KR102547125B1 - 간접 가열식 캐소드 이온 소스 - Google Patents

간접 가열식 캐소드 이온 소스 Download PDF

Info

Publication number
KR102547125B1
KR102547125B1 KR1020187014206A KR20187014206A KR102547125B1 KR 102547125 B1 KR102547125 B1 KR 102547125B1 KR 1020187014206 A KR1020187014206 A KR 1020187014206A KR 20187014206 A KR20187014206 A KR 20187014206A KR 102547125 B1 KR102547125 B1 KR 102547125B1
Authority
KR
South Korea
Prior art keywords
ion source
cathode
chamber
voltage
controller
Prior art date
Application number
KR1020187014206A
Other languages
English (en)
Other versions
KR20180061379A (ko
Inventor
대니얼 알바라도
클라우스 베커
데이비드 애커먼
Original Assignee
베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. filed Critical 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Publication of KR20180061379A publication Critical patent/KR20180061379A/ko
Application granted granted Critical
Publication of KR102547125B1 publication Critical patent/KR102547125B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/22Heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/03Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using electrostatic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

증가된 수명을 갖는 간접 가열식 캐소드(IHC) 이온 소스가 개시된다. IHC 이온 소스는 이온 소스의 대향되는 단부들 상에 캐소드 및 반사 전극을 갖는 챔버를 포함한다. 바이어싱된 전극들이 이온 소스의 하나 이상의 측면들 상에 배치된다. 챔버에 대하여 캐소드, 반사 전극 및 전극들 중 적어도 하나에 인가되는 바이어스 전압은 시간의 경과에 따라 변화된다. 특정 실시예들에 있어서, 전극들에 인가되는 전압은 초기 포지티브 전압에서 시작할 수 있다. 시간의 경과에 따라, 이러한 전압은 목표 이온 빔 전류를 계속해서 유지하면서 감소될 수 있다. 유익하게는, 캐소드의 수명이 이러한 기술을 사용하여 개선된다.

