KR102546721B1 - Manufacturing method of concrete additives using industrial wastewater and dust waste - Google Patents

Manufacturing method of concrete additives using industrial wastewater and dust waste Download PDF

Info

Publication number
KR102546721B1
KR102546721B1 KR1020210055009A KR20210055009A KR102546721B1 KR 102546721 B1 KR102546721 B1 KR 102546721B1 KR 1020210055009 A KR1020210055009 A KR 1020210055009A KR 20210055009 A KR20210055009 A KR 20210055009A KR 102546721 B1 KR102546721 B1 KR 102546721B1
Authority
KR
South Korea
Prior art keywords
waste
mixing
wastewater
water
dust
Prior art date
Application number
KR1020210055009A
Other languages
Korean (ko)
Other versions
KR20220147907A (en
Inventor
한승훈
나윤호
Original Assignee
(주)엔에이치리사이텍컴퍼니
주식회사 한나눔산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔에이치리사이텍컴퍼니, 주식회사 한나눔산업 filed Critical (주)엔에이치리사이텍컴퍼니
Priority to KR1020210055009A priority Critical patent/KR102546721B1/en
Publication of KR20220147907A publication Critical patent/KR20220147907A/en
Application granted granted Critical
Publication of KR102546721B1 publication Critical patent/KR102546721B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0463Hazardous waste
    • C04B18/0472Waste material contaminated by heavy metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법에 관한 것으로, 더욱 상세하게는 중금속이 함유된 폐수를 수거하는 폐수수거단계, 분진폐기물을 수거하는 분진폐기물수거단계, 상기 폐수수거단계를 통해 수거된 폐수에 상기 분진폐기물수거단계를 통해 수거된 분진폐기물을 혼합하는 폐자원혼합단계 및 상기 폐자원혼합단계를 통해 제조된 혼합물에 수용성 규산혼합물을 혼합하여 고화시키는 고화단계로 이루어진다.
상기의 과정을 통해 이루어지는 콘크리트 첨가제의 제조방법은 중금속이 함유된 산업폐수와 분진폐기물을 자원으로서 재활용 할 뿐만 아니라, 산업폐수나 분진폐기물에 함유된 중금속이 흡착되어 용출되지 않는 콘크리트 첨가제를 제공한다.
The present invention relates to a method for manufacturing a concrete additive using industrial wastewater and dusty waste, and more particularly, to a wastewater collection step for collecting wastewater containing heavy metals, a dusty waste collection step for collecting dusty waste, and the wastewater collection step. It consists of a waste resource mixing step of mixing the dust waste collected through the dust waste collection step with wastewater collected through the waste resource mixing step and a solidification step of mixing and solidifying a water-soluble silicic acid mixture with the mixture prepared through the waste resource mixing step.
The manufacturing method of the concrete additive made through the above process not only recycles industrial wastewater and dust waste containing heavy metals as resources, but also provides a concrete additive in which heavy metals contained in industrial wastewater or dust waste are adsorbed and not eluted.

Description

산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법 {MANUFACTURING METHOD OF CONCRETE ADDITIVES USING INDUSTRIAL WASTEWATER AND DUST WASTE}Manufacturing method of concrete additives using industrial wastewater and dust waste {MANUFACTURING METHOD OF CONCRETE ADDITIVES USING INDUSTRIAL WASTEWATER AND DUST WASTE}

본 발명은 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법에 관한 것으로, 더욱 상세하게는 중금속이 함유된 산업폐수와 분진폐기물을 자원으로서 재활용할 뿐만 아니라, 산업폐수나 분진폐기물에 함유된 중금속이 흡착되어 용출되지 않는 콘크리트 첨가제를 제공하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a concrete additive using industrial wastewater and dust waste, and more particularly, not only recycles industrial waste water and dust waste containing heavy metals as resources, but also removes heavy metals contained in industrial waste water or dust waste. It relates to a method for producing a concrete additive using industrial wastewater and dust waste, which provides a concrete additive that is adsorbed and does not dissolve.

최근에는 급격한 도시밀집화로 인해 대두되는 새로운 문제 중의 하나로 생활폐기물이 있다, 생활폐기물의 처리는 과거에서부터 현재에 이르기까지 대부분 매립에 의존하였는데, 매립장의 부지확보가 점점 어려워지고 있으며 매립 보다는 소각에 의한 폐기물의 처리가 처리후 발생하는 폐기물의 양과 매립지의 수명연장 차원에서 주요한 대안으로 부각되고 있다.Recently, domestic waste has been one of the new problems emerging due to rapid urbanization. The treatment of domestic waste has mostly depended on landfill from the past to the present, but it is becoming increasingly difficult to secure a landfill site, and waste by incineration rather than landfill. The treatment of waste is emerging as a major alternative in terms of the amount of waste generated after treatment and the extension of the life of the landfill.

또한, 생활폐기물의 소각 후 발생되는 소각재는 크게 바닥재와 분진폐기물 중 하나인 비산재로 분류되며, 특히 비산재는 바닥재에 비해 발생량은 적으나 상대적으로 염소 및 중금속의 함유량이 많고, 이때의 중금속 용출량이 환경규제치를 초과하여 지정폐기물로 고시되어 있어 반드시 관리형 매립장에 매립하여야 한다. 이에 따라, 매립비용이 증가되고 있으며, 이들의 매립에 따른 유해성이 바닥재에 비해 훨씬 높게되고, 재활용하기에도 부적합하다.In addition, incineration ash generated after incineration of domestic waste is largely classified into fly ash, which is one of floor ash and dust waste. In particular, fly ash has a relatively high content of chlorine and heavy metals, although the amount generated is smaller than that of floor ash, and the amount of heavy metals leached at this time is environmental. It is notified as a designated waste in excess of the regulation, so it must be buried in a managed landfill. Accordingly, the cost of landfilling is increasing, and the harmfulness of these landfills is much higher than that of the bottom ash, and it is also unsuitable for recycling.

