is, FGF1: 0.667ng and TRX: 0.047ng per 100 million EVs, i.e. FGF1: 2.648ng and TRX: 35.518ng per 100 million EVs were remarkably high.

3. 성장인자 함유 세포외 소낭이 세포 증식에 미치는 효능 확인3. Confirmation of the effect of growth factor-containing extracellular vesicles on cell proliferation

2절에 기재된 방법에 따라 분리된 세포외 소낭내 표적 단백질의 농도를 측정한 후, 이를 20 uL 사용한 것을 시작 농도로 하여 순차적으로 10배씩 단백질 농도를 PBS로 4 단계 희석하였다. 각 희석액 20 uL를 NIH3T3 세포주 또는 HaCat 세포를 각 웰당 5,000 세포씩 포함하는 96-웰 플레이트에 첨가한 후 37 ℃에서 48 시간 배양하였다. 그 후 Cell Counting Kit-8 (Dojindo) 용액 10 uL를 각 웰에 첨가하였다. 2 시간 후 450 nm에서 흡광도를 측정하였다. aFGF, bFGF, 및 IGF의 경우 NIH3T3 세포, TGFa 및 EGF의 경우, HaCat 세포를 사용하였다. After measuring the concentration of the target protein in the isolated extracellular follicle according to the method described in Section 2, 20 uL of the target protein was used as a starting concentration, and the protein concentration was sequentially diluted 4 times with PBS by 10 times. 20 uL of each dilution was added to a 96-well plate containing 5,000 cells of NIH3T3 cell line or HaCat cells per well, followed by incubation at 37°C for 48 hours. Then, 10 uL of Cell Counting Kit-8 (Dojindo) solution was added to each well. After 2 hours, absorbance was measured at 450 nm. NIH3T3 cells were used for aFGF, bFGF, and IGF, and HaCat cells were used for TGFa and EGF.

도 4는 효모로부터 분리된 성장인자 함유 세포외 소낭의 세포 증식에 미치는 효과를 나타낸 도면이다. 도 4에서 SC는 Saccharomyces cerevisiae를 나타낸다. Figure 4 is a diagram showing the effect on cell proliferation of growth factor-containing extracellular follicles isolated from yeast. In FIG. 4, SC represents Saccharomyces cerevisiae.

그 결과, 상기 표적 단백질 함유 세포외 소낭은 용량 의존적으로 세포의 수를 증가시켰다. 도 4에서, Pichia EV-aFGF, 및 Hansenula EV-aFGF는 aFGF로 형질전환된 Pichia pastoris 또는 Hansenula polymorpha를 사용한 것을 제외하고는 S. cerevisiae를 사용한 것과 동일한 과정을 거친 것이다. 도 4에서, 가로축은 배지내 세포외 소낭내 표적 단백질 함유 농도(w/v, ng/ml)를 나타낸다. 세로축은 사용된 세포외 소낭 함유 용액이 세포의 증식의 정도를 대조군(100%)과 비교하여 이를 백분율로 나타낸 것이다. As a result, the target protein-containing extracellular vesicle increased the number of cells in a dose-dependent manner. In FIG. 4 , Pichia EV-aFGF and Hansenula EV-aFGF were subjected to the same process as using S. cerevisiae, except that Pichia pastoris or Hansenula polymorpha transformed with aFGF was used. In Figure 4, the horizontal axis represents the target protein content concentration (w / v, ng / ml) in the extracellular vesicles in the medium. The vertical axis shows the degree of cell proliferation of the used extracellular vesicle-containing solution as a percentage compared to the control group (100%).

4. IL-22 발현의 확인4. Identification of IL-22 Expression

표적 단백질을 IL-22로 하여 1절에 기재된 바에 따라 발현 벡터 p426G-MF-IL-22를 제작하고, 2절에 기재된 바에 따라 S.cerevisiae CEN.PK2-1 균주에 형질전환하였다. 대조군으로는 IL-22를 포함하지 않는 것을 제외하고 동일한 p426G-MF 벡터를 사용하였다.Expression vector p426G-MF-IL-22 was constructed as described in Section 1 using IL-22 as the target protein, and transformed into S.cerevisiae CEN.PK2-1 strain as described in Section 2. As a control, the same p426G-MF vector was used except that it did not contain IL-22.

구체적으로, Colo205 세포주를 96-웰 플레이트에서 RPMI 배지 중에 48 시간 배양한 후, p426G-MF-IL22 벡터 및 p426G-MF 벡터로 형질전환되어 각각 IL-22를 발현하는 효모 및 그를 발현하지 않는 효모 유래 세포외 소낭을 정제하였다. 상기 세포외 소낭을 0.5 mg/mL의 농도로 PBS 중에 현탁하고, 이들을 20 uL 씩 96웰 플레이트의 웰에 첨가하고 6 시간 추가 배양하였다. 그 후 세포주에서 단백질을 추출하여 IL-10의 발현량을 비교하였다. IL-22는 서열번호 19의 아미노산 서열을 갖는다. IL-22는 세포에서 IL-10 생산을 촉진하는 것으로 알려져 있다.Specifically, the Colo205 cell line was cultured in RPMI medium in a 96-well plate for 48 hours, and then transformed with the p426G-MF-IL22 vector and the p426G-MF vector, respectively derived from yeast expressing IL-22 and yeast not expressing the same. Extracellular vesicles were purified. The extracellular follicles were suspended in PBS at a concentration of 0.5 mg/mL, added to each well of a 96-well plate in an amount of 20 uL, and further cultured for 6 hours. Thereafter, proteins were extracted from the cell lines and the expression levels of IL-10 were compared. IL-22 has the amino acid sequence of SEQ ID NO: 19. IL-22 is known to promote IL-10 production in cells.

도 5는 IL-22를 포함하는 세포외 소낭 및 IL-22를 포함하지 않은 세포외 소낭으로 각각 처리된 Colo205 세포주에 단백질을 추출하여 확인한 IL-10 단백질 생산량을 나타내는 도면이다. 도 5에 나타낸 바와 같이, IL-22를 포함하지 않은 세포외 소낭에 비하여 IL-22를 포함하는 세포외 소낭을 세포와 접촉시켜 배양한 경우, IL-10의 단백질 생산량이 현저하게 증가하였다. 도 5에서 레인 1은 IL-22를 포함하지 않는 세포외 소낭을 처리한 Colo205 세포주의 IL-10 단백질 생산 정도를 나타낸 것이고 레인 2는 IL-22를 포함하는 세포외 소낭을 처리한 Colo205 세포주의 IL-10 단백질 생산 정도를 나타낸 것이다. 5 is a diagram showing the amount of IL-10 protein production confirmed by extracting proteins from Colo205 cell lines treated with extracellular follicles containing IL-22 and extracellular follicles without IL-22, respectively. As shown in FIG. 5 , compared to extracellular follicles not containing IL-22, when the extracellular follicles containing IL-22 were cultured in contact with cells, the protein production of IL-10 was significantly increased. In FIG. 5, lane 1 shows the level of IL-10 protein production of the Colo205 cell line treated with extracellular follicles not containing IL-22, and lane 2 shows the IL-10 protein production level of the Colo205 cell line treated with extracellular follicles containing IL-22. -10 It represents the degree of protein production.

5. 효모 유래 세포외 소낭과 세포의 융합5. Fusion of yeast-derived extracellular vesicles and cells

형질전환되지 않은 S.cerevisiae CEN.PK2-1 균주로부터 상기한 바와 같이 세포외 소낭을 분리하였다. 분리된 세포외 소낭 (0.5 mg/ ml PBS) 1 ml를 CFSE (5-Carboxyfluorescein N-hydroxysuccinimidyl ester) (5 uM) 용액 중에서 상온에서 30 분 동안 두었다. 그 후, 용액을 PD-10 탈염 칼럼(desalting column)(GE)을 이용하여 남아 있는 CFSE를 제거하여, CFSE로 표지된 세포외 소낭을 얻었다. NIH3T3 세포주를 96 웰 플레이트의 웰에서 RPMI 배지 0.2 mL 중에서 48 시간 배양한 후, PBS 중 CFSE로 표지된 세포외 소낭 10 uL (적색) 또는 20 uL (녹색)를 첨가하고 24 시간 추가 배양하였다. 그 후, PBS로 세포를 세척하였다. 남아 있는 세포를 흐름 분석기(flow cytometer)를 통하여 통과시키고 그에 대한 형광도를 측정하였다. 대조군으로는 BSA 0.5 ug/ml를 같은 CFSE로 표지시켜 20 ul 사용하였다. Extracellular vesicles were isolated from the untransformed S. cerevisiae CEN.PK2-1 strain as described above. 1 ml of isolated extracellular vesicles (0.5 mg/ml PBS) was placed in a solution of 5-Carboxyfluorescein N-hydroxysuccinimidyl ester (CFSE) (5 uM) at room temperature for 30 minutes. Thereafter, the remaining CFSE was removed from the solution using a PD-10 desalting column (GE) to obtain CFSE-labeled extracellular follicles. After culturing the NIH3T3 cell line in 0.2 mL of RPMI medium for 48 hours in the wells of a 96-well plate, 10 uL (red) or 20 uL (green) of CFSE-labeled extracellular follicles in PBS was added and further cultured for 24 hours. Then, the cells were washed with PBS. The remaining cells were passed through a flow cytometer and their fluorescence was measured. As a control, 20 ul of BSA 0.5 ug/ml was labeled with the same CFSE.

도 6은 CFSE로 표지된 세포외 소낭이 세포와 융합하는 정도를 세포 흐름 분석을 통하여 관찰한 결과를 나타낸다. 도 6에서, 대조군(negative control)(좌측 도면)은 CFSE로 표지시킨 BSA와 세포를 접촉시킨 것이고, 실험군(우측)은 CFSE로 표지된 세포외 소낭 10 uL(적색)와 20 uL(녹색)와 세포를 접촉시킨 후 관찰된 결과를 나타낸다. 그 결과, 도 6의 우측에 나타낸 바와 같이, 세포가 CFSE로 염색되는 것으로 보아, 세포외 소낭이 세포와 융합하여 세포외 소낭의 성분이 세포로 도입되는 것을 확인하였다. NIH3T3 세포는 표준 섬유아세포(fibroblast) 세포주이다.Figure 6 shows the result of observing the degree of fusion of CFSE-labeled extracellular follicles with cells through cell flow analysis. In Figure 6, the negative control (left figure) is contacting cells with CFSE-labeled BSA, and the experimental group (right) is treated with 10 uL (red) and 20 uL (green) of CFSE-labeled extracellular follicles. Results observed after contacting the cells are shown. As a result, as shown on the right side of FIG. 6 , the cell was stained with CFSE, confirming that the extracellular vesicle was fused with the cell and the components of the extracellular vesicle were introduced into the cell. NIH3T3 cells are a standard fibroblast cell line.

6. 효모 유래 세포외 소낭의 피부독성 확인6. Confirmation of skin toxicity of yeast-derived extracellular vesicles

효모 유래 세포외 소낭의 피부에 대한 독성을 OECD 가이드라인에 따라 인공피부에 대한 독성 실험을 통하여 측정하였다. 인공피부는 NeodermTM-ED (태고사이언스사 제품)를 사용하였다.The toxicity of yeast-derived extracellular vesicles to the skin was measured through a toxicity test on artificial skin according to the OECD guidelines. Neoderm TM -ED (manufactured by Taego Science) was used as the artificial skin.

S.cerevisiae, Pichia pastoris, 또는 Hansenula polymorpha 유래 세포외 소낭을 분리하였다. S.cerevisiae 유래 세포외 소낭은 2절에 기재된 바에 따라 분리하였다. Pichia pastoris, 또는 Hansenula polymorpha 유래 세포외 소낭은 Pichia pastoris, 및 Hansenula polymorpha을 사용한 것을 제외하고는 2절에 기재된 바에 따라 분리하였다.Extracellular vesicles derived from S. cerevisiae, Pichia pastoris, or Hansenula polymorpha were isolated. S.cerevisiae-derived extracellular vesicles were isolated as described in Section 2. Extracellular follicles derived from Pichia pastoris or Hansenula polymorpha were isolated as described in Section 2, except that Pichia pastoris and Hansenula polymorpha were used.

분리된 세포외 소낭 각각 및 음성 대조군으로서 PBS 및 양성 대조군으로서 5 % SDS를 각각 30 uL를 NeodermTM-ED 인공피부에 도포하고 15 분 동안 인큐베이션하였다. 이후 상기 인공피부를 PBS로 세척한 후 12 웰 플레이트에 있는 2 ml 분석 매질(assay medium) (태고사이언스사)에 침지시켜 42 시간 추가 인큐베이션하였다. Each of the isolated extracellular follicles and 30 uL of each of PBS as a negative control and 5% SDS as a positive control were applied to the Neoderm -ED artificial skin and incubated for 15 minutes. After washing the artificial skin with PBS, it was immersed in 2 ml assay medium (Taego Science Co., Ltd.) in a 12-well plate and further incubated for 42 hours.

인큐베이션된 인공피부를 건져 0.3 % MTT 용액 (0.3 mg/ml)으로 옮긴 후 3시간 인큐베이션하였다. 이후 다시 인공피부를 건져 8 mm 생검 펀치(biopsy punch)를 이용하여 조직을 분리하고 0.04N HCl-이소프로판올 500 ul에 넣고 4시간 탈색시켰다. 570 nm에서 흡광도를 잰 후 인공피부를 반응시키지 않은 대조군 흡광도와 비교하여 생존도 (%)를 구하였다. 그 결과, 측정된 생존도가 양성 대조군과 음성 대조군 값의 중간값 이상이면 독성이 없는 것으로 결정하였다. 생존도는 하기 식에 따라 계산하였다. The incubated artificial skin was taken out, transferred to a 0.3% MTT solution (0.3 mg/ml), and incubated for 3 hours. Thereafter, the artificial skin was picked up again, and the tissue was separated using an 8 mm biopsy punch, and then placed in 500 ul of 0.04N HCl-isopropanol and bleached for 4 hours. After measuring the absorbance at 570 nm, the viability (%) was obtained by comparing the absorbance of the control group in which the artificial skin was not reacted. As a result, if the measured viability was greater than the median value of the positive and negative control values, it was determined that there was no toxicity. Viability was calculated according to the following formula.

생존도 = 시험물질 흡광도 /음성대조군 흡광도 X 100 Viability = absorbance of test substance / absorbance of negative control X 100

도 7은 효모 유래 세포외 소낭의 피부에 대한 독성을 측정한 도면이다. 도 7에서, 1: 음성 대조군 (PBS), 2: 양성 대조군 (5 % SDS), 3: S.cerevisiae, 4: P.pastoris, 5: H. polymorpha 유래 세포외 소낭을 나타낸다. 7 is a diagram measuring the toxicity of yeast-derived extracellular vesicles to the skin. In FIG. 7 , 1: negative control (PBS), 2: positive control (5% SDS), 3: S. cerevisiae, 4: P. pastoris, and 5: extracellular vesicles derived from H. polymorpha are shown.

실시예 2: 유산균(lactic acid bacteria: LAB) 세포 유래의 세포외 소낭Example 2: Extracellular vesicles derived from lactic acid bacteria (LAB) cells

표적 단백질을 발현하는 재조합 유산균을 제작하고, 그 유산균으로부터 세포외 소낭을 생산하였다. 구체적인 과정은 다음과 같다. 유산균 세포는 Lactobacillus paracasei LMT1-21(KCTC13422BP), Lactobacillus brevis LMT1-46(KCTC13423BP) 및/또는 Lactobacillus plantarum LMT1-9 (KCTC13421BP)를 사용하였다. Recombinant lactic acid bacteria expressing the target protein were prepared, and extracellular vesicles were produced from the lactic acid bacteria. The specific process is as follows. Lactobacillus paracasei LMT1-21 (KCTC13422BP), Lactobacillus brevis LMT1-46 (KCTC13423BP) and/or Lactobacillus plantarum LMT1-9 (KCTC13421BP) were used as lactic acid bacteria cells.