Description

간접 가열식 캐소드 이온 소스
관련 출원에 대한 상호 참조
본 출원은 2015년 10월 23일자로 출원된 미국 가특허 출원 제62/245,567호, 및 2015년 12월 17일자로 출원된 미국 특허 출원 제14/972,412호에 대한 우선권을 주장하며, 이들의 개시내용이 그 전체로서 본원에 참조로서 포함된다.
기술분야
본 개시의 실시예들은 간접 가열식 캐소드(indirectly heated cathode; IHC) 이온 소스에 관한 것으로서, 더 구체적으로는, IHC 이온 소스의 수명을 개선하기 위한 가변 전극 전압들을 갖는 IHC 이온 소스에 관한 것이다.
간접 가열식 캐소드(IHC) 이온 소스들은 캐소드 뒤에 배치된 필라멘트에 전류를 공급함으로써 동작한다. 필라멘트는 열이온 전자들을 방출하며, 이들은 캐소드를 향해 가속되어 캐소드를 가열하여 결과적으로 캐소드가 이온 소스의 챔버 내로 전자들을 방출하게끔 한다. 캐소드는 챔버의 일 단부에 배치된다. 반사 전극(repeller)은 전형적으로 캐소드에 대향되는 챔버의 단부 상에 배치된다. 반사 전극은 전자들을 반사하여 이들을 다시 챔버의 중심을 향해 보내기 위하여 바이어싱될 수 있다. 일부 실시예들에 있어서, 전자들을 챔버 내에 추가로 구속(confine)하기 위하여 자기장이 사용된다.
특정 실시예들에 있어서, 전극들은 또한 챔버의 하나 이상의 측면들 상에 배치된다. 이러한 전극들은, 챔버의 중심 근처의 이온 밀도를 증가시키기 위하여 이온들 및 전자들의 위치를 제어하기 위해 포지티브하게 또는 네거티브하게 바이어싱될 수 있다. 추출 개구가 챔버의 중심 근처에서 다른 측면을 따라 배치되며, 이를 통해 이온들이 추출될 수 있다.
IHC 이온 소스들과 연관된 하나의 문제는 캐소드가 제한된 수명을 가질 수 있다는 것이다. 캐소드는 그것의 후방 표면 상에 전자들로부터의 충격, 및 그것의 전방 표면 상에 포지티브하게 대전된 이온들에 의한 충격을 겪는다. 이러한 충격은 스퍼터링(sputtering)을 야기하며 이는 캐소드의 부식을 야기한다. 다수의 실시예들에 있어서, IHC 이온 소스의 수명은 캐소드의 수명에 의해 좌우된다.
따라서, 캐소드의 수명을 증가시킬 수 있는 IHC 이온 소스가 유익할 수 있다. 추가로, 이러한 장치가 IHC 이온 소스의 수명 전체에 걸쳐 희망되는 빔 전류를 유지하는 경우 유익할 것이다.
증가된 수명을 갖는 IHC 이온 소스가 개시된다. IHC 이온 소스는 이온 소스의 대향되는 단부들 상에 캐소드 및 반사 전극을 갖는 챔버를 포함한다. 바이어싱된 전극들이 이온 소스의 하나 이상의 측면들 상에 배치된다. 챔버에 대한 캐소드, 반사 전극 및 전극들 중 적어도 하나에 인가되는 바이어스 전압은 시간의 경과에 따라 변화된다. 특정 실시예들에 있어서, 전극들에 인가되는 전압은 초기 포지티브 전압에서 시작할 수 있다. 시간의 경과에 따라, 이러한 전압은 목표 이온 빔 전류를 계속해서 유지하면서 감소될 수 있다. 유익하게는, 캐소드의 수명이 이러한 기술을 사용하여 개선된다.
일 실시예에 따르면, 간접 가열식 캐소드 이온 소스가 개시된다. 간접 가열식 캐소드 이온 소스는, 가스가 그 안으로 도입되는 챔버; 챔버의 일 단부 상에 배치되는 캐소드; 챔버의 대향되는 단부에 배치되는 반사 전극; 및 챔버의 측면을 따라 배치되는 적어도 하나의 전극을 포함하며; 챔버에 대한 캐소드, 반사 전극 및 적어도 하나의 전극 중 적어도 하나에 인가되는 전압은 시간의 경과에 따라 변화한다. 특정 실시예들에 있어서, 전압은 시간의 경과에 따라 감소한다. 특정 실시예들에 있어서, 이온 소스는 제어기를 포함한다. 특정 실시예들에 있어서, 제어기는 간접 가열식 캐소드 이온 소스의 동작 시간을 모니터링하고, 간접 가열식 캐소드 이온 소스의 동작 시간에 기초하여 인가될 전압을 결정한다. 특정 실시예들에 있어서, 제어기는 전류 측정 시스템과 통신하며, 여기에서 측정 시스템은 추출 개구를 통해 간접 가열식 캐소드 이온 소스로부터 추출되는 이온 빔의 전류를 측정하고, 제어기는 측정된 이온 빔의 전류에 기초하여 인가될 전압을 조정한다. 특정 실시예들에 있어서, 캐소드, 반사 전극 및 적어도 하나의 전극 중 적어도 하나는 처음에 오목한 표면을 갖는 전방 표면을 가지고 형성된다.
다른 실시예에 따르면, 간접 가열식 캐소드 이온 소스가 개시된다. 간접 가열식 캐소드 이온 소스는, 가스가 그 안으로 도입되는 챔버; 챔버의 일 단부 상에 배치되는 캐소드; 챔버의 대향되는 단부에 배치되는 반사 전극; 및 챔버의 측면을 따라 배치되는 적어도 하나의 전극을 포함하며; 적어도 하나의 전극에 인가되는 전압은 시간의 경과에 따라 감소한다. 특정 실시예들에 있어서, 이온 소스는 적어도 하나의 전극에 대향되는 측면 상에 제 2 전극을 더 포함하며, 여기에서 제 2 전극은 챔버에 전기적으로 연결된다. 특정 실시예들에 있어서, 캐소드 및 반사 전극은 챔버에 대하여 네거티브하게 바이어싱되며, 적어도 하나의 전극은 처음에 챔버에 대하여 포지티브하게 바이어싱된다. 특정 실시예들에 있어서, 간접 가열식 캐소드 이온 소스는 제어기를 포함하며, 제어기는 번-인 페이즈(burn-in phase) 동안 제 1 레이트(rate)에 의해 전압을 감소시키고 동작 페이즈 동안 제 2 레이트에 의해 전압을 감소시키며, 여기에서 제 1 레이트는 제 2 레이트보다 더 크다.
다른 실시예에 따르면, 간접 가열식 캐소드 이온 소스가 개시된다. 간접 가열식 캐소드 이온 소스는, 챔버; 캐소드 전원 공급장치와 연통하며 챔버의 일 단부 상에 배치되는 캐소드; 반사 전극 전원 공급장치와 연통하며 챔버의 대향되는 단부 상에 배치되는 반사 전극; 전극 전원 공급장치와 연통하며 챔버의 측면 상에 그리고 챔버 내에 배치되는 전극; 챔버의 다른 측면 상에 배치되는 추출 개구; 및 캐소드 전원 공급장치, 반사 전극 전원 공급장치 및 전극 전원 공급장치 중 적어도 하나와 연통하는 제어기로서, 제어기는 시간의 경과에 따라 챔버에 대한 캐소드, 반사 전극 및 전극 중 하나에 인가되는 전압을 수정하는, 제어기를 포함한다. 특정 실시예들에 있어서, 캐소드 전원 공급장치 및 반사 전극 전원 공급장치는 하나의 전원 공급장치이다.
본 개시의 더 양호한 이해를 위하여, 본원에 참조로서 포함되는 첨부된 도면들에 대한 참조가 이루어진다.