이러한 비산재를 매립 처리하기 위하여, 고화재와 소각재를 혼합기에 넣고 물과 함께 혼합하여 고형화시키는 고형화법과 화학약품을 첨가하여 소각재내 중금속을 안정화시켜 용출량을 감소시키는 화화적 안정화법 등이 사용되고 있다.In order to landfill the fly ash, a solidification method in which solidification ash and incineration ash are put into a mixer and mixed with water to solidify, and a chemical stabilization method in which heavy metals in the incineration ash are stabilized by adding chemicals to reduce the amount of elution are used.

한편, 산업폐수는 비산재와 마찬가지로, 중금속의 함량이 높아 일반 방류가 금지되어 있으며, 반드시 중금속 성분과 유해물질을 제거한 후에 방류하도록 규정하고 있어, 처리비용이 고가인 문제점이 있었다.On the other hand, industrial wastewater, like fly ash, has a high content of heavy metals, so general discharge is prohibited, and it is regulated to discharge after removing heavy metal components and harmful substances, so there is a problem of high treatment cost.

종래에는 상기 비산재를 고형화하기 위해 혼합되는 물로 산업폐수를 사용하여 비산재와 산업폐수를 자원으로 재활용하고자 하는 노력이 이루어져 왔으나, 비산재에 함유된 성분과 산업폐수에 함유된 성분이 급격하게 반응하여 폭발의 위험성이 있는 문제점이 있었다.Conventionally, efforts have been made to recycle fly ash and industrial wastewater as resources by using industrial wastewater as water to be mixed to solidify the fly ash, but components contained in fly ash and components contained in industrial wastewater react rapidly, resulting in explosion. There was a risky problem.

상기의 문제점으로 인해 2020년 11월 26일 물환경보전법 시행규칙 제62조제3항제5호에 의거하여 폐수 간 혼합 반응여부 등의 확인을 통해 부식성, 자연발화성, 폭발성 및 유해성 등의 4가지 용인을 충족해야 한다고 명시하고 있다.Due to the above problems, in accordance with Article 62 Paragraph 3 Subparagraph 5 of the Enforcement Rule of the Water Environment Conservation Act on November 26, 2020, four tolerances such as corrosiveness, pyrophoricity, explosiveness and harmfulness were established through confirmation of mixed reaction between wastewater. It is stated that it must be satisfied.

한국 특허공개 제10-2002-0092619호(2002.12.12. 공개)Korean Patent Publication No. 10-2002-0092619 (published on December 12, 2002) 한국 특허등록 제10-0492619호(2005.06.03. 공고)Korean Patent Registration No. 10-0492619 (2005.06.03. Notice)

본 발명의 목적은 중금속이 함유된 산업폐수와 분진폐기물을 자원으로서 재활용할 뿐만 아니라, 산업폐수나 분진폐기물에 함유된 중금속이 흡착되어 용출되지 않는 콘크리트 첨가제를 제공하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법을 제공하는 것이다.An object of the present invention is to recycle industrial wastewater and dust waste containing heavy metals as resources, and to provide concrete additives in which heavy metals contained in industrial wastewater or dust waste are adsorbed and not eluted. It is to provide a manufacturing method of the additive.

본 발명의 다른 목적은 중금속이 함유된 산업폐수와 분진폐기물이 혼합되더라도, 수용성 규산혼합물이 첨가되어 자연발화나 폭발이 발생하지 않는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a concrete additive using industrial wastewater and dust waste, which does not cause spontaneous ignition or explosion due to the addition of a water-soluble silicic acid mixture even when industrial waste water and dust waste containing heavy metals are mixed.

본 발명의 목적은 중금속이 함유된 폐수를 수거하는 폐수수거단계, 분진폐기물을 수거하는 분진폐기물수거단계, 상기 폐수수거단계를 통해 수거된 폐수에 상기 분진폐기물수거단계를 통해 수거된 분진폐기물을 혼합하는 폐자원혼합단계, 및 상기 폐자원혼합단계를 통해 제조된 혼합물에 수용성 규산혼합물을 혼합하여 고화시키는 고화단계로 이루어지는 것을 특징으로 하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법을 제공함에 의해 달성된다.An object of the present invention is a wastewater collection step of collecting wastewater containing heavy metals, a dusty waste collection step of collecting dusty waste, and mixing the dusty waste collected through the dusty waste collection step with the wastewater collected through the wastewater collection step. By providing a method for producing a concrete additive using industrial wastewater and dust waste, comprising a waste resource mixing step and a solidification step of mixing and solidifying a water-soluble silicic acid mixture in the mixture prepared through the waste resource mixing step. is achieved

본 발명의 바람직한 특징에 따르면, 상기 폐자원혼합단계는 폐수 100 중량부에 분진폐기물 1 내지 1.5 중량부를 혼합하여 이루어지는 것으로 한다.According to a preferred feature of the present invention, the waste resource mixing step is made by mixing 1 to 1.5 parts by weight of dust waste with 100 parts by weight of wastewater.

본 발명의 더 바람직한 특징에 따르면, 상기 고화단계는 상기 폐자원혼합단계를 통해 제조된 혼합물 100 중량부에 수용성 규산혼합물 20 내지 30 중량부를 혼합하여 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the solidification step is made by mixing 20 to 30 parts by weight of a water-soluble silicic acid mixture with 100 parts by weight of the mixture prepared through the waste resource mixing step.