1. 유전자 발현 벡터의 제작1. Construction of gene expression vectors

표적 유전자는 단백질의 아미노산 서열로부터 Codon optimization tool(http://sq.idtdna.com/CodonOpt)을 사용하여 사용되는 유산균에 최적화된 코돈을 갖는 뉴클레오티드 서열을 도출하고, 이 서열의 양말단에 BamHI 및 XhoI 제한 효소의 인지 서열을 갖는 서열을 고안하고, 이 서열을 갖는 DNA를 합성하였다(마크로젠 사, 한국). 합성한 유전자는 BamHI 및 XhoI 제한 효소를 사용하여 절단하였다. 또한, 모벡터 pMT182-PR4 (서열번호 20)도 동일한 제한효소를 사용하여 절단하고 Gel purification kit를 사용하여 정제한 후 알칼리 포스파타제(AP)를 사용하여 탈인산화시켰다. 이 모벡터는 표적단백질을 발현시킬 수 있도록, 프로모터와 신호 펩티드 SP4 (서열번호 21)에 해당하는 DNA를 포함하고 있다. The target gene derives a nucleotide sequence having a codon optimized for the lactic acid bacteria used using the Codon optimization tool (http://sq.idtdna.com/CodonOpt) from the amino acid sequence of the protein, and BamHI and BamHI at both ends of the sequence. A sequence having the recognition sequence of the XhoI restriction enzyme was designed, and DNA having this sequence was synthesized (Macrogen, Korea). The synthesized gene was cut using BamHI and XhoI restriction enzymes. In addition, the parent vector pMT182-PR4 (SEQ ID NO: 20) was digested using the same restriction enzyme, purified using a gel purification kit, and then dephosphorylated using alkaline phosphatase (AP). This parental vector contains DNA corresponding to the promoter and signal peptide SP4 (SEQ ID NO: 21) so as to express the target protein.

이렇게 준비된 벡터 DNA 1 uL, 삽입체(insert) DNA 3 uL, T4 DNA 리가제(Takara 사, 일본) 0.5 uL, 및 완충용액 1 uL를 증류수 5.5 uL에 첨가하여 총 부피가 10 uL가 되게 하였다. 이 반응 용액을 16 ℃에서 12 시간 인큐베이션시켜 결합 반응을 시키고, 얻어진 결합체를 삼브룩 등의 방법(Sambrook et al., Molecular Cloning: A laboratory manual, 2nd ed.1989)에 따라 대장균 top10 균주를 형질전환하였다. 각 콜로니로부터 얻어진 플라스미드의 서열을 분석하여 확인하였다. 표적 단백질은 FGF1, FGF2, EGF, IGF, KGF, TGFa, TRX, 및 IL-22를 사용하였다. 이들은 각각 서열번호 12, 13, 14, 15, 16, 17, 18, 및 19의 아미노산 서열을 갖는다.1 uL of vector DNA thus prepared, 3 uL of insert DNA, 0.5 uL of T4 DNA ligase (Takara, Japan), and 1 uL of buffer solution were added to 5.5 uL of distilled water to make a total volume of 10 uL. The reaction solution was incubated at 16 ° C for 12 hours to perform a binding reaction, and the resulting conjugate was transformed into E. coli top10 strain according to the method of Sambrook et al. (Sambrook et al., Molecular Cloning: A laboratory manual, 2nd ed. 1989) did The sequence of the plasmid obtained from each colony was analyzed and confirmed. FGF1, FGF2, EGF, IGF, KGF, TGFa, TRX, and IL-22 were used as target proteins. They have the amino acid sequences of SEQ ID NOs: 12, 13, 14, 15, 16, 17, 18, and 19, respectively.

2. 유산균 형질전환2. Lactic acid bacteria transformation

상기 얻어진 균주를 3종의 유산균에 형질전환시켰다. 각 균주를 50 mL의 MRS에서 OD600이 0.5가 될 때까지 배양한 후 4 ℃, 7,000 rpm에서 10 분간 원심분리하고, 25 mL ice-cold EPS (1 mM K2HPO4 KH2PO4, pH 7.4, 1mM MgCl2 및 0.5 M sucrose 함유)로 2회 세척하였다. 이 세포를 1 mL ice-cold EPS에 현탁하여 전기천공법(electroporation)에 사용될 컴피턴트 세포(competent cell)를 제조하고, -80 ℃ 냉장고(deep freezer)에 보관하였다. 컴피턴트 세포 40 uL와 벡터 1 ug/uL DNA를 큐벳에 옮기고 5 분간 얼음에 방치하였다. 25 uF, 8 kV/cm, 및 400 ohms 조건에서 펄스를 준 후, 즉시 1 mL MRS 액체 배지를 첨가하고 37 ℃에서 1 시간가량 배양하였다. 이 세포를 10 ug/ml 클로람페니콜이 포함된 MRS 배지에서 도말한 후 49 시간 37 ℃에서 배양하여 형질전환된 세포를 얻었다. The obtained strain was transformed into three types of lactic acid bacteria. Each strain was cultured in 50 mL of MRS until the OD 600 reached 0.5, centrifuged at 4 °C and 7,000 rpm for 10 minutes, and 25 mL ice-cold EPS (1 mM K 2 HPO 4 KH 2 PO 4 , pH 7.4, containing 1 mM MgCl 2 and 0.5 M sucrose) twice. The cells were suspended in 1 mL ice-cold EPS to prepare competent cells to be used for electroporation, and stored in a -80 °C deep freezer. 40 uL of competent cells and 1 ug/uL DNA of the vector were transferred to a cuvette and left on ice for 5 minutes. After pulses were given at 25 uF, 8 kV/cm, and 400 ohms, 1 mL MRS liquid medium was immediately added and incubated at 37 °C for about 1 hour. The cells were plated in MRS medium containing 10 ug/ml chloramphenicol and then cultured at 37° C. for 49 hours to obtain transformed cells.

3. 세포외 소낭(EV) 분리3. Extracellular Vesicle (EV) Isolation

얻어진 각 형질전환된 상기 유산균 균주 중 KCTC13422BP 균주를 MRS 액체 배지에서 37 ℃에서 16 시간 동안 정치 배양한 후, 이것을 다시 MRS 액체 배지에 2 % 부피를 접종한 후 16 시간 동안 정치 배양하였다. 얻어진 배양물을 5,000 xg로 15 분 동안 원심분리하여 유산균을 제거한 상등액을 얻어낸 후, 이것을 분자량 컷오프(MWCO) 100 kDa 초미세여과 막을 이용하여 한외여과하여 20 배 농축하였다. 이 농축액을 150,000 xg로 3 시간 동안 초원심분리하여 가라앉은 펠렛을 얻어낸 후, 이 펠렛을 PBS로 재현탁하고 EV 용액을 얻었다. NanoSight NS300 (Malvern)을 이용하여 얻어진 EV의 크기와 개수를 측정하였다. 그 결과를 도 8에 나타내었다. After the KCTC13422BP strain of each of the transformed lactic acid bacteria strains obtained was statically cultured in MRS liquid medium at 37 ° C. for 16 hours, this was again inoculated into MRS liquid medium in a 2% volume and then statically cultured for 16 hours. The obtained culture was centrifuged at 5,000 xg for 15 minutes to obtain a supernatant from which lactic acid bacteria were removed, and then ultrafiltered using a molecular weight cut-off (MWCO) 100 kDa ultrafiltration membrane and concentrated 20 times. This concentrate was ultracentrifuged at 150,000 xg for 3 hours to obtain a precipitated pellet, which was then resuspended in PBS to obtain an EV solution. The size and number of EVs obtained were measured using a NanoSight NS300 (Malvern). The results are shown in FIG. 8 .

도 8은 형질전환된 유산균으로부터 분리된 EV의 크기 및 농도 분포를 나타낸 도면이다. 도 8에서, 가로축은 직경이고, 세로축은 농도(입자/ml)이다. 도 8에서, 사용된 유산균은 KCTC13422BP 균주이고, 표적 단백질은 aFGF이다.8 is a diagram showing the size and concentration distribution of EVs isolated from transformed lactic acid bacteria. In Fig. 8, the horizontal axis is the diameter, and the vertical axis is the concentration (particles/ml). In FIG. 8, the lactic acid bacteria used is KCTC13422BP strain, and the target protein is aFGF.

도 8에 나타낸 바와 같이, EV는 80 내지 250 nm에서 90 %의 입자가 분포하였다.As shown in FIG. 8, 90% of EVs were distributed between 80 and 250 nm.

4. EV에 표적 단백질이 존재하는지 확인4. Confirmation of presence of target protein in EVs

3절에서 얻어진 EV 용액에 대하여 웨스턴 블롯을 수행하여, 표적 단백질이 EV에 존재하는지 확인하였다. 상기 EV는 pMT182-PR4에 aFGF, 및 TRX를 코딩하는 유전자를 클로닝한 벡터로 형질전환된 KCTC13422BP 균주(이하 LMT1-21이라고도 함)로부터 분리된 것이다. 이때 상기 유전자는 신호 펩티드 즉, SP4 서열과 융합되거나 융합되지 않은 서열을 사용하였다.Western blot was performed on the EV solution obtained in Section 3 to confirm whether the target protein was present in the EV. The EV was isolated from KCTC13422BP strain (hereinafter also referred to as LMT1-21) transformed with a vector in which genes encoding aFGF and TRX were cloned into pMT182-PR4. At this time, the signal peptide, that is, a sequence fused or not fused with the SP4 sequence was used as the gene.

웨스턴 블롯은 다음과 같이 수행하였다. EV 용액 5 uL에 4 x 로딩 버퍼(thermo), 10x 환원제(reducing agent)(thermo)를 첨가한 후 SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)용 겔에 전기영동하였다. 이 겔의 단백질을 니트로셀룰로스 막에 옮긴 후, 이 막을 차단 용액 5% 탈지유 함유 TBST(Tris-buffered saline with tween 20)에서 2 시간 동안 인큐베이션하여 차단하였다. 이후 TBST를 사용하여 5 분 동안 3번 세척한 후, 차단 용액에 막과 1차 항체를 첨가하여 2 시간 인큐베이션하여 항원-항체 결합을 유도하였다. TBST 세척 후, 2차 항체를 첨가하였다. 1 시간 방치한 후, ECL(enhanced electrochemical) 시스템을 사용하여 표적 단백질의 양 및 위치를 확인하였다. Western blot was performed as follows. After adding 4x loading buffer (thermo) and 10x reducing agent (thermo) to 5 uL of the EV solution, electrophoresis was performed on a gel for SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). After transferring the protein of the gel to a nitrocellulose membrane, the membrane was blocked by incubation in a blocking solution 5% skim milk-containing TBST (Tris-buffered saline with tween 20) for 2 hours. After washing with TBST three times for 5 minutes, the membrane and the primary antibody were added to the blocking solution and incubated for 2 hours to induce antigen-antibody binding. After a TBST wash, secondary antibodies were added. After being allowed to stand for 1 hour, the amount and location of the target protein were confirmed using an enhanced electrochemical (ECL) system.

도 9는 EV 용액에 대하여 웨스턴 블롯을 수행한 결과를 나타낸다. 도 9에 나타낸 바와 같이, 신호펩티드와 융합된 aFGF, 및 TRX를 pMT182-PR4에 클로닝하여 얻어진 벡터로 형질전환된 LMT1-21로부터 분리된 EV에는 aFGF 및 TRX가 발현되고 있어서, 이들이 EV에 존재하는 것을 알 수 있다. Figure 9 shows the results of Western blotting with respect to the EV solution. As shown in FIG. 9, aFGF and TRX were expressed in EVs isolated from LMT1-21 transformed with a vector obtained by cloning aFGF fused with a signal peptide and TRX into pMT182-PR4, and thus aFGF and TRX were expressed. can know that

도 10은 신호 펩티드 유전자와 융합 pMT182-PR4 또는 융합되지 않은 aFGF를 코딩하는 유전자를 포함한 재조합 벡터 즉, pMT182-PR4-aFGF 벡터로 형질전환된 LMT1-21로부터 분리된 EV에 대하여 웨스턴 블롯을 수행한 결과를 나타낸다. 도 10에서, 레인 1은 신호 서열 없이 aFGF 유전자를 발현시켰을 경우의 EV를 나타내고, 레인 2는 신호 서열이 aFGF와 융합된 단백질을 코딩하는 유전자를 발현시킨 경우의 EV를 나타낸다. FIG. 10 shows Western blotting performed on EVs isolated from LMT1-21 transformed with a recombinant vector, that is, a pMT182-PR4-aFGF vector containing a gene encoding pMT182-PR4 fused with a signal peptide gene or a gene encoding unfused aFGF. show the result. In FIG. 10, lane 1 shows EVs when the aFGF gene was expressed without a signal sequence, and lane 2 shows EVs when a gene encoding a protein fused with aFGF signal sequence was expressed.

5. 5. 유산균 유래derived from lactic acid bacteria 성장인자 함유 Contains growth factors 세포외extracellular 소낭이vesicle 세포 증식에 미치는 효능 확인 Confirmation of efficacy on cell proliferation

3절에 기재된 방법에 따라 1 L 유산균 배양액에서 분리된 세포외 소낭을 PBS 1 ml에 현탁시켰다. DMEM 배지 중 NIH3T3 세포주 (또는 HaCat 세포)를 96-웰 플레이트의 각 웰에 5,000 세포씩 접종(seeding)한 후 37℃에서 48 시간 배양하였다. 그 후 상기 성장인자를 발현하는 세포외 소낭 함유 용액 또는 대조군 PBS 20 uL씩 첨가하였다. 동일한 조건에서 48 시간 배양한 후 Cell Counting Kit-8 (Dojindo) 용액 10 uL를 각 웰에 첨가하였다. 2 시간 후 450 nm에서 흡광도를 측정하였다. aFGF, bFGF, 및 IGF의 경우 NIH3T3 세포, KGF, TGFa 및 EGF의 경우, HaCat 세포를 사용하였다. According to the method described in Section 3, extracellular vesicles isolated from 1 L lactic acid bacteria culture medium were suspended in 1 ml of PBS. 5,000 cells of the NIH3T3 cell line (or HaCat cells) in DMEM medium were seeded in each well of a 96-well plate, and then incubated at 37° C. for 48 hours. Thereafter, 20 uL of a solution containing extracellular follicles expressing the growth factor or control PBS was added. After culturing for 48 hours under the same conditions, 10 uL of Cell Counting Kit-8 (Dojindo) solution was added to each well. After 2 hours, absorbance was measured at 450 nm. NIH3T3 cells were used for aFGF, bFGF, and IGF, and HaCat cells were used for KGF, TGFa, and EGF.

도 11은 유산균으로부터 분리된 성장인자 함유 세포외 소낭의 세포 증식에 미치는 효과를 나타낸 도면이다. 도 11에서 LAB는 lactic acid bacterium (KCTC13422BP 균주)을 나타낸다. 그 결과, 상기 표적 단백질 함유 세포외 소낭은 용량 의존적으로 세포 농도를 증가시켰다. 도 11에서, 가로축은 세포외 소낭에 포함된 표적 단백질의 농도(w/v)를 나타낸다. 세로축은 사용된 세포외 소낭 함유 용액이 세포의 증식의 정도를 대조군에 대비하고 이를 백분율로 나타낸 것이다. 11 is a view showing the effect on cell proliferation of growth factor-containing extracellular follicles isolated from lactic acid bacteria. In FIG. 11, LAB represents lactic acid bacterium (KCTC13422BP strain). As a result, the cell concentration of the target protein-containing extracellular vesicles increased in a dose-dependent manner. In FIG. 11, the horizontal axis represents the concentration (w/v) of the target protein contained in extracellular vesicles. The vertical axis shows the degree of cell proliferation of the used extracellular vesicle-containing solution as a percentage compared to the control group.