도 1은 일 실시예에 따른 이온 소스이다.
도 2는 사용 이후의 도 1의 이온 소스를 도시하며 또한 다른 실시예에 따른 이온 소스를 나타낸다.
도 3은 일 실시예에 따른 제어 시스템의 표현이다.
도 4는 일 실시예에서 동작 시간과 바이어스 전압 사이의 관계를 도시하는 대표적인 그래프를 도시한다.
이상에서 설명된 바와 같이, 간접 가열식 캐소드 이온 소스들은 스퍼터링의 영향, 특히 캐소드 및 반사 전극 상의 스퍼터링의 영향에 기인하여 수명이 단축될 수 있다. 전형적으로, 시간의 경과에 따라, 보통 홀(hole)이 컴포넌트를 통해 생길 때 이러한 컴포넌트들 중 하나 또는 둘 모두가 고장이 난다.
도 1은 이러한 문제들을 극복하는 IHC 이온 소스(10)를 도시한다. IHC 이온 소스(10)는 2개의 대향되는 단부들 및 이러한 단부들을 연결하는 측면들을 갖는 챔버(100)를 포함한다. 챔버는 전기 전도성 재료로 구성될 수 있다. 캐소드(110)는 챔버(100)의 단부들 중 하나에서 챔버(100) 내에 배치된다. 이러한 캐소드(110)는, 챔버(100)에 대하여 캐소드(110)를 바이어싱하도록 역할하는 캐소드 전원 공급장치(115)와 연통한다. 특정 실시예들에 있어서, 캐소드 전원 공급장치(115)는 챔버(100)에 대하여 캐소드(110)를 네거티브하게 바이어싱할 수 있다. 예를 들어, 캐소드 전원 공급장치(115)는 0 내지 -150V의 범위 내의 출력을 가질 수 있지만, 다른 전압들이 사용될 수도 있다. 특정 실시예들에 있어서, 캐소드(110)는 챔버(100)에 대하여 0 내지 -40V 사이로 바이어싱된다. 필라멘트(160)가 캐소드(110) 뒤에 배치된다. 필라멘트(160)는 필라멘트 전원 공급장치(165)와 연통한다. 필라멘트 전원 공급장치(165)는 필라멘트(160)를 통해 전류를 통과시키도록 구성되며, 그 결과 필라멘트(160)가 열이온 전자들을 방출한다. 캐소드 바이어스 전원 공급장치(116)는 필라멘트(160)를 캐소드(110)에 대하여 네거티브하게 바이어싱하며, 따라서 필라멘트(160)로부터의 이러한 열이온 전자들이 캐소드(110)를 향해 가속되고 이들이 캐소드(110)의 후방 표면에 충돌할 때 캐소드(110)를 가열한다. 캐소드 바이어스 전원 공급장치(116)는, 필라멘트가, 예를 들어, 캐소드(110)의 전압보다 300V 내지 600V 더 네거티브한 전압을 갖도록 필라멘트(160)를 바이어싱할 수 있다. 그러면, 캐소드(110)는 챔버(100) 내로 그것의 전방 표면 상에 열이온 전자들을 방출한다. 이러한 기술이 또한 "전자 빔 가열"로서 알려져 있을 수 있다.
따라서, 필라멘트 전원 공급장치(165)는 필라멘트(160)로 전류를 공급한다. 캐소드 바이어스 전원 공급장치(116)는 필라멘트가 캐소드(110)보다 더 네거티브하도록 필라멘트(160)를 바이어싱하며, 그 결과 전자들이 필라멘트(160)로부터 캐소드(110)를 향해 끌어 당겨진다. 마지막으로, 캐소드 전원 공급장치(115)는 캐소드(110)를 챔버(100)보다 더 네거티브하게 바이어싱한다.
반사 전극(120)은 캐소드(110)에 대향되는 챔버의 단부 상에서 챔버(100) 내에 배치된다. 반사 전극(120)은 반사 전극 전원 공급장치(125)와 연통할 수 있다. 명칭에서 제시하는 바와 같이, 반사 전극(120)은 캐소드(110)로부터 방출된 전자들을 다시 챔버(100)의 중심을 향해 반사하도록 역할한다. 예를 들어, 반사 전극(120)은 전자들을 반사하기 위하여 챔버(100)에 대해 네거티브 전압으로 바이어싱될 수 있다. 캐소드 전원 공급장치(115)와 유사하게, 반사 전극 전원 공급장치(125)는 반사 전극(120)을 챔버(100)에 대하여 네거티브하게 바이어싱할 수 있다. 예를 들어, 반사 전극 전원 공급장치(125)는 0 내지 -150V의 범위 내의 출력을 가질 수 있지만, 다른 전압들이 사용될 수도 있다. 특정 실시예들에 있어서, 반사 전극(120)은 챔버(100)에 대하여 0 내지 -40V 사이로 바이어싱된다.
특정 실시예들에 있어서, 캐소드(110) 및 반사 전극(120)은 공통 전원 공급장치에 연결될 수 있다. 따라서, 이러한 실시예에 있어서, 캐소드 전원 공급장치(115) 및 반사 전극 전원 공급장치(125)는 동일한 전원 공급장치이다.
도시되지는 않았지만, 특정 실시예들에 있어서, 자기장이 챔버(100) 내에 생성된다. 이러한 자기장은 전자들을 일 방향을 따라서 구속하도록 의도된다. 예를 들어, 전자들은 캐소드(110)로부터 반사 전극(120)까지의 방향(즉, y 방향)에 평행한 컬럼 내에 구속될 수 있다.
전극들(130a, 130b)은, 전극들(130a, 130b)이 챔버(100) 내에 존재하도록 챔버(100)의 측면들 상에 배치될 수 있다. 전극들(130a, 130b)은 전원 공급장치에 의해 바이어싱될 수 있다. 특정 실시예들에 있어서, 전극들(130a, 130b)은 공통 전원 공급장치와 연통할 수 있다. 그러나, 다른 실시예들에 있어서, IHC 이온 소스(10)의 출력을 튜닝(tune)하기 위한 최대 유연성 및 능력을 가능하게 하기 위하여, 전극들(130a, 130b)이 각기 개별적인 전원 공급장치(135a, 135b)와 연통할 수 있다.
캐소드 전원 공급장치(115) 및 반사 전극 전원 공급장치(125)와 유사하게, 전극 전원 공급장치들(135a, 135b)은 전극들을 챔버(110)에 대하여 바이어싱하도록 역할한다. 특정 실시예들에 있어서, 전극 전원 공급장치들(135a, 135b)은 챔버(100)에 대하여 전극들(130a, 130b)을 포지티브하게 또는 네거티브하게 바이어싱할 수 있다. 예를 들어, 전극 전원 공급장치들(135a, 135b)은 처음에 전극들(130a, 130b) 중 적어도 하나를 챔버에 대하여 0 내지 150 볼트 사이의 전압으로 바이어싱할 수 있다. 특정 실시예들에 있어서, 전극들(130a, 130b) 중 적어도 하나는 처음에 챔버에 대하여 60 내지 150 볼트 사이로 바이어싱될 수 있다. 다른 실시예들에 있어서, 전극들(130a, 130b) 중 하나 또는 둘 모두가 챔버(100)에 전기적으로 연결될 수 있으며, 따라서 챔버(100)와 동일한 전압이다.
캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)의 각각은 금속과 같은 전기 전도성 재료로 만들어진다.
챔버(100)의 다른 측면 상에는 추출 개구(140)가 존재할 수 있다. 도 1에서, 추출 개구(140)는 X-Y 평면에 평행한(페이지에 평행한) 측면 상에 배치된다. 추가로, 도시되지는 않았지만, IHC 이온 소스(10)는 이를 통해 이온화될 가스가 챔버로 도입되는 가스 입구를 또한 포함한다.
제어기(180)는, 이러한 전원 공급장치들에 의해 공급되는 전압 또는 전류가 수정될 수 있도록 전원 공급장치들 중 하나 이상과 연통할 수 있다. 추가로, 특정 실시예들에 있어서, 제어기(180)는 추출되는 이온 빔 전류를 모니터링하는 측정 시스템(200)(도 3 참조)과 통신할 수 있다. 제어기(180)는 시간의 경과에 따라 하나 이상의 전원 공급장치들을 조정할 수 있다. 이러한 조정들은 동작 시간에 기초하거나 또는 측정된 추출되는 이온 빔 전류에 기초할 수 있다. 제어기(180)는 프로세싱 유닛, 예컨대 마이크로제어기, 개인용 컴퓨터, 특수 용도 제어기, 또는 다른 적절한 프로세싱 유닛을 포함할 수 있다. 제어기(180)는 또한 비-일시적인 저장 엘리먼트, 예컨대 반도체 메모리, 자기 메모리, 또는 다른 적절한 메모리를 포함할 수 있다. 이러한 비-일시적인 저장 엘리먼트는, 제어기(180)가 본원에서 설명되는 기능들을 수행하는 것을 가능하게 하는 명령어들 및 다른 데이터를 포함할 수 있다.
동작 동안, 필라멘트 전원 공급장치(165)는 필라멘트(160)를 통해 전류를 통과시키며, 이는 필라멘트가 열이온 전자들을 방출하게끔 한다. 이러한 전자들은 필라멘트(160)보다 더 포지티브할 수 있는 캐소드(110)의 후방 표면에 충돌하며, 이는 캐소드(110)가 가열되어 결과적으로 캐소드(110)가 챔버(100) 내로 전자들을 방출하게끔 한다. 이러한 전자들은 가스 입구를 통해 챔버(100) 내로 공급되는 가스의 분자들과 충돌한다. 이러한 충돌들이 이온들을 생성하며, 이온들이 플라즈마(150)를 형성한다. 플라즈마(150)는 캐소드(110), 반사 전극(120), 및 전극들(130a, 130b)에 의해 생성되는 전기장들에 의해 구속되고 조작될 수 있다. 특정 실시예들에 있어서, 플라즈마(150)는 추출 개구(140) 근처의 챔버(100)의 중심 가까이에 구속된다.
시간의 경과에 따라, 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)은 이러한 컴포넌트들 상의 이온들 및 전자들의 스퍼터링에 기인하여 마모될 수 있다. 예를 들어, 도 2는 동작 시간들 이후의 도 1의 이온 소스를 나타낼 수 있다. 캐소드(110), 반사 전극(120), 및 전극들(130a, 130b)이 침식되었으며, 이제 그 각각이 오목한 형상의 전방 표면을 가질 수 있다. 따라서, 플라즈마(150)가 도 1의 그것의 크기에 비하여 성장할 수 있다. 이는 이온 밀도의 감소를 야기할 수 있으며, 그에 따라서 추출되는 이온 빔 전류의 대응하는 감소를 야기할 수 있다.
일부 경우들에 있어서, 필라멘트(160)에 공급되는 전류는 플라즈마 밀도의 이러한 감소를 보상하기 위하여 제어기(180)에 의해 증가될 수 있다. 이는 캐소드(110)가 더 높은 온도까지 가열되어 더 많은 전자들을 방출하게끔 한다. 일부 경우들에 있어서, 필라멘트(160)와 캐소드(110) 사이의 전위 차이는, 캐소드 바이어스 전원 공급장치(116)의 출력을 변화시킴으로써 변경되며, 이는 필라멘트(160)로부터의 전자들이 캐소드(110)에 충돌하는 에너지를 변경한다. 특정 경우들에 있어서, 이러한 기술들 둘 모두가 사용된다. 그러나, 이러한 기술들은, 희망되는 추출되는 이온 빔 전류를 복원하는데는 성공적이지만 이온 소스의 수명에 대하여 유해한 영향들을 가질 수 있다.
필라멘트(160) 내의 전류를 수정하거나 또는 필라멘트(160)와 캐소드(110) 사이의 바이어스 전압을 수정하는 대신에, 본 시스템은 시간의 경과에 따라 챔버에 대한 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b) 중 적어도 하나에 인가되는 전압들을 조정한다.
제어기(180)는 이러한 전압들을 2개의 방식들 중 하나의 방식으로 수정할 수 있다. 첫째로, 제어기(180)는 동작 시간에 기초하여 전압들을 수정할 수 있다. 예를 들어, 제어기(180)는 전압을 동작 시간 전류와 연관시키는 테이블, 식, 방정식 또는 다른 기술을 포함할 수 있다. 추가로, 제어기(180)는, 제어기(180)가 IHC 이온 소스(10)가 사용된 시간의 양을 추정하는 것을 가능하게 하는 클럭 기능을 포함할 수 있다. 다시 말해서, IHC 이온 소스(10)가 50 시간 동안 동작된 경우, 제어기(180)는 이러한 값에 기초하여 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)에 인가하기 위한 적절한 전압을 결정하기 위하여 테이블을 참조하거나 또는 계산을 수행할 수 있다. 제어기(180)는 전압을 연속적으로 변화시키거나 또는 이산적인 단계들로 전압을 변화시킬 수 있다. 예를 들어, 제어기(180)는 매 N 시간의 동작 이후에 전압을 변화시킬 수 있다.
다른 실시예에 있어서, 제어기(180)는 도 3에 도시된 바와 같은 폐루프 피드백을 사용할 수 있다. 이러한 실시예에 있어서, 측정 시스템(200)은 추출되는 이온 빔 전류를 측정하기 위하여 사용된다. 이러한 측정 시스템(200)은 패러데이 컵 또는 다른 적절한 측정 디바이스를 포함할 수 있다. 제어기(180)는 이러한 측정 시스템(200)과 통신할 수 있으며, 그 결과 측정된 추출되는 이온 빔 전류를 제어기(180)에서 이용할 수 있다. 이러한 측정된 값에 기초하여, 제어기(180)는 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)에 인가되는 전압들 중 하나 이상을 조정할 수 있다. 이러한 방식으로, 제어기(180)는 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)에 인가되는 전압들의 조정에 의해 희망되는 이온 빔 전류를 유지한다. 이는 전원 공급장치들 중 하나가 그것의 출력을 조정하게 함으로써 달성될 수 있다.