본 발명의 더욱 바람직한 특징에 따르면, 상기 수용성 규산혼합물은 SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것으로 한다.According to a more preferred feature of the present invention, the water-soluble silicic acid mixture is to include one or more selected from the group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 .10H 2 O.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 수용성 규산혼합물은 규산염 광물을 가열하여 용융하는 가열용융단계, 상기 가열용융단계를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계, 및 상기 숙성단계를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계를 통해 제조되는 것으로 한다.According to a more preferred feature of the present invention, the water-soluble silicic acid mixture includes a heating and melting step of heating and melting silicate minerals, an aging step of aging the silicate minerals melted through the heating and melting step to obtain silicate crystals, and the aging It is assumed that it is prepared through a mixing and heating step of mixing purified water with the silicate crystals obtained through the step and heating.

본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법은 중금속이 함유된 산업폐수와 분진폐기물을 자원으로서 재활용할 뿐만 아니라, 산업폐수나 분진폐기물에 함유된 중금속이 흡착되어 용출되지 않는 콘크리트 첨가제를 제공하는 탁월한 효과를 나타낸다.The method for manufacturing a concrete additive using industrial wastewater and dust waste according to the present invention not only recycles industrial wastewater and dust waste containing heavy metals as resources, but also prevents heavy metals contained in industrial wastewater or dust waste from being adsorbed and eluted from concrete. It shows the excellent effect of providing additives.

또한, 중금속이 함유된 산업폐수와 분진폐기물이 혼합되더라도, 수용성 규산혼합물이 첨가되어 자연발화나 폭발이 발생하지 않는 탁월한 효과를 나타낸다.In addition, even when industrial wastewater and dust waste containing heavy metals are mixed, a water-soluble silicic acid mixture is added to show an excellent effect that does not cause spontaneous ignition or explosion.

도 1은 본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법을 나타낸 순서도이다.
도 2는 본 발명에 사용되는 수용성 규산혼합물의 제조과정을 나타낸 순서도이다.
도 3 내지 4는 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물을 FE-SEM으로 촬영하여 나타낸 사진이다.
도 5는 본 발명의 고화단계를 통해 겔화된 혼합물을 나타낸 사진이다.
도 6은 본 발명의 실시예 1을 통해 제조된 콘크리트 첨가제의 성분을 한국화학융합시험연구원에 의뢰하여 측정한 결과를 나타낸 실험보고서이다.
1 is a flow chart showing a method for manufacturing a concrete additive using industrial wastewater and dust waste according to the present invention.
Figure 2 is a flow chart showing the manufacturing process of the water-soluble silicic acid mixture used in the present invention.
3 to 4 are photographs showing the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention taken by FE-SEM.
5 is a photograph showing a gelled mixture through the solidification step of the present invention.
6 is an experiment report showing the results of measuring the components of the concrete additive prepared in Example 1 of the present invention by requesting the Korea Institute of Chemical Convergence Testing.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is to be explained in detail so that a person having ordinary knowledge in the art to which the present invention belongs can easily practice the invention, This is not meant to limit the technical spirit and scope of the present invention.

본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법은 중금속이 함유된 폐수를 수거하는 폐수수거단계(S101), 분진폐기물을 수거하는 분진폐기물수거단계(S101-1), 상기 폐수수거단계(S101)를 통해 수거된 폐수에 상기 분진폐기물수거단계(S101-1)를 통해 수거된 분진폐기물을 혼합하는 폐자원혼합단계(S103), 및 상기 폐자원혼합단계(S103)를 통해 제조된 혼합물에 수용성 규산혼합물을 혼합하여 고화시키는 고화단계(S105)로 이루어진다.The method for manufacturing a concrete additive using industrial wastewater and dusty waste according to the present invention includes a wastewater collection step (S101) of collecting wastewater containing heavy metals, a dusty waste collection step (S101-1) of collecting dusty waste, and the wastewater collection A waste resource mixing step (S103) of mixing the dusty waste collected through the dusty waste collection step (S101-1) with the wastewater collected through the step (S101), and the waste resource mixing step (S103). It consists of a solidification step (S105) of mixing and solidifying the mixture with a water-soluble silicic acid mixture.

상기 폐수수거단계(S101)는 중금속이 함유된 폐수를 수거하는 단계로, 중금속이 함유된 폐수는 이로 제한되는 것은 아니지만, 도금 공정에서 발생되는 폐수류, 인쇄 공정에서 발생되는 폐수류, 귀금속가공 공정에서 발생되는 폐수, 강산이나 강알카리수, 보일러 배관수류, 사진인화 과정에서 발생되는 폐수 등이 있다.The wastewater collection step (S101) is a step of collecting wastewater containing heavy metals, and the wastewater containing heavy metals is not limited thereto, but is not limited to wastewater generated in a plating process, wastewater generated in a printing process, and precious metal processing process. There are wastewater generated from the process, strong acid or alkaline water, boiler pipe water flow, and wastewater generated during the photo printing process.

상기 분진폐기물수거단계(S101-1)는 분진폐기물을 수거하는 단계로, 지정폐기물류나 일반폐기물류로 구분되는 산업폐기물 중 비산되는 성분으로 이루어진 분진폐기물을 수거하는 단계다.The dusty waste collection step (S101-1) is a step of collecting dusty waste, which is a step of collecting dusty waste composed of scattering components among industrial waste classified as designated waste or general waste.

이때, 상기 지정폐기물류 중 분진폐기물은 소각장의 비산재, 알루미늄분진, 시멘트공장 분진, 시멘트 공정에서 발생되는 CBS(Chlorine Bypass System) Dust 등이 사용될 수 있으며, 상기 일반폐기물은 소각장에서 발생하는 비산재 외에, 카본계 분진 등이 사용될 수 있다.At this time, dust waste among the designated wastes may include fly ash from an incineration plant, aluminum dust, cement factory dust, and CBS (Chlorine Bypass System) Dust generated from the cement process. Carbon-based dust and the like may be used.