6. 성장인자를 포함한 EV의 효능: IL-10 발현의 확인6. Efficacy of EVs containing growth factors: confirmation of IL-10 expression

1 및 2절에 따라 IL-22를 발현하는 벡터를 제작하고 이 벡터를 LMT1-21에 형질전환하였다. 3절에 따라 IL-22를 발현하는 벡터로 형질전환된 LMT1-21로부터 EV를 분리하였다. 이 EV가 세포에서 IL-10 발현을 촉진하는지를 확인하여, 간접적으로 IL-22의 존재 여부를 추정하였다. A vector expressing IL-22 was constructed according to Sections 1 and 2, and the vector was transformed into LMT1-21. EVs were isolated from LMT1-21 transformed with the vector expressing IL-22 according to Section 3. By confirming whether these EVs promote IL-10 expression in cells, the presence or absence of IL-22 was indirectly estimated.

구체적으로, Colo205 세포주를 96-웰 플레이트에서 RPMI 배지 중에 48 시간 배양한 후, 여기에 IL-22를 발현하는 유산균 및 그를 발현하지 않는 유산균 유래 세포외 소낭을 분리하고, 이 세포외 소낭을 0.5 mg/mL의 농도로 PBS 중에 현탁하고, 이들을 20 uL 씩 웰에 첨가하고 6 시간 추가 배양하였다. 그 후 세포주에서 단백질을 추출 즉, 세포 파쇄(lysis) 후 파쇄물(lysate)을 얻고 그 중 IL-10의 발현량을 비교하였다. Specifically, after culturing the Colo205 cell line in a 96-well plate in RPMI medium for 48 hours, lactic acid bacteria expressing IL-22 and lactic acid bacteria not expressing the IL-22-derived extracellular follicles were isolated, and the extracellular follicles were 0.5 mg /mL were suspended in PBS, and they were added to the wells in 20 uL portions and further incubated for 6 hours. Thereafter, protein was extracted from the cell line, that is, cell lysis was obtained and lysate was obtained, and the expression level of IL-10 among them was compared.

도 12는 LMT1-21 유래 EV와 접촉된 세포 유래 단백질을 웨스턴 블롯한 사진이다. 도 12에서, 레인 1은 PBS이고, 레인 2는 LMT1-21 유래 EV, 레인 3은 IL-22를 발현하는 LMT1-21 유래 EV를 처리한 것을 나타낸다. 12 is a photograph of Western blotting of cell-derived proteins contacted with LMT1-21-derived EVs. In FIG. 12 , lane 1 is PBS, lane 2 is LMT1-21-derived EV, and lane 3 is LMT1-21-derived EV expressing IL-22.

7. 유산균 유래 세포외 소낭과 세포의 융합7. Fusion of lactic acid bacteria-derived extracellular vesicles and cells

형질전환되지 않은 유산균 균주(KCTC13422BP)로부터 상기한 바와 같이 세포외 소낭을 분리하였다. 분리된 세포외 소낭 (0.5 mg/ml) 1 ml를 CFSE (5 uM) 용액 중에서 상온에서 30 분 동안 두었다. 그 후, 용액을 PD-10 탈염 칼럼(desalting column)(GE)을 이용하여 남아 있는 CFSE를 제거하여, CFSE로 표지된 세포외 소낭을 얻었다. NIH3T3 세포주를 96 웰 플레이트의 웰에서 RPMI 배지(Gibco 사) 0.25 mL 중에서 48 시간 배양한 후, PBS 중 CFSE로 표지된 세포외 소낭 10 uL (적색) 또는 20 uL (녹색)를 첨가하고 24 시간 추가 배양하였다. 그 후, PBS로 세포를 세척하였다. 남아 있는 세포를 흐름 분석기(flow cytometer)를 통하여 통과시키고 그에 대한 형광도를 측정하였다. 대조군으로는 BSA 0.5 ug/ml를 같은 CFSE로 표지시켜 20 ul 사용하였다.Extracellular follicles were isolated from the untransformed lactic acid bacteria strain (KCTC13422BP) as described above. 1 ml of isolated extracellular follicles (0.5 mg/ml) was placed in CFSE (5 uM) solution at room temperature for 30 minutes. Thereafter, the remaining CFSE was removed from the solution using a PD-10 desalting column (GE) to obtain CFSE-labeled extracellular follicles. After culturing the NIH3T3 cell line in 0.25 mL of RPMI medium (Gibco) for 48 hours in the wells of a 96-well plate, 10 uL (red) or 20 uL (green) of CFSE-labeled extracellular follicles in PBS was added and further cultured for 24 hours. cultured. Then, the cells were washed with PBS. The remaining cells were passed through a flow cytometer and their fluorescence was measured. As a control, 20 ul of BSA 0.5 ug/ml was labeled with the same CFSE.

도 13은 CFSE로 표지된 세포외 소낭이 세포와 융합하는 정도를 세포 흐름 분석을 통하여 관찰한 결과를 나타낸다. 도 13에서, 대조군(negative control)(좌측 도면)은 CFSE로 표지시킨 BSA와 세포를 접촉시킨 것이고, 실험군(우측)은 CFSE로 표지된 세포외 소낭 10 uL(적색)와 20 uL(녹색)와 세포를 접촉시킨 후 관찰된 결과를 나타낸다. 그 결과, 도 13의 우측에 나타낸 바와 같이, 세포가 CFSE로 염색되는 것으로 보아, 세포외 소낭이 세포와 융합하여 세포외 소낭의 성분이 세포로 도입되는 것을 확인하였다. NIH3T3 세포는 표준 섬유아세포(fibroblast) 세포주이다.13 shows the result of observing the degree of fusion of CFSE-labeled extracellular follicles with cells through cell flow analysis. In FIG. 13, the negative control (left figure) was contacted with CFSE-labeled BSA and cells, and the experimental group (right) was treated with 10 uL (red) and 20 uL (green) of CFSE-labeled extracellular follicles. Results observed after contacting the cells are shown. As a result, as shown on the right side of FIG. 13 , the cells were stained with CFSE, confirming that the extracellular vesicles were fused with the cells and the components of the extracellular vesicles were introduced into the cells. NIH3T3 cells are a standard fibroblast cell line.

8. 유산균 유래 세포외 소낭의 피부독성 확인8. Confirmation of skin toxicity of lactic acid bacteria-derived extracellular vesicles

유산균 유래 세포외 소낭의 피부에 대한 독성을 OECD 가이드라인에 따라 인공피부에 대한 독성 실험을 통하여 측정하였다. 인공피부는 NeodermTM-ED (태고 사이언스사 제품)를 사용하였다.The toxicity of lactic acid bacteria-derived extracellular vesicles to the skin was measured through a toxicity test on artificial skin according to the OECD guidelines. Neoderm TM -ED (manufactured by Taego Science Co., Ltd.) was used as the artificial skin.

LMT1-21, LMT1-9, 또는 LMT1-46 유래 세포외 소낭을 분리하였다. 이들 세포외 소낭은 2절에 기재된 바에 따라 분리하였다. 분리된 세포외 소낭 각각 및 대조군으로서 PBS 및 양성 대조군으로서 5 % SDS를 각각 30 uL를 NeodermTM-ED 인공피부에 도포하고 15 분 동안 인큐베이션하였다. 이후 상기 인공피부를 PBS로 세척한 후 12 웰 플레이트에 있는 2 ml 분석 매질(assay medium) (태고 사이언스)에 침지시켜 42 시간 추가 인큐베이션하였다. Extracellular follicles derived from LMT1-21, LMT1-9, or LMT1-46 were isolated. These extracellular vesicles were isolated as described in Section 2. Each of the isolated extracellular follicles and 30 uL of each of PBS as a control and 5% SDS as a positive control were applied to the Neoderm -ED artificial skin and incubated for 15 minutes. After washing the artificial skin with PBS, it was immersed in 2 ml assay medium (Taego Science) in a 12-well plate and further incubated for 42 hours.

인큐베이션된 인공 피부를 건져 0.3% MTT 용액 (0.3 mg/ml)으로 옮긴 후 3시간 인큐베이션하였다. 이후 다시 인공피부를 건져 8 mm 생검 펀치(biopsy punch)를 이용하여 조직을 분리하고 0.04 N HCl-이소프로판올 500 ul에 넣고 4 시간 탈색시켰다. 570 nm에서 흡광도를 잰 후 인공피부를 반응시키지 않은 대조군 흡광도와 비교하여 생존도 (%)을 구하였다. 그 결과, 측정된 생존도가 양성 대조군과 음성 대조군 값의 중간값 이상이면 독성이 없는 것으로 결정하였다. 생존도는 하기 식에 따라 계산하였다. The incubated artificial skin was removed, transferred to a 0.3% MTT solution (0.3 mg/ml), and incubated for 3 hours. Thereafter, the artificial skin was picked up again, and the tissue was separated using an 8 mm biopsy punch, and then placed in 500 ul of 0.04 N HCl-isopropanol and bleached for 4 hours. After measuring the absorbance at 570 nm, the viability (%) was obtained by comparing the absorbance of the control group in which the artificial skin was not reacted. As a result, if the measured viability was greater than the median value of the positive and negative control values, it was determined that there was no toxicity. Viability was calculated according to the following formula.

생존도 = 시험물질 흡광도 /음성대조군 흡광도 X 100 Viability = absorbance of test substance / absorbance of negative control X 100

도 14는 유산균 유래 세포외 소낭의 피부에 대한 독성을 측정한 도면이다. 도 14에서, 1: 음성 대조군 (PBS), 2: 양성 대조군 (5 % SDS), 3: LMT1-46, 4: LMT1-9, 5: LMT1-21 유래 세포외 소낭을 나타낸다. 14 is a diagram measuring the toxicity of lactic acid bacteria-derived extracellular follicles to the skin. 14, 1: negative control (PBS), 2: positive control (5% SDS), 3: LMT1-46, 4: LMT1-9, 5: LMT1-21 derived extracellular follicles are shown.