특정한 일 실시예에 있어서, 제어기(180)는 동작 시간을 모니터링하고 전극 전원 공급장치(135a)를 사용하여 전극(130a)에 인가되는 전압을 조정할 수 있다. 특정 실시예들에 있어서, 전극(130a)에 인가되는 전압은 시간의 경과에 따라 감소할 수 있다. 예를 들어, 전압은 이온 소스가 초기화될 때 제 1 값일 수 있다. 이러한 제 1 값은, 예를 들어, 60 내지 150V 사이와 같이 챔버(100)에 대하여 포티지브일 수 있다. 이러한 전압이 시간의 경과에 따라 감소할 수 있다. 일 실시예에 있어서, 전극(130a)에 인가되는 전압과 IHC 이온 소스(10)의 동작 시간 사이에 관계가 존재한다. 이러한 관계는 선형적일 수 있거나, 또는 임의의 적절한 함수일 수 있다. 예를 들어, 전극(130a)에 인가되는 전압은 매 10 시간의 동작 이후에 변화될 수 있다.
추가적인 실시예에 있어서, 제어기(180)는 추가로 이온 소스의 동작을 번-인 페이즈 또는 동작 페이즈로 분류할 수 있다. 번-인 페이즈는, 예를 들어, 처음 50 시간의 동작인 것으로 간주될 수 있지만, 다른 지속기간들이 또한 사용될 수도 있다. 동작 페이즈는 번-인 페이즈 이후의 동작 시간일 수 있다. 제어기(180)는 번-인 페이즈 동안의 전압과 동작 시간 사이의 하나의 선형적 관계 및 동작 페이즈 동안의 전압과 동작 시간 사이의 제 2 선형적 관계를 사용할 수 있다. 도 4는 이러한 2 페이즈 접근 방식을 나타내는 그래프를 도시한다. 라인(400)에 의해 표시되는 번-인 페이즈 동안, 전압은 제 1 레이트로 감소할 수 있다. 라인(410)에 의해 표시되는 동작 페이즈 동안, 전압은 제 2 레이트에 의해 감소할 수 있다. 일부 실시예들에 있어서, 제 1 레이트는 제 2 레이트보다 더 크다.
다른 실시예에 있어서, 제어기(180)는 실제 추출되는 이온 빔 전류를 모니터링하고 전극 전원 공급장치(135a)를 사용하여 전극(130a)에 인가되는 전압을 조정할 수 있다. 특정 실시예들에 있어서, 전극(130a)에 인가되는 전압은 시간의 경과에 따라 감소할 수 있다. 예를 들어, 전압은 이온 소스가 초기화될 때 제 1 값일 수 있다. 이러한 제 1 값은, 예를 들어, 60 내지 150V 사이와 같이 챔버(100)에 대하여 포티지브일 수 있다. 일정한 추출되는 이온 빔 전류를 유지하기 위하여, 전압이 시간의 경과에 따라 감소할 수 있다.
특정 실시예에 있어서, 전극(130a)에 인가되는 전압은 처음에 80V로 설정될 수 있다. 시간의 경과에 따라, 전압은 목표 추출되는 이온 빔 전류를 유지하여 감소할 수 있다. 일부 실시예들에 있어서, 이러한 감소는 동작 시간의 함수로서 선형적일 수 있다. 예를 들어, 전극(130a)의 전압은 V - m*H로서 정의될 수 있으며, 여기에서 V는 전극(130a)에 인가되는 초기 전압이고, H는 이온 소스에 대한 동작 시간의 수이며, m은 전압이 동작 시간에 대하여 감소될 레이트이다. 다른 실시예들에 있어서, 이러한 감소는 추출되는 이온 빔 전류를 모니터링하고 목표 추출되는 이온 빔 전류를 유지하기 위해 전극(130a)에 인가되는 전압을 변화시킴으로써 결정된다. 이러한 실시예에 있어서, 전극(130a)에 인가되는 전압의 감소는 시간의 경과에 따라 선형적이거나 또는 선형적이지 않을 수 있다.
특정 실시예들에 있어서, 캐소드(110), 반사 전극(120) 및 전극들(130a, 130b)의 초기 형상은 IHC 이온 소스(10)의 수명을 개선하기 위하여 변경될 수 있다. 예를 들어, 전형적으로, 이러한 컴포넌트들의 전방 표면들이 평평하다. 그러나, 특정 실시예들에 있어서, 이러한 컴포넌트들은 처음에 오목한 형상을 갖는 전방 표면을 가지고 형성될 수 있다. 도 2가 동작 시간들 이후의 도 1의 이온 소스를 도시하지만, 다른 실시예에 있어서, IHC 이온 소스는 처음에 이러한 오목한 형상을 갖는 전방 표면을 가지고 형성된 컴포넌트들을 포함한다. 따라서, 다른 실시예에 있어서, 도 2는 처음에 오목한 형상의 전방 표면들을 형성된 컴포넌트들을 갖는 IHC 이온 소스를 나타낸다. 이러한 오목한 형상은 IHC 이온 소스(10)의 수명을 증가시키는 것을 추가로 도울 수 있다.
본 출원에서 이상에서 설명된 실시예들은 다수의 이점들을 가질 수 있다. 이상에서 설명된 바와 같이, IHC 이온 소스들은 캐소드 및 반사 전극 상의 스퍼터링의 영향에 기인하여 수명이 단축되기 쉽다. 다른 IHC 이온 소스들과는 달리, 본 시스템은 희망되는 이온 빔 전류를 유지하기 위하여 시간의 경과에 따라 캐소드, 반사 전극 및/또는 전극들에 인가되는 전압을 수정한다. 그러나, 이러한 컴포넌트들에 인가되는 전압들이 감소함에 따라, 감소된 전기 전위들에 기인하여 더 적은 스퍼터링이 발생하며 이는 IHC 이온 소스의 수명을 증가시킨다. 하나의 테스트에서, IHC 이온 소스의 수명은 이러한 기술을 사용하여 40% 이상 증가되었다.
다시 말해서, 종래 기술의 기술들은 추출되는 이온 빔 전류를 제어하기 위한 목적을 달성하기 위해 캐소드(110)의 온도를 변화시키는 것을 추구하였다. 그러나, 이러한 종래 기술들 중 어떤 것도 캐소드(110)의 스퍼터링 레이트를 제어하는 것을 추구하지 않으며, 이는 스퍼터링 레이트가 주로 캐소드(110), 반사 전극(120) 및 다른 전극들(130a, 130b) 사이의 차이 전압에 의존하기 때문이다. 본 시스템은 이온 빔 전류를 유지하면서 동시에 IHC 이온 소스의 수명을 연장한다.
본 개시는 본원에서 설명된 특정 실시예에 의해 범위가 제한되지 않는다. 오히려, 본원에서 설명된 실시예들에 더하여, 본 개시의 다른 다양한 실시예들 및 이에 대한 수정예들이 이상의 설명 및 첨부된 도면들로부터 당업자들에게 자명해질 것이다. 따라서, 이러한 다른 실시예들 및 수정예들이 본 개시의 범위 내에 속하도록 의도된다. 추가로, 본 개시가 본원에서 특정 목적을 위한 특정 환경에서의 특정 구현예의 맥락에서 설명되었지만, 당업자들은 이의 유용함이 이에 한정되지 않으며, 본 개시가 임의의 수의 목적들을 위한 임의의 수의 환경들에서 유익하게 구현될 수 있다는 것을 인식할 것이다. 따라서, 이하에서 기술되는 청구항들은 본원에서 설명된 바와 같은 본 개시의 완전한 폭과 사상의 관점에서 해석되어야만 한다.