상기 폐자원혼합단계(S103)는 상기 폐수수거단계(S101)를 통해 수거된 폐수에 상기 분진폐기물수거단계(S101-1)를 통해 수거된 분진폐기물을 혼합하는 단계로, 상기 폐수수거단계(S101)를 통해 수거된 폐수 100 중량부에 상기 분진폐기물수거단계(S101-1)를 통해 수거된 분진폐기물 1 내지 1.5 중량부를 혼합하여 이루어진다.The waste resource mixing step (S103) is a step of mixing the dusty waste collected through the dusty waste collection step (S101-1) with the wastewater collected through the wastewater collection step (S101), the wastewater collection step (S101 ) is made by mixing 1 to 1.5 parts by weight of the dusty waste collected through the dusty waste collection step (S101-1) with 100 parts by weight of the wastewater collected through.

상기 분진폐기물의 함량이 1 중량부 미만이면 상기 고화단계(S105)에서 혼합물의 고형화 속도가 더디게 진행되며, 상기 분진폐기물의 함량이 1.5 중량부를 초과하게 되면 분진폐기물이 상기 폐수에 용해되는 시간이 지나치게 증가하여 공정의 효율성을 저하시킬 수 있다.When the content of the dusty waste is less than 1 part by weight, the solidification rate of the mixture in the solidification step (S105) proceeds slowly, and when the content of the dusty waste exceeds 1.5 parts by weight, the time for the dusty waste to dissolve in the wastewater is too long. increase, which can reduce the efficiency of the process.

상기 고화단계(S105)는 상기 폐자원혼합단계(S103)를 통해 제조된 혼합물에 수용성 규산혼합물을 혼합하여 고화시키는 단계로, 상기 폐자원혼합단계(S103)를 통해 제조된 혼합물 100 중량부에 수용성 규산혼합물 20 내지 30 중량부를 혼합하여 이루어지는데, 이때, 상기 혼합은 약 2분 동안 이루어지며, 혼합이 완료된 후에 10분 정도 경과하면 아래 도 5에 나타낸 것처럼 혼합물의 겔화가 진행된다.The solidification step (S105) is a step of mixing and solidifying a water-soluble silicic acid mixture with the mixture prepared through the waste resource mixing step (S103), and mixing 100 parts by weight of the water-soluble mixture prepared through the waste resource mixing step (S103). It is made by mixing 20 to 30 parts by weight of the silicic acid mixture. At this time, the mixing is performed for about 2 minutes, and when about 10 minutes elapse after the mixing is completed, gelation of the mixture proceeds as shown in FIG. 5 below.

상기 수용성 규산혼합물은 상기 폐자원혼합단계를 통해 제조된 혼합물을 겔화시킬 뿐만 아니라, 상기 혼합물에 함유된 중금속성분을 흡착하여 중금속 성분이 용출되지 않도록 하는 역할을 하는데, 상기 수용성 규산혼합물의 함량이 20 중량부 미만이면 상기의 효과가 미미하며, 상기 수용성 규산혼합물의 함량이 30 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 처리비용을 증가시키기 때문에 바람직하지 못하다.The water-soluble silicic acid mixture not only gelates the mixture prepared through the waste resource mixing step, but also adsorbs the heavy metal component contained in the mixture to prevent the heavy metal component from being eluted. If it is less than 30 parts by weight, the above effect is insignificant, and if the content of the water-soluble silicic acid mixture exceeds 30 parts by weight, the above effect is not greatly improved and the treatment cost is increased, which is not preferable.

이때, 상기 수용성 규산혼합물은 SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상이 포함되는 것이 바람직하다.At this time, the water-soluble silicic acid mixture preferably contains at least one selected from the group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 .10H 2 O.

또한, 상기 수용성 규산혼합물은 균산염 광물을 가열하여 용융하는 가열용융단계(S201), 상기 가열용융단계(S201)를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계(S203), 및 상기 숙성단계(S203)를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계(S205)를 통해 제조된다.In addition, the water-soluble silicic acid mixture is a heating and melting step (S201) of heating and melting the homogenate mineral, an aging step (S203) of obtaining silicate crystals by aging the silicate mineral melted through the heating and melting step (S201), and It is prepared through a mixing and heating step (S205) of mixing and heating silicate crystals obtained through the aging step (S203) with purified water.

상기 수용성 규산혼합물의 원료물질인 규산염 광물은 규산염으로 이루어진 광물로 규소와 산소가 주성분이며, 여기서 규소(Si, Silicon)는 인체에 필수적인 50여종 중에 가장 중요한 필수 미네랄로 자연 상태에서는 규소만이 독립적으로 존재하지 않고 이산화규소(SiO2) 상태로 존재하며 규소의 순도가 100%이면 수정이 되고, 그렇지 않으면 석영이 되며, 다른 광물이 많이 함유되면 규석(차돌)이 된다. 물에 녹지 않기 때문에 식용으로 사용이 부적합하므로 산업용으로 사용되는 것이 일반적이다. 이러한 규산염 광물은 결합과 배열상태에 따라 네소 규산염 광물, 소로 규산염 광물, 사이클로 규산염 광물, 이노 규산염 광물, 필로 규산염 광물, 텍토 규산염 광물로 구분될 수 있으며, 본 발명에서는 규산염 광물로 감람석, 석류석, 지르콘, 홍주석, 겔레나이트, 홍렴석, 녹주석, 전기석, 단사휘석, 사방각섬석, 사문석, 카올리나이트, 정장석, 및 사장석으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.Silicate minerals, which are raw materials of the water-soluble silicic acid mixture, are minerals composed of silicate, and their main components are silicon and oxygen. It does not exist and exists in the form of silicon dioxide (SiO 2 ). If the purity of silicon is 100%, it becomes quartz. Otherwise, it becomes quartz. Since it is insoluble in water, it is not suitable for food use, so it is generally used for industrial purposes. These silicate minerals can be classified into nesosilicate minerals, sorosilicate minerals, cyclosilicate minerals, inosilicate minerals, phyllosilicate minerals, and tectosilicate minerals according to their bonding and arrangement. In the present invention, olivine, garnet, zircon At least one selected from the group consisting of andalusite, gelenite, red ryeomseok, beryl, tourmaline, monoclinic pyroxene, rhombohedral stone, serpentine, kaolinite, orthologite, and plagioclase may be used.