<110> Medytox Co., Ltd. <120> Recombinant microorganism comprising polynucleotide encoding fusion protein between signal peptide and target protein and use thereof <130> PN126717KR <160> 60 <170> KopatentIn 2.0 <210> 1 <211> 5778 <212> DNA <213> Artificial Sequence <220> <223> pRS416 GPD vector <400> 1 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttaggacgg atcgcttgcc tgtaacttac acgcgcctcg tatcttttaa tgatggaata 120 atttgggaat ttactctgtg tttatttatt tttatgtttt gtatttggat tttagaaagt 180 aaataaagaa ggtagaagag ttacggaatg aagaaaaaaa aataaacaaa ggtttaaaaa 240 atttcaacaa aaagcgtact ttacatatat atttattaga caagaaaagc agattaaata 300 gatatacatt cgattaacga taagtaaaat gtaaaatcac aggattttcg tgtgtggtct 360 tctacacaga caagatgaaa caattcggca ttaatacctg agagcaggaa gagcaagata 420 aaaggtagta tttgttggcg atccccctag agtcttttac atcttcggaa aacaaaaact 480 attttttctt taatttcttt ttttactttc tatttttaat ttatatattt atattaaaaa 540 atttaaatta taattatttt tatagcacgt gatgaaaagg acccaggtgg cacttttcgg 600 ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 660 ctcatgagac aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt 720 attcaacatt tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt 780 gctcacccag aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg 840 ggttacatcg aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa 900 cgttttccaa tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt 960 gacgccgggc aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag 1020 tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt 1080 gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga 1140 ccgaaggagc taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt 1200 tgggaaccgg agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta 1260 gcaatggcaa caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg 1320 caacaattaa tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc 1380 cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt 1440 atcattgcag cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg 1500 gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg 1560 attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa 1620 cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa 1680 atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga 1740 tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg 1800 ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact 1860 ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac 1920 cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg 1980 gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg 2040 gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga 2100 acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc 2160 gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg 2220 agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc 2280 tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc 2340 agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt 2400 cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 2460 gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc 2520 ccaatacgca aaccgcctct ccccgcgcgt tggccgattc attaatgcag ctggcacgac 2580 aggtttcccg actggaaagc gggcagtgag cgcaacgcaa ttaatgtgag ttacctcact 2640 cattaggcac cccaggcttt acactttatg cttccggctc ctatgttgtg tggaattgtg 2700 agcggataac aatttcacac aggaaacagc tatgaccatg attacgccaa gcgcgcaatt 2760 aaccctcact aaagggaaca aaagctggag ctcagtttat cattatcaat actcgccatt 2820 tcaaagaata cgtaaataat taatagtagt gattttccta actttattta gtcaaaaaat 2880 tagcctttta attctgctgt aacccgtaca tgcccaaaat agggggcggg ttacacagaa 2940 tatataacat cgtaggtgtc tgggtgaaca gtttattcct ggcatccact aaatataatg 3000 gagcccgctt tttaagctgg catccagaaa aaaaaagaat cccagcacca aaatattgtt 3060 ttcttcacca accatcagtt cataggtcca ttctcttagc gcaactacag agaacagggg 3120 cacaaacagg caaaaaacgg gcacaacctc aatggagtga tgcaacctgc ctggagtaaa 3180 tgatgacaca aggcaattga cccacgcatg tatctatctc attttcttac accttctatt 3240 accttctgct ctctctgatt tggaaaaagc tgaaaaaaaa ggttgaaacc agttccctga 3300 aattattccc ctacttgact aataagtata taaagacggt aggtattgat tgtaattctg 3360 taaatctatt tcttaaactt cttaaattct acttttatag ttagtctttt ttttagtttt 3420 aaaacaccag aacttagttt cgacggattc tagaactagt ggatcccccg ggctgcagga 3480 attcgatatc aagcttatcg ataccgtcga cctcgagtca tgtaattagt tatgtcacgc 3540 ttacattcac gccctccccc cacatccgct ctaaccgaaa aggaaggagt tagacaacct 3600 gaagtctagg tccctattta tttttttata gttatgttag tattaagaac gttatttata 3660 tttcaaattt ttcttttttt tctgtacaga cgcgtgtacg catgtaacat tatactgaaa 3720 accttgcttg agaaggtttt gggacgctcg aaggctttaa tttgcggccg gtacccaatt 3780 cgccctatag tgagtcgtat tacgcgcgct cactggccgt cgttttacaa cgtcgtgact 3840 gggaaaaccc tggcgttacc caacttaatc gccttgcagc acatccccct ttcgccagct 3900 ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca acagttgcgc agcctgaatg 3960 gcgaatggcg cgacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc 4020 gcagcgtgac cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt 4080 cctttctcgc cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag 4140 ggttccgatt tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt 4200 cacgtagtgg gccatcgccc tgatagacgg tttttcgccc tttgacgttg gagtccacgt 4260 tctttaatag tggactcttg ttccaaactg gaacaacact caaccctatc tcggtctatt 4320 cttttgattt ataagggatt ttgccgattt cggcctattg gttaaaaaat gagctgattt 4380 aacaaaaatt taacgcgaat tttaacaaaa tattaacgtt tacaatttcc tgatgcggta 4440 ttttctcctt acgcatctgt gcggtatttc acaccgcata gggtaataac tgatataatt 4500 aaattgaagc tctaatttgt gagtttagta tacatgcatt tacttataat acagtttttt 4560 agttttgctg gccgcatctt ctcaaatatg cttcccagcc tgcttttctg taacgttcac 4620 cctctacctt agcatccctt ccctttgcaa atagtcctct tccaacaata ataatgtcag 4680 atcctgtaga gaccacatca tccacggttc tatactgttg acccaatgcg tctcccttgt 4740 catctaaacc cacaccgggt gtcataatca accaatcgta accttcatct cttccaccca 4800 tgtctctttg agcaataaag ccgataacaa aatctttgtc gctcttcgca atgtcaacag 4860 tacccttagt atattctcca gtagataggg agcccttgca tgacaattct gctaacatca 4920 aaaggcctct aggttccttt gttacttctt ctgccgcctg cttcaaaccg ctaacaatac 4980 ctgggcccac cacaccgtgt gcattcgtaa tgtctgccca ttctgctatt ctgtatacac 5040 ccgcagagta ctgcaatttg actgtattac caatgtcagc aaattttctg tcttcgaaga 5100 gtaaaaaatt gtacttggcg gataatgcct ttagcggctt aactgtgccc tccatggaaa 5160 aatcagtcaa gatatccaca tgtgttttta gtaaacaaat tttgggacct aatgcttcaa 5220 ctaactccag taattccttg gtggtacgaa catccaatga agcacacaag tttgtttgct 5280 tttcgtgcat gatattaaat agcttggcag caacaggact aggatgagta gcagcacgtt 5340 ccttatatgt agctttcgac atgatttatc ttcgtttcct gcaggttttt gttctgtgca 5400 gttgggttaa gaatactggg caatttcatg tttcttcaac actacatatg cgtatatata 5460 ccaatctaag tctgtgctcc ttccttcgtt cttccttctg ttcggagatt accgaatcaa 5520 aaaaatttca aagaaaccga aatcaaaaaa aagaataaaa aaaaaatgat gaattgaatt 5580 gaaaagctgt ggtatggtgc actctcagta caatctgctc tgatgccgca tagttaagcc 5640 agccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg ctcccggcat 5700 ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg ttttcaccgt 5760 catcaccgaa acgcgcga 5778 <210> 2 <211> 6606 <212> DNA <213> Artificial Sequence <220> <223> pRS426 GPD vector <400> 2 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcatatagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacaggca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag agcgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacccatc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc ggggatgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcacaaag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgtttt 1260 acaaaaatga agcacagatt cttcgttggt aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcgc 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 2220 tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 2280 ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt acctcactca ttaggcaccc 3480 caggctttac actttatgct tccggctcct atgttgtgtg gaattgtgag cggataacaa 3540 tttcacacag gaaacagcta tgaccatgat tacgccaagc gcgcaattaa ccctcactaa 3600 agggaacaaa agctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atcccccggg ctgcaggaat tcgatatcaa 4320 gcttatcgat accgtcgacc tcgagtcatg taattagtta tgtcacgctt acattcacgc 4380 cctcccccca catccgctct aaccgaaaag gaaggagtta gacaacctga agtctaggtc 4440 cctatttatt tttttatagt tatgttagta ttaagaacgt tatttatatt tcaaattttt 4500 cttttttttc tgtacagacg cgtgtacgca tgtaacatta tactgaaaac cttgcttgag 4560 aaggttttgg gacgctcgaa ggctttaatt tgcggccggt acccaattcg ccctatagtg 4620 agtcgtatta cgcgcgctca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg 4680 gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg 4740 aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgcg 4800 acgcgccctg tagcggcgca ttaagcgcgg cgggtgtggt ggttacgcgc agcgtgaccg 4860 ctacacttgc cagcgcccta gcgcccgctc ctttcgcttt cttcccttcc tttctcgcca 4920 cgttcgccgg ctttccccgt caagctctaa atcgggggct ccctttaggg ttccgattta 4980 gtgctttacg gcacctcgac cccaaaaaac ttgattaggg tgatggttca cgtagtgggc 5040 catcgccctg atagacggtt tttcgccctt tgacgttgga gtccacgttc tttaatagtg 5100 gactcttgtt ccaaactgga acaacactca accctatctc ggtctattct tttgatttat 5160 aagggatttt gccgatttcg gcctattggt taaaaaatga gctgatttaa caaaaattta 5220 acgcgaattt taacaaaata ttaacgttta caatttcctg atgcggtatt ttctccttac 5280 gcatctgtgc ggtatttcac accgcatagg gtaataactg atataattaa attgaagctc 5340 taatttgtga gtttagtata catgcattta cttataatac agttttttag ttttgctggc 5400 cgcatcttct caaatatgct tcccagcctg cttttctgta acgttcaccc tctaccttag 5460 catcccttcc ctttgcaaat agtcctcttc caacaataat aatgtcagat cctgtagaga 5520 ccacatcatc cacggttcta tactgttgac ccaatgcgtc tcccttgtca tctaaaccca 5580 caccgggtgt cataatcaac caatcgtaac cttcatctct tccacccatg tctctttgag 5640 caataaagcc gataacaaaa tctttgtcgc tcttcgcaat gtcaacagta cccttagtat 5700 attctccagt agatagggag cccttgcatg acaattctgc taacatcaaa aggcctctag 5760 gttcctttgt tacttcttct gccgcctgct tcaaaccgct aacaatacct gggcccacca 5820 caccgtgtgc attcgtaatg tctgcccatt ctgctattct gtatacaccc gcagagtact 5880 gcaatttgac tgtattacca atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt 5940 acttggcgga taatgccttt agcggcttaa ctgtgccctc catggaaaaa tcagtcaaga 6000 tatccacatg tgtttttagt aaacaaattt tgggacctaa tgcttcaact aactccagta 6060 attccttggt ggtacgaaca tccaatgaag cacacaagtt tgtttgcttt tcgtgcatga 6120 tattaaatag cttggcagca acaggactag gatgagtagc agcacgttcc ttatatgtag 6180 ctttcgacat gatttatctt cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga 6240 atactgggca atttcatgtt tcttcaacac tacatatgcg tatatatacc aatctaagtc 6300 tgtgctcctt ccttcgttct tccttctgtt cggagattac cgaatcaaaa aaatttcaaa 6360 gaaaccgaaa tcaaaaaaaa gaataaaaaa aaaatgatga attgaattga aaagctgtgg 6420 tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag ccccgacacc 6480 cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac 6540 aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac 6600 gcgcga 6606 <210> 3 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> Promoter GPD <400> 3 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 4 <211> 266 <212> DNA <213> Artificial Sequence <220> <223> Signal sequence of mating factor alpha <400> 4 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta 240 tctttggata aaagagaggc tgaagc 266 <210> 5 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> codon optimized EFG1 <400> 5 aattccgatt ccgagtgccc tctgtcacat gatggatatt gtctacatga cggagtgtgc 60 atgtatatag aagctctgga caagtatgcc tgtaactgtg ttgtcgggta tatcggcgag 120 agatgccaat acagggacct aaaatggtgg gaactaagg 159 <210> 6 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> codon optimized IGF1 <400> 6 ggccctgaga cattatgtgg tgcggagctt gtcgatgcat tacagttcgt atgcggagat 60 agaggcttct atttcaacaa acctacaggc tacggttcca gttccagaag ggcacctcaa 120 actggtatag ttgacgaatg ttgcttcaga agctgcgacc tgagaagact agaaatgtac 180 tgtgcgcccc tgaaaccagc caagagtgca 210 <210> 7 <211> 420 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF1 <400> 7 tttaacttgc ctccggggaa ttacaagaag ccgaaattac tgtattgctc aaacggaggc 60 cacttcctga gaatccttcc cgacggtact gttgacggca cgagagaccg tagtgatcaa 120 cacatccagt tacaattgag cgccgagagc gtgggagaag tttacataaa gagcacagaa 180 actggccaat accttgcgat ggatacggac gggcttcttt atgggagcca gaccccaaac 240 gaggaatgct tatttcttga aaggctggag gagaatcatt acaatacata tattagtaaa 300 aaacatgcgg aaaagaattg gtttgtcggt ctgaaaaaga acggtagctg caaaagaggt 360 cccaggaccc attacgggca gaaggcgata ctatttctgc cgctacccgt ctcctccgac 420 420 <210> 8 <211> 438 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF2 <400> 8 cccgcgctac cagaggacgg tggtagcgga gcattccccc ccggccattt caaagaccca 60 aagagactat attgtaagaa cggcggattt tttctgcgta ttcatcccga cggaagggta 120 gatggggttc gtgagaaaag cgacccgcac attaaacttc agcttcaagc agaagaacgt 180 ggggtagtat ccatcaaagg tgtctgcgct aataggtact tggcgatgaa ggaggacggt 240 agattgcttg cctctaaatg tgtgaccgac gaatgctttt tcttcgagag acttgagtcc 300 aacaactata acacatacag aagtcgtaaa tacacctcat ggtacgtggc gttgaaacgt 360 actggtcagt acaagcttgg ttctaaaaca ggaccaggtc aaaaagccat actttttcta 420 ccaatgtctg ccaagtcc 438 <210> 9 <211> 489 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF7 <400> 9 tgcaacgaca tgactccaga gcagatggca accaacgtaa actgttcaag cccggagcgt 60 cacacaaggt cctatgatta tatggagggg ggggatattc gtgttaggag actattctgc 120 agaacacaat ggtatctgcg tattgataaa aggggcaagg tcaaaggaac tcaagaaatg 180 aaaaataact ataacattat ggagataaga acggtcgcgg tcgggattgt tgcgattaaa 240 ggcgtggagt ccgaatttta ccttgccatg aataaggaag gaaaactgta cgccaagaag 300 gagtgcaacg aggattgtaa ctttaaggag ttgattttgg aaaaccatta caatacttat 360 gccagtgcaa agtggacgca taacgggggg gagatgttcg tcgccctgaa tcagaaaggt 420 atacctgttc gtggcaagaa gactaaaaaa gaacaaaaaa cagcacactt tcttccaatg 480 gcgatcact 489 <210> 10 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> codon optimized TGFalpha <400> 10 gtggtatctc attttaacga ctgccctgat tcacatactc aattttgttt ccacgggact 60 tgcaggttct tggtccaaga agataagccc gcgtgcgttt gccattcagg ttatgttggt 120 gcgaggtgtg aacacgctga cctgcttgct 150 <210> 11 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> codon optimized TRX1 gene <400> 11 atggtcaagc aaattgagag caaaacggcg ttccaggaag cactggacgc ggcgggagac 60 aaacttgtag tagtggactt ctccgccaca tggtgcggtc catgcaaaat gatcaaaccg 120 ttcttccatt ccttgagcga aaagtacagc aacgtgatat ttcttgaagt ggatgtcgat 180 gactgtcaag acgttgcgtc cgagtgtgaa gttaaatgta tgccaacatt tcagttcttt 240 aagaaaggac agaaggtggg agagttcagc ggcgcaaata aagagaaatt agaggcaact 300 attaatgagc tagtg 315 <210> 12 <211> 50 <212> PRT <213> Homo sapiens <400> 12 Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys 1 5 10 15 Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala Cys 20 25 30 Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp Leu 35 40 45 Leu Ala 50 <210> 13 <211> 146 <212> PRT <213> Homo sapiens <400> 13 Pro Ala Leu Pro Glu Asp Gly Gly Ser Gly Ala Phe Pro Pro Gly His 1 5 10 15 Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys Asn Gly Gly Phe Phe Leu 20 25 30 Arg Ile His Pro Asp Gly Arg Val Asp Gly Val Arg Glu Lys Ser Asp 35 40 45 Pro His Ile Lys Leu Gln Leu Gln Ala Glu Glu Arg Gly Val Val Ser 50 55 60 Ile Lys Gly Val Cys Ala Asn Arg Tyr Leu Ala Met Lys Glu Asp Gly 65 70 75 80 Arg Leu Leu Ala Ser Lys Cys Val Thr Asp Glu Cys Phe Phe Phe Glu 85 90 95 Arg Leu Glu Ser Asn Asn Tyr Asn Thr Tyr Arg Ser Arg Lys Tyr Thr 100 105 110 Ser Trp Tyr Val Ala Leu Lys Arg Thr Gly Gln Tyr Lys Leu Gly Ser 115 120 125 Lys Thr Gly Pro Gly Gln Lys Ala Ile Leu Phe Leu Pro Met Ser Ala 130 135 140 Lys Ser 145 <210> 14 <211> 53 <212> PRT <213> Homo sapiens <400> 14 Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His 1 5 10 15 Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn 20 25 30 Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys 35 40 45 Trp Trp Glu Leu Arg 50 <210> 15 <211> 70 <212> PRT <213> Homo sapiens <400> 15 Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe 1 5 10 15 Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly 20 25 30 Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys 35 40 45 Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu 50 55 60 Lys Pro Ala Lys Ser Ala 65 70 <210> 16 <211> 163 <212> PRT <213> Homo sapiens <400> 16 Cys Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Asn Cys Ser 1 5 10 15 Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly Gly Asp 20 25 30 Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu Arg Ile 35 40 45 Asp Lys Arg Gly Lys Val Lys Gly Thr Gln Glu Met Lys Asn Asn Tyr 50 55 60 Asn Ile Met Glu Ile Arg Thr Val Ala Val Gly Ile Val Ala Ile Lys 65 70 75 80 Gly Val Glu Ser Glu Phe Tyr Leu Ala Met Asn Lys Glu Gly Lys Leu 85 90 95 Tyr Ala Lys Lys Glu Cys Asn Glu Asp Cys Asn Phe Lys Glu Leu Ile 100 105 110 Leu Glu Asn His Tyr Asn Thr Tyr Ala Ser Ala Lys Trp Thr His Asn 115 120 125 Gly Gly Glu Met Phe Val Ala Leu Asn Gln Lys Gly Ile Pro Val Arg 130 135 140 Gly Lys Lys Thr Lys Lys Glu Gln Lys Thr Ala His Phe Leu Pro Met 145 150 155 160 Ala Ile Thr <210> 17 <211> 50 <212> PRT <213> Homo sapiens <400> 17 Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys 1 5 10 15 Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala Cys 20 25 30 Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp Leu 35 40 45 Leu Ala 50 <210> 18 <211> 105 <212> PRT <213> Homo sapiens <400> 18 Met Val Lys Gln Ile Glu Ser Lys Thr Ala Phe Gln Glu Ala Leu Asp 1 5 10 15 Ala Ala Gly Asp Lys Leu Val Val Val Asp Phe Ser Ala Thr Trp Cys 20 25 30 Gly Pro Cys Lys Met Ile Lys Pro Phe Phe His Ser Leu Ser Glu Lys 35 40 45 Tyr Ser Asn Val Ile Phe Leu Glu Val Asp Val Asp Asp Cys Gln Asp 50 55 60 Val Ala Ser Glu Cys Glu Val Lys Cys Met Pro Thr Phe Gln Phe Phe 65 70 75 80 Lys Lys Gly Gln Lys Val Gly Glu Phe Ser Gly Ala Asn Lys Glu Lys 85 90 95 Leu Glu Ala Thr Ile Asn Glu Leu Val 100 105 <210> 19 <211> 146 <212> PRT <213> Homo sapiens <400> 19 Leu Pro Val Asn Thr Arg Cys Lys Leu Glu Val Ser Asn Phe Gln Gln 1 5 10 15 Pro Tyr Ile Val Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser Leu 20 25 30 Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe Arg 35 40 45 Gly Val Ser Ala Lys Asp Gln Cys Tyr Leu Met Lys Gln Val Leu Asn 50 55 60 Phe Thr Leu Glu Asp Val Leu Leu Pro Gln Ser Asp Arg Phe Gln Pro 65 70 75 80 Tyr Met Gln Glu Val Val Pro Phe Leu Thr Lys Leu Ser Asn Gln Leu 85 90 95 Ser Ser Cys His Ile Ser Gly Asp Asp Gln Asn Ile Gln Lys Asn Val 100 105 110 Arg Arg Leu Lys Glu Thr Val Lys Lys Leu Gly Glu Ser Gly Glu Ile 115 120 125 Lys Ala Ile Gly Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn Ala 130 135 140 Cys Val 145 <210> 20 <211> 4271 <212> DNA <213> Artificial Sequence <220> <223> pMT182-PR4 <400> 20 ggtacctccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 60 gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 120 aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 180 gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 240 aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 300 gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 360 ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 420 cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 480 ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 540 actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 600 tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca 660 gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 720 ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 780 cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 840 ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt 900 tttaaatcaa tctaaagtat atatgagtaa acttggtgaa ttcgcaaggt atagcccaat 960 atactttact tcgtaaagtt tgagctctgc gaggcaaaaa cgtcagatat tgaatctaaa 1020 caagagtata ataaacacag ttacacaaat aaaaacaaaa ggagtagatc ttaaaaatgg 1080 aagcaaatcc aaagtggcaa gaaacaggaa gacaacaaaa agtaaaacaa cttgactatt 1140 cagaaacatt agcagtaaga atagacaatg tggaattata caactcagaa aagaaattat 1200 attatctagt aattcaaacc cttcttggga atccccaaaa aaatgaatgg cgtatccagg 1260 gacaaagtca aatattaaaa gaatcaaaac aaaaaataat tgtgtcataa aattattgca 1320 cattaaaagt cctaaaaatt attttgcatt aaagatttca aaactcattt aatgtaaaat 1380 aattttttct ttgataatcc catttagcaa caatctcgcg taccacttgg tcaacctttt 1440 gatcatcact atccgtatta atcaaatcac cattctcaac gtcttctaat tgcaactgct 1500 tgcgaatttc tttcagcaaa ccgccatagc taatttgccg ggaaccagcc aaagctcgtt 1560 ccaaatcatc aattacttgt aggtcttgtt cttgattatt agtcaaaata tctttagatt 1620 ttacctgata tttagccgtt tcttgagcac tagccaataa cgaattttta tggcgattca 1680 tattcggttt aactgcctca acattcacca ttggtacata agtcaatttc attgcccgtt 1740 gccaaaaacc agtccattct acttgtgaaa tatagttatc agtcccctta aaataatggt 1800 tcttcacaaa aagcaaaaca tgcatatgat ggtggtacat tggctgaccc gcttcatgat 1860 taacagtcac ttcagtcgaa cgtacatagc ccaataaatt tttggcaact tttgtatact 1920 gaaaaatttt tgcaacagct cgtcccattt gacgtaactc actcttcaat tgatcaccag 1980 ttgtattctc aaccgtcaac gttaaaaata agaaccggcc cgtctttcgt tgtttaacag 2040 cttccgtcaa aatctgtgtt aactgattgg attgcttcat tgcccgccgc caattacata 2100 acggacacaa acgagaatgg caaaaccaag tctgcgccaa tttcttgtga ccatttttat 2160 cttccacaaa acgcaaaact tcgccacatt ctttaactcg atgagctttc ttataatgca 2220 atatttgtaa atagtcacca tactgcaagt tctccaactt gcgctcccgc cacggccgaa 2280 ctttccctga ctttgaccga tcaaccaaga ctttttcatt agccaaaata aaaactcccc 2340 tcaccaacca cgtgagaaga gttaatctgt tatgtacttg cttcacttaa atcagtcaga 2400 aggcttgacg gcaaagggtt caagctttaa actatgtcta gtaaatccaa atacgatttt 2460 tacaagatta actcacgcgt tcgaggtcgg caaactttcg aagctcacgt gggttttttt 2520 tatatttatt ttataccaca ataatacgcc taaacccagt tgtgtcaagg gtttacctca 2580 ctttttgaaa atgacgttgt ttctaatagt atcaagataa gaagaaaccg tcgaaaaaac 2640 gacggtttca aaccccaaaa agcagagaat tcggtacctg gagctgtaat ataaaaacct 2700 tcttcaacta acggggcagg ttagtgacat tagaaaaccg actgtaaaaa gtacagtcgg 2760 cattatctca tattataaaa gccagtcatt aggcctatct gacaattcct