Claims (15)

  1. 간접 가열식 캐소드 이온 소스로서,
    그 안으로 가스가 도입되는 챔버;
    상기 챔버의 일 단부 상에 배치되는 캐소드;
    상기 챔버의 대향되는 단부에 배치되는 반사 전극; 및
    상기 챔버의 측면을 따라 배치되는 적어도 하나의 전극을 포함하며,
    상기 챔버에 대하여 상기 캐소드, 상기 반사 전극 및 상기 적어도 하나의 전극들 중 적어도 하나에 인가되는 전압은 희망되는 이온 빔 전류를 유지하기 위해 시간의 경과에 따라 감소하는, 간접 가열식 캐소드 이온 소스.
  2. 청구항 1에 있어서,
    상기 전압은 시간의 경과에 따라 감소하는, 간접 가열식 캐소드 이온 소스.
  3. 청구항 1에 있어서,
    상기 간접 가열식 캐소드 이온 소스는 제어기를 더 포함하며, 상기 제어기는 상기 간접 가열식 캐소드 이온 소스의 동작 시간을 모니터링하고, 상기 간접 가열식 캐소드 이온 소스의 동작 시간에 기초하여 인가될 전압을 결정하는, 간접 가열식 캐소드 이온 소스.
  4. 청구항 1에 있어서,
    상기 간접 가열식 캐소드 이온 소스는 전류 측정 시스템과 통신하는 제어기를 더 포함하며, 상기 측정 시스템은 추출 개구를 통해 상기 간접 가열식 캐소드 이온 소스로부터 추출되는 이온 빔의 전류를 측정하고, 상기 제어기는 측정된 상기 이온 빔의 전류에 기초하여 인가될 전압을 조정하는, 간접 가열식 캐소드 이온 소스.
  5. 청구항 1에 있어서,
    상기 전압은 상기 적어도 하나의 전극에 인가되는, 간접 가열식 캐소드 이온 소스.
  6. 청구항 1에 있어서,
    상기 캐소드, 상기 반사 전극 및 상기 적어도 하나의 전극 중 적어도 하나는 처음에 오목한 표면을 갖는 전방 표면을 가지고 형성되는, 간접 가열식 캐소드 이온 소스.
  7. 간접 가열식 캐소드 이온 소스로서,
    그 안으로 가스가 도입되는 챔버;
    상기 챔버의 일 단부 상에 배치되는 캐소드;
    상기 챔버의 대향되는 단부에 배치되는 반사 전극; 및
    상기 챔버의 측면을 따라 배치되는 적어도 하나의 전극을 포함하며,
    상기 적어도 하나의 전극에 인가되는 전압은 희망되는 이온 빔 전류를 유지하기 위해 시간의 경과에 따라 감소하는, 간접 가열식 캐소드 이온 소스.
  8. 청구항 7에 있어서,
    상기 간접 가열식 캐소드 이온 소스는 제어기를 더 포함하며, 상기 제어기는 상기 간접 가열식 캐소드 이온 소스의 동작 시간을 모니터링하고, 상기 간접 가열식 캐소드 이온 소스의 동작 시간에 기초하여 상기 전압을 결정하는, 간접 가열식 캐소드 이온 소스.
  9. 청구항 8에 있어서,
    상기 제어기는 번-인 페이즈(burn-in phase) 동안 제 1 레이트(rate)에 의해 상기 전압을 감소시키고, 동작 페이즈 동안 제 2 레이트에 의해 상기 전압을 감소시키며, 상기 제 1 레이트는 상기 제 2 레이트보다 더 큰, 간접 가열식 캐소드 이온 소스.
  10. 청구항 7에 있어서,
    상기 간접 가열식 캐소드 이온 소스는 전류 측정 시스템과 통신하는 제어기를 더 포함하며, 상기 측정 시스템은 상기 간접 가열식 캐소드 이온 소스로부터 추출되는 이온 빔의 전류를 측정하고, 상기 제어기는 측정된 상기 이온 빔의 전류에 기초하여 상기 전압을 조정하는, 간접 가열식 캐소드 이온 소스.
  11. 청구항 7에 있어서,
    상기 캐소드, 상기 반사 전극 및 상기 적어도 하나의 전극 중 적어도 하나는 처음에 오목한 표면을 갖는 전방 표면을 가지고 형성되는, 간접 가열식 캐소드 이온 소스.
  12. 간접 가열식 캐소드 이온 소스로서,
    챔버;
    캐소드 전원 공급장치와 연통하며, 상기 챔버의 일 단부 상에 배치되는 캐소드;
    반사 전극 전원 공급장치와 연통하며, 상기 챔버의 대향되는 단부 상에 배치되는 반사 전극;
    전극 전원 공급장치와 연통하며, 상기 챔버의 측면 상에서 상기 챔버 내에 배치되는 전극;
    상기 챔버의 다른 측면 상에 배치되는 추출 개구; 및
    상기 캐소드 전원 공급장치, 상기 반사 전극 전원 공급장치 및 상기 전극 전원 공급장치 중 적어도 하나의 연통하는 제어기로서, 상기 제어기는 시간의 경과에 따라 상기 챔버에 대한 상기 캐소드, 상기 반사 전극 및 상기 전극 중 하나에 인가되는 전압을 수정하며, 상기 제어기는 번-인 페이즈 동안 제1 레이트에 의해 상기 전압을 감소시키고 동작 페이즈 동안 제2 레이트에 의해 상기 전압을 감소시키며, 상기 제 1 레이트는 상기 제 2 레이트보다 더 큰, 상기 제어기를 포함하는, 간접 가열식 캐소드 이온 소스.
  13. 청구항 12에 있어서,
    상기 제어기는 상기 전압을 상기 간접 가열식 캐소드 이온 소스의 동작 시간의 함수로서 변화시키는, 간접 가열식 캐소드 이온 소스.
  14. 청구항 13에 있어서,
    상기 제어기는 번-인 페이즈 동안 제 1 레이트에 의해 상기 전압을 감소시키고, 동작 페이즈 동안 제 2 레이트에 의해 상기 전압을 감소시키며, 상기 제 1 레이트는 상기 제 2 레이트보다 더 큰, 간접 가열식 캐소드 이온 소스.
  15. 청구항 12에 있어서,
    상기 제어기는 상기 전압을 상기 추출 개구를 통해 추출되는 이온 빔의 빔 전류의 함수로서 변화시키는, 간접 가열식 캐소드 이온 소스.
KR1020187014206A 2015-10-23 2016-09-23 간접 가열식 캐소드 이온 소스 KR102547125B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562245567P 2015-10-23 2015-10-23
US62/245,567 2015-10-23
US14/972,412 US9818570B2 (en) 2015-10-23 2015-12-17 Ion source for multiple charged species
US14/972,412 2015-12-17
PCT/US2016/053361 WO2017069912A1 (en) 2015-10-23 2016-09-23 Ion source for multiple charged species