상기 규산염 광물은 하기 후술할 가열용융단계(S201) 또는 숙성단계(S203)에 영향을 미치지 않도록 표면에 존재하는 이물질을 흐르는 물에 수차례 수세하여 준비할 수 있다. 또한, 볼 밀(Ball mill), 아크리션 밀(Attrition mill), 제트 밀(Jet mill), 회전밀(Rotary mill) 및 진동 밀(Vibration mill) 중 선택되는 어느 하나의 장비로 분쇄하여 준비하여도 무방하다.The silicate mineral may be prepared by washing foreign substances present on the surface several times with flowing water so as not to affect the heating and melting step (S201) or the aging step (S203) to be described later. In addition, it is prepared by grinding with any equipment selected from ball mill, attrition mill, jet mill, rotary mill and vibration mill. also free

상기 가열용융단계(S201)는 규산염 광물을 1500 내지 2000℃의 온도로 10 내지 20시간 동안 가열하여 이루어지는데, 더욱 상세하게는 규산염 광물을 용광로에서 1500 내지 2000℃, 바람직하게는 1600 내지 1700℃의 온도로 10 내지 20시간, 바람직하게는 12 내지 15 시간 동안 가열하여 액체상태로 용융시키는 단계다.The heating and melting step (S201) is made by heating the silicate mineral at a temperature of 1500 to 2000 ° C. for 10 to 20 hours. More specifically, the silicate mineral is heated to 1500 to 2000 ° C., preferably 1600 to 1700 ° C. It is a step of melting in a liquid state by heating for 10 to 20 hours at a temperature, preferably 12 to 15 hours.

이때, 상기 가열온도가 1500℃ 미만이면, 규산염 광물이 유동성 및 점성을 갖는 액체상태로 용융되기 어려울 수 있고, 상기 가열온도가 2000℃를 초과하게 되면 과잉 온도 공급에 따른 상승 효과는 그다지 크지 않으며, 에너지 소비량만 증가되므로 바람직하지 못하다.At this time, if the heating temperature is less than 1500 ° C, it may be difficult for the silicate mineral to melt into a liquid state having fluidity and viscosity, and if the heating temperature exceeds 2000 ° C, the synergistic effect due to excessive temperature supply is not very large, This is undesirable because it only increases energy consumption.

또한, 가열시간이 10시간 미만이면, 규산염 광물이 충분히 용융되기 어려울 수 있고, 가열시간이 20시간을 초과하게 되면, 필요 이상의 열처리 시간에 따른 상승 효과는 그다지 크지 않으므로 상기에 기재된 가열시간을 유지하는 것이 바람직하다.In addition, if the heating time is less than 10 hours, it may be difficult to sufficiently melt the silicate minerals, and if the heating time exceeds 20 hours, the synergistic effect of the heat treatment time longer than necessary is not very large, so maintaining the heating time described above it is desirable

상기 숙성단계(S203)는 10 내지 20일 동안 이루어지는데, 상기 가열용융단계(S201)를 통해 용융된 규산염 광물을 10 내지 20일, 바람직하게는 12 내지 15일 동안 숙성시켜 규산염 결정체를 수득하는 단계다.The aging step (S203) is performed for 10 to 20 days, and the silicate mineral melted through the heating and melting step (S201) is aged for 10 to 20 days, preferably 12 to 15 days to obtain silicate crystals. all.

이때, 상기 숙성시간이 10일 미만이면, 규산염 결정체의 수득이 어렵고, 상기 숙성시간이 20일을 초과하게 되면 입자크기가 규산염 결정체의 입자크기가 1.0 내지 4.0 나노미터로 비대하게 커질 수 있으므로 바람직하지 못하다.At this time, if the aging time is less than 10 days, it is difficult to obtain silicate crystals, and if the aging time exceeds 20 days, the particle size of the silicate crystals may increase excessively to 1.0 to 4.0 nanometers, which is not preferable. Can not do it.

즉, 상기와 같은 숙성시간을 거치게 되면, 거의 기체상태의 물질로 이온화된 0.2 내지 0.6 나노미터의 입자크기를 나타내는 규산염 결정체가 수득된다.That is, when the aging time is passed as described above, silicate crystals having a particle size of 0.2 to 0.6 nanometers ionized into a substance in a gaseous state are obtained.

상기 혼합가열단계(S205)는 상기 숙성단계(S203)를 통해 수득된 규산염 결정체를 정제수와 환합하고 가열하는 단계로, 상기 숙성단계(S203)를 통해 수득된 규산염 결정체 100 중량부에 정제수 5000 내지 15000 중량부를 혼합하고 500 내지 1000℃의 온도로 가열하여 이루어진다.The mixing and heating step (S205) is a step of mixing the silicate crystals obtained through the aging step (S203) with purified water and heating, 5000 to 15000 parts by weight of purified water are added to 100 parts by weight of the silicate crystals obtained through the aging step (S203). It is made by mixing parts by weight and heating to a temperature of 500 to 1000°C.

상기 가열 온도가 500℃ 미만이면 규산염 결정체가 용출되지 않을 수 있고, 상기 가열온도가 1000℃를 초과하게 되면 규산염 결정체가 증발되어 규산염 결정체의 회수율이 저감될 수 있다.If the heating temperature is less than 500 ° C, the silicate crystals may not be eluted, and if the heating temperature exceeds 1000 ° C, the silicate crystals are evaporated and the recovery rate of the silicate crystals may be reduced.

상기와 같은 과정을 통해 제조되는 수용성 규산혼합물은 물에 대한 용해가 90% 이상을 나타낸다.The water-soluble silicic acid mixture prepared through the above process shows a solubility in water of 90% or more.