gaatagagtt 2820 cataaacaat cctgcatgat aaccatcaca aacagaatga tgtacctgta aagatagcgg 2880 taaatatatt gaattacctt tattaatgaa ttttcctgct gtaataatgg gtagaaggta 2940 attactatta ttattgatat ttaagttaaa cccagtaaat gaagtccatg gaataataga 3000 aagagaaaaa gcattttcag gtataggtgt tttgggaaac aatttccccg aaccattata 3060 tttctctaca tcagaaaggt ataaatcata aaactctttg aagtcattct ttacaggagt 3120 ccaaatacca gagaatgttt tagatacacc atcaaaaatt gtataaagtg gctctaactt 3180 atcccaataa cctaactctc cgtcgctatt gtaaccagtt ctaaaagctg tatttgagtt 3240 tatcaccctt gtcactaaga aaataaatgc agggtaaaat ttatatcctt cttgttttat 3300 gtttcggtat aaaacactaa tatcaatttc tgtggttata ctaaaagtcg tttgttggtt 3360 caaataatga ttaaatatct cttttctctt ccaattgtct aaatcaattt tattaaagtt 3420 catttgatat gcctcctaaa tttttatcta aagtgaattt aggaggctta cttgtctgct 3480 ttcttcatta gaatcaatcc ttttttaaaa gtcaatatta ctgtaacata aatatatatt 3540 ttaaaaatat cccactttat ccaattttcg tttgttgaac taatgggtgc tttagttgaa 3600 gaataaagac cacattaaaa aatgtggtct aagcttctgc aggatatccg atcgtccaca 3660 atcaaggtgc ttggcttttt cgatcgcgag gtcaccatgt acatcagtcg tgagagcatt 3720 gtgttgacag tgatcggcat cgtgttcggc tatctgctcg gcaatttgct gacagcctac 3780 attttgtatc aagccgaaac tgaggccgtg gtttttccac tcacgatcag cattgtcggc 3840 tacctcacgg ccacgttact catgttggcc ttcaccggcg tcgtcacctg gctcacgcat 3900 cgtcgactcc aacgggtgga catggtcgaa gccctgaaat caaacgaata acctacaatt 3960 ttgtcaggca gcgtcgtcac ggcgctgctt ttttcataca aaattcatca aaaattggga 4020 ttaaaaacgt tcatgatcgc aattttgaag cgcaaatgaa gattgagacc aactcctaac 4080 agtcctgtaa cgctgacgta acattgacac agtaaagtag cctttagtta atcaaattaa 4140 gggtgaggtc aaaaatgaaa ttcaataaag tcatgatcac gttggttgct gcagttacct 4200 tagcaggttc tgctagcgcc gtaacaccag ttttcgctga tacaagcgga tcctctagaa 4260 tcgatctcga g 4271 <210> 21 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide PR4 <400> 21 Met Lys Phe Asn Lys Val Met Ile Thr Leu Val Ala Ala Val Thr Leu 1 5 10 15 Ala Gly Ser Ala Ser Ala Val Thr Pro Val Phe Ala Asp Thr Ser 20 25 30 <210> 22 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide1 <400> 22 Met Lys Lys Leu Leu Ser Thr Val Leu Phe Ser Ala Val Ala Leu Ser 1 5 10 15 Ala Val Ala Leu Ser Lys Pro Ser His Val Ser Ala Ala Thr 20 25 30 <210> 23 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide2 <400> 23 Met Lys Lys Phe Leu Val Ser Val Gly Leu Leu Gly Met Leu Val Leu 1 5 10 15 Ser Thr Gly Ala Val Thr Ala His Ala Ala Asp 20 25 <210> 24 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide3 <400> 24 Met Lys Lys Lys Ile Ile Ser Ala Ile Leu Met Ser Thr Val Ile Leu 1 5 10 15 Ser Ala Ala Ala Pro Leu Ser Gly Val Tyr Ala 20 25 <210> 25 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide4 <400> 25 Met Lys Asn Lys Leu Leu Met Ser Leu Val Leu Val Cys Ala Phe Leu 1 5 10 15 Gly Ile Ala Gly Ala His Thr Val His Ala Ala Asp 20 25 <210> 26 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide5 <400> 26 Met Lys Lys Thr Thr Leu Leu Leu Ser Thr Leu Phe Leu Gly Gly Thr 1 5 10 15 Leu Leu Ala Thr Thr Leu Ala Thr Pro Val Val Ala Asp Thr 20 25 30 <210> 27 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide1 <400> 27 Met Ile Leu His Thr Tyr Ile Ile Leu Ser Leu Leu Thr Ile Phe Pro 1 5 10 15 Lys Ala Ile Gly 20 <210> 28 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide2 <400> 28 Met Phe Ser Pro Ile Leu Ser Leu Glu Ile Ile Leu Ala Leu Ala Thr 1 5 10 15 Leu Gln Ser Val Phe Ala 20 <210> 29 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide3 <400> 29 Met Lys Ile Leu Ser Ala Leu Leu Leu Leu Phe Thr Leu Ala Phe Ala 1 5 10 15 Glu Val Ile Glu Leu Thr Asn Lys Asn Phe Asp Asp Val Val Leu Lys 20 25 30 Ser Gly Lys Tyr Thr Leu Val Lys 35 40 <210> 30 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide4 <400> 30 Met Lys Phe Ala Tyr Ser Leu Leu Leu Pro Leu Ala Gly Val Ser Ala 1 5 10 15 Ser Val Ile Asn Tyr Lys Arg Asp Gly Asp Ser Lys Ala Ile Thr Asn 20 25 30 Thr Thr Phe Ser Leu Asn Arg Pro 35 40 <210> 31 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide4 <400> 31 Met Lys Ala Phe Thr Ser Leu Leu Cys Gly Leu Gly Leu Ser Thr Thr 1 5 10 15 Leu Ala Lys Ala Ile Ser Leu Gln Arg Pro Leu Gly Leu Asp Lys Asp 20 25 30 Val Leu Leu Gln Ala Ala Glu Lys 35 40 <210> 32 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide5 <400> 32 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15 Ala Leu Ala <210> 33 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide7 <400> 33 Met Phe Tyr Asn Arg Trp Leu Gly Thr Trp Leu Ala Met Ser Ala Leu 1 5 10 15 Ile Arg Ile Ser Val Ser 20 <210> 34 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide8 <400> 34 Met Thr Leu Ser Phe Ala His Phe Thr Tyr Leu Phe Thr Ile Leu Leu 1 5 10 15 Gly Leu Thr Asn Ile Ala 20 <210> 35 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide9 <400> 35 Met Gln Leu Leu Arg Cys Phe Ser Ile Phe Ser Val Ile Ala Ser Val 1 5 10 15 Leu Ala <210> 36 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide10 <400> 36 Met Leu Lys Ser Ala Val Tyr Ser Ile Leu Ala Ala Ser Leu Val Asn 1 5 10 15 Ala <210> 37 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide11 <400> 37 Met Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu 1 5 10 15 Ala Ser Ala <210> 38 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide12 <400> 38 Met Phe Ala Phe Tyr Phe Leu Thr Ala Cys Ile Ser Leu Lys Gly Val 1 5 10 15 Phe Gly <210> 39 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide13 <400> 39 Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu Ser Ser Leu Phe Ala 1 5 10 15 Ser Gln Val Leu Gly 20 <210> 40 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide14 <400> 40 Met Lys Leu Ser Val Leu Thr Phe Val Val Asp Ala Leu Leu Val Cys 1 5 10 15 Ser Ser Ile Val Asp Ala 20 <210> 41 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide15 <400> 41 Met Lys Leu Gln Leu Ala Ala Val Ala Thr Leu Ala Val Leu Thr Ser 1 5 10 15 Pro Ala Phe Gly 20 <210> 42 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide16 <400> 42 Met Phe Tyr Asn Arg Trp Leu Gly Thr Trp Leu Ala Met Ser Ala Leu 1 5 10 15 Ile Arg Ile Ser Val Ser 20 <210> 43 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide17 <400> 43 Met Leu Ser Phe Thr Thr Lys Asn Ser Phe Arg Leu Leu Leu Leu Ile 1 5 10 15 Leu Ser Cys Ile Ser Thr Ile Arg Ala 20 25 <210> 44 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide18 <400> 44 Met Lys Phe Ser Thr Ala Leu Ser Val Ala Leu Phe Ala Leu Ala Lys 1 5 10 15 Met Val Ile Ala 20 <210> 45 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide19 <400> 45 Met Lys Ile Phe Asn Thr Ile Gln Ser Val Leu Phe Ala Ala Phe Phe 1 5 10 15 Leu Lys Gln Gly Asn Cys Leu Ala 20 <210> 46 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide20\ <400> 46 Met Ser Leu Leu Tyr Ile Ile Leu Leu Phe Thr Gln Phe Leu Leu Leu 1 5 10 15 Pro Thr Asp Ala 20 <210> 47 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide21 <400> 47 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe 1 5 10 15 Thr Ala Ser Gln Val Ser Ala 20 <210> 48 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide22 <400> 48 Met Gln Arg Pro Phe Leu Leu Ala Tyr Leu Val Leu Ser Leu Leu Phe 1 5 10 15 Asn Ser Ala Leu Gly 20 <210> 49 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide23 <400> 49 Met Asn Leu Lys Gln Phe Thr Cys Leu Ser Cys Ala Gln Leu Leu Ala 1 5 10 15 Ile Leu Leu Phe Ile Phe Ala Phe Phe Pro Arg Lys Ile Val Leu Thr 20 25 30 <210> 50 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide24 <400> 50 Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys 1 5 10 15 Ile Ser Ala <210> 51 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide25 <400> 51 Met Lys Val Arg Lys Tyr Ile Thr Leu Cys Phe Trp Trp Ala Phe Ser 1 5 10 15 Thr Ser Ala <210> 52 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide26 <400> 52 Met Ile Leu Leu His Phe Val Tyr Ser Leu Trp Ala Leu Leu Leu Ile 1 5 10 15 Pro Leu Thr Asn Ala 20 <210> 53 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 53 Met Lys Lys Lys Met Arg Leu Lys Val Leu Leu Ala Ser Thr Ala Thr 1 5 10 15 Ala Leu Leu Leu Leu Ser Gly 20 <210> 54 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 54 Met Gln Arg Lys Lys Lys Gly Leu Ser Ile Leu Leu Ala Gly Thr Val 1 5 10 15 Ala Leu Gly Ala Leu Ala Val Leu Pro Val Gly Glu Ile Gln Ala Lys 20 25 30 Ala <210> 55 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 55 Met Lys Lys Trp Phe Ile Ala Leu Ala Gly Leu Leu Leu Thr Val Thr 1 5 10 15 Leu Ala Gly <210> 56 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 56 Met Lys Lys Tyr Arg Lys Ile Leu Ala Met Leu Ala Val Leu Ala Ile 1 5 10 15 Val Leu Val Leu Ser Gly 20 <210> 57 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 57 Met Asn Asn Ala Leu Ser Phe Glu Gln Gln Phe Thr Asp Phe Ser Thr 1 5 10 15 Leu Ser Asp Ser Glu Leu Glu Ser Val Glu Gly Gly 20 25 <210> 58 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 58 Met Lys Ser Lys Lys Gly Leu Thr Leu Thr Ile Thr Leu Gly Thr Leu 1 5 10 15 Ala Leu Phe Leu Ser Gly 20 <210> 59 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 59 Met Asp Lys Ile Ile Lys Phe Gln Gly Ile Ser Asp Asp Gln Leu Asn 1 5 10 15 Ala Val Ile Gly Gly 20 <210> 60 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide <400> 60 Met Gln Ser Ser Leu Lys Lys Ser Leu Tyr Leu Gly Leu Ala Ala Leu 1 5 10 15 Ser Phe Ala Gly Val Ala Ala Val Ser Thr Thr Ala Ser Ala 20 25 30 <110> Medytox Co., Ltd. <120> Recombinant microorganism comprising polynucleotide encoding fusion protein between signal peptide and target protein and use thereof <130> PN126717KR <160> 60 <170> KopatentIn 2.0 <210> 1 <211> 5778 <212> DNA <213> Artificial Sequence < 220> <223> pRS416 GPD vector <400> 1 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttaggacgg atcgcttgcc tgtaacttac acgcgcctcg tatcttttaa tgatggaata 120 atttgggaat ttactctgtg tttattatt tttatgtttt gtatttggat tttagaaagt 180 aaataaagaa ggtagaagag ttacggaatg aagaaaaaaa aataaacaaa ggtttaaaaa 240 atttcaacaa aaagcgtact ttacatatat atttattaga caagaaaagc agattaaata 300 gatatacatt cgattaacga taagtaaaat gtaaaatcac aggattttcg tgtgtggtct 360 tctacacaga caagatgaaa caattcggca ttaatacctg agagcaggaa gagcaagata 420 aaaggtagta tttgttggcg atccccctag agtcttttac atcttcggaa aacaaaaact 480 attttttctt taatttctt a ataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt 720 attcaacatt tccgtgtcgc cctattccc ttttttgcgg cattttgcct tcctgttttt 780 gctcacccag aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg 840 ggttacatcg aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa 900 cgttttccaa tgatgag cac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt 960 gacgccgggc aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag 1020 tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt 1080 gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga 1140 ccgaaggagc taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt 1200 tgggaaccgg agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta 1260 gcaatggcaa caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg 1320 caacaattaa tagactggat ggaggcggat aaagttgca g gaccacttct gcgctcggcc 1380 cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt 1440 atcattgcag cactggggcc agatggtaag cctccccgta tcgtagttat ctacacgacg 1500 gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg 1560 attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa 1620 cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa 1680 atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga 1740 tcttcttgag atcctttttt tctgcgcgta atctgct gct tgcaaacaaa aaaaccaccg 1800 ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact 1860 ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac 1920 cacttcaagactgtagc accg cctaca tacctcgctc tgctaatcct gttaccagtg 1980 gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg 2040 gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga 2100 acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc 2160 gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg aga gcgcacg 2220 aggggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc 2280 tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc 2340 agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt 2400 cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 2460 gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc 2520 ccaatacgca aaccgcctct ccccgcgcgt tggccgattc attaatgcag ctggcacgac 2580 aggtttcccg actggaaagc gggcagtgag cgcaacgcaa ttaatgtgag ttacct cact 2640 cattaggcac cccaggcttt acactttatg cttccggctc ctatgttgtg tggaattgtg 2700 agcggataac aatttcacac aggaaacagc tatgaccatg attacgccaa gcgcgcaatt 2760 aaccctcact aaagggaaca aaagctggag ctcagtttat cattatcaat actcgccatt 2820 tcaaagaata cgtaaataat taatagtagt gattttccta actttattta gtcaaaaaat 2880 tagcctttta attctgctgt aacccgtaca tgcccaaaat agggggcggg ttacacagaa 2940 tatataacat cgtaggtgtc tgggtgaaca gtttattcct ggcatccact aaatataatg 3000 gagcccgctt tttaagctgg catccagaaa aaaaaagaat cccagcacca aaatattgtt 3060 ttcttcacca acc atcagtt cataggtcca ttctcttagc gcaactacag agaacagggg 3120 cacaaacagg caaaaaacgg gcacaacctc aatggagtga tgcaacctgc ctggagtaaa 3180 tgatgacaca aggcaattga cccacgcatg tatctatctc atttcttac accttctatt 3240 accttctgct ctctctgatt tggaaaaagc tgaaaaaaaa ggttgaaacc agttccctga 3300 aattattccc ctacttgact aataagtata taaagacggt aggtattgat tgtaattctg 3360 taaatctatt tcttaaactt cttaaattct acttttatag ttagtctttt ttttagtttt 3420 aaaacaccag aacttagttt cgacggattc tagaactagt ggatcccccg ggctgcagga 3480 attcgatatc aagcttatcg at accgtcga cctcgagtca tgtaattagt tatgtcacgc 3540 ttacattcac gccctccccc cacatccgct ctaaccgaaa aggaaggagt tagacaacct 3600 gaagtctagg tccctattta tttttttata gttatgttag tattaagaac gttatttata 3660 tttcaaattt ttctt ttttt tctgtacaga cgcgtgtacg catgtaacat tatactgaaa 3720 accttgcttg agaaggtttt gggacgctcg aaggctttaa tttgcggccg gtacccaatt 3780 cgccctatag tgagtcgtat tacgcgcgct cactggccgt cgttttacaa cgtcgtgact 3840 gggaaaaccc tggcgttacc caacttaatc gccttgcagc acatccccct ttcgccagct 3900 ggcgtaatag cgaagaggcc cg caccgatc gcccttccca acagttgcgc agcctgaatg 3960 gcgaatggcg cgacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc 4020 gcagcgtgac cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt 4080 cctttctcgc cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag 4140 ggttccgatt tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt 4200 cacgtagtgg gccatcgccc tgatagacgg tttttcgccc tttgacgttg gagtccacgt 4260 tctttaatag tggactcttg ttccaaactg gaacaacact caaccctatc tcggtctatt 4320 cttttgattt ataagggatt t tgccgattt cggcctattg gttaaaaaat gagctgattt 4380 aacaaaaatt taacgcgaat tttaacaaaa tattaacgtt tacaatttcc tgatgcggta 4440 ttttctcctt acgcatctgt gcggtatttc acaccgcata gggtaataac tgatataatt 4500 aaattgaagc tc taatttgt gagtttagta tacatgcatt tacttataat acagtttttt 4560 agttttgctg gccgcatctt ctcaaatatg cttcccagcc tgcttttctg taacgttcac 4620 cctctacctt agcatccctt ccctttgcaa atagtcctct tccaacaata ataatgtcag 4680 atcctgtaga gaccacatca tccacggttc tatactgttg acccaatgcg tctcccttgt 4740 catctaaacc cacaccgggt gtcataatca accaatcgta accttcatct cttccac cca 4800 tgtctctttg agcaataaag ccgataacaa aatctttgtc gctcttcgca atgtcaacag 4860 tacccttagt atattctcca gtagataggg agcccttgca tgacaattct gctaacatca 4920 aaaggcctct aggttccttt gttacttctt ctgccgcctg cttca aaccg ctaacaatac 4980 ctgggcccac cacaccgtgt gcattcgtaa tgtctgccca ttctgctatt ctgtataacac 5040 ccgcagagta ctgcaatttg actgtattac caatgtcagc aaattttctg tcttcgaaga 5100 gtaaaaaatt gtacttggcg gataatgcct ttagcggctt aactgtgccc tccatggaaa 5160 aatcagtcaa gatatccaca tgtgttttta gtaaacaaat tttgggacct aatgcttcaa 5220 ctaactccag taattccttg gtggtacgaa catccaatga agcacacaag tttgtttgct 5280 tttcgtgcat gatattaaat agcttggcag caacaggact aggatgagta gcagcacgtt 5340 ccttatatgt agctttcgac atgatttatc ttcgt ttcct gcaggttttt gttctgtgca 5400 gttgggttaa gaatactggg caatttcatg tttcttcaac actacatatg cgtatatata 5460 ccaatctaag tctgtgctcc ttccttcgtt cttccttctg ttcggagatt accgaatcaa 5520 aaaaatttca aagaaaccga aatcaaaaaa aagaataaaa aaaaaatgat gaattgaatt 5580 gaaaagctgt ggtatggtgc actctcagta caatctgctc tgatgccgca tag ttaagcc 5640 agccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg ctcccggcat 5700 ccgcttacag acaagctgg accgtctccg ggagctgcat gtgtcagagg ttttcaccgt 5760 catcaccgaa acgcgcga 5778 <210> 2 <211> 6606 <212> DNA < 213> Artificial Sequence <220> <223> pRS426 GPD vector <400> 2 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagtatga tccaatatca aaggaaatga tagcattgaa ggatgagact aatccaattg 120 aggagtggca gcata tagaa cagctaaagg gtagtgctga aggaagcata cgataccccg 180 catggaatgg gataatatca caggaggtac tagactacct ttcatcctac ataaatagac 240 gcatataagt acgcatttaa gcataaacac gcactatgcc gttcttctca tgtatatata 300 tatacaggca acacgcagat ataggtgcga cgtgaacagt gagctgtatg tgcgcagctc 360 gcgttgcatt ttcggaagcg ctcgttttcg gaaacgcttt gaagttccta ttccgaagtt 420 cctattctct agaaagtata ggaacttcag ag cgcttttg aaaaccaaaa gcgctctgaa 480 gacgcacttt caaaaaacca aaaacgcacc ggactgtaac gagctactaa aatattgcga 540 ataccgcttc cacaaacatt gctcaaaagt atctctttgc tatatatctc tgtgctatat 600 ccctatataa cctacc catc cacctttcgc tccttgaact tgcatctaaa ctcgacctct 660 acatttttta tgtttatctc tagtattact ctttagacaa aaaaattgta gtaagaacta 720 ttcatagagt gaatcgaaaa caatacgaaa atgtaaacat ttcctatacg tagtatatag 780 agacaaaata gaagaaaccg ttcataattt tctgaccaat gaagaatcat caacgctatc 840 actttctgtt cacaaagtat gcgcaatcca catcggtata gaatataatc gggg atgcct 900 ttatcttgaa aaaatgcacc cgcagcttcg ctagtaatca gtaaacgcgg gaagtggagt 960 caggcttttt ttatggaaga gaaaatagac accaaagtag ccttcttcta accttaacgg 1020 acctacagtg caaaaagtta tcaagagact gcattataga gcgcaca aag gagaaaaaaa 1080 gtaatctaag atgctttgtt agaaaaatag cgctctcggg atgcattttt gtagaacaaa 1140 aaagaagtat agattctttg ttggtaaaat agcgctctcg cgttgcattt ctgttctgta 1200 aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca ttttgtttt 1260 acaaaaatga agcacagatt cttcgttgg t aaaatagcgc tttcgcgttg catttctgtt 1320 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 1380 gttctacaaa atgaagcaca gatgcttcgt tcaggtggca cttttcgggg aaatgtgcg c 1440 ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 1500 taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 1560 cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 1620 acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 1680 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaac g ttttccaatg 1740 atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 1800 gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 1860 acagaaaagc atcttacgga tggcatgaca gtaagagaat ta tgcagtgc tgccataacc 1920 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 1980 accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 2040 ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 2100 acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 2160 gactggatgg agg 2340 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 2400 taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 2460 tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 2520 gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 2580 ccttttt ttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 2640 gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 2700 gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca cttca agaac 2760 tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt 2820 ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 2880 cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 2940 gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 3000 gcggacaggt atccggtaag cggcagg gtc ggaacaggag agcgcacgag ggagcttcca 3060 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 3120 cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc 3180 tttttac ggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 3240 cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 3300 cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 3360 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 3420 tggaaagcgg gcagtgagcg a gctggagct cagtttatca ttatcaatac tcgccatttc aaagaatacg 3660 taaataatta atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat 3720 tctgctgtaa cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg 3780 taggtgtctg ggtgaacagt tattcctgg catccactaa atataatgga gcccgctttt 3840 taagctggca tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac 3900 catcagttca taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca 3960 aaaaacgggc acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag 4020 gcaattgacc cacgcatgta tctatctcat tttcttacac cttct attac cttctgctct 4080 ctctgatttg gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct 4140 acttgactaa taagtatata aagacggtag gtattgattg taattctgta aatctatttc 4200 ttaaacttct taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa 4260 cttagtttcg acggattcta gaactagtgg atcccccggg ctgcaggaat tcgatatcaa 43 20 gcttatcgat accgtcgacc tcgagtcatg taattagtta tgtcacgctt acattcacgc 4380 cctcccccca catccgctct aaccgaaaag gaaggagtta gacaacctga agtctaggtc 4440 cctatttatt tttttatagt tatgttagta ttaagaacgt tatttatatt tcaaattttt 450 0 cttttttttc tgtacagacg cgtgtacgca tgtaacatta tactgaaaac cttgcttgag 4560 aaggttttgg gacgctcgaa ggctttaatt tgcggccggt acccaattcg ccctatagtg 4620 agtcgtatta cgcgcgctca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg 4680 gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtatagc g 4740 aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgcg 4800 acgcgccctg tagcggcgca ttaagcgcgg cgggtgtggt ggttacgcgc agcgtgaccg 4860 ctacacttgc cagcgcccta gcgcccgctc ct ttcgcttt cttcccttcc tttctcgcca 4920 cgttcgccgg ctttccccgt caagctctaa atcgggggct ccctttaggg ttccgattta 4980 gtgctttacg gcacctcgac cccaaaaaac ttgattaggg tgatggttca cgtagtgggc 5040 catcgccctg atagacggtt tttcgccctt tgacgttgga gtccacgttc tttaatagtg 5100 gactcttgtt ccaaactgga acaacactca accctatctc ggtctattct tttgatttat 516 0 