Publications (2)

Publication Number Publication Date
KR20180061379A KR20180061379A (ko) 2018-06-07
KR102547125B1 true KR102547125B1 (ko) 2023-06-23

Family

ID=58557604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187014206A KR102547125B1 (ko) 2015-10-23 2016-09-23 간접 가열식 캐소드 이온 소스

Country Status (6)

Country Link
US (1) US9818570B2 (ko)
JP (1) JP6948316B2 (ko)
KR (1) KR102547125B1 (ko)
CN (1) CN108140524B (ko)
TW (1) TWI690966B (ko)
WO (1) WO2017069912A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748738B1 (en) 2019-03-18 2020-08-18 Applied Materials, Inc. Ion source with tubular cathode
US10896799B1 (en) * 2019-08-29 2021-01-19 Applied Materials, Inc. Ion source with multiple configurations
US11120966B2 (en) 2019-09-03 2021-09-14 Applied Materials, Inc. System and method for improved beam current from an ion source
US11232925B2 (en) 2019-09-03 2022-01-25 Applied Materials, Inc. System and method for improved beam current from an ion source
US10854416B1 (en) * 2019-09-10 2020-12-01 Applied Materials, Inc. Thermally isolated repeller and electrodes
US11127558B1 (en) 2020-03-23 2021-09-21 Applied Materials, Inc. Thermally isolated captive features for ion implantation systems
US20230187165A1 (en) * 2021-12-15 2023-06-15 Applied Materials, Inc. Toroidal motion enhanced ion source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242793A1 (en) * 2008-03-31 2009-10-01 Low Russell J Flexible ion source
US20120101742A1 (en) * 2010-10-26 2012-04-26 Varian Semiconductor Equipment Associates, Inc. Method and system for in-situ monitoring of cathode ersosion and predicting cathode lifetime
US20150034837A1 (en) * 2013-08-01 2015-02-05 Varian Semiconductor Equipment Associates, Inc. Lifetime ion source