상기의 과정으로 이루어지는 고화단계(S105)를 거치면, 본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조가 완료되는데, 상기의 과정으로 이루어지는 콘크리트 첨가제의 제조는 소각재의 비산재 및 바닥재, 석탄재의 독극성, 중금속을 무해화 시키고 점결제 시멘트를 5 내지 10%를 혼합하여 3시간 정도 대기온도 기준으로 양생하게 되면 도로기층재 또는 성토재로 사용이 가능하다.After the solidification step (S105) consisting of the above process, the production of the concrete additive using industrial wastewater and dust waste according to the present invention is completed. When toxic and heavy metals are harmless and 5 to 10% of binder cement is mixed and cured at ambient temperature for about 3 hours, it can be used as a road base material or embankment material.

또한, 200℃의 온도에서 소성하여 배출된 골재는 인공경량골재(폐기물공정시험결과 기준치 이하 제품)로 사용 할 수 있고, 완전소결로 인해 독극물, 중금속 등의 유해물질이 광물격자 내에 결합되어 완전 고정화되기 때문에, 무해화를 이룰 수 있다.In addition, aggregates calcined at 200℃ and discharged can be used as artificial lightweight aggregates (products below the standard value as a result of waste process tests), and due to complete sintering, harmful substances such as poisons and heavy metals are combined in the mineral grid and completely immobilized. Because of this, harmlessness can be achieved.

또한, 본 발명을 통해 제조되는 콘크리트 첨가제는 성형체 내부에서 용융, 소결시켜 무해화되며, 최종산물의 비중 및 압축강도를 자유롭게 조절할 수 있고, 이로 인해 제품을 2차 가공하게 되면, 구조용 및 비구조용 경량 건축자재 중량벽돌, 경량벽돌, 방음 및 단열의 판넬, 로반재 등으로도 이용될 수 있다.In addition, the concrete additive produced through the present invention is harmless by melting and sintering inside the molded body, and the specific gravity and compressive strength of the final product can be freely adjusted. It can also be used as building materials such as heavy bricks, lightweight bricks, soundproofing and heat insulating panels, and furnace materials.

이하에서는, 본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법 및 그 제조방법을 통해 제조되느 콘크리트 첨가제의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, a method for manufacturing a concrete additive using industrial wastewater and dust waste according to the present invention and physical properties of the concrete additive manufactured through the manufacturing method will be described with examples.

<제조예 1> 수용성 규산혼합물의 제조<Preparation Example 1> Preparation of water-soluble silicic acid mixture

규산염 광물의 표면에 존재하는 이물질을 제거한 후 용광로에서 1650℃의 온도로 13시간 동안 가열하여 용융시킨 후, 용융된 규산염 광물을 13일 동안 숙성시켜 규산염 결정체를 수득하고, 수득된 규산염 결정체 100 중량부를 정제수 10000 중량부와 혼합한 후에 800℃의 온도로 가열하여 액상형태의 수용성 규산혼합물을 제조하였다.After removing the foreign matter present on the surface of the silicate mineral, it was melted by heating in a furnace at a temperature of 1650 ° C. for 13 hours, and then the molten silicate mineral was aged for 13 days to obtain silicate crystals, 100 parts by weight of the obtained silicate crystals After mixing with 10000 parts by weight of purified water, it was heated to a temperature of 800 ° C. to prepare a water-soluble silicic acid mixture in liquid form.

상기 제조예 1을 통해 제조된 수용성 규산혼합물을 FE-SEM으로 촬영하여 아래 도 3 내지 4에 나타내었다. 아래 도 3 내지 4에 나타낸 것처럼, 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물은 구형의 규소입자가 무질서하게 분포된 비정질 상태인 것을 알 수 있다.The water-soluble silicic acid mixture prepared in Preparation Example 1 was photographed with FE-SEM and shown in FIGS. 3 to 4 below. As shown in FIGS. 3 and 4 below, it can be seen that the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention is in an amorphous state in which spherical silicon particles are randomly distributed.

<비교예 1> 수용성 규산혼합물의 제조<Comparative Example 1> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 용융된 규산염을 8 시간 동안 숙성시켜 수용성 규산혼합물을 제조하였다.Proceed in the same manner as in Preparation Example 1, but the molten silicate was aged for 8 hours to prepare a water-soluble silicic acid mixture.

<비교예 2> 수용성 규산혼합물의 제조<Comparative Example 2> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 용융된 규산염을 5 시간 동안 숙성시켜 수용성 규산혼합물을 제조하였다.Proceed in the same manner as in Preparation Example 1, but the molten silicate was aged for 5 hours to prepare a water-soluble silicic acid mixture.

<비교예 3> 수용성 규산혼합물의 제조<Comparative Example 3> Preparation of water-soluble silicic acid mixture

상기 제조예 1과 동일하게 진행하되, 규산염 결정체를 정제수와 혼합한 후에 가열하지 않고 수용성 규산혼합물을 제조하였다.A water-soluble silicic acid mixture was prepared in the same manner as in Preparation Example 1, but without heating after mixing the silicate crystals with purified water.

상기 제조예 1 및 비교예 1 내지 3을 통해 제조된 수용성 규산혼합물의 항균성을 측정하여 아래 표 1에 나타내었다.The antibacterial properties of the water-soluble silicic acid mixture prepared in Preparation Example 1 and Comparative Examples 1 to 3 were measured and are shown in Table 1 below.

{단, 항균성은 페이퍼디스크 확산법(Paper disk diffusion assay)을 이용하여 다음과 같이 실험을 실시하였다.{However, antibacterial properties were tested as follows using a paper disk diffusion assay.

시험균주 Escherichia coli ATCC 25922, 및 Pseudomonas aeruginosa ATCC 15442를 각각 희석하여 106 CFU/mL로 맞추고, 희석된 시험균주들을 MHA 플레이트에 각각 100μL씩 접종한 후 멸균한 면봉을 이용하여 도포하였다. 멸균한 집게로 페이퍼 디스크 (paper disk, 8 mm)를 플레이트에 올려놓고 제조예 1 및 비교에 1 내지 3의 수용성 규산(Na2SiO3·10H2O)을 50 μL씩 흡수시킨 후 37 ℃로 설정된 인큐베이터에서 24 시간 동안 배양하였다. 대조군으로는 증류수를 사용하였다.}The test strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 15442 were diluted to 10 6 CFU/mL, respectively, and each 100 μL of the diluted test strains was inoculated on an MHA plate, and then applied using a sterilized cotton swab. Place a paper disk (8 mm) on the plate with sterilized tongs, absorb 50 μL of water-soluble silicic acid (Na 2 SiO 3 10H 2 O) of Preparation Example 1 and 1 to 3 in comparison, and then heat to 37 ° C. Incubated for 24 hours in an incubator set up. Distilled water was used as a control.}

<표 1><Table 1>

Figure 112021049717702-pat00001
Figure 112021049717702-pat00001

상기 표 1에 나타낸 것처럼, 본 발명의 제조예 1을 통해 제조된 수용성 규산혼합물은 우수한 항균성을 나타내는 것을 알 수 있다.As shown in Table 1, it can be seen that the water-soluble silicic acid mixture prepared through Preparation Example 1 of the present invention exhibits excellent antibacterial properties.

<실시예 1><Example 1>

산성 폐수(pH 3)과 알칼리성 폐수(pH 11)로 이루어진 산업폐수 100 중량부에 시멘트 공정에서 발생되며, 분진폐기물(소각재) 1.25 중량부 및 상기 제조예 1을 통해 제조된 수용성 규산혼합물 25 중량부를 혼합하고 150rpm의 속도로 2분 동안 교반한 후에 10분 동안 방치하여 겔화하는 과정을 통해 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제를 제조하였다.100 parts by weight of industrial wastewater consisting of acidic wastewater (pH 3) and alkaline wastewater (pH 11) generated in the cement process, 1.25 parts by weight of dusty waste (incineration ash) and 25 parts by weight of the water-soluble silicic acid mixture prepared in Preparation Example 1 After mixing and stirring for 2 minutes at a speed of 150 rpm, concrete additives using industrial wastewater and dust waste were prepared by gelling by leaving them for 10 minutes.

상기 실시예 1을 통해 제조된 콘크리트 첨가제의 성분을 한국화학융합시험연구원에 의뢰하여 측정한 결과를 아래 도 6에 나타내었다.The results of measuring the components of the concrete additive prepared in Example 1 by requesting the Korea Testing & Research Institute are shown in FIG. 6 below.

아래 도 6에 나타낸 것처럼, 본 발명을 통해 제조된 콘크리트 첨가제는 중금속이 다량 함유된 산업폐수와 분진폐기물이 사용되더라도, 구리 성분을 제외한 중금속이 검출되지 않는 것을 알 수 있다.As shown in FIG. 6 below, it can be seen that in the concrete additive prepared according to the present invention, heavy metals except copper components are not detected even when industrial wastewater and dust waste containing a large amount of heavy metals are used.

따라서, 본 발명에 따른 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법은 중금속이 함유된 산업폐수와 분진폐기물을 자원으로서 재활용할 뿐만 아니라, 산업폐수나 분진폐기물에 함유된 중금속이 흡착되어 용출되지 않는 콘크리트 첨가제를 제공한다.Therefore, the method for manufacturing a concrete additive using industrial wastewater and dust waste according to the present invention not only recycles industrial wastewater and dust waste containing heavy metals as resources, but also prevents heavy metals contained in industrial wastewater or dust waste from being adsorbed and eluted. Provides a concrete additive that does not

또한, 중금속이 함유된 산업폐수와 분진폐기물이 혼합되더라도, 수용성 규산혼합물이 첨가되어 자연발화나 폭발이 발생하지 않는다.In addition, even when industrial wastewater and dust waste containing heavy metals are mixed, spontaneous combustion or explosion does not occur because a water-soluble silicic acid mixture is added.

S101 ; 폐수수거단계 S101-1 ; 분진폐기물수거단계
S103 ; 폐자원혼합단계
S105 ; 고화단계
S201 ; 가열용융단계
S203 ; 숙성단계
S205 ; 혼합가열단계
S101; wastewater collection step S101-1; Dusty waste collection stage
S103; Waste resource mixing stage
S105; solidification stage
S201; heating and melting step
S203; ripening stage
S205; Mixed heating step

Claims (5)

중금속이 함유된 폐수를 수거하는 폐수수거단계;
분진폐기물을 수거하는 분진폐기물수거단계;
상기 폐수수거단계를 통해 수거된 폐수에 상기 분진폐기물수거단계를 통해 수거된 분진폐기물을 혼합하는 폐자원혼합단계; 및
상기 폐자원혼합단계를 통해 제조된 혼합물에 수용성 규산혼합물을 혼합하여 고화시키는 고화단계;로 이루어지는 것을 특징으로 하며,
상기 수용성 규산혼합물은, 규산염 광물을 가열하여 용융하는 가열용융단계; 상기 가열용융단계를 통해 용융된 규산염 광물을 숙성시켜 규산염 결정체를 수득하는 숙성단계; 및 상기 숙성단계를 통해 수득된 규산염 결정체에 정제수를 혼합하고 가열하는 혼합가열단계;를 통해 제조되는 것을 특징으로 하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법.
A wastewater collection step of collecting wastewater containing heavy metals;
Dust waste collection step of collecting dust waste;
a waste resource mixing step of mixing the dusty waste collected through the dusty waste collection step with the wastewater collected through the wastewater collection step; and
It is characterized by comprising a; solidification step of mixing and solidifying a water-soluble silicic acid mixture with the mixture prepared through the waste resource mixing step,
Heating and melting the water-soluble silicic acid mixture by heating and melting the silicate mineral; an aging step of obtaining silicate crystals by aging the silicate mineral melted through the heating and melting step; and a mixing and heating step of mixing and heating silicate crystals obtained through the aging step with purified water.
청구항 1에 있어서,
상기 폐자원혼합단계는 폐수 100 중량부에 분진폐기물 1 내지 1.5 중량부를 혼합하여 이루어지는 것을 특징으로 하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법.
The method of claim 1,
The waste resource mixing step is a method for producing a concrete additive using industrial wastewater and dust waste, characterized in that by mixing 1 to 1.5 parts by weight of dust waste with 100 parts by weight of waste water.
청구항 1에 있어서,
상기 고화단계는 상기 폐자원혼합단계를 통해 제조된 혼합물 100 중량부에 수용성 규산혼합물 20 내지 30 중량부를 혼합하여 이루어지는 것을 특징으로 하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법.
The method of claim 1,
The solidification step is a method for producing a concrete additive using industrial wastewater and dust waste, characterized in that 20 to 30 parts by weight of a water-soluble silicic acid mixture is mixed with 100 parts by weight of the mixture prepared through the waste resource mixing step.
청구항 1 또는 3에 있어서,
상기 수용성 규산혼합물은 SiO3, Na2SiO3 및 Na2SiO3·10H2O로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 산업폐수와 분진폐기물을 이용한 콘크리트 첨가제의 제조방법.
According to claim 1 or 3,
The water-soluble silicic acid mixture comprises at least one selected from the group consisting of SiO 3 , Na 2 SiO 3 and Na 2 SiO 3 .10H 2 O Method for producing a concrete additive using industrial wastewater and dust waste.
삭제delete
KR1020210055009A 2021-04-28 2021-04-28 Manufacturing method of concrete additives using industrial wastewater and dust waste KR102546721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210055009A KR102546721B1 (en) 2021-04-28 2021-04-28 Manufacturing method of concrete additives using industrial wastewater and dust waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210055009A KR102546721B1 (en) 2021-04-28 2021-04-28 Manufacturing method of concrete additives using industrial wastewater and dust waste

Publications (2)

Publication Number Publication Date
KR20220147907A KR20220147907A (en) 2022-11-04
KR102546721B1 true KR102546721B1 (en) 2023-06-28

Family

ID=84045250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210055009A KR102546721B1 (en) 2021-04-28 2021-04-28 Manufacturing method of concrete additives using industrial wastewater and dust waste

Country Status (1)

Country Link
KR (1) KR102546721B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599400B1 (en) * 2023-02-08 2023-11-07 경기단열 주식회사 Project windows with improved insulation performance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305160B1 (en) 2020-03-13 2021-09-27 주식회사 한나눔산업 Concrete composition and the manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535280A (en) * 1976-07-05 1978-01-18 Mitsubishi Heavy Ind Ltd Bead setting device of tire molding machine
JPH0824900A (en) * 1994-07-15 1996-01-30 Kouyuu Kk Waste water and sludge treatment agent, and treatment of waste water and sludge using the agent
KR20020092619A (en) 2001-06-05 2002-12-12 김창균 Method for the physical and chemical coagulation and flocculation treatment water and wastewater using a slag and a fly ash
KR100492619B1 (en) 2002-06-26 2005-06-03 한국지질자원연구원 a Process Method for Scatter Ash following burn up Living Wastes
KR102127450B1 (en) * 2018-03-30 2020-06-26 주식회사 엘비씨 Method of preparing water-soluble silicate, and water treatment agent and feed additive including the water-soluble silicate prepared by the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305160B1 (en) 2020-03-13 2021-09-27 주식회사 한나눔산업 Concrete composition and the manufacturing method thereof

Also Published As

Publication number Publication date
KR20220147907A (en) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7038708B2 (en) Lightweight and high-strength ceramic particles and their manufacturing method
US10207954B2 (en) Synthetic aggregate from waste materials
KR101312562B1 (en) Binder Composition for Concrete Comprising Bottom Ash
JP2008536781A (en) Firing aggregate containing IBA and low-calcium silicon aluminum material and method for producing the aggregate
JP2008536781A5 (en)
JP2008538347A5 (en)
JP2008538347A (en) Synthetic aggregates containing sewage sludge and other waste and methods for producing such aggregates
JP2013513539A (en) Manufacturing method of lightweight construction materials using sludge waste
US20140338571A1 (en) Aggregates
JP2011520761A (en) Method for producing inorganic hydraulic binder
CN111747696B (en) Geopolymer concrete based on household garbage incineration slag and red mud and preparation method thereof
JP5055550B2 (en) Ceramic solidification method, ceramic solidified body, and activated ceramic powder
KR102546721B1 (en) Manufacturing method of concrete additives using industrial wastewater and dust waste
CN112573900A (en) Recycling method of casting dust and sludge
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
KR102305160B1 (en) Concrete composition and the manufacturing method thereof
JP6500108B2 (en) Cement-based materials for radioactive waste disposal sites
CN107500734A (en) It is a kind of using industrial inorganic hazardous waste and low-grade alumina-silica mineral as ceramic water-permeable brick of raw material and preparation method thereof
CN107721213B (en) Method for processing high-performance cement by using fly ash
Dash et al. A comparison among the physico-chemical-mechanical of three potential aggregates fabricated from fly ash
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JP2001253740A (en) Artificial aggregate and its production process
JPH1029841A (en) Production of artificial aggregate
JP5277371B2 (en) Solidification method of ceramic powder
Mathew et al. Artificial coarse aggregate from waste materials, fly ash and Msand dust through geopolymerization

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right