aagggatttt gccgatttcg gcctattggt taaaaaatga gctgatttaa caaaaattta 5220 acgcgaattt taacaaaata ttaacgttta caatttcctg atgcggtatt ttctccttac 5280 gcatctgtgc ggtatttcac accgcatagg gtaataactg atataattaa attgaagctc 534 0 taatttgtga gtttagtata catgcattta cttataatac agttttttag ttttgctggc 5400 cgcatcttct caaatatgct tcccagcctg cttttctgta acgttcaccc tctaccttag 5460 catcccttcc ctttgcaaat agtcctcttc caacaataat aatgtcagat cctgtagaga 5520 ccacatcatc cacggttcta tactgttgac ccaatgcgtc tcccttgtca tctaaaccca 5580 caccgggtgt cataatca ac caatcgtaac cttcatctct tcccacccatg tctctttgag 5640 caataaagcc gataacaaaa tctttgtcgc tcttcgcaat gtcaacagta cccttagtat 5700 attctccagt agatagggag cccttgcatg acaattctgc taacatcaaa aggcctctag 5760 gt tcctttgt tacttcttct gccgcctgct tcaaaccgct aacaatacct gggcccacca 5820 caccgtgtgc attcgtaatg tctgcccatt ctgctattct gtatacccc gcagagtact 5880 gcaatttgac tgtattacca atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt 5940 acttggcgga taatgccttt agcggcttaa ctgtgccctc catggaaaaa tcagtcaaga 6000 tatccacatg tgtttttagt aaacaa attt tgggacctaa tgcttcaact aactccagta 6060 attccttggt ggtacgaaca tccaatgaag cacacaagtt tgtttgcttt tcgtgcatga 6120 tattaaatag cttggcagca acaggactag gatgagtagc agcacgttcc ttatatgtag 6180 ctttcgacat gatt tatctt cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga 6240 atactgggca atttcatgtt tcttcaacac tacatatgcg tatatatacc aatctaagtc 6300 tgtgctcctt ccttcgttct tccttctgtt cggagattac cgaatcaaaa aaatttcaaa 6360 gaaaccgaaa tcaaaaaaaa gaataaaaaa aaaatgatga attgaattga aaagctgtgg 6420 tatggtgcac tctcagtaca at ctgctctg atgccgcata gttaagccag ccccgacacc 6480 cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac 6540 aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac 6600 gcgcga 660 6 <210> 3 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> Promoter GPD <400> 3 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 taggggg cgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 4 <211 > 266 <212> DNA <213> Artificial Sequence <220> <223> Signal sequence of mating factor alpha <400> 4 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta 240 tctttggata aaagagaggc tgaagc 266 <210> 5 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> codon optimized EFG1 <400> 5 aattccgatt ccgagtgccc tctgtcacat gatggatatt gtctacatga cggagtgtgc 60 atgtatatag aagctctgga caagtatgcc tgtaactgtg ttgt cgggta tatcggcgag 120 agatgccaat acagggacct aaaatggtgg gaactaagg 159 < 210> 6 <211> 210 <212> DNA <213> Artificial Sequence <220> <223> codon optimized IGF1 <400> 6 ggccctgaga cattatgtgg tgcggagctt gtcgatgcat tacagttcgt atgcggagat 60 agaggcttct atttcaacaa acctacaggc tacggttcca gtt ccagaag ggcacctcaa 120 actggtatag ttgacgaatg ttgcttcaga agctgcgacc tgagaagact agaaatgtac 180 tgtgcgcccc tgaaaccagc caagagtgca 210 <210> 7 <211> 420 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF1 <400> 7 tttaacttgc ctccggggaa ttacaagaag ccgaaattac tgtattgctc aaacggaggc 60 cacttcctga gaatccttcc cgacggtact gttgacggca cgagagaccg tagtgatcaa 120 cacatccagt tacaattgag cgccgagagc gtgggagaag tttacataaa gagcacagaa 180 actggccaat accttgcgat ggatacggac gggcttcttt atgggagcca gaccccaaac 240 gaggaatgct tatttcttga aaggctggag gagaatcatt acaatacata tattagtaaa 300 aaacatgcgg aaaagaattg gtttgtcggt ctgaaaaaga acggtagctg caaaagaggt 360 cccaggaccc attacgggca gaaggcgata ctatttctgc cgctacccgt ctcctccgac 420 420 <210> 8 <211> 438 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF2 <400> 8 CCCCGCTAC CAGAGGACGGGGGAGCGGA GCGCCCCCCCCCCA gattttccgta cgggaagggta 120 gatgggagaagaagaagaag CGACCGCAC AGCTTCTTC AGAACGT T AATAGTACT TGGCGATGAA GGAGACGT 240 AGATTGCTGTG CCTCTAAATG TGTGACCGAC GAATGTTTTTTTTTTTCGAGTCC 300 AACAACTATATA acacatacag aagtcgtaaa tacacctcat ggtacgtggc gttgaaacgt 360 actggtcagt acaagcttgg ttctaaaaca ggaccaggtc aaaaagccat actttttcta 420 ccaatgtctg ccaagtcc 438 <210> 9 <211> 489 <212> DNA <213> Artificial Sequence <220> <223> codon optimized FGF7 <400> 9 tgcaacgaca tgactccaga gcagatggca accaacgtaa actgttcaag cccggagcgt 60 cacacaaggt cctatgatta tatggagggg ggggatattc gtgttaggag actattctgc 120 agaacacaat ggtatctgcg tattgataaa aggggcaagg tcaaaggaac tcaagaaatg 180 aaaaataact ataacattat ggagataaga acggtcgcgg tcgg gattgt tgcgattaaa 240 ggcgtggagt ccgaatttta ccttgccatg aataaggaag gaaaactgta cgccaagaag 300 gagtgcaacg aggattgtaa ctttaaggag ttgattttgg aaaaccatta caatacttat 360 gccagtgcaa agtggacgca taacgggggg gagatgttc g tcgccctgaa tcagaaaggt 420 atacctgttc gtggcaagaa gactaaaaaa gaacaaaaaa cagcacactt tcttccaatg 480 gcgatcact 489 <210> 10 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> codon optimized TGFalpha <400> 10 gtggtatctc attttaacga ctgccctgat tcacatactc aattttgttt ccacgggact 60 t gcaggttct tggtccaaga agataagccc gcgtgcgttt gccattcagg ttatgttggt 120 gcgaggtgtg aacacgctga cctgcttgct 150 <210> 11 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> codon optimized TRX1 gene <400> 11 atggtcaagc aaattgagag caaaacggcg ttccaggaag cactggacgc ggcggggac 60 aaacttgtag tagtggactt ctccgccaca tggtgcggtc catgcaaaat gatcaaaccg 120 ttcttccatt ccttgagcga aaagtacagc aacgtgatat ttcttgaagt ggatgtcgat 180 gactgtcaag acgttgcgtc cgagtgtgaa gttaaatgta tgccaacatt tcagttcttt 240 aagaaaggac agaaggtggg agagttcagc ggcgcaaata aagagaaatt agaggcaact 300 attaatgagc tagtg 315 < 210> 12 <211> 50 <212> PRT <213> Homo sapiens <400> 12 Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys 1 5 10 15 Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala Cys 20 25 30 Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp Leu 35 40 45 Leu Ala 50 <210> 13 <211> 146 <212> PRT <213> Homo sapiens <400> 13 Pro Ala Leu Pro Glu Asp Gly Gly Ser Gly Ala Phe Pro Pro Gly His 1 5 10 15 Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys Asn Gly Gly Phe Phe Leu 20 25 30 Arg Ile His Pro Asp Gly Arg Val Asp Gly Val Arg Glu Lys Ser Asp 35 40 45 Pro His Ile Lys Leu Gln Leu Gln Ala Glu Glu Arg Gly Val Val Ser 50 55 60 Ile Lys Gly Val Cys Ala Asn Arg Tyr Leu Ala Met Lys Glu Asp Gly 65 70 75 80 Arg Leu Leu Ala Ser Lys Cys Val Thr Asp Glu Cys Phe Phe Phe Glu 85 90 95 Arg Leu Glu Ser Asn Asn Tyr Asn Thr Tyr Arg Ser Arg Lys Tyr Thr 100 105 110 Ser Trp Tyr Val Ala Leu Lys Arg Thr Gly Gln Tyr Lys Leu Gly Ser 115 120 125 Lys Thr Gly Pro Gly Gln Lys Ala Ile Leu Phe Leu Pro Met Ser Ala 130 135 140 Lys Ser 145 <210> 14 <211> 53 <212> PRT <213> Homo sapiens <400> 14 Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His 1 5 10 15 Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn 20 25 30 Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys 35 40 45 Trp Trp Glu Leu Arg 50 <210> 15 <211> 70 <212> PRT <213> Homo sapiens <400> 15 Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe 1 5 10 15 Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly 20 25 30 Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys 35 40 45 Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu 50 55 60 Lys Pro Ala Lys Ser Ala 65 70 <210> 16 <211> 163 < 212> PRT <213> Homo sapiens <400> 16 Cys Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Asn Cys Ser 1 5 10 15 Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly Gly Asp 20 25 30 Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu Arg Ile 35 40 45 Asp Lys Arg Gly Lys Val Lys Gly Thr Gln Glu Met Lys Asn Asn Tyr 50 55 60 Asn Ile Met Glu Ile Arg Thr Val Ala Val Gly Ile Val Ala Ile Lys 65 70 75 80 Gly Val Glu Ser Glu Phe Tyr Leu Ala Met Asn Lys Glu Gly Lys Leu 85 90 95 Tyr Ala Lys Lys Glu Cys Asn Glu Asp Cys Asn Phe Lys Glu Leu Ile 100 105 110 Leu Glu Asn His Tyr Asn Thr Tyr Ala Ser Ala Lys Trp Thr His Asn 115 120 125 Gly Gly Glu Met Phe Val Ala Leu Asn Gln Lys Gly Ile Pro Val Arg 130 135 140 Gly Lys Lys Thr Lys Lys Glu Gln Lys Thr Ala His Phe Leu Pro Met 145 150 155 160 Ala Ile Thr <210> 17 <211> 50 <212> PRT <213> Homo sapiens <400> 17 Val Val Ser His Phe Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys 1 5 10 15 Phe His Gly Thr Cys Arg Phe Leu Val Gln Glu Asp Lys Pro Ala Cys 20 25 30 Val Cys His Ser Gly Tyr Val Gly Ala Arg Cys Glu His Ala Asp Leu 35 40 45 Leu Ala 50 <210> 18 <211> 105 <212 > PRT <213> Homo sapiens <400> 18 Met Val Lys Gln Ile Glu Ser Lys Thr Ala Phe Gln Glu Ala Leu Asp 1 5 10 15 Ala Ala Gly Asp Lys Leu Val Val Val Asp Phe Ser Ala Thr Trp Cys 20 25 30 Gly Pro Cys Lys Met Ile Lys Pro Phe Phe His Ser Leu Ser Glu Lys 35 40 45 Tyr Ser Asn Val Ile Phe Leu Glu Val Asp Val Asp Asp Cys Gln Asp 50 55 60 Val Ala Ser Glu Cys Glu Val Lys Cys Met Pro Thr Phe Gln Phe Phe 65 70 75 80 Lys Lys Gly Gln Lys Val Gly Glu Phe Ser Gly Ala Asn Lys Glu Lys 85 90 95 Leu Glu Ala Thr Ile Asn Glu Leu Val 100 105 <210> 19 <211> 146 <212> PRT <213> Homo sapiens <400> 19 Leu Pro Val Asn Thr Arg Cys Lys Leu Glu Val Ser Asn Phe Gln Gln 1 5 10 15 Pro Tyr Ile Val Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser Leu 20 25 30 Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe Arg 35 40 45 Gly Val Ser Ala Lys Asp Gln Cys Tyr Leu Met Lys Gln Val Leu Asn 50 55 60 Phe Thr Leu Glu Asp Val Leu Leu Pro Gln Ser Asp Arg Phe Gln Pro 65 70 75 80 Tyr Met Gln Glu Val Val Pro Phe Leu Thr Lys Leu Ser Asn Gln Leu 85 90 95 Ser Ser Cys His Ile Ser Gly Asp Asp Gln Asn Ile Gln Lys Asn Val 100 105 110 Arg Arg Leu Lys Glu Thr Val Lys Lys Leu Gly Glu Ser Gly Glu Ile 115 120 125 Lys Ala Ile Gly Glu Leu Asp Leu Leu Leu Phe Met Ser Leu Arg Asn Ala 130 135 140 Cys Val 145 <210> 20 <211> 4271 <212> DNA <213> Artificial Sequence <220> <223> pMT182-PR4 <400> 20 ggtacctccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcgg cgagcg 60 gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 120 aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 180 gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 240 aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 300 gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 360 ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 420 cgctccaagc tgggctgtgt gcac gaaccc cccgttcagc ccgaccgctg cgccttatcc 480 ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 540 actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 600 tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca 660 gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtag c 720 ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 780 cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 840 ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt 900 tttaaatcaa tctaaagtat atatgagtaa acttggtgaa ttcgcaaggt atagcccaat 960 atactttaact tcgtaaagtt tgagctctgc gaggcaaaaa cgtcagatat tgaatctaaa 1020 caagagtata ataaacacag ttacacaaat aaaaacaaaa ggagtagatc ttaaaaatgg 1080 aagcaaatcc aaagtggcaa gaaacaggaa gacaacaaaa agtaaa acaa cttgactatt 1140 cagaaacatt agcagtaaga atagacaatg tggaattata caactcagaa aagaaattat 1200 attatctagt aattcaaacc cttcttggga atccccaaaa aaatgaatgg cgtatccagg 1260 gacaaagtca aatattaaaa gaatcaaaac aaaaaataat tgt gtcataa aattattgca 1320 cattaaaagt cctaaaaatt attttgcatt aaagatttca aaactcattt aatgtaaaat 1380 aattttttct ttgataatcc catttagcaa caatctcgcg taccacttgg tcaacctttt 1440 gatcatcact atccgtatta atcaaatcac cattctcaac gtcttctaat tgcaactgct 1500 tgcgaatttc tttcagcaaa ccgccatagc taatttgccg ggaaccagcc aaagctcgtt 1560 ccaaatcatc aattacttgt aggtcttgtt cttgattatt agtcaaaata tctttagatt 1620 ttacctgata tttagccgtt tcttgagcac tagccaataa cgaattttta tggcgattca 1680 tattcggttt aactgcctca acattcacca ttggtacata agtcaatttc attgc ccgtt 1740 gccaaaaacc agtccattct acttgtgaaa tatagttatc agtcccctta aaataatggt 1800 tcttcacaaa aagcaaaaca tgcatatgat ggtggtacat tggctgaccc gcttcatgat 1860 taacagtcac ttcagtcgaa cgtacatagc ccaataaatt tttggcaact tttgtatact 1920 gaaaaatttt tgcaacagct cgtcccattt gacgtaactc actcttcaat tgatcaccag 1980 ttgtatt ctc aaccgtcaac gttaaaaata agaaccggcc cgtctttcgt tgtttaacag 2040 cttccgtcaa aatctgtgtt aactgattgg attgcttcat tgcccgccgc caattacata 2100 acggacacaa acgagaatgg caaaaccaag tctgcgccaa tttcttgtga ccatttttat 2 160 cttccacaaa acgcaaaact tcgccacatt ctttaactcg atgagctttc ttataatgca 2220 atatttgtaa atagtcacca tactgcaagt tctccaactt gcgctcccgc cacggccgaa 2280 ctttccctga ctttgaccga tcaaccaaga ctttttcatt agccaaaata aaaactcccc 2340 tcaccaacca cgtgagaaga gttaatctgt tatgtacttg cttcacttaa atcagtcaga 2400 aggcttgacg gcaa agggtt caagctttaa actatgtcta gtaaatccaa atacgatttt 2460 tacaagatta actcacgcgt tcgaggtcgg caaactttcg aagctcacgt gggttttttt 2520 tatatttatt ttataccaca ataatacgcc taaacccagt tgtgtcaagg gtttacctca 2580 cttt ttgaaa atgacgttgt ttctaatagt atcaagataa gaagaaaccg tcgaaaaaac 2640 gacggtttca aaccccaaaa agcagagaat tcggtacctg gagctgtaat ataaaaacct 2700 tcttcaacta acggggcagg ttagtgacat tagaaaaccg actgtaaaaa gtacagtcgg 2760 cattatctca tattataaaa gccagtcatt aggcctatct gacaattcct gaatagagtt 2820 cataaacaat cctgcatgat aaccatcaca aacagaatga tgtacctgta aagatagcgg 2880 taaatatatt gaattacctt tattaatgaa ttttcctgct gtaataatgg gtagaaggta 2940 attactatta ttattgatat ttaagttaaa cccagtaaat gaagtccatg gaataataga 3000 aagagaaaaa gcattttcag gtataggtgt tttggga aac aatttccccg aaccattata 3060 tttctctaca tcagaaaggt ataaatcata aaactctttg aagtcattct ttacaggagt 3120 ccaaatacca gagaatgttt tagatacacc atcaaaaatt gtataaagtg gctctaactt 3180 atcccaataa cctaactctc cgtcgctatt gtaaccagtt ctaaaagctg tatttgagtt 3240 tatcaccctt gtcactaaga aaataaatgc agggtaaaat ttata tcctt cttgttttat 3300 gtttcggtat aaaacactaa tatcaatttc tgtggttata ctaaaagtcg tttgttggtt 3360 caaataatga ttaaatatct cttttctctt ccaattgtct aaatcaattt tattaaagtt 3420 catttgatat gcctcctaaa tt tttatcta aagtgaattt aggaggctta cttgtctgct 3480 ttcttcatta gaatcaatcc ttttttaaaa gtcaatatta ctgtaacata aatatatatt acat cagtcg tgagagcatt 3720 gtgttgacag tgatcggcat cgtgttcggc tatctgctcg gcaatttgct gacagcctac 3780 attttgtatc aagccgaaac tgaggccgtg gtttttccac tcacgatcag cattgtcggc 3840 tacctcacgg ccacgttact catgtt ggcc ttcaccggcg tcgtcacctg gctcacgcat 3900 cgtcgactcc aacgggtgga catggtcgaa gccctgaaat caaacgaata acctacaatt 3960 ttgtcaggca gcgtcgtcac ggcgctgctt ttttcataca aaattcatca aaaattggga 4020 ttaaaaacgt tcatgatcgc aattttgaag cgcaaatgaa gattgagacc aactcctaac 4080 agtcctgtaa cgctgacgta acattgacac agtaaagtag cctttagtta atcaaatt 21 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide PR4 <400> 21 Met Lys Phe Asn Lys Val Met Ile Thr Leu Val Ala Ala Val Thr Leu 1 5 10 15 Ala Gly Ser Ala Ser Ala Val Thr Pro Val Phe Ala Asp Thr Ser 20 25 30 <210> 22 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide1 <400> 22 Met Lys Lys Leu Leu Ser Thr Val Leu Phe Ser Ala Val Ala Leu Ser 1 5 10 15 Ala Val Ala Leu Ser Lys Pro Ser His Val Ser Ala Ala Thr 20 25 30 <210> 23 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide2 <400> 23 Met Lys Lys Phe Leu Val Ser Val Gly Leu Leu Gly Met Leu Val Leu 1 5 10 15 Ser Thr Gly Ala Val Thr Ala His Ala Ala Asp 20 25 <210> 24 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide3 <400> 24 Met Lys Lys Lys Ile Ile Ser Ala Ile Leu Met Ser Thr Val Ile Leu 1 5 10 15 Ser Ala Ala Ala Pro Leu Ser Gly Val Tyr Ala 20 25 <210> 25 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide4 <400> 25 Met Lys Asn Lys Leu Leu Met Ser Leu Val Leu Val Cys Ala Phe Leu 1 5 10 15 Gly Ile Ala Gly Ala His Thr Val His Ala Ala Asp 20 25 <210> 26 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide5 <400> 26 Met Lys Lys Thr Thr Leu Leu Leu Ser Thr Leu Phe Leu Gly Gly Thr 1 5 10 15 Leu Leu Ala Thr Thr Leu Ala Thr Pro Val Val Ala Asp Thr 20 25 30 <210> 27 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide1 <400> 27 Met Ile Leu His Thr Tyr Ile Ile Leu Ser Leu Leu Thr Ile Phe Pro 1 5 10 15 Lys Ala Ile Gly 20 <210> 28 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide2 <400> 28 Met Phe Ser Pro Ile Leu Ser Leu Glu Ile Ile Leu Ala Leu Ala Thr 1 5 10 15 Leu Gln Ser Val Phe Ala 20 <210> 29 <211> 40 <212> PRT < 213> Artificial Sequence <220> <223> Yeast Signal peptide3 <400> 29 Met Lys Ile Leu Ser Ala Leu Leu Leu Leu Phe Thr Leu Ala Phe Ala 1 5 10 15 Glu Val Ile Glu Leu Thr Asn Lys Asn Phe Asp Asp Val Val Leu Lys 20 25 30 Ser Gly Lys Tyr Thr Leu Val Lys 35 40 <210> 30 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide4 <400> 30 Met Lys Phe Ala Tyr Ser Leu Leu Leu Pro Leu Ala Gly Val Ser Ala 1 5 10 15 Ser Val Ile Asn Tyr Lys Arg Asp Gly Asp Ser Lys Ala Ile Thr Asn 20 25 30 Thr Thr Phe Ser Leu Asn Arg Pro 35 40 <210> 31 < 211> 40 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide4 <400> 31 Met Lys Ala Phe Thr Ser Leu Leu Cys Gly Leu Gly Leu Ser Thr Thr Thr 1 5 10 15 Leu Ala Lys Ala Ile Ser Leu Gln Arg Pro Leu Gly Leu Asp Lys Asp 20 25 30 Val Leu Leu Gln Ala Ala Glu Lys 35 40 <210> 32 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide5 <400> 32 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15 Ala Leu Ala <210> 33 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide7 <400> 33 Met Phe Tyr Asn Arg Trp Leu Gly Thr Trp Leu Ala Met Ser Ala Leu 1 5 10 15 Ile Arg Ile Ser Val Ser 20 <210> 34 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide8 <400> 34 Met Thr Leu Ser Phe Ala His Phe Thr Tyr Leu Phe Thr Ile Leu Leu 1 5 10 15 Gly Leu Thr Asn Ile Ala 20 <210> 35 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide9 <400> 35 Met Gln Leu Leu Arg Cys Phe Ser Ile Phe Ser Val Ile Ala Ser Val 1 5 10 15 Leu Ala <210> 36 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide10 <400> 36 Met Leu Lys Ser Ala Val Tyr Ser Ile Leu Ala Ala Ser Leu Val Asn 1 5 10 15 Ala <210> 37 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide11 <400> 37 Met Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu 1 5 10 15 Ala Ser Ala <210> 38 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide12 <400> 38 Met Phe Ala Phe Tyr Phe Leu Thr Ala Cys Ile Ser Leu Lys Gly Val 1 5 10 15 Phe Gly <210> 39 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide13 <400> 39 Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu Ser Ser Leu Phe Ala 1 5 10 15 Ser Gln Val Leu Gly 20 <210> 40 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide14 <400> 40 Met Lys Leu Ser Val Leu Thr Phe Val Val Asp Ala Leu Leu Val Cys 1 5 10 15 Ser Ser Ile Val Asp Ala 20 <210> 41 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide15 <400> 41 Met Lys Leu Gln Leu Ala Ala Val Ala Thr Leu Ala Val Leu Thr Ser 1 5 10 15 Pro Ala Phe Gly 20 <210> 42 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide16 <400> 42 Met Phe Tyr Asn Arg Trp Leu Gly Thr Trp Leu Ala Met Ser Ala Leu 1 5 10 15 Ile Arg Ile Ser Val Ser 20 <210> 43 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide17 <400> 43 Met Leu Ser Phe Thr Thr Lys Asn Ser Phe Arg Leu Leu Leu Leu Ile 1 5 10 15 Leu Ser Cys Ile Ser Thr Ile Arg Ala 20 25 <210> 44 <211 > 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide18 <400> 44 Met Lys Phe Ser Thr Ala Leu Ser Val Ala Leu Phe Ala Leu Ala Lys 1 5 10 15 Met Val Ile Ala 20 < 210> 45 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide19 <400> 45 Met Lys Ile Phe Asn Thr Ile Gln Ser Val Leu Phe Ala Ala Phe Phe 1 5 10 15 Leu Lys Gln Gly Asn Cys Leu Ala 20 <210> 46 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide20\ <400> 46 Met Ser Leu Leu Tyr Ile Ile Leu Leu Phe Thr Gln Phe Leu Leu Leu 1 5 10 15 Pro Thr Asp Ala 20 <210> 47 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide21 <400> 47 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe 1 5 10 15 Thr Ala Ser Gln Val Ser Ala 20 <210> 48 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide22 <400 > 48 Met Gln Arg Pro Phe Leu Leu Ala Tyr Leu Val Leu Ser Leu Leu Phe 1 5 10 15 Asn Ser Ala Leu Gly 20 <210> 49 <211> 32 <212> PRT <213> Artificial Sequence <220> <223 > Yeast Signal peptide23 <400> 49 Met Asn Leu Lys Gln Phe Thr Cys Leu Ser Cys Ala Gln Leu Leu Ala 1 5 10 15 Ile Leu Leu Phe Ile Phe Ala Phe Phe Pro Arg Lys Ile Val Leu Thr 20 25 30 <210> 50 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide24 <400> 50 Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys 1 5 10 15 Ile Ser Ala <210> 51 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide25 <400> 51 Met Lys Val Arg Lys Tyr Ile Thr Leu Cys Phe Trp Trp Ala Phe Ser 1 5 10 15 Thr Ser Ala <210> 52 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Yeast Signal peptide26 <400> 52 Met Ile Leu Leu His Phe Val Tyr Ser Leu Trp Ala Leu Leu Leu Ile 1 5 10 15 Pro Leu Thr Asn Ala 20 <210> 53 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 53 Met Lys Lys Lys Met Arg Leu Lys Val Leu Leu Ala Ser Thr Ala Thr 1 5 10 15 Ala Leu Leu Leu Leu Ser Gly 20 <210> 54 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 54 Met Gln Arg Lys Lys Lys Gly Leu Ser Ile Leu Leu Ala Gly Thr Val 1 5 10 15 Ala Leu Gly Ala Leu Ala Val Leu Pro Val Gly Glu Ile Gln Ala Lys 20 25 30 Ala <210> 55 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 55 Met Lys Lys Trp Phe Ile Ala Leu Ala Gly Leu Leu Leu Leu Thr Val Thr 1 5 10 15 Leu Ala Gly <210> 56 <211> 22 <212> PRT < 213> Artificial Sequence <220> <223> signal peptide <400> 56 Met Lys Lys Tyr Arg Lys Ile Leu Ala Met Leu Ala Val Leu Ala Ile 1 5 10 15 Val Leu Val Leu Ser Gly 20 <210> 57 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 57 Met Asn Asn Ala Leu Ser Phe Glu Gln Gln Phe Thr Asp Phe Ser Thr 1 5 10 15 Leu Ser Asp Ser Glu Leu Glu Ser Val Glu Gly Gly 20 25 <210> 58 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 58 Met Lys Ser Lys Lys Gly Leu Thr Leu Thr Ile Thr Leu Gly Thr Leu 1 5 10 15 Ala Leu Phe Leu Ser Gly 20 <210> 59 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> signal peptide <400> 59 Met Asp Lys Ile Ile Lys Phe Gln Gly Ile Ser Asp Asp Gln Leu Asn 1 5 10 15 Ala Val Ile Gly Gly 20 <210> 60 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> Signal peptide <400> 60 Met Gln Ser Ser Leu Lys Lys Ser Leu Tyr Leu Gly Leu Ala Ala Leu 1 5 10 15 Ser Phe Ala Gly Val Ala Ala Val Ser Thr Thr Ala Ser Ala 20 25 30

Claims (13)

외래(heterologous) 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로부터 세포외 소낭(extracellular vesicle)을 분리하는 단계를 포함하고,
상기 미생물은 유산균이고,
상기 표적 단백질은 신호 펩티드가 연결되어 있어 증가된 양으로 상기 세포외 소낭에 탑재되는 것인,
표적 단백질이 증가된 양으로 탑재되어 있는 세포외 소낭의 생산 방법.
Isolating extracellular vesicles from recombinant microorganisms containing a polynucleotide encoding a heterologous target protein,
The microorganism is a lactic acid bacterium,
The target protein is loaded into the extracellular vesicle in an increased amount because a signal peptide is linked to it,
A method for producing extracellular vesicles loaded with increased amounts of a target protein.
청구항 1에 있어서, 상기 유산균은 Lactobacillus, Lactococcus, 및 Bifidobacterium 속으로 이루어진 군으로부터 선택된 속에 속하는 종인 것인 방법.The method according to claim 1, wherein the lactic acid bacteria is a species belonging to a genus selected from the group consisting of genus  Lactobacillus, Lactococcus, and  Bifidobacterium. 청구항 2에 있어서, 상기 유산균은 Lactobacillus plantarum, Lactobacillus brevis, 및 Lactobacillus paracasei로 이루어진 군으로부터 선택된 종에 속하는 것인 방법.The method according to claim 2, wherein the lactic acid bacteria belong to a species selected from the group consisting of Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus paracasei. 청구항 1 내지 3 중 어느 한 항의 방법에 따라 수득되는, 표적 단백질을 증가된 양으로 탑재하는 세포외 소낭.An extracellular vesicle loaded with an increased amount of a target protein obtained by the method of any one of claims 1 to 3. 유효 성분으로 청구항 4의 세포외 소낭, 및 담체를 포함하는 화장료 조성물.A cosmetic composition comprising the extracellular vesicle of claim 4 as an active ingredient, and a carrier. 유효 성분으로 청구항 4의 세포외 소낭, 및 담체를 포함하는 염증성 질환, 창상, 아토피 피부염, 건선, 또는 여드름을 예방 또는 치료하기 위한 약제학적 조성물.
A pharmaceutical composition for preventing or treating inflammatory diseases, wounds, atopic dermatitis, psoriasis, or acne, comprising the extracellular vesicle of claim 4 as an active ingredient and a carrier.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190049914A 2018-05-04 2019-04-29 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof KR102553825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190049914A KR102553825B1 (en) 2018-05-04 2019-04-29 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180052157A KR102015116B1 (en) 2018-05-04 2018-05-04 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof
KR1020190049914A KR102553825B1 (en) 2018-05-04 2019-04-29 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180052157A Division KR102015116B1 (en) 2018-05-04 2018-05-04 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof

Publications (2)

Publication Number Publication Date
KR20190127559A KR20190127559A (en) 2019-11-13
KR102553825B1 true KR102553825B1 (en) 2023-07-13

Family

ID=87160338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190049914A KR102553825B1 (en) 2018-05-04 2019-04-29 Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof

Country Status (1)

Country Link
KR (1) KR102553825B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591441B1 (en) * 2022-06-28 2023-10-23 정해관 Extracellular Vesicle loading inducing Peptide sequence and the Extracellular Vesicle comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354559B2 (en) 2005-11-24 2013-11-27 独立行政法人産業技術総合研究所 Highly efficient secretory signal peptides and protein expression systems using them
KR101802980B1 (en) 2014-06-24 2017-12-01 한국생명공학연구원 Novel translational fusion partner derived from Pichia pastoris for secretory production of foreign proteins and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9521568D0 (en) * 1995-10-20 1995-12-20 Lynxvale Ltd Delivery of biologically active polypeptides
KR20160110232A (en) * 2015-03-11 2016-09-21 주식회사 엠디헬스케어 Composition for Prevention or Treatment of Inflammatory disease Comprising Extracellular Vesicles Derived from Lactic acid bacteria
KR102394638B1 (en) * 2015-09-30 2022-05-09 (주)아모레퍼시픽 Composition comprising lactic acid bacteria derived extracellular vesicles for preventing hair loss or promoting hair growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354559B2 (en) 2005-11-24 2013-11-27 独立行政法人産業技術総合研究所 Highly efficient secretory signal peptides and protein expression systems using them
KR101802980B1 (en) 2014-06-24 2017-12-01 한국생명공학연구원 Novel translational fusion partner derived from Pichia pastoris for secretory production of foreign proteins and use thereof

Also Published As

Publication number Publication date
KR20190127559A (en) 2019-11-13

Similar Documents

Publication Publication Date Title
KR102015116B1 (en) Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof
CN107299114B (en) Efficient yeast chromosome fusion method
AU2023204146A1 (en) Novel AAV8 Mutant Capsids And Compositions Containing Same
KR102147007B1 (en) Fad3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
KR102528337B1 (en) Scalable biotechnological production of DNA single-stranded molecules of defined sequence and length
KR20190032274A (en) Gene Therapy for Hemophilia A Treatment
AU2002322469B2 (en) Nuclear fertility restorer genes and methods of use in plants
CN112313334A (en) Homologous directed repair template design and delivery to edit hemoglobin-related mutations
KR102330593B1 (en) Novel Isoprene Synthase and Method of Preparing Isoprene Using Thereof
AU2002322469A1 (en) Nuclear fertility restorer genes and methods of use in plants
KR102553825B1 (en) Extracellular vesicle isolated from recombinant microorganism comprising polynucleotide encoding target protein and use thereof
CN107002070A (en) Co-expression plasmid
US20060263855A1 (en) Intein-mediated protein purification using in vivo expression of an elastin-like protein
KR102287880B1 (en) A method for modifying a target site of double-stranded DNA in a cell
CN111440774A (en) Construction method of IFNGR2 gene melanoma B-16 cell line for stably expressing knock-in EGFP
KR20190081942A (en) Microorganism expressing heterologous protein, and use thereof
CN113999824B (en) H1a gene type chimeric measles virus attenuated strain, preparation method and application
CN110511954B (en) Recombinant vector, expression system and application suitable for corynebacterium glutamicum to secrete and express xylanase
KR102238519B1 (en) Microorganism expressing heterologous protein, and use thereof
KR102156335B1 (en) Microorganism expressing heterologous protein, and use thereof
US20030199073A1 (en) Production of recombinant human lysosomal alpha-mannosidase
JP2001340090A (en) Lactobacillus shuttle vector
CN115397998A (en) Poxvirus-based vectors produced from natural or synthetic DNA and uses thereof
KR102635553B1 (en) Microorganism expressing heterologous protein, and use thereof
KR102527953B1 (en) Microorganism expressing heterologous protein, and use thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right