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107841A1 (en) * 2000-12-13 2007-05-17 Semequip, Inc. Ion implantation ion source, system and method
US6583544B1 (en) * 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
EP1803142A1 (en) 2004-09-24 2007-07-04 Zond, Inc. Apparatus for generating high-current electrical discharges
US20070278417A1 (en) * 2005-07-01 2007-12-06 Horsky Thomas N Ion implantation ion source, system and method
US7586109B2 (en) * 2007-01-25 2009-09-08 Varian Semiconductor Equipment Associates, Inc. Technique for improving the performance and extending the lifetime of an ion source with gas dilution
US7723699B2 (en) * 2007-06-26 2010-05-25 Varian Semiconductor Equipment Associates, Inc. Cathode having electron production and focusing grooves, ion source and related method
JP5652582B2 (ja) * 2007-07-31 2015-01-14 アクセリス テクノロジーズ インコーポレーテッド ハイブリッドイオン源
US7812321B2 (en) * 2008-06-11 2010-10-12 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8796131B2 (en) * 2009-10-27 2014-08-05 Advanced Technology Materials, Inc. Ion implantation system and method
SG10201507319XA (en) * 2010-09-15 2015-10-29 Praxair Technology Inc Method for extending lifetime of an ion source
US8766209B2 (en) * 2011-07-21 2014-07-01 Varian Semiconductor Equipment Associates, Inc. Current limiter for high voltage power supply used with ion implantation system
US8937003B2 (en) * 2011-09-16 2015-01-20 Varian Semiconductor Equipment Associates, Inc. Technique for ion implanting a target
JP2013084552A (ja) * 2011-09-29 2013-05-09 Tokyo Electron Ltd ラジカル選択装置及び基板処理装置
US9093372B2 (en) * 2012-03-30 2015-07-28 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9530615B2 (en) * 2012-08-07 2016-12-27 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source
KR20160018874A (ko) * 2012-08-28 2016-02-17 프랙스에어 테크놀로지, 인코포레이티드 규소 이온 주입 동안에 이온 빔 전류 및 성능을 개선하기 위한 규소-함유 도펀트 조성물, 시스템 및 그의 사용 방법
US8933630B2 (en) * 2012-12-19 2015-01-13 Taiwan Semiconductor Manufacturing Co., Ltd. Arc chamber with multiple cathodes for an ion source
US8759788B1 (en) * 2013-03-11 2014-06-24 Varian Semiconductor Equipment Associates, Inc. Ion source
US8883620B1 (en) * 2013-04-24 2014-11-11 Praxair Technology, Inc. Methods for using isotopically enriched levels of dopant gas compositions in an ion implantation process
WO2014179585A1 (en) * 2013-05-02 2014-11-06 Praxair Technology, Inc. Supply source and method for enriched selenium ion implantation
US9187832B2 (en) * 2013-05-03 2015-11-17 Varian Semiconductor Equipment Associates, Inc. Extended lifetime ion source
US8841631B1 (en) * 2013-06-26 2014-09-23 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for controlling ion angular spread
US9711316B2 (en) * 2013-10-10 2017-07-18 Varian Semiconductor Equipment Associates, Inc. Method of cleaning an extraction electrode assembly using pulsed biasing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242793A1 (en) * 2008-03-31 2009-10-01 Low Russell J Flexible ion source
US20120101742A1 (en) * 2010-10-26 2012-04-26 Varian Semiconductor Equipment Associates, Inc. Method and system for in-situ monitoring of cathode ersosion and predicting cathode lifetime
US20150034837A1 (en) * 2013-08-01 2015-02-05 Varian Semiconductor Equipment Associates, Inc. Lifetime ion source

Also Published As

Publication number Publication date
CN108140524A (zh) 2018-06-08
TW201715554A (zh) 2017-05-01
JP6948316B2 (ja) 2021-10-13
JP2018535513A (ja) 2018-11-29
WO2017069912A1 (en) 2017-04-27
TWI690966B (zh) 2020-04-11
KR20180061379A (ko) 2018-06-07
US20170117113A1 (en) 2017-04-27
CN108140524B (zh) 2020-02-14
US9818570B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
KR102547125B1 (ko) 간접 가열식 캐소드 이온 소스
TWI728120B (zh) 用於增益型離子化的離子源
KR102461901B1 (ko) 이온 소스 및 간접적으로 가열된 캐소드 이온 소스
US10062544B2 (en) Apparatus and method for minimizing thermal distortion in electrodes used with ion sources
JP2018535513A5 (ja) 間接加熱陰極イオン源
US10290470B2 (en) Negative ribbon ion beams from pulsed plasmas
TWI839888B (zh) 離子源及離子植入系統
TWI818517B (zh) 離子源及監測和延長間熱式陰極離子源中陰極壽命的方法
TWI818252B (zh) 間接加熱式陰極離子源
US11651932B1 (en) Mismatched optics for angular control of extracted ion beam
KR20240090779A (ko) 추출된 이온 빔의 각도 제어를 위한 미스매치된 광학계
Louksha et al. Suppression of emission nonuniformity effect in gyrotrons
Cho et al. Experimental investigation and computer simulation of plasma and sheath dynamics in PSII